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Gradient Flow for the Willmore Functional 

ERNST KUWERT AND REINER SCHATZLE 

We consider two-dimensional, compact immersed surfaces in Rn 

moving by the gradient of the L2 integral of their curvature. It is 
not known whether solutions to this fourth-order, geometric evo- 
lution equation may develop singularities in finite time. We give a 
lower bound on the lifespan of a smooth solution, which depends 
only on how much the curvature of the initial surface is concen- 
trated in space. 

1. Introduction. 

The Willmore energy of a closed, immersed surface / : E —> W1 with induced 
area measure d^i is given by 

(1.1) W{f) = f\AQ\2d^ 

s 

where ^4° = A — \g®H is the tracefree part of the second fundamental form 
A. In his paper [14] Willmore used the L2 integral of the mean curvature, 
which however differs from (1.1) only by a constant. Namely, the Gaufi 
equations and Gaufi-Bonnet imply 

(1.2) WU) = \f \A\2 dfi - 27rx(S) = ^ J \H\2 df* - 47rx(S). 
S E 

The aim of this paper is to initiate a study of the L2 gradient flow for (1.1), 
i.e., the geometric evolution equation 

(1.3) dtf = -(AH + Q(A0)H) = -W(/); 

here the Laplacian of the normal bundle along / is used and Q(A0) is 
quadratic in 74°, see (2.4). The following local existence result is standard. 

Proposition 1.1. For any smooth immersion fo : S —> En there exists 
a unique, nonextendable smooth solution f : E x [0,T) —> W1 to (1.3) with 
/(•, 0) = fo, where 0 < T < oo. 
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It is not known whether there can develop singularities under the Will- 
more flow in finite time. As our main result, we obtain here a lower bound 
on the lifespan which depends only on the concentration of curvature for the 
initial surface: 

Theorem 1.2. Let fo : £ —¥ W1 be a smooth immersion. There are con- 
stants SQ > 0; c < oo depending only on n, such that if g > 0 is chosen 
with 

(1.4) /   |^o|2 dnQ<e< £o    for any x £ En, 

Be(x) 

then the maximal time T of smooth existence for the Willmore flow with 
initial data fo satisfies 

(1.5) T> V, c 

and one has the estimate 

(1.6) [   \A\2dn <cs for : t < -Q
4
. 

C 

Bg(x) 

In the statement of the theorem the integrals should be interpreted as 
integrals over the preimage of BQ(X) under fo and /, respectively. Let 
Q(t) > 0 be the biggest radius such that (1.4) holds at time t > 0 with 
e = SQ- Assuming that the flow becomes singular at T < oo, it follows that 
g(t) < «v/c(T — *) and hence at least a quantum SQ > 0 of the curvature 
concentrates in space. 

The direct method of minimizing the Willmore energy among surfaces 
of fixed genus p was carried out by Simon [10]. For p — 0 and n = 3 
the critical points are all known and form an infinite sequence as shown by 
Bryant [1], but of course only the round spheres, i.e., A0 = 0, are minimizing. 
Simon's work proves existence of a minimizer for any p > 1, where for p > 2 
one needs an additional argument due to Kusner [4]. For an overview on 
Willmore surfaces we refer to Chapter 7 in [13]. 

Geometric evolution equations of fourth order have been considered only 
relatively recently. For the Willmore flow Simonett shows long term exis- 
tence for initial data which are close in C2'a to a sphere; furthermore the 
solution gets spherical as t —> oo [11]. The proof uses arguments from 
center manifolds and follows previous work of Escher, Mayer and Simonett 
on the flow dtf = —AH called surface diffusion [2]. 
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Methods somewhat closer to ours are used by Polden in [8, 9] to prove 
long term existence and sub convergence up to translations for planar curves 
moving by the gradient of the functional 

Ex(c)=  [{x2 + \2)ds    (A>0). 

In a forthcoming joint paper the authors have extended the results of Polden 
to space curves, treating also the case A = 0 with or without a length 
constraint [5]. 

For surfaces the squared curvature integral is scale invariant and in fact 
invariant under the full Mobius group of W1. This suggests comparing the 
Willmore flow to the heat flow for harmonic maps from M2 or S2 into a 
Riemannian manifold, as considered for example by Struwe [12]. To a cer- 
tain extent the concentration-compactness alternative proved in Theorem 
1.2 affirms the analogy. Note however that there are also some differences 
between the Willmore flow and the harmonic map heat flow, besides the 
fact that the first is a fourth order equation so that tools related to the 
maximum principle are not available. Namely, equation (1.3) is not strictly 
parabolic and we are forced to pass to the evolution equation of the curva- 
ture. Furthermore, our operator is only quasilinear rather than semilinear; 
geometrically this means that the intrinsic geometry changes and possibly 
gets bad under the evolution. In the case of surfaces it becomes crucial to 
use only inequalities with universal constants, most importantly the Sobolev 
inequality of Michael and Simon [7] and interpolation inequalities as in [3]. 
Finally, in our case the scaling and localization is in the target of the map 
rather than in the domain. The last fact is a major difficulty if one tries to 
replace (1.4) by a local assumption. 

2. Evolution of the curvature. 

Here we derive equations for the evolution of the curvature and its deriva- 
tives, after collecting some general formulae holding for any immersion 
/ : E —»> Mn. We have tried to arrange the statements in a way which 
facilitates possible future applications to related problems. 

