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Gradient Flow for the Willmore Functional

ERNST KUWERT AND REINER SCHATZLE

We consider two-dimensional, compact immersed surfaces in R"
moving by the gradient of the L? integral of their curvature. It is
not known whether solutions to this fourth-order, geometric evo-
lution equation may develop singularities in finite time. We give a
lower bound on the lifespan of a smooth solution, which depends
only on how much the curvature of the initial surface is concen-
trated in space.

1. Introduction.

The Willmore energy of a closed, immersed surface f : ¥ — R™ with induced
area measure dy is given by

(L1) W) = [ 147 du,
)

where A% = A— % g® H is the tracefree part of the second fundamental form
A. In his paper [14] Willmore used the L? integral of the mean curvature,
which however differs from (1.1) only by a constant. Namely, the Gaufl
equations and Gauf-Bonnet imply

12 W= [14Pdu—2mx(®) = 3 [ 1HP du— 42,
P P

The aim of this paper is to initiate a study of the L? gradient flow for (1.1),
i.e., the geometric evolution equation

(1.3) 8.f = —(AH + Q(A"H) = -W(f);

here the Laplacian of the normal bundle along f is used and Q(A°) is
quadratic in A9, see (2.4). The following local existence result is standard.

Proposition 1.1. For any smooth immersion fy : 3 — R™ there exists
a unique, noneztendable smooth solution f : ¥ x [0,T) — R™ to (1.3) with
f(-,0) = fo, where 0 < T < o0.
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It is not known whether there can develop singularities under the Will-
more flow in finite time. As our main result, we obtain here a lower bound
on the lifespan which depends only on the concentration of curvature for the
initial surface:

Theorem 1.2. Let fo : ¥ — R be a smooth immersion. There are con-
stants €g > 0, ¢ < oo depending only on n, such that if o > 0 is chosen
with
(1.4) / |Ao|?dug < e <&y for any z € R,

Bo()

then the mazimal time T of smooth ezistence for the Willmore flow with
initial data fo satisfies

(1.5) T > %g“,
and one has the estimate

1
(1.6) / |APdu <ce for0<t< 294.

B(z)

In the statement of the theorem the integrals should be interpreted as
integrals over the preimage of B,(z) under fo and f, respectively. Let
o(t) > 0 be the biggest radius such that (1.4) holds at time ¢t > 0 with
€ = g9. Assuming that the flow becomes singular at T' < oo, it follows that
o(t) < /c(T —t) and hence at least a quantum g9 > 0 of the curvature
concentrates in space.

The direct method of minimizing the Willmore energy among surfaces
of fixed genus p was carried out by Simon [10]. For p = 0 and n = 3
the critical points are all known and form an infinite sequence as shown by
Bryant [1], but of course only the round spheres, i.e., AV = 0, are minimizing.
Simon’s work proves existence of a minimizer for any p > 1, where for p > 2
one needs an additional argument due to Kusner [4]. For an overview on
Willmore surfaces we refer to Chapter 7 in [13].

Geometric evolution equations of fourth order have been considered only
relatively recently. For the Willmore flow Simonett shows long term exis-
tence for initial data which are close in C*® to a sphere; furthermore the
solution gets spherical as ¢ — oo [11]. The proof uses arguments from
center manifolds and follows previous work of Escher, Mayer and Simonett
on the flow 8,f = —AH called surface diffusion [2].
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Methods somewhat closer to ours are used by Polden in [8, 9] to prove
long term existence and subconvergence up to translations for planar curves
moving by the gradient of the functional

E,\(c):/(%2+>\2)ds (A>0).

In a forthcoming joint paper the authors have extended the results of Polden
to space curves, treating also the case A = 0 with or without a length
constraint [5].

For surfaces the squared curvature integral is scale invariant and in fact
invariant under the full Mdbius group of R™. This suggests comparing the
Willmore flow to the heat flow for harmonic maps from R? or S2 into a
Riemannian manifold, as considered for example by Struwe [12]. To a cer-
tain extent the concentration-compactness alternative proved in Theorem
1.2 affirms the analogy. Note however that there are also some differences
between the Willmore flow and the harmonic map heat flow, besides the
fact that the first is a fourth order equation so that tools related to the
maximum principle are not available. Namely, equation (1.3) is not strictly
parabolic and we are forced to pass to the evolution equation of the curva-
ture. Furthermore, our operator is only quasilinear rather than semilinear;
geometrically this means that the intrinsic geometry changes and possibly
gets bad under the evolution. In the case of surfaces it becomes crucial to
use only inequalities with universal constants, most importantly the Sobolev
inequality of Michael and Simon [7] and interpolation inequalities as in [3].
Finally, in our case the scaling and localization is in the target of the map
rather than in the domain. The last fact is a major difficulty if one tries to
replace (1.4) by a local assumption.

2. Evolution of the curvature.

Here we derive equations for the evolution of the curvature and its deriva-
tives, after collecting some general formulae holding for any immersion
f X — R*. We have tried to arrange the statements in a way which
facilitates possible future applications to related problems.

