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The Positive Mass Theorem implies that any smooth, complete, 
asymptotically flat 3-manifold with non-negative scalar curvature 
which has zero total mass is isometric to (R3,^j). In this paper, 
we quantify this statement using spinors and prove that if a com- 
plete, asymptotically flat manifold with non-negative scalar curva- 
ture has small mass and bounded isoperimetric constant, then the 
manifold must be close to (R3,J^), in the sense that there is an 
upper bound for the L2 norm of the Riemannian curvature tensor 
over the manifold except for a set of small measure. This curva- 
ture estimate allows us to extend the case of equality of the Positive 
Mass Theorem to include non-smooth manifolds with generalized 
non-negative scalar curvature, which we define. 

1. Introduction. 

We introduce our problem in the context of General Relativity. Consider 
a 3 + 1 dimensional Lorentzian manifold N with metric g^p of signature 
(—h ++)• We denote the induced Levi-Civita connection by V. Then the 
corresponding Ricci tensor Rap satisfies Einstein's equations 

(1) Rap - 2 R9OL(3 =  87rTa/3, 

where Ta^ is the energy-momentum tensor (which describes the distribution 
of matter in space-time). Furthermore, we are given a complete, oriented, 
space-like hypersurface M. The Lorentzian metric gap induces on M a 
Riemannian metric gij (we always use Latin indices on the hypersurface and 
Greek indices in the embedding manifold). Choosing on M a normal vector 
field z/, the exterior curvature of M is given by the second fundamental form 
hjk — (Vji/)^. We make the following assumptions: 
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(I) M is asymptotically flat. Thus we assume that there is a compact set 
K such that M \ K is diffeomorphic to the region E3 \ Br(0) outside 
a ball of radius r. Under this diffeomorphism, the metric should be of 
the form 

(2) gjk{x) = 5jk + ajk(x), xeR3\ Br(0), 

where a^ decays at infinity as 

(3) aij = 0(l/r),      dkOij = 0(l/r2),     and     dkiOij = 0(l/r3). 

The second fundamental form should decay as 

(4) hij = 0(l/r2) and 8^ = 0(l/r3). 

(II) The energy-momentum tensor satisfies on M the dominant energy 
condition [4], i.e., for each point p E M and for each time-like vector 
u G TPN, the vector T^u^ is non-spacelike and T^p uau^ < 0. 

For the hypersurface M, one can define the total energy and momentum, as 
first introduced by Arnowitt, Deser, and Misner [1]. For this, one considers 
in the asymptotic end the coordinate spheres ASR, R > r, around the origin 
and takes limits of integrals over these spheres, 

(5) E   =    T^-Jim   /   (djgij-digj^dn1 

IbTT tf-KX) JSR 

(6) Pk    =    — lim   /   (hki - Ski hjj) dn\ 
bTT .R-^oo JSR 

where dft1 = v1 du, du is the area form, and v is the normal vector to SR 

in the coordinate chart. The Positive Energy Theorem [6, 7] states that, 
under the considered assumptions, E > |P|. In the case that the second 
fundamental form is identically zero, the total momentum vanishes. Then 
the total energy is also called the total mass m, and the Positive Mass 
Theorem states that m > 0. 

In this paper, our aim is to study how total energy and momentum 
control the Riemannian curvature tensor. Following Witten's proof of the 
Positive Energy Theorem, we consider the massless Dirac equation on the 
hypersurface M. We derive an integral estimate for the Riemannian cur- 
vature tensor Ra/378 involving total energy/momentum and the Dirac wave 
function ty. We then restrict our attention to the case of zero second fun- 
damental form. By substituting in a-priori estimates for the Dirac wave 
function, we get an L2 estimate for the Riemannian curvature tensor of M 
in terms of its total mass. More precisely, our main theorem is the following: 
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Theorem 1.1. There exist positive constants ci, C2, and C3 such that 
for any smooth, complete, asymptotically flat manifold (M3,g) with non- 
negative scalar curvature and total mass m and any smooth, bounded func- 
tion 77 with bounded gradient on M, 

(7) /      riRijMR^dfi 
JM\D 

<mci swp (\r)\\Rijkl\ + |Ar/|) + v/mc2 \\v\^kRija^\\\L2 , 
M 

where the set D depends on M with 

(8) Volp)1/3  < 647rC3p   , 

k — inf r-^- is the isoperimetric constant of M, Rijki is the Riemannian 
curvature tensor of M, and ||.||^2 is the L2-norm on (M3,g). 