The basic geometric data associated to / are on the one hand the in- 
duced metric g(X,Y) = (Df • X, Df • Y) with corresponding Levi-Civita 
connection V, sectional curvature K and curvature tensor R(X,Y)Z = 
K{c}(Y,Z)X — g(X,Z)Y), and on the other hand the second fundamen- 
tal form A(X1Y) = D2

XYf = Dx^Dyf) - Df - VxY with mean curvature 
vector given by the trace H = A(ei,ei) and trace free part A0(X, Y) = 
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A(X,Y) — 7ig(X,Y)H. As a third object we have the normal connec- 
tion Vx0 = (Dx(f))± which acts on normal vector fields <f) along / and 
has curvature defined by R^iX, Y)(j) = ^XY^ ~ ^YX^ where V^y^ = 
.Vx"(Vy0) — Vyx-y^- I11 the following {ei, 62} always is a (locally defined) g- 
orthonormal basis on E and summation over repeated indices is used. When 
computing tensor identities we freely use vector fields with first derivative 
vanishing at a given point. The quantities defined above are related by the 
equations of Mainardi-Codazzi, Gaufi and Ricci: 

(2.1) (VxA)(Y, Z) = (Vyi4)(X, Z),    Vff = -VM - -2V*A0, 

(2.2) ^-^(l^|2-|A|2)^^^|2-^|^|2, 

(2.3) R^X, Y)<t> = A{euX)(^(ei, r), ^> - Afe, Y)(A(e,, X), <f>) 

= A0(eiyX)(A0(ei,Y)Jcl>) - A^e^Y^A^e^X)^}. 

Here V* denotes the formal adjoint of the operator V, i.e., V*^ = 
— (VeiV

;)(ei) • • •) for any normal Z-form along /. Note (R-L(X)Y)(j))(f)) = 0 
and in particular R1- = 0 for n = 3. We further define the normal endomor- 
phism 

(2.4) Q(A0)<f> = A^ej^A^ejU) 

and observe 0 < (Q(A0)(j),(j)) < \Q(A0)\ < tiQ(A0) = |^0|2, where \<f>\ = 1. 
An easy computation yields 

(2.5) 

A^X^A^Y),^) +A0(ei,Y)(A0(ei,X),ct>) = p(X,y) Q(A0)</», 

(2.6) 
Aia, X^Aia, Y), cfi) + Aia, YXAiet, X), </>) 

= g(X,Y) (Q(A0)<f>+^H(H,4>)^ + H(A0(X,Y),<t>} + A0(X,Y)(H,ct>). 

Upon differentiating the identity {(j),Deif) — 0 one gets 

(2.7) Dx<!> = Vx<l>-(<l>,A(X,ei))Deif. 

We shall need to interchange the derivatives of multilinear forms on E having 
normal values along /. If </>, ip are forms of this type, we denote by </> * ip 
any normal-valued, multilinear form depending on 0 and -0 in a universal, 
bilinear way.   In particular we have the properties \(j) * ijj] < c\(f)\ li/j] and 
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V(0*'0) = V(j)*il)+<j)*Vil). On an /-linear form (j) the curvature Rl{X, Y)<j) = 
V^ y^ — Vyx(j) satisfies 

= i2±(x1y)^(Xi,...Jxz)-X;^ii---^(^iy)^ifci---^0- 
fc=i 

Using (2.2) and (2.3) we deduce 

(2.8) Rl(X,Y)(l) = A*A*(i). 

For this paper the precise algebraic nature of the nonlinearities in the evolu- 
tion of curvature will be irrelevant, so that the ^notation suffices. However 
we will state some equations more precisely for future reference. 

Lemma 2.1. For any l-linear, normal form (j) we have 

(2.9) (VV* - V* V)</> - A * A * (j) - V*T, 

where 

T(Xo,Xu ...,Xl) = (Vxo0)(Xi,X2, ...,Xi)- (Vx1<P)(Xo,X2,.. .,Xi). 

Proof. We compute using adapted vector fields 

((VV*-V*V)</>)(Xi,...,Xz) 

= Vei ((Ve^XXi, • . • , XO) - Vxx ((Ve, Me*, X2,..., Xi)) 

= (v^e^)(x1,...,xo-(v^1^)(ei,x2,...,xo 
+ (yl,x1<t>)(^X2, ...M- (V^l!e»(ei,X2)... ,*,) 

= -(V*r)(X1,...,X/) + (i?'(ei,X1)0)(ei,X2,...,XO. 

The claim follows from (2.8). □ 

We shall need two special cases of (2.9). First if we take <f) = A, then we 
have T = 0 due to (2.1) and obtain (a rough version of) Simons' identity 

(2.10) AA = V2H + A*A*A   (A = -V*V). 

Second we replace (j) in (2.9) by V0, where 4> is a (I — l)-linear, normal form. 
We then have T^o, X1,X2,..., Xfi = (tf-^Xo, X^) (X2, ...,Xi), which 
means T = A*A*4>by (2.8) and therefore 

(2.11) (VV* - V*V)V(?!> = A*A*V<l) + A*VA*(f>. 
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In the following lemma we collect without proof the variational formulae for 
various geometric objects. 

Lemma 2.2. Let f : S x / —> Rn
; / = (ti,^)* be a smooth variation with 

normal velocity field V = dtf. Then the following equations hold (where 
X, Y, Z do not depend on t): 

(2.12) dtP = -dtP1 = Df • (VVy + W • (£>/)*, where P, P1 

are the projections onto tangent space 

and normal space; 

(2.13) P(dt<l>) = Df£7Vy<t> for any normal (/> along /; 

(2.14) dt
±Vx<f> = Vxdt

±cf> + A(X,ei)(S/eiV,ct)) + VeiV(A(X,ei),<f)), 

where dt   = P  dt and <fi is normal along /; 

(2.15) (dtg)(X,Y) = -2(A(X,Y),V); 

(2.16) dt(dfi) =-(H,V) d/i; 

(2.17) dt(VxY) = -{(VeiA)(X,Y),V)ei + {A(X,Y),VeiV)ei 

- {A(X,ei),VYV)ei - (A(Y,ei),VxV)ei; 

(2.18) dj-A(X, Y) = VlYV - A(ei,X)(A(ei,Y), V); 

(2.19) dj-H = AV + Q(A0)V + \H{H,V). 