The basic geometric data associated to f are on the one hand the in-
duced metric g(X,Y) = (Df - X, Df - Y) with corresponding Levi-Civita
connection V, sectional curvature K and curvature tensor R(X,Y)Z =
K(g(Y,Z)X — g(X,Z)Y), and on the other hand the second fundamen-
tal form A(X,Y) = Dg{’yf = Dx(Dyf)— Df - VxY with mean curvature
vector given by the trace H = A(e;,e;) and trace free part A%(X,Y) =
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AX)Y) — -21-g(X, Y)H. As a third object we have the normal connec-
tion Vx¢ = (Dx¢)*t which acts on normal vector fields ¢ along f and
has curvature defined by R+ (X,Y)¢ = V%Yqﬁ — V2, +¢ where V%m,d) =
Vx(Vy¢) — Vy,v¢. In the following {e;, e2} always isa (locally defined) g-
orthonormal basis on ¥ and summation over repeated indices is used. When
computing tensor identities we freely use vector fields with first derivative
vanishing at a given point. The quantities defined above are related by the
equations of Mainardi-Codazzi, Gaufl and Ricci:

(2.1) (VxA)(Y,2)=(WA)(X,Z), VH=-V*A=—-2V*A°
(22) K = S(HP - |AP) = |HP — 1|4,
(23)  RNX,Y)¢ = Ale;, X)(A(e:,Y), ¢) — A(ei, Y)(A(ei, X), ¢)
= A%e;, X)(A%e;,Y), ¢) — A%(es, V) (A (e, X), ¢).

Here V* denotes the formal adjoint of the operator V, ie., V*¢ =
—(Ve,)(es, . ..) for any normal I-form along f. Note (RY(X,Y)¢,¢) =0
and in particular R+ = 0 for n = 3. We further define the normal endomor-
phism
(24) Q(A%)g = A%(ei, ¢;)(A%(eis €), 6)
and observe 0 < (Q(A% ¢, ¢) < |Q(A%)] < trQ(A%) = |4A%?, where |¢| = 1.
An easy computation yields
(2.5)

Ao(ei’ X) <AO(62', Y)) ¢> + Ao(ei; Y) (Ao(ei7 X)) ¢> = g(Xa Y) Q(AO)¢’
(2.6)

A(ei, X)(A(ez, Y), ¢> + A(ei, Y)(A(ez, X), ¢>

— o, ) (QUA%)S + FHUH. ) + HUX,Y), ) + A(CXY) (H,9).

Upon differentiating the identity (¢, D, f) = 0 one gets
(27) DX¢= VX(,ZS_ <¢,A(X,€z)> Deif'

‘We shall need to interchange the derivatives of multilinear forms on 3 having
normal values along f. If ¢,% are forms of this type, we denote by ¢ * 1
any normal-valued, multilinear form depending on ¢ and % in a universal,
bilinear way. In particular we have the properties |¢ x | < c|¢| || and
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V(¢*1) = Voxp+¢*Vp. On an [-linear form ¢ the curvature R{(X,Y)¢p =
V%{,qu - V%’ x ¢ satisfies

(RY(X,Y)$)(X1,..., X))

l
= RY(X,Y) ¢(X1,..., X)) = Y $(X1,- -, R(X,Y) Xk, ..., Xo).
k=1

Using (2.2) and (2.3) we deduce
(2.8) R(X,Y)p=AxAx¢.

For this paper the precise algebraic nature of the nonlinearities in the evolu-
tion of curvature will be irrelevant, so that the *-notation suffices. However
we will state some equations more precisely for future reference.

Lemma 2.1. For any l-linear, normal form ¢ we have
(2.9) (VV* = V*V)p=AxAx¢p— VT,
where

T(Xo0, X1,---,X1) = (Vxo8) (X1, X2, ..., X1) — (Vx;,0) (X0, X2, .., X1).

Proof. We compute using adapted vector fields
(VV*=V* V)$)(X1,...,X1)
= Ve, (Ves ) (X1, - .-, X1)) = Vx, ((Ve; 8) (€3, Xa, - -, X0))
= (Vi) (X1, X0) = (Ve x, 0 (6 X, -, K1)
+ (V2 x,0)(ei, Xa, .-, X1) = (Vi e, 0) (€3, Xo, - -+, X1)
= —(V*'T)(X1, ..., X;) + (R (ei, X1)8) (ei, Xa, . .., X1).
The claim follows from (2.8). O
We shall need two special cases of (2.9). First if we take ¢ = A, then we
have T' = 0 due to (2.1) and obtain (a rough version of) Simons’ identity
(2.10) AA=V2H+AxAxA (A=-V*V).

Second we replace ¢ in (2.9) by V¢, where ¢ is a (I — 1)-linear, normal form.
We then have T(Xo,X1,X2, X)) = (Rl_l(Xo,Xl)qﬁ) (X2,...,X}), which
means T = A x A * ¢ by (2.8) and therefore

(2.11) (VV* —V'V)Vp=AxAxV+AxVAx .
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In the following lemma we collect without proof the variational formulae for
various geometric objects.

Lemma 2.2. Let f: ¥ x I — R", I = (t1,t2), be a smooth variation with
normal velocity field V = 0;f. Then the following equations hold (where
X,Y,Z do not depend on t):

(2.12) P = —8,PL =Df - (VV)* +VV - (Df)*, where P, P+
are the projections onto tangent space
and normal space;

(2.13) P(0:¢) = Df(VV)*¢ for any normal ¢ along f;

(2.14) O Vx¢ = Vx0i¢ + A(X,e)(Ve,V, 9) + Ve, V(A(X, &), ),
where 8 = P18, and ¢ is normal along f;

(2.15)  (Gi9)(X,Y) = —2(A(X,Y), V);

(2.16) O¢(dp) = —(H, V) dy;

217 0(VxY) = ~((Ve, A)(X,Y), Ve + (A(X,Y), Ve, Ve
—(A(X, &), WV)e; — (A(Y, &), VxV)ei;

(2.18)  OFA(X)Y) =ViyV — Ale;, X){(A(e;, V), V);

(2.19) OLH = AV + QAYV + %H(H, V).