As an application of this theorem, we finally extend the case of equality 
of the Positive Mass Theorem to non-smooth manifolds. 

2. Spinors, the Hypersurface Dirac Operator. 

We begin with a brief introduction to Dirac spinors in curved space-time. 
Following [3], we work in a coordinate chart (for a coordinate-free formu- 
lation see e.g., [5]). The Dirac operator G is a differential operator of first 
order, 

(9) G = ,Ga(a;)JL + jB(a;)) 

where B and the Dirac matrices Ga are (4 x 4)-matrices. The Dirac matrices 
and the Lorentzian metric are related by the anti-commutation relations 

(10) -g^(x) = \{Ga(x),G^x)} =  ^(GaG^ + G^Ga)(x). 

The four-component, complex wave function * of a Dirac particle satisfies 
the Dirac equation 

(G - mo) * = 0, 

where mo is the rest mass of the Dirac particle. At every space-time point 
x, the wave functions are endowed with an indefinite scalar product, which 
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we call spin scalar product. For two wave functions ^ and $, it takes the 
form 

where '*' denotes complex conjugation and whereD, 0 are (2 x 2)-submatrices 
(in physics, this scalar product is currently written in the form -<ty | $>- = 
^$ with the "adjoint spinor" \I/). The Dirac matrices Ga(x) are Hermitian 
with respect to the spin scalar product. By integrating the spin scalar 
product over the hypersurface M, we form the scalar product 

(11) (*|$)= f  -<y\Ga$yvad^ 
JM 

where dfi = ^/det gij dsx is the invariant measure on M. This scalar product 
is definite; we can assume it to be positive. The integrand of (11) has the 
physical interpretation as the probability density of the particle. Since it 
will appear in our calculations very often, we introduce the short notation 

For a given Lorentzian metric, the Dirac matrices Ga(x) are not uniquely 
determined by the anti-commutation relations (10). One way to handle this 
problem is to work with spin bundles and orthonormal frames [5]. More 
generally, it is shown in [3] that all possible choices of Dirac matrices lead 
to unitarily equivalent Dirac operators. One must keep in mind, however, 
that the matrix B(x) in (9) depends on the choice of the Ga; it can be 
given explicitly in terms of the Dirac matrices Ga and their first partial 
derivatives. 

The Dirac matrices induce a connection D on the spinors, which we call 
spin derivative. In a chart, it has the representation 

(12) Da = — - iEa(x), 

where the (4 x 4)-matrices Ea{x) are functions of GOL{x) and daG^(x) (see 
[3] for an explicit formula). The spin derivative is compatible with the spin 
scalar product, i.e., 

(13) dj^V | <$>y = ^Dj^ | §y + -<* | DjQy. 

Furthermore, the combined spin and covariant derivative of the Dirac ma- 
trices vanishes, 

(14) [Dj}G
k]+t^Gl = 0 
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(P.fc denote the Christoffel symbols of the Levi-Civita connection). The 
curvature of the spin connection is given by the commutator [Dj,Dk\ = 
DjDk — DkDj. It is related with the Riemannian curvature tensor by 

(15) [Da, Dp] = ^R^siG^G6}. 

Using the spin derivative, one can write the Dirac operator (9) in the alter- 
native form 

4 

Similar to the procedure in [7, 5], we next define the so-called hypersur- 
face Dirac operator V. For this, we consider the Dirac matrices Ga and the 
spin derivative (12) of the Lorentzian manifold, but take only the derivatives 
tangential to M, 

3 

V:=iY/G
j(x)Dj. 

i=i 

The hypersurface Dirac operator can be considered as a differential operator 
on the four-component wave functions on the hypersurface M. According to 
[7, 5], the square of the hypersurface Dirac operator satisfies the Weitzenbock 
formula 

(16) V2    -   D*Dj +n with 

n   -    ^{R + 2Rolpuavp + 2Raiisavf3G
l3Gi), 

where Dj denotes the formal adjoint of the operator Dj. As a consequence 
of the dominant energy condition (II) and Einstein's equations (1), the 
(4 x 4)-matrix 1Z is positive definite. 