The following Lemma will be needed for computing the evolution of 
derivatives of the curvature. 

Lemma 2.3. Let (j) be an (I — I)-form with normal values along a variation 
f : E x / —> Mn with normal velocity dtf = V. If d^cj) + A20 = Y, then 
ip = V0 satisfies an equation 

(2.20) dj-i/t + Afy - Vy + J^ V^ * VjA * Vk</> 
i+j+k=3 

+ A * VF * ^ + VA * V * <£. 

Proof Let Xi,.. . , Xi be independent of /: and such that VXk = 0 at a given 
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point and a given time. We then have 

= dt((vXl<t>)(x2,...,xl)) 
i 

= diVxA(X2, ...,Xi)-dtY, ^X^ • • •' V*iX*' • • •' xi)- 
k=2 

In the first term we use (2.14) to obtain 

dj-vXl<KX2,...,Xi) 

= VXldt4>(X2t...1Xl) + (A*^V*<l>){X1,...,Xl) 

= (v(di-(f>))(x1,...,xl) + (A*vv*(p)(x1,...,xl). 

By (2.17) the second term above has the form A * VV * (/) + VA * V * </>. 
We thus arrive at 

dfy + AV - vy = A2(V0) - v(A2(/>) + A*vF*(/> + vA*y*(/>. 

Now we use (2.11) to obtain 

A2(V(/>) - V(A2</>) = A(A(V(/)) - V(A(/>)) + A(V(A^)) - V(A(A^)) 

= A(A * A * Vcj) + A * Vi4 * </>) 

+ A * A * V(A0) + A * V^i * A^ 

=    53    V^ * VJA * V^' 

which proves (2.20). □ 

Using (1.2), (2.16) and (2.19) the first variation formula for the Willmore 
integral in a normal direction (/> becomes 

|W(/ + #)U = ;£/>? 44=. 
S 

= !{H,k(t> + Q(A0)<!>)dii 

s 

= J(AH + Q(A0)H,<l>)dn, 
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which proves gradz,2W(/) = Ail + Q(A0)H = W(/). In the following we 
use the notation P™(A) for any term of the type 

(2.21) P™(A)=      J2      Vil,4*Vi2.4*...*Vi'-A 
ii-\-...-t-ir=m 

Proposition 2.4.  Under the Willmore flow dtf = — W(/); we have the 
evolution equations 

(2.22) d^(VrnA) + A2(Vm^) = P™+2(A) + P^(A) 

for any m E NQ . 

Proof. We proceed by induction on ra, starting with m — 0.  Using (2.11) 
we have 

A(V2ff)- V2(AiJ) 

= (VV* - V*V)V(V#) + V(VV* - V*V)VH 

= A * A * V2H + A * S/A * Vil + V(A * A * Vi? + A * V^4 * i?). 

Therefore (2.18) yields 

dj-A = V2(W(/)) + A * il * W(/) 

-V2(AJff) + P32(^) + P5
0(^) 

= A(V2iJ) + Pi (A) + P5
0(^) 

= A2^ + P32(yl) + P5
0(^), 

where (2.10) was used in the last step.  Now let m > 1 and conclude from 
(2.20) using induction 

dt(VmA) + A2(\7rnA) 

= V(P™+1(A) + P™-1(A))+   ]r   Vii4*Vii4*VAs(Vm-1i4) 

+ A * V(W(/)) * V771"1^ + VA * W(/) * V771-1^. 

Inserting W(/) = AH + A* A* A yields the result. D 
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3. Energy type inequalities. 

In this section we convert the evolution equations obtained in Proposition 2.4 
into energy type inequalities. We start with the following general identity. 

Lemma 3.1. Let f : S x / —> Mn be a variation with dtf = V normal, and 
let <fi be a l-linear, normal form along f which satisfies d^-(f) + A2</> = Y. 
Then for any rj G C2(E x /) we have 

(3.1) 

d_ r i 
dt 
f ^IS dp + f{A0, A(^)> dp - J(Y, #} dp 
E E E 

=   /  ^ X^fe*' ^ ^^(^i ' ' * ' ' e**> * ' * ' e^)^(eH ' ' ' * ' eV • ' ' > eil)) d^ 
E       *=1 

- I ^\(j)\^H,V)Vdp + I ^\cl>\2dtVdp. 
E E 

Here g(ei,ej) = 5ij locally on E x / and summation over j, v G {1,2}, 
1 < v < Z, is used. 

Proof. Recalling (2.15) and (2.16) we have 

dt / -r)(<i)(ei1,...,eil),(l)(ei1,...,eil))dp 

E 

= -J(A2<l>,r,<l>)dvL + jTi(Y,<l>)dp 
E E 

+ / ^ zJ^^6*1' • • * ' e^' • • • ' e^)' ^(en' • • • > ^e*fc» • • • > e^)) ^ 
E       *=1 

l^i^VMUp + J^dtvl^dp. 

In the third integral we note 5(3* eifc, ej)+g(eik, c^ej) = -(dtg)(eik, ej) = 
2{i4(eifc,ej), V), where (2.15) was used in the last step. The claim follows 
by symmetry mikJ. □ 
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Lemma 3.2.   Under the assumptions of the previous lemma, letrj = 7s with 
7 G C2(£ x /) and s > 4. Then for c = c (n, 5) we have 

(3.2) 

di y MV d^ + y IV20lV dfi-J 2{Y, fiYdn 
s s s . 

<  [(A * 4> * <£, F)7sd/x + / |^|2S 7s-1 3*7^ 
s s 

+ cj M V-4(|V7|4 + 72|V27|2)^ + cf H2(|V^|2 + |^|4)7S d/i. 