The following Lemma will be needed for computing the evolution of
derivatives of the curvature.

Lemma 2.3. Let ¢ be an (I — 1)-form with normal values along a variation
f: % x I — R* with normal velocity 0,f = V. If 0f-¢ + A%p =Y, then
1 = V¢ satisfies an equation

(2.20) Ofp+ AN =VY + Y VAxVIAxV¥

i+j+k=3
+ AxVV s+ VAxV x¢.

Proof. Let X;,..., X, be independent of ¢t and such that VX = 0 at a given
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point and a given time. We then have

(O ) (X1, ..., X))
=07 (Vx,9)(Xa2,..., X))

l
=0} Vx, (X2, ..., X0) = 01 Y d(Xa,...,Vx, X, ..., X1).

In the first term we use (2.14) to obtain

Ot Vx, d(Xa, ..., X))
= Vx,8; $(Xa, .., Xi) + (Ax VV % $)(X1,..., Xi)
= (V57 9))(X1,..., X2) + (Ax VV % §)(X1, ..., X)).

By (2.17) the second term above has the form AxVV x ¢+ VA%V * ¢.
We thus arrive at

Ofth + A%y — VY = A2(Vg) — V(A%0) + A VV x ¢ + VAV % .
Now we use (2.11) to obtain

A*(Vg) — V(A%9) = A(A(V) — V(Ag)) + A(V(Ag)) — V(A(AY))
=A(AxAxVop+ AxVAx o)
+ Ax AxV(Ap)+AxVAx A

Y ViAxVIAxVEg,
i+j+k=3

which proves (2.20). O

Using (1.2), (2.16) and (2.19) the first variation formula for the Willmore
integral in a normal direction ¢ becomes

d (1
WG +e)lemo = 1 [ G duleco
b
= [¢H,86+ Q(4)9) du

X
/ (AH + Q(A%)H, ¢) dp,
)
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which proves gradp2W(f) = AH + Q(A°)H = W(f). In the following we
use the notation P/*(A) for any term of the type

(2.21) PM(A)= Y VIAxVZAx.. . xV"A

11+...+ir=m

Proposition 2.4. Under the Willmore flow 0;f = —W(f), we have the
evolution equations

(2.22) O (V™A) + A%2(V™A) = P2(A) + P (A)

for any m € Ny.

Proof. We proceed by induction on m, starting with m = 0. Using (2.11)
we have

A(V?H) - VX(AH)
= (VV* - V*V)V(VH) + V(VV* - V*V)VH
=AxAxV2H+ AxVA*VH+V(AxAxVH+ AxVAxH).

Therefore (2.18) yields

O A=V (W(f))+Ax AxW(f)
= V2(AH) + PZ(A) + PY(A)
= A(V2H) + PZ(A) + PY(A)
= A2A+ P}(A) + P2(4),

where (2.10) was used in the last step. Now let m > 1 and conclude from
(2.20) using induction

8 (V™ A) + AX(V™A)

= V(PPTH(A) + PPYA) + > VA= VIA«VF(V™TA)
i+j+k=3 ‘
+AxV(W(f))* V" 1A+ VA* W(f)« V" 1A

Inserting W(f) = AH + A * A x A yields the result. O
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3. Energy type inequalities.

In this section we convert the evolution equations obtained in Proposition 2.4
into energy type inequalities. We start with the following general identity.

Lemma 3.1. Let f : ¥ x I — R™ be a variation with 8;f =V normal, and

let ¢ be a l-linear, normal form along f which satisfies ;¢ + A%p =Y.
Then for any n € C*(Z x I) we have

(3.1)
d
7 |¢|2ndu+ / (Ag, A(ng)) du — / (Y,ne) dp
b by by
!
:/nz Alei, ), VY (d(€iry - r€ipyevr€ip)sP(€irs--v €5y, €5)) dpt
E k=1
1 1
- [ Sl Vindu+ [ Fi670mdu.
» b

Here g(e;,ej) = 6;; locally on ¥ x I and summation over j,i, € {1,2},
1<v <l is used.

Proof. Recalling (2.15) and (2.16) we have

1
at / §n<¢(ei17 oo 7ei1)7¢(ei17 LR 7e‘il)) d:u‘

P
~ [(a%,n)du+ [ v, ) au
P P
1
+/772((]5(6;1,...,eik,...,eil),¢(ei1,...,Bteik,...,ei,))d/.b

k=1

3
1 1
— [ GUEVYOR du+ [ SomIof du.
2

b))

In the third integral we note g(0; €;,, ;) +g(ei,, Ocej) = —(0:9)(€iy, €5) =
2(A(eiy,ej5),V), where (2.15) was used in the last step. The claim follows
by symmetry in g, j. O
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Lemma 3.2. Under the assumptions of the previous lemma, let n = v° with
v € C*(E x I) and s > 4. Then for c = c(n,s) we have