Let us introduce a convenient notation for the covariant and spin deriva- 
tives. The Levi-Civita connection Va and the spin connection Da give a 
parallel transport of tensor and spinor fields, respectively. Furthermore, the 
induced metric gj^ yields a Levi-Civita connection on M. For clarity, we 
denote this last connection and all its derived "intrinsic" curvature objects 
without a bar; i.e., we have the covariant derivative Vj with Christoffel sym- 
bols F^, the curvature tensor R3

kim, etc.. For a derivative tangential to M, 
the connections V and V are related to each other by 

(17) VjU = VjU + hjk uk i/, 
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where u denotes a vector field tangential to the hypersurface. Combining the 
spin and Levi-Civita connections, we can differentiate all objects with spin 
and tensor indices. With a slight abuse of notation, we write this derivative 
with a nabla. A bar indicates that we treat the tensor indices with the 
Christoffel symbols f; otherwise, the connection F is used. For example, we 
have 

ViVj-tf   =   DiDjV-T^DkV, etc. 

For the proof of our curvature estimates, we shall choose a constant 
spinor \I/o in the asymptotic end and consider the solution of the massless 
hypersurface Dirac equation with asymptotic boundary values ^o? 

(18) £># = 0 with lim  *0) = *o. 

The existence of such a solution is proved in [5]. The wave function behaves 
at infinity like 

(19) dj* = 0(l/r2), djky = 0(l/r3). 

We remark that the massless Dirac equation (18) decouples into two two- 
spinor equations, the so-called Weyl equations (which separately describe 
the left and right handed components of the Dirac spinor). But this is not 
very useful for us; we prefer working with four-component Dirac spinors. 

In order to illustrate our notation, we finally outline Witten's proof of 
the Positive Energy Theorem in our setting. We take the solution \I/ of the 
Dirac equation (18) and compute the following divergence: 

(20) 

VjCD*'* | *) = V^OT | Gaua Vy 

(=) ^VjDiy | Gaua Vy + ^Diy | dj(G
aua) *^ + <D^ \ Gaua DjVy 

(=) (VjD^ | *) + ^LPV | hjkGk Vy + (Dj^ \ DjV) 

= ((Vj + Gava hjkGk) Djy | *) + (Djy | DjV). 

Using that the formal adjoints of the operators Dj are 

(21) Dj = -V'j - GauahjkGk, 
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we can write (20) in the shorter form 

(£>% | DjV) = VjiiyV | *) + (D*Djy | *). 

We now integrate both sides and substitute the Weitzenbock formula (16). 
This gives the identity 

(22) (DV\D*) + (V\KV)= [  VjiD^l^dfi. 
JM 

Since 1Z is a positive matrix, the left side of (22) is positive. The right 
side of this equation is an integral over a divergence. If this integral is 
approximated by integrals over the balls BR, R > r, we can apply Gauss' 
theorem to rewrite them in terms of boundary integrals over the spheres SR. 

As explained in detail in [5], these boundary integrals can be identified with 
the integrals in (5) and (6). More precisely, 

f Vj(2}j*|*)d/i   =     lim   f  (Dj^ltydn* 
JM R-*00 JSR 

=   A7r(E\^o\2 + ^o\PkGk^Qy). 

The Positive Energy Theorem follows by choosing ^o such that 
-<*o | PkGk ^Q>- = -\P\ and |*o|2 = 1. Namely, in this case, one gets 
in combination with (22) the inequalities 

(23) 0 < (£>* | DV) <47r(E- |P|). 

3. Estimates of the Riemann Tensor. 

We begin with a pointwise estimate of the Riemann tensor of the Lorentzian 
manifold in terms of the second derivative of the Dirac wave function. 

Lemma 3.1. For any solution S& of the hypersurface Dirac operator (18), 
(24)            ^^_^^  2 

(jRi^RW - ^Rijka^&Mvp)    (*|*)< 32 (VjVfc* | VJ Vfc*). 