Proof. We have 

E 

< 

E 

|(V20, V2(7^))^ + c| |V20|75-1|V7||V0| d^i 
E E 

+ c||V20|75-2(|V7|2+7|V27|)H^ 
E 

I(V20, V2(7S0)) dM + J / IV20|27s rf/i 
E E 

+ cf \V4>\ V-2|V7|2 dM + c| H V-4(|V7|4 + 72|V27|2)^. 

E 

< 

E 

E E 

In the third term we integrate by parts to get 

y IWI v-2 iv7i2^ 
E 

< - y^, A<A)7s-2|V7|2^ + cj M|V*| 7s"3iV7|3^ 
s 

yi^l|V</)|7s"2|V7||V27|d/x 
s 

< e f IV20| Vd/x + c (e) y |^| V"4!V7|4d/x 

s 

+ c 
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s 

< 
2 

s 

+ \ f I v^l V"2! VTI
2
^ + cf \<j>\ V-2|v27l V 

Combining the two inequalities yields 

(3.3) f IV2^Vd/x + I |V0|V-2!V7|2^ 
s. 

5 /(V2^, V2(7»)^ + c 110| V-4(l V7|4 + 72| V27|2)^. 
s s 

Next using (2.11) we compute 

s 

=  [(Afa A(Y<t>)W + [{A * A * V(/) + A * \7A * 0, V(75(/)))d/i 

S E 

<|(A^A(7»)d/i 

(A* A* V0, V0)7sd/i + I (A*VA*(i), V0)75d/i 

] E 

E E 

The last two integrals are estimated as follows: 

(3.4) yVl^MV^T^lVTM/x 
s 

< £11Vtf|V-2|V7|2^ + c{e)j \<t>\2\A\V^, 
s s 

(3.5) yVllVAIWy-'lVTM/x 

| |^|y-4|V7|4^ + f \<t>\\\VA\2 + |^|4)7S^. 

E 

+ 
E 

+ C 

E 

< 

E 
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Using integration by parts we obtain 

E 

s 

f{A*VA*(l)* Vcj))7S^ + cf \A\2\(t)\ |V^| Y~l\^lW 
S E 

f |V20| VdM + c (e) y |0|2|A|V^ 
C E 

[(A*VA*<f>* V</)) 75d/x + e / | V0| V"2| VTI
2
^, 

E 

+ 
E E 

E 

+ 
E 

and 

E 

< 

hA*S7A*(f)* V<£)-ytdfi 

\ I \A\2\V0| VdM + c/ l^l2!Vil| V^/i. 
E E 

Combining these inequalities yields 

(3.6) / \A\2\ V(/)|275^ + [(A*\7A*(f)* V^) 7sd/i 

E 

• / | V2(/)| V ^ + e /" I V(/)|27s"2 | V7I2 d/i 
E 

E 

E 

+ C( 

The claim follows by inserting (3.3)-(3.6) into (3.1). D 

In the following we assume that 7 = 70/, where 0 < 7 <  1 and 
C2(Mn)   ^   c   <   00-     This implies V7   =   (Dj o f)Df and V27   = 

(i?27 o /)(£>/, £>/) + (JD7 o /)il( •, •), and therefore we have 

(3.7) |V7|<c,     |V27|<c(l + |^|). 
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We furthermore specialize to the Willmore flow, i.e., 

(3.8) V = -W(/) = -(AIT + Q{A0)H) = P*(A) + P$(A), and 

(3.9) da = (D^of).(AH + P^A)). 

Proposition 3.3. Let f : E x / —)> Mn 6e a smooth Willmore flow. Then 
for 7 = 70/ satisfying (3.7), 0 = Vm^4 wife m G NQ and s > 2m + 4: we 
have 

(3.10) 

s E s 

+ c   /  |A|V~4"2m^- 
[7>0] 

Proo/. We estimate the terms in (3.2). Prom (2.22) we have Y = P™+2(A) + 
P™(A), and (3.8) implies 

f 2(Y, <f>)isdn + [{A*<t>*(f>, V)Y dix + c t |^|2(|VA|2 + |^|4)7S dfi 

S S E 

= f {P?+2{A) + P^iA)) * ^ dp. 
s 

By (3.9) we next have 

f H V"1 $7^ - /1^1 V"1^o /)(Ai? + P30(^))^. 
s s 

The second term, on the right is estimated by Young's inequality: 

S E E 

For the first term we observe, using an adapted frame, summation over 
2, j and (2.7) 

Dei ((£>7 o /) • Ve.ff) = (D2j o f)(Deif, VeiH) + (£7 o /) • Dei(VeiH) 

= (L»27 o /)(Ai/, VeiH) + P7 o /) AH 
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-(Vei^AfaeMDyoft.DeJ. 

We thus get 

|My-1(L>7°/)-AtfdM 

s 

= -jDei(\(/>2\Y-1)(D^of) ■ VeiHdv 

s 

- I MV-1^ o f)(Deif, VeiH)dn 
s 

+ / |0|V"1(Veii?,^(ei,ei))P7O /) • De./d/X 
s 

< c / |^| IV^| |VA\ Y^dfi + c f |</)|2 | V^| 7s-2d/x 
s s 

+ c I H2 | VX| T3-1
^ + cj\(t>\2\A\\VA\ j^dfj, 

s s 

< c /" |V</)|27s-2d/x + c f \4>\2 \VA\2 j'dfi 

< c /" I V</)|27s-2d/x + c f |</)|2 7s-4dAi 

+ J(iT+2(A) + iT{A))*<f>'r'dp. 
S 

Now the interpolation inequality in Corollary 5.3 implies 

(3.11)      y MV-4 dyu + y |V^|27s-2 dfi < s I |V2^|27S d» 
s 

+ c(e)    /"  |^|V-4-2md/x. 