(3.2)
d
3/|¢I273 vlu+/|V2¢>l2“rs du—/2(Y, ¢)v°du
>z by x

< / (A §x 6, V)ydu+ / 6Ps v~ By
> >

te / 6P~V + 22 P22 + / BP(VAL + A1) du.
> b

Proof. We have

/ V2 d
3

< / (V26, V2(7°$))du + c / V26171 VAV 8 dp
¥ P

+ 0/ V2817 2(IVA* + 7|V27))|¢| du
¥

1

< [P0, 5 0re) dut 3 [ IV au

M ¥

+0/ |V¢|273_2|V’Y|2dﬂ+c/ 1612y (VA + 42|V ) dp.
¥ M

In the third term we integrate by parts to get

/ IV$|* v 2 |V 2du
¥

<- / (6, Ap)y* 2V 2y + / 1811Vl 7*~3 |V dp
P P

e / BV 72|V VA du
>

<e / V26" du + ¢ (e) / 16274V 4dp

= P
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1 _ o
+3 [1V8r29adut e [ 16727219 P
b b
Combining the two inequalities yields
63) [ F6Prdut [ Vo9
by by

<3 [(70, 9200 a0du e [ 6Py (V1" + 419 )
P 3

Next using (2.11) we compute

/ (Y2, V(7 6)) i

3

- / (Mg, A(v*9))du + / (Ax Ax Vo + Ax VA, V(v'®))du
z 2

< / (A, A(v*$))dp

3

+ / (Ax Ax Vo, V)y'du + / (AxVAx¢,Vo)y du
2 2

be / API9| [V [Vldps + ¢ / ALV A6~ [Ty dp.
> b

The last two integrals are estimated as follows:

(3.4) / AP 6] [V8] v~ [Vldp
=

<e / VP2V 2+ (€) / 6P Al Y du,
> >

(3.5) / ALV Al 6271V du
2

< / 1627~V A + / BRIV AR + |A[*)ydp.
> >
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Using integration by parts we obtain

[ 141942 a
b))

<~ [ 14P, Agpra

by

+ / (A% VAxd*Ve)y'dutc / LAPI$] V|7~ |V du
P >
<e / V24P du + ¢ (&) / 161 Aly du
> b

+ /(A * VA* ¢+ Vo)yidu + e/ |V¢|273_2|V’y|2du,
¥

and
/(A* VAx¢*xVe)ydu
>
1
<5 [14PIVePrdutc [ 16PIV AP du
M >
Combining these inequalities yields
(3.6) [ 1P 6P vdu+ [(4rva€ps99)7dn
>z >z
< [19%0Py dute [ (V9P VAP du
= z
+e@) [IP(VAPR + 141y dy
E

The claim follows by inserting (3.3)-(3.6) into (3.1). a

In the following we assume that v = Yo f, where 0 < 5 < 1 and
I7llc2@ry < ¢ < oo. This implies Vy = (Dj o f)Df and V2y =
(D*¥0 f)(Df,Df) + (D¥o f)A(-, -), and therefore we have

(3.7 IVyl <e, V3] <c(1+]A].
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We furthermore specialize to the Willmore flow, i.e.,
(3.8) V=-W(f)=—(AH+Q(A%H) = P}(A) + PJ(4), and
(3.9) 8y = (Dyo f)- (AH + PJ(4)).

Proposition 3.3. Let f: ¥ x I — R" be a smooth Willmore flow. Then
for v = o f satisfying (3.7), ¢ = V™A with m € Ny and s > 2m + 4 we
have

(3.10)
d 3
& [ 16 du+ 3 [1920Pr au< [ (P2 + ) « o9 do
x z x

+e / |A|2,ys——4—2mdu'

[v>0]

Proof. We estimate the terms in (3.2). From (2.22) we have Y = Py"t2(A4)+
PI"(A), and (3.8) implies

/2<Y, P)v du + /(A x¢xp, V)v* dp+ 0/ 1612 (IVA]* + |A[*)7* du
P

by z

= [ (P24 + Pr() 67 dis
>

By (3.9) we next have

/ (627" By du = / 167~ Y(DF o £)(AH + PY(A))dp.
>z P

The second term. on the right is estimated by Young’s inequality:

[ 16807 o )Pyt < ¢ [IoPIAIdu+c [ 169°
) g J
For the first term we observe, using an adapted frame, summation over
i,7 and (2.7) ,

D, ((DYo f) - Ve, H) = (D*F 0 f)(De; f, Ve, H) + (DY 0 f) - Dey(Ve, H)
= (D*j 0 f)(De, f, Ve, H) + (D7 0 f) AH
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- <v6iH’A(ei’ 6]))(D§ © f) : Dejf-

We thus get
/ 8P4 (DF o f) - AH dp
>
—~ [ D8 DT o ) Ve, H
>
_ / 6P~ (D*F 0 £)(Din £, Vi H)ds
>
+ / 1624 (V. H, A(es, ¢))(DF o £) - Do, f dp
>
< [ 161Vl 17Al7 e [ 19 1V Al v~
3 b
e / 1612 [V Al du + c / 1612 |4 [VA|7*"
> >
< / Ve 2dp + / 16 VAP +*du
= 2
+o [ o v tduse [16P 148 v~
> >
<c [ 1o e [ 1oPtan
> 3

[ e 5 a) <o
b))

Now the interpolation inequality in Corollary 5.3 implies
(3.11) /|</5I2"rs“4 dp + / IVe|*y* 2 du < 6/ IV26*y° du
b b b

+e(e) / | A2y =1=2my,

[v>0]



Gradient Flow ... 321

Collecting terms we arrive at

/ (67" Orydu < e / VEoPrrdute(e) [ IAPY T d

[v>0]

- / (P5"(A) + P5(A)) * ¢ dpe.