[7>0] 
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Collecting terms we arrive at 

[\<f>\28<ya-1dt'ydn<e /|V20|yd/i + c(£)   f  |A|V~4"2m^ 
S E [7>0] 

E 

The remaining term in (3.2) is estimated by 

/|0!V-4(|V7i4+72|V27|2)dM 
E 

< cj i^iV4^ + c| i^!2 (i + |A|2)7
s-2d/i 

E E- 

<c j ^-f^d^-k-c j \4>\2\A\AYd^ 
S E 

where (3.7) was used. Using again (3.11) the claim follows. □ 

We finally state the scaled version of the proposition. 

Corollary 3.4. Suppose XB^) ■< 7 < XB2Q{x{i) and \\D^\\Loo < cp'3 for 
j -- 1,2,  Under the assumptions of Proposition 3.3, we then have 

(3.12) 

| f \M21S dfi + I J |V2^| V df* < J (P3
m+2(A) + P?(A)) * ^dv 

E E E 

/|A|> + ,4^    /    WV-^rfM. 
[7>0] 

4. Control by concentration of curvature. 

H6re we prove local estimates for the Willmore flow subject to the condition 
that the curvature remains small locally in L2. In particular we obtain the 
lower bound on the lifespan depending on the initial concentration stated in 
the introduction. 

We shall need the following Sobolev inequality due to Michael and Simon. 
•Note that the immersed case of (4.1) follows trivially from the embedded 
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case, by selecting an embedding /o : S —> Mm, applying the inequality to 
(/J£/O) 

: s -^ ]Kn+m and letting e \ 0. Furthermore (4.1) also applies to 
normal-valued forms (f) along /, due to Kato's inequality |V|0|| < |V0|. 

Theorem 4.1 ([7]). ie^ / : S —> R71 6e a smooth immersion. Then for 
any u G C£(E) we /mve 

(4.1) (   A u2 dfMY < c ( I \Vu\ dfjL + f \H\ \u\ d/Mj, 

E S S 

where c — c (n). 

Lemma 4.2. For any immersion f : E —> R71 and 7 G (7^(2), 0 < 7 < 1, 
we /iave ^/ie inequality 

(4.2) 

/ |^| V d/i + / l^l2 IV^IV d/iKc   f lA? dn /"(IV2A|V + |J4| V)^ 
2 2 [7>0] 2 

+ c(  I   l^l2^)  , 
[7>0] 

where c depends on n and ||V7||i/0ci(£)- 

Proof. Approximating u = \A\ \^7A\ 72 and applying Theorem 4.1, we obtain 

(4.3) 

2 

< c ( f \A\ \S/2A\ 72 dfx + f \VA\2 72 dfi 

1 2 

1 \A\ \VA\ 27IV7I ^ + I \A\2 \VA\ 72 d/x) 
2 2 

f  \A\2dJ f\V2A\2'y4dn+ [{Af-yU^+cC   f  \A\2dfi 

2 

+ 

<c 

[7>0] '2 2 [7>0] 
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+ c(y,|VA|27
2^  , 

s 

as 

2 

(4.4) (||A|VV)   <   /  \A\2 dn j W^. 
S [7>0] S 

Integrating by parts, we estimate the last integral in (4.3) by 

(4.5) f\VA\2j2dfx< f\A\\V2A\j2dfi+ f\A\\VA\27\Vj\dfx 

s 

[  |^|2d/i /|V2^|274^)2+c   f  \A\2diJL 

E 

< 

[7>0] E [7>0] 

E 

Absorbing and plugging into (4.3) yields the estimate for the second term 
in (4.2). 

Next we apply Theorem 4.1 to u = |^4|372 and obtain 

f 3\A\2 |V,4|72 dfi + f |A|3 271V7I d/x + / |^|4 72 dp 
S S E 

(y|VA|27
2^)   +c(||^|472d/x)   +C( I  l^d/x 

E 

<C 

[7>0] 

Using (4.4) and (4.5) yields the estimate for the first term in (4.2), and the 
proof of the lemma is complete. □ 

In the following, we set for any normal Z-form </> on E and any measurable 
set U C S 

(4-6) II0IU=(/HP^)P 

u 
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Lemma 4.3. For any normal l-form (j) on S and 7 as in (3.7) we have 

(4-7) Mt,b=1] <cmlb>0](\\v'Hlh>0]+M2lAlX^+Ml^o])- 

Moreover, if (j) = A and if 

(4-8) Pll22,[7>oi < ^0 

for some EQ small enough depending on the constants in (3.7), then 

(4-9) \\A\tth=l] <c\\A\\lb>0](\\V2A\\lh>0] + P||2
2,[7>01). 

Proof. We put ip = (j)j2. Taking m = 2,p = 4, a = |in the multiplicative 
Sobolev inequality from Theorem 5.6 yields 

MIoo^^llV-IIKIIv^m + II^IU)3- 
Now using Lemma 5.1 with 7 = 1 we get 

Woo < c ii^iil (win vviil+ 11^11 J)- 
We estimate the second term by 

WHII! < nviil II^^IIJ 

and get 

(4.10) M&Zc MliW ^lla + ll^l^lli). 

Next, we note 

VVll2 = /|V2(^72)|2^ 

J\V2<l>\h*dv + cJm2\V'Yi\2d» + cf\<t>\2\V2'ri\2d», 
E 

<C 

and using (3.7) and Corollary 5.2 

||V2Vll2 < cj |V20|274^ + cj |V0|272^ 



+ c 

s 

<c 

[7>0] 
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|H2(X[7>0]+72|^|2)^ 
s 

Plugging into (4.10) yields 

(4.ii)     u\t < ciMlKnvVll^x,] + Ml^o] +1W2 l^l474dM). 
s 

This yields (4.7). 
Under the assumption (4.8), we get from (4.2) after absorbing that 

I \Af 7
4 d/i < ceo 11V2A|2 7

4 d/i + c P||2)[7>0] 

E E 

<c(||V2<[7>0] + ||^||2,[7>0]). 

Plugging into (4.11) with </> = A yields 

ll^l|4oo,[7=i] < cPlll^dlV^H^o] + IIAH^o]), 

which is (4.9). □ 

Proposition 4.4. Lei / : S x [0,T] -> Mn 6e a Willmore flow, 7 as m (3.7) 
and let 

(4.12) e =   sup   \\A\\l [    0] < so 

/or some £0 small enough depending on the constants in (3.7). 
Then for any t € [0,T]; we have 

(4.13) j  \A\2d»+l-ft j (|V2A|2 + |A|2|V^|2 + |A|6)^(ir 

[7=1] [7=1] 

<     /    |^o|2^o4-cet. 

[70 >o] 
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Proof. We recall from Proposition 3.3 for m = 0 and from Lemma 4.2 that 

cfdAflVtAtf + lAftVA^ + lAf^W + c f |^|2^ 
S [7>0] 

i||V2^|274^ + c |  l^^ddV^lV + l^lV)^ 
S [7>0] E 

+ c   /" \A\2dii + c(   f \A\2df?j . 
[7>0] [7>0] 

Since   /   \A\2 dp < eo by (4.12), absorbing yields 
[7>0] 

11 \A\2 7% + i IdV2i4|2 7
4 + W2 |V^|2 7

4 + |A|V)dM < ce. 
s 

Now (4.13) follows by integration over [0,t]. □ 

Proposition 4.5. Let f : S x I -4 Mn 6e a Willmore flow.   Then for (f> = 
VmA! m € No and 7 as in (3.7) we Ziave for any s>2m + 4 

(4.14) 

11 MY ^ + 111V2^|Vd/z < c ||AHi^oj | HVd/* 
s s 

+ ^(1 + Pll^[7>0])-Nl2l[7>0] 

Proof. By Proposition 3.3, it suffices to prove that 

(4.15) f(Pr+2(A) + P?(A)) ^Ydp 
s 

< JIlvVlV^ + cMii^o] • ||^|V^ 

+ <=(l + Mllt>)[7>o])-Nll[7>o]. 
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We estimate the second term by choosing r = 6, k = m in Corollary 5.5 
and get 

I P?(A) * 07s^  < c PUi^o] (I l0|27sdM + Pll2,[7>0] 
E E 

Applying Corollary 5.5 with r = 4, k = m + l further yields 

E 

< 

<r 

/ Vm+2A * A * A * VmA • 75 d/x 

E 

+ c \\A\\l!b>0] (11V0|2 7s dM + ||il|g|[7>0]' 
E 

11V^l2 7s ^ + c(r)IlilHl,,^]. • | M2 7s d/* 

+ c IIA||L>ty>p, Mll2,[7>o] + ^ PI|2oo,[7>0] / |V0|27S dM- 

Using Lemma 5.1 with p = q = 2r = 2, a = 0, /? = 1, t = 0, we estimate 
the last term by 

2 
ooJ[7>0] 

2^..\2 r/'|v2(/>iv^X2 

||v^|V^ 
E 

<cPII^[7>o](/l^lV^ 

+ c ||iC|ty>0] (| |^|27S **) 2 • ( / IV</>| V-2 ^ 
E E 

I IV^IV d/x + c^HAHi^o] • I \<t>\2 Is d^ 
E 

yiv^iv-2^. 
E 

+ C 
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Finally, since s — 2 > (m +1)2, we may use Corollary 5.3 with k = m + 1 to 
get 

s 

<r 

S [7>0] 

concluding the proof of (4.15), hence of the proposition. □ 

[\V<f>\27s~2dv= f\Vm+1A\'2 

Proposition 4.6. Let f : S x [0,T] —> Mn be a Willmore flow and 7 as in 
(3.7). // 

sup     /   |^4|2d// < so, 
0<*<T 

[7>0] 

where £0 is sraaZZ enough depending on the constants in (3.7), then 

(4.16) IIVMIL,^!] <c(m,T,ao(m + 2)), 

w/iere ao(m) = E^o llvij4o|l2,[70>o]- 

Proof. For 0<(T<T<lwe use cutoff functions 7^,- = V'cr.r 0 7 satisfying 
ja^T = 0 for 7 < cr and 70-iT = 1 for 7 > r. With a = 0, r = | we infer 
from(4.13) that 

T 

0   [7>|] 

Next we let a = ^, r = | and get from (4.9) 

T 

(4.17) /" ll^llJo^s,* <c8o(cso(l + T) + e0T) < ce2
0 (1 + T). 

o 

Now (4.14) with a = f, r = | yields for </> = Vm^, 5 = 2m+4 and 0 < t < T 
the inequality 

0  [7>f 
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I Ifol2 (7o)*,T^o + c(m) so (T + I UC^dt 

S 0 
t 

+ c(m) | HiC^jj (/ |^|27;T^) df. 
o s 

Using Gronwall's Lemma and (4.17) we obtain 

T 

sup     f   \\7mA\2diJJ+ [    [   |Vm+2A|2d/id£ 
<t<T   J J      J 

[7>I] 0  [7>|] 

(m,r) (l+    /   |VmAo|2^o) =c(m,r,ao(m)). 

[70 >0] 

Prom this and (4.9) we deduce 

\\Mii9[7>^]<ceo\c(2,Tiao{2))+€oJ =c(r,ao(2)). 

Finally, using (4.7) for ^ = \7mA we get 

Iiv-Aiii^, 

<c(m,T,aoM)nc(m^^ 

+ c(m,r,ao(m)) 

< c(m,r,ao(m + 2)). 