=

The remaining term in (3.2) is estimated by

/|¢>l2 (VA + A2V ) dp
<C/|¢>I ‘4dﬂ+6/|¢|2(1+|f1l )y 2dp
<c / 6127~ dp -+ c / 1612 |4l v d,

where (3.7) was used. Using again (3.11) the claim follows. 0
We finally state the scaled varsion of the proposition.

Corollary 3.4. Suppose XB,(ce) <7 < XByy(z) and D3| 100 < co™ for
i = 1,2. Urder the assumptions of Proposition 3.3, we then have

(3.12)
- / ot du+ 3 [19%0P du < [ (P24 + PR(A)) 67
b b

C —4—2m
+ Z)4+2m / |A12,Ys 4—2m d;,b.
[v>0]

4. Control by concentration of curvature.

Here we prove lecal estimates for the VWillmore flow subject to the conditici
that the curvature remains small locaily in L2. In particular we obtain the
lower bournd on the lifespan depzuding on the initial concentration stated in
the introduction.

‘We shall need the following Sobolev inequality due to Michael and Simon.
Note that the immersed case of (4.1) follows trivially from the embed:ied
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case, by selecting an embedding fy : ¥ — R™, applying the inequality to
(f,efo) : & — R™™ and letting € \, 0. Furthermore (4.1) also applies to
normal-valued forms ¢ along f, due to Kato’s inequality |V|¢H < |Vl

Theorem 4.1 ([7]). Let f : ¥ — R™ be a smooth immersion. Then for
any u € C}(Z) we have

(4.1) (/u2du)% gc(/|Vu|d,u+/|H] |u|dp),
z b

p

where ¢ = ¢(n).

Lemma 4.2. For any immersion f : £ — R® and v € CL(Z), 0 < v < 1,
we have the inequality

(4.2)
/ APy dps + / A [V APy du < / AP du / (IV2APP7* + | A5 du
[v>0]
2
+C< / IAIQdu),
[y>0]

where ¢ depends on n and l|V’yHL°Q(E).

Proof. Approximating v = |A| |V A|v? and applying Theorem 4.1, we obtain
(4.3)

[ 148 4Py

%

< c(/lz‘lllwz‘llv2 d#+/|VA12'72 dy
P b

2
" / ALV 4] 24197 dps + / AP 941 du)

<e / |A12du( / VA / |A1674du) ( / |A|2du)

[v>0] [v>0]



Gradient Flow ... 323

2
+c(/|VA|272dp) ,

PH
as

2
(14) ([ramzan) < [ 1aPan [ 1a5an
z [v>0] =
Integrating by parts, we estimate the last integral in (4.3) by

(4.5) / VAP < / Al V2 Al dys + / Al Al 2y V] dp
> by P

1
s( [ 1apau [ |V2A|274dﬂ)z+c [ 1ara
bY ]

[v>0] [v>0

1
+3 / |VA*y2 dp.
%

Absorbing and plugging into (4.3) yields the estimate for the second term
in (4.2).
Next we apply Theorem 4.1 to u = |A|34? and obtain

/|A|674 dp
b

2
SC(/3IAI2 IVAlvzdu+/|AI32’r|V7| du+/|AI472du)
% P %

2 2 2
< c(/|VA|272du> +c(/|A|4’yzdu) +c( / |AJ? du) .
) z [v>0]

Using (4.4) and (4.5) yields the estimate for the first term in (4.2), and the
proof of the lemma is complete. a

In the following, we set for any normal I-form ¢ on ¥ and any measurable
set U C X

(49 oo = ( 100 0)’
U
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Lemma 4.3. For any normal l-form ¢ on ¥ and v as in (3.7) we have
2 .
47) [1lls0py=1) < cllBll3 proo) (IV2¢llzpysop B LA 5o+ 115 1y 501)-
Moreover, if ¢ = A and if
(48) 14115 0 < €0

for some &g small enough depending on the constants in (3.7), then

2
(4.9) A% fy=1) < ellAll3 150 IV Allg oy + 1Al o) -

Proof. We put ¢ = ¢y2. Takingm =2,p=4, a = % in the multiplicative
Sobolev inequality from Theorem 5.6 yields

bllso < e I0I5 IVl + e ,)3.

Now using Lemma 5.1 with v = 1 we get

lleo < cllbllf (WIEIV2IE + W HI).
We estimate the second term by
N < ol e )
and get
(4.10) 1l12, < clbl3UV2l + 192 EI],)-

Next, we note
2
IVl = [ 193717 d
P

<o / V2P du + ¢ / VP V2P du + ¢ / 6P V22212 di,
b > . »

and using (3.7) and Corollary 5.2

IVl < c / V2027 d + / VP du
b b
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+e / 1612050 + 72 1AL2) du
»

=¢ / (W2¢|2+|¢|2)du+c/|¢|2|z4l4'y4du.
)3

[v>0]

Plugging into (4.10) yields
‘ 2
@11)  [9lL < cllBUIVSllaps0 + 1913550 Jr/ld’l2 |A[* 7 dp).
PN

This yields (4.7).
Under the assumption (4.8), we get from (4.2) after absorbing that