D 

In slight abuse of notation (4.6), we write for V C W1 and any normal 
/-form (j) on S 

,|V=(    I    l^d/i) up,' 

We are ready to prove our main theorem. 

Proof of Theorem 1.2. Rescaling, we may assume that g = 1. Put 

:(t) = sup    /   |A|2^. 

BiCa;) 
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By a trivial covering argument, we get for some F = r(n) > 1 

(4.18) e(t) < r • sup     /    |A|2d/i. 

Bi(x) 

The function e : [0, T) -> E is continuous by compactness of /(E x [0, £]) for 
t <T. Now let A > 0 be a parameter, and define 

(4.19) to := sup{0 < t < min(T, A) : e(r) < 3Te    for 0 < r < t}. 

By continuity of ^(t) we have to > 0; furthermore 

(4.20) e(to) = 3Te    if to < min(T, A). 

Fix a cutoff function 7 € ^(M71) with HTH^^n) < ^(n) and XB1/2(X) ^ 
7 < XBi(a); ^ei1 7 — 7 0 / satisfies (3.7) for constants depending only 
on n. Definition 4.19 implies condition (4.12) of Proposition 4.4 on [0,to). 
Therefore 

j    |A|2d/x<    j    \Ao\2dno + cret<2e    for 0 < t < to, 

B1(x) Bi(aO 

if we take A = (cF)-1. From (4.18) we conclude that 

(4.21) e(t) <2r£   for 0 < t < to, 

and thus (4.20) implies to = min (T, (CF)
-1

). NOW if to = (cF)"1, then (1.5) 
holds and (4.21) implies (1.6). Therefore the theorem will be proved, if we 
lead the assumption 

(4.22) to = T 

to a contradiction. First by (4.21) and T = to < (cF)-1 we can apply 
Proposition 4.6 to obtain 

(4.23) ||VmA||00<c(n,m,/o). 

According to (2.15) and the Willmore flow equation, the time derivative 
of the metric satisfies 

h = dtg = -2(i4, dtf) = V2 A * A-\-A* A* A* A. 
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Therefore (4.23) implies 

(4.24) ||Vmfc||00<c(n,m>/o). 

Likewise, (2.17) yields for the derivative of the Levi-Civita connection, i.e., 
the Christoffel symbols 

dt V = V3A * A + S/2A * V-A + WA * A * A * A. 

Again by (4.23) 

(4.25) llV^ftVJII^cfamJo). 

Lemma 14.2 in [3] shows that the metrics #(£), 0 < t < T are equivalent. 
We now take a local chart tj) : U —> S such that 

, l ,, < {gij(t)) <c(n,/o)    onU,0<t<T. 

Let F be the associated Christoffel symbols and denote the coordinate deriva- 
tive by d. For any tensor T we have the formula 

m 

VmT = dmT + ]r Y, dkir-...- dkT ■ dkT. 
1=1 ki+...+ki+k<m-l 

This is immediate for m — 1 and follows then by induction. Therefore letting 
7m = |r| + ... + \dmr\ we have 

\dmT\ < c (n, m, 7m_1)(|VmT| + l^-^l + ... + |T|). 

Hence by induction 

I^TI < c^m^^OdV-Tl + IV"1-1^ + |T|). 

We apply this to T = dt F. Using induction and (4.25) we get 

(4.26) \dm(dtr)\ < c(n,m,fo),    \dmr\ < c(n,m,/o). 

Turning to the derivatives of A and /, we claim that 

(4.27) ||5fcV'A||00,||5
m+1/lloo^c(».m./o).     fork + l = m>0. 

Clearly, this holds for m = 0 by (4.23) and since \\df\\ = 1. 
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Prom (2.7), we obtain for k + I = m + 1 that 

dk V/ A - Vm+1 A - dkVl A-S/kVlA 
k 

= Yl(dJ Vk+l~j - d^1 V^4"^1"-7') A 
3=1 

k 

= ^2dj-1(d-V)Vk+l-jA 
3=1 

k 

= Y^ dj~l {Vk+l-j A * A * df). 
3=1 

Now dl \7k+l-jA, d1 A and d^f for 0 < i < j - 1 < k - 1 < m are 
bounded by induction hypothesis, and the first part of (4.27) is proved. By 
the Gaufi-Weingarten equations, we see that 

d2f = A + df -r, 

and the second estimate in (4.27) follows from the first and (4.26). 
Since fyf - -W(/) = -AH + A * A * A, we get from (4.27) that 

(4.28) l|3m/lloo>ll»mft/llcx><c(n,m,/o). 

Then f(t) converges in Cm(E) as t /* T to a smooth function /T : E --> Mn. 
/T is an immersion as the metrics #(£) —> g(T) are uniformly equivalent. 
By short time existence, we can extend the flow / to an interval [0,T + 
5), contradicting the maximality of T, hence contradicting (4.22), and the 
theorem is proved. □ 

5. Appendix: Interpolation inequalities. 

Here we assume for all results except Theorem 5.6 that E is a d-dimensional 
Riemarmian manifold and that 7 G C}(E) satisfies 

(5.1) 0 < 7 < 1,    IV7I < A. 

Our aim is to prove localized versions of the inequalities from §12 in [3]. We 
start with the following lemma based on partial integration. 
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Lemma 5.1. Let i + i = i, 1 <p,q,r < oo and a + (3 — 1, a,(3 > 0. For 

s > ma,x{aq,(3p} and —^<t<^we have 

(5.2) 

s [7>0] s 

+ cAs(   f  \(t>\q7s-aqd^q ( f iV^Y'^d 

[7>0] S 

where c = c(d, r). 