[ 10t < cen [ 1924 AT
5 )3

2
<c (||V2A||2,[7>0] + ||A||§,[7>0])-

Plugging into (4.11) with ¢ = A yields

2
A1 =y < A1 50 (12 Allz sy + 1415 10,

which is (4.9). O

Proposition 4.4. Let f: X x[0,T] = R" be a Willmore flow, vy as in (3.7)
and let

4.12 e= sup |4 2 < e
(4.12) ogth” l12,{y>0)

for some ¢ small enough depending on the constants in (3.7).
Then for any t € [0,T], we have

(4.13) /|A|2dﬂ+%/0t / (IV2AP? + A2 VA2 + |Al®) dudr
[v=1] [v=1]
< / |A0|2du0+cet.
[v0>0]
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Proof. We recall from Proposition 3.3 for m = 0 and from Lemma 4.2 that
d 3
G [ 1aPt a2 [4v2apa 4 147 9424 A5
= P

<e / (IAPIV2AlY + | ARV ARY + | A5 y4)dp + ¢ / AP du
>

[y>0]

1
g/ varstaure [iapa( [ (V24P + 1A% )
z z

[v>0]

2

+c/|A|2d,u+c< / |A|2du>.
[v>0] [y>0]

Since [ |A|?du < &y by (4.12), absorbing yields
[y>0]

d 1
= / AP yidp + 5 /(IV2A1274 +IAP VAP Y + |AP")dp < ce.
pH z

Now (4.13) follows by integration over [0, #]. a

Proposition 4.5. Let f : © x I — R™ be a Willmore flow. Then for ¢ =
V™A, m €Ny and v as in (3.7) we have for any s > 2m + 4

(4.14)
d S 1 S S
% / [¢1*y" du+ 5 / IV201* 7 dp < cl|All%, fysg) / |82y dys
PN z

+e(L+ 414 fso) - 1412 s

Proof. By Proposition 3.3, it suffices to prove that

@15) [P+ E) e gy
b

1 s
<3 [ IVt Al sy - [ 167
by b

e (14 [|4lls >0 - 14115 s
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We estimate the second term by choosing r = 6, k = m in Corollary 5.5
and get

1 [ B gran] < el s ( [ 1P+ 141 50
> >

Applying Corollary 5.5 with 7 = 4, k = m + 1 further yields
( [Py du(
>
< ’/Vm“A*A*A*VmA-vsd,u’
by
AL oo ([ 190777+ 141G 50))
>
<7 [1V%9 " s el 0y [ 1612 du
N

P
+ e[l AllZ 150 1415 50 + ¢ 141l 50 / IVé|>y° dps.
3

Using Lemma 5.1 withp=¢=2r =2, =0, 8 =1, t =0, we estimate
the last term by

A1, oy [ 19612 di
b
: :
< el oy ([ 10977 an)” ([ 192027 au)
b >
: :
el ([ 1) ([ 19607 au)
b X

<7 (19997 s+ ) Al - [ 10 7" s
by 3

+e / IVo|*v*~2 dps.
z
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Finally, since s —2 > (m +1)2, we may use Corollary 5.3 with k =m+1 to
get

/ VP dy = / VAR dy
¥ ¥

<7 / V26 du + o(7) / AP dy,
by [v>0]

concluding the proof of (4.15), hence of the proposition. O
Proposition 4.6. Let f : ¥ x [0,T] — R® be a Willmore flow and v as in
(3.7). If

sup / |A? du < e,

0<t<T
[v>0]

where gy is small enough depending on the constants in (3.7), then

(4.16) IV™All o ey < €(m, T, a0(m +2)),

where ag(m) = Z;n:o ”vjAonz,[ypO]'

Proof. For 0 < o < 7 < 1 we use cutoff functions v, = 1, 0 v satisfying
Yor = 0 for v < o and 75, = 1 for vy > 7. WithazO,Tzéweinfer
from(4.13) that

T
/ / (VAP + |AIP) du < ceo(1 +T).
0 [y>1)

Next we let 0 = %, 7= 3 and get from (4.9)
T

(4.17) / 1N, 210 < ccofceo(l +T) +eoT) < ced (1+1).
0

Now (4.14) with o = %, T= % yieldsfor ¢ = V™A, s =2m+4and 0 <t <T
the inequality ‘

t
[t dus [ [ 1oraudr
>z 0[

27
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< [l oo+ ctm(7 + / 41 30t

/ 141 1 / 222 )
Using Gronwall’s Lemma and (4.17) we obtain

T
sup / |V™A|2dp + / |V™ 2 A2 dp dt
0<t<T "

>l (r>1)

|Von|2d,uo) =c(m, T, ap(m)).

ooH

<e¢(m,T) (1+

[v0>0]
From this and (4.9) we deduce

||A]| oo [y 18] < cso( (2,T,20(2)) +€0> =¢(T, 0(2)).
Finally, using (4.7) for ¢ = V™A we get

IV™ Al % fy=1]
< c¢(m,T,ap(m)) ((c (m, T, a0(m+2)) + |4 >3] c(m, T, ap(m))
+c (m, T, ao(m))>

<c(m,T,o0(m +2)).

O
In slight abuse of notation (4.6), we write for V' C R" and any normal
[-form ¢ on ¥

||¢||p,v=< / |¢|Pdu)".

1)
We are ready to prove our main theorem

Proof of Theorem 1.2. Rescaling, we may assume that ¢ = 1. Put

o [
z€R?
Bi(z)
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By a trivial covering argument, we get for some I' =T'(n) > 1

(4.18) et) <T - sup / |A]dp.
z€ER?
NG

The function ¢ : [0,T") — R is continuous by compactness of f(X x [0,t]) for
t <T. Now let A > 0 be a parameter, and define

(4.19) to :=sup{0 < ¢t < min(T, ) : e(7) < 3T'e for 0 <7 < t}.
By continuity of () we have to > 0; furthermore
(4.20) e(to) =3Te if to < min(T, ).