Proof. Using integration by parts, we get 

E 

< c / H |V</>|2r-2|V2</>l7s d/i + c A5 / 1^1 |V(/)|2r-2|V(/)| T5
"

1
^ 

E E 
I r-l 1 

[7>0] S E 

[7>0] S S 

since I + E=i + I = i. D 
q r p 

Corollary 5.2. For 2 < p < oo and s >p we have 
(5.3) 

S E [7>0] 

where ce = c£(d,p, s, A). 
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Proof. We take 'p = q = 2r,a = l, I3 = Q and t = i in the previous lemma 
and obtain 

(11V0IV<*/*) ' < c ( I  \<f>\p is-p V) ^ ( y IVVlp 7*+pd/*) ^ 
2 [7>0] S 

[7>0] E 

□ 
Corollary 5.3. For 2 < p < oo, k € N, s > kp and c£ = ce(d,p, s, k, A) we 
have 

(5.4) (y|VfcC7^)P 

11 Vfc+Vlp 75+p^) ' + ce ( I  \<t>\p Y-kpdi^ ". 

s 

<e 

[7>0] 

Proof. For A; = 1 the statement holds by Corollary 5.2.   Again by 5.2, we 
have 

f\Vk+14>\pYd^ 
s 

<e(f |Vfc+2</»lp7S+P^) P + ce( f |V^|P7S~P^) P• 
s s 

The inductive hypothesis, applied with s — p instead of s, yields 

T. 

-pdn) 
) 

f r                   \~ 
<r(   / |V*+Vr7*dH 

s 
+ C(T)( 1 

[7>0] 

Wis- J 

where C(T) = c(r, s,p, s — p, k). Combining the inequalities proves the result. 
□ 
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Theorem 5.4. For fceN, l<i<A; and s > 2k we have the inequality 

(5.5) /iv 0| i  ^dfi 

< cUshW1    fc VVlVd/*      + ||^||2i[7>o] 

where c depends on k, d, s and A. 

Proof. For 1 < i < k we put 

2fc \  2fc 

- 7^^       ,00 = IMU, ai=(||VV| 
s 

[7>0] 

Applying Lemma 5.1 for r = f, p = ^, g = ^;, t = a = 0 and 13 = 1 we 
obtain for s > 2k 

Q>i < ca;_i 
i     i JLL    c__2fc_      \  2fc 

On the other hand Corollary 5.3 yields for s >2k 
i+l 

s 
2fc        „       2fc        • 2fc \    2fc 

+ c (     /    |0| *+i 7°   i+1   •*+idjLt 

'[7>0] 

< c(ai+i + bi+i). 

Since b? < bi-i bi+i by Holder, we obtain 

(a* + 6z)2 < c (ai_i + &i-i)(ai+i + 6i+i)    (1 < i < k - 1). 

Now a simple convexity argument, see Corollary 12.5 in [3], implies 

di ^ Ui + h 
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^c^o + feo)1   *(ofc + 6fc)^ 

+ 2,[7>0] 

□ 

Corollary 5.5. Let 0 < «i,..., ir < k, h + ... + ir = 2k and s > 2k. Then 
we have 

(5.6)     fvil((>*...*ViT(f>Ydn 

where c = c (k, d, r, s, A). 

<cW^2(||vVl27s^+|H| 2 
2,[7>0] 

Proof. Assume ii,..., i/ > 1 and z/+i,..., ir — 0. Then by Holder's inequal- 
ity and by 5.4 we have 

s 

llvViV^J+lMl^o] 
E 

||VV|27s^ + W^[7>o])- 

I 

<c 

i-* 

□ 

For convenience of the reader we finally include a proof of the multiplica- 
tive Sobolev inequality used in Lemma 4.3. 

Theorem 5.6. Let f : E —> Mn be a smooth, immersed surface. For 

u G C^(S), 2<p<oo, 0<m<ooand0<a:<l with ^ = (\ - ±\ m + 1 
we have 

(5-7) iHloo<c|Hl^a(||Vn||p+||iJW||pr, 

where c = c(n,ra,p). 



Gradient Flow ... 337 

Proof. The argument follows [6]. We may assume that u is nonnegative and 
that 

(5-8) c„(||V«||p+||ir«||p) = l, 

where cn is the constant in the Michael-Simon Sobolev inequality (4.1). 
Letting q = -^ G [1,2) we infer for any r > 0 

||«1+T|l2<Cn(||V(«1+T)||1 + ||ff«1+,-||1) 

< ^^((1 +T)\\Vu\\p + \\Hu\\p) 

<(l + r)\\uT\\q, 

where (5.8) was used in the last step. With k = | G (1, 2] we rewrite this as 

Nlfc(1+r)g<(i + T)^|H|r^. 

Putting ro = 2 G (f,m],Tv+i = Hl + T^), ev = ^ and cv = (1 + T„)H^7 

we obtain for u G No 

(5-9) IHIT„+ia<c,|H|^, 

where 

(5.10) 1 + ^ = ^70 + ^^. 

By induction (5.9) implies 

(5.ii)     \\u\\Tvq< (ncr1'^-1 \ni\\£§'£l'--''£v-\ 
lallm 

Now (5.10) yields 

- fc^ < 1 + 7V/ < cfc^    for c = c(ra,p), 
c 

and thus using e^ < 1 we can estimate 

log n c^1--" < £ r^r los(1+^) 
/z=0 ^=0 
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oo 

< 22 c ^~M0og c + fi log k) — c(ra,p) < oo. 
IJ,=Q 

Using Tiz+i = fc(l + Tj/) we get from (5.10) 

V 

v      TQ       i/-).oo TO n^T^r     •  _ ,   4 = l-a. 

Thus we may let v -± oo in (5.11) and conclude, using again (5.8), 

Nloo <c{m,p)\\uf-^ 

= c(m,p) <* M^ (|| Vtill,, + ||i? till,)". 

□ 
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