Fix a cutoff function 7 € C?(R") with [Tllcz2mny < C(n) and xp, ,(z) <
¥ < XBy(s); then v = o f satisfies (3.7) for constants depending only
on n. Definition 4.19 implies condition (4.12) of Proposition 4.4 on [0, ¢o).
Therefore

/|A|2d,u§ / |[Ao|? duo +cTet <2 for 0 <t < to,

By () Bi(z)
if we take A = (cI') . From (4.18) we conclude that
(4.21) e(t) <2T'e for 0 <t < tp,
and thus (4.20) implies to = min (T, (cI')~!). Now if to = (cI') ™!, then (1.5)
holds and (4.21) implies (1.6). Therefore the theorem will be proved, if we
lead the assumption
(4.22) to=T

to a contradiction. First by (4.21) and T = to < (cI')~! we can apply
Proposition 4.6 to obtain

(4.23) |97 Al < c(mm, fo).

According to (2.15) and the Willmore flow equation, the time derivative
of the metric satisfies

h=0rg=—2(A,8f)=V2AxA+AxAxAxA.
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Therefore (4.23) implies
(4.24) IV™h| o < c(n,m, fo).

Likewise, (2.17) yields for the derivative of the Levi-Civita connection, i.e.,
the Christoffel symbols

OV =V3AxA+VZ2AxVA+VAxAxAx A.
Again by (4.23)
(4.25) V™ (0: V)] o < ¢(n,m, fo).

Lemma 14.2 in [3] shows that the metrics g(t), 0 < t < T are equivalent.
We now take a local chart ¢ : U — X such that

1
g S (0u) Se(nfo) U, 0<t<T.

Let I' be the associated Christoffel symbols and denote the coordinate deriva-
tive by 8. For any tensor T' we have the formula

m
VPT=0"T+Yy . Y, OMT.....0NT. 0T
=1 k1 +...4+k+k<m-—1

This is immediate for m = 1 and follows then by induction. Therefore letting
Ym = |T'| + ... 4+ |0™T| we have

|0™T| < ¢(n,m, Ym—1)([V™T| + |0™71T| + ... +|T)).
Hence by induction
0™ T| < ¢ (n,m, Ym—1)(IV"T| + [V 1 T| + |T1).
We apply this to T' = §; I". Using induction and (4.25) we get
(4.26) 0™ (&) < ¢(n,m, fo), [0™T| < c(n,m, fo).
Turning to the derivatives of A and f, we claim that
(4.27) 0% V! Al o, 110™ £l < e(n,m, fo), for k+1=m >0.

Clearly, this holds for m = 0 by (4.23) and since ||0f] = 1.
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From (2.7), we obtain for k +1 =m + 1 that
FVIA-V™MIA=0FVIA-VFV A

(aj vk+l—j _ 8j—1 vk+l+1—j)A

M=

<.
I
—

FLO-V)VFI A

~
I
—

Il
.M?"

L (VFHT A% A Of).

<
Il
—

Il
.M”

Now O*VFH=IA 0°A and &t 1f for 0 < i < j—1< k—1 < m are
bounded by induction hypothesis, and the first part of (4.27) is proved. By
the Gau-Weingarten equations, we see that

0%f = A+0f - T,

and the second estimate in (4.27) follows from the first and (4.26).
Since O;f = —W(f) = —-AH + A% Ax A, we get from (4.27) that

(4'28) ||3mf|ioo, ”amaf f”oo <c (n’m’ fO)

Then f(t) converges in C™(X) as t T to a smooth function fr : ¥ — R™.
fr is an immersion as the metrics g(t) — g¢(T") are uniformly equivalent.
By short time existence, we can extend the flow f to an interval [0,T +
0), contradicting the maximality of 7', hence contradicting (4.22), and the
thecrem is proved. 0O

5. Appendix: Interpolation inequalities.

Here we assume for all results except Theorem 5.6 that ¥ is a d-dimensional
Riemannian manifold and that v € C}(X) satisfies

(5.1) 0<y<1, |V <A

Our aim is to prove localized versions of the inequalities from §12 in [3]. We
start with the following lemma based on partial integration.
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Lemma 5.1. Let%+%=%, 1<p,¢gr<oanda+p=1,a,3>0. For

s > max{agq, Bp} and —% <t< % we have

(5.2)
1
( / |V¢I2’"73du) <e( [ et tq)du) ([1o2op e man)’
[v>0] z
1 1
ses( [ lomrreaa)” ([ 1varosran),
[y>0] z

where ¢ = ¢ (d,T).

Proof. Using integration by parts, we get

/|V¢|2" 7du

b

<e / 11V V2ln® du + cAs / 1611V 2|V o] *~du
>

<o [ w-a)* ([rosmr) T ( [irgparee)
Jmeef (e

1

+cAs( / |¢|qu—°‘Qdu)"( / |V¢|2’"vsdu) T ( / |V¢|va—ﬁpdu)",
M M

[y>0]

: 1 r—1
since q—l— = +

=1. O

Q=

Corollary 5.2. For 2 <p < oo and s > p we have
(5.3)

( / VPP du) <e( / 2P s“’du) +cs( / 6P "’du>_,

[v>0]

where ¢ = c.(d,p, s, \).
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Proof. We take p=q=2r,a=1,8=0and t = % in the previous lemma
and obtain .

( / IV¢I”73du) <c ( / 6P ”dﬂ)lp< / |V2¢|"7“’+"du)§%
P
( [ op ”dﬂ) ( / IV¢I”’ysdu>%

[v>0] b

Nl._,

a

Corollary 5.3. For2<p<oo, k€N, s> kp and c. = c:(d,p, s,k,A) we
have

(5.4) ( / |v’°¢lp'vsdu>’_’
<5< / |VEt+1gP S+Pdu> +c€( / |p[P v°~ kpdu)

[v>0]

Proof. For k = 1 the statement holds by Corollary 5.2. Again by 5.2, we

have
1
( / |VFH1gP 7sdu) ’
)
1

1 1
< 5(/ |vk+2¢lp 73+pdu) P + CE</ |vk¢|p ,ys—pd“) P .
z x

* The inductive hypothesis, applied with s — p instead of s, yields

( / IV’“¢|”73“”dﬂ);
<( / e I e

[v>0]

where ¢(7) = ¢(7, s,p, s—p, k). Combining the inequalities proves the result.

a
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Theorem 5.4. Fork €N, 1 <i <k and s > 2k we have the inequality

(5.5) ( / Wk 3du> 8
<clglst (( / ¥ 2 Sdu) +||¢”2[1>0]>k

where ¢ depends on k, d, s and A.

Proof. For 1 <1 < k we put

7 2k s #
az=</IV¢|i’rdu> a0 = 6]l
P
2% 5%
bz-=( / |¢|fdu) b= 6l

[v>0]

Applying Lemma 5.1 for r = %, p= fi_kl, q= ﬁ, t=a=0and =1 we
obtain for s > 2k

i 2k s—-2k %1_
Qi1+ V| HT v+ dp -
>

On the other hand Corollary 5.3 yields for s > 2k

i 12 s E3 i+l 2 s £
Vg i) T < / (V16135
x
i_;-k_l
+C( / |6 7° ﬁl%f%du)

7>0
< c(aig1 + biy1)-

a? < ca;j1

Since bf < b;_1 b;y1 by Holder, we obtain
(ai + ;)% < c(ai—1 +bi—1)(aip1 + bip1) (1 <i<k-—1).
Now a simple convexity argument, see Corollary 12.5 in [3], implies

a; <a; +b;
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<c(ap+ bo)l_%(ak + bk)%

1—% k112, s % *
<cllols / V562 din)” + 611550,
>

O

Corollary 5.5. Let 0 <14y,...,1. <k, 41 +...+1% =2k and s > 2k. Then
we have

(5.6) /Vi1¢*...*Vir¢,Yde’ §c||¢||2;2(/lvk¢lz,ys dﬂ+||¢”§,h>o]):
b b

where ¢ = c(k,d,r, s, A).

Proof. Assume 41,...,4; > 1 and 4,41, ...,%, = 0. Then by Hoélder’s inequal-
ity and by 5.4 we have

/Vilqﬁ* ok VNS du
b
r—1 l i ;ik

<11 T ( [ 19901 vau)

i=1 N3,

! ! 3 z

<cligln' 1 [|I¢||oo * ((/lvk¢l273du) + ”¢”2,[7>0]) ]

Jj=1 5

< el ([ 194617 dut 1018 0 )

b
O
For convenience of the reader we finally include a proof of the multiplica-
tive Sobolev inequality used in Lemma 4.3.

Theorem 5.6. Let f : ¥ — R™ be a smooth, immersed surface. For

ueC’cl(E),2<pSoo,0§m§ooand0<a§1wz’thé=(%—%)m—l—l
we have

(5.7) lelloo < ¢ llulln *(IVull, + 1H ull,)®,

where ¢ = c(n, m,p).
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Proof. The argument follows [6]. We may assume that u is nonnegative and
that

(5-8) en(IVull, + 1 H ull,) =

where ¢y, is the constant in the Michael-Simon Sobolev inequality (4.1).
Letting ¢ = ;% € [1,2) we infer for any 7 >0

[u'*7lly < en(IV (™)l + I H u™*7l;)
< enlluTllo (1 + DIVull, + 15 ull,)
< (@47l

where (5.8) was used in the last step. With k& = % € (1, 2] we rewrite this as

el 1ryg < (L4 7) T [l 757

Putting 0 = 2 € (B, m], 41 = k(1+7), &, = and ¢, = (147, )1+r,,

q Ty +1
we obtain for v € Ny
(5.9) Il ,1q < v llull,
where
(5.10) 1+7, =k +Zk“.

pu=0

By induction (5.9) implies
(511) el g < H e B

Now (5.10) yields
1
-k <147, <ck” forc=c(m,p),
c

and thus using £, < 1 we can estimate

log H e < Z

pn=0

log(l +7)
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o]
< ch_“(logc-l— p logk) = ¢(m,p) < co.
k=0

Using 7,41 = k(1 + 7,) we get from (5.10)

T — T
[[en—p Do ™ 1 g
1+, 0+ 51

Thus we may let ¥ — oo in (5.11) and conclude, using again (5.8),

[1]

2]

3]

[5]

[6]

1—
[ulleo < c(m,p) [l ®
1—
= c(m,p) ¢y lull, * (IVull, + 1H wll,)*.
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