Proof. Relation (15) and the Schwarz inequality yield the following estimate: 

(25) (R3ka0 GaG^ | RiW G^Gs*) = 16 ([D^D^ | [&, Dk}^) 

= 32 ((VjVfctf | VjVky) - (VjVfc* | VfcVJ'*)) 

(26) <64(VJVit*|VJ'Vfe'5') 
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Let us analyze the curvature term on the left side of (25) more explicitly. 
For simplicity in notation, we choose a chart with v — -^. We decompose 
the Riemann tensor into the tangential and normal components, 

Rjkafi GaGp = Rjkim G Gm + 2RjkiQ G G . 

Since the Dirac matrices are Hermitian with respect to the spin scalar prod- 
uct and the matrix G0 anti-commutes with the G-7, we obtain 

(27) (Riw GaG^ | R1^6 G7G,tf) 

= -<Rijap GaG^ | (-G0) Rih5 G^Gs^y 

= (* | Rijki GlGk Rijmn GmGny) 

- 4 (* | Rijko G0Gk Rijm0 GmGo*) 

- 2 ($ | Rijk0 G0Gk Rijrnn GmGny) 

(28) + 2 (* | Rijki GlGk Rijm0 GmGo*). 

The products of Dirac matrices can be simplified with the anti-commutation 
rules (10). The important point is that, in both summands in (27), the Dirac 
matrices combine to a positive multiple of the identity, 

Rijki GlGk Rijmn GmGn = 2 RijklR
ijklTl. 

-4 Rijko G0Gk Rijm0 GmGo = 4 Rijkava R^vpTL 

In the two summands in (28), the products of Dirac matrices is more com- 
plicated, and the sign of the terms is undetermined. But we can bound both 
summands from below with the Schwarz inequality, 

- 2 (* | RijM G0Gk Rijmn GmGny) 

> -y/2Rijkl&
ikl y/iRijkaf&Ml'f} (* I *), 

2(*\RijklG
lGkRiJm0GmGo*) 

> -^RijuRvU ^4Rijkava RMvp (* | *). 

By substituting into (27) and (28), we obtain the estimate 

{Rijaf)G*Gfi*\&i'lS GiGs<$!) 

> (]/2Rijkim
kl - jtRijkaWRMv^j    (*|*). 

n 
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In the following lemma, we estimate the integral over the right side of (24) 
from above. Similar as in Witten's proof of the Positive Energy Theorem, 
this is done by integrating one spin derivative by parts. The higher order of 
the derivatives makes the calculation more complicated; on the other hand, 
we do not get boundary terms. 

Lemma 3.2. There are constants ci and C2 independent of the geometry 
of M and N such that for any smooth, bounded function rj with bounded 
gradient on M and the Dirac wave function of the Positive Mass Theorem 
(23), 

/ ^(V^V^IV.V^) 
JM 

<cl{E- \P\) sup (la^i \hkl\ + M (iv.M + \Rijkl\ + IM2) + lAr?l) 
M 

+ C2 y/E - \P\  \\r) {\VkRi3ap\ + \hij Vkhim\ + \hij i?^mn|)||L2   SUp |*|. 
M 

In this formula, A denotes the Laplace-Beltrami operator on M, and 1^1 = 

Proof Exactly as in (20), we compute the following divergence: 

V^V'V** | Vfctf) = ((V,- + Gaua hjkGk) VjVky | Vfc*) 

+ (VjV/c*|VjV^). 

Using the short notation with the formal adjoint 

(29) v*=:-Vj-GavahjkGk, 

we can also write 

(V^V** | V^-Vfc*) - V^V^V** | Vfc*) + (V* V'"V*tf | Vfc*). 

We multiply this equation by rj and integrate over M. According to the decay 
properties (3), (4), and (19) we can integrate by parts without boundary 
terms and obtain 

(30) / ^(V^V^IV^Vfc*)^ 

= - [ (djri)(VjVk^\Vk^)dfi+ [ r/(V*V^V^|Vfc*)^. 
JM JM 
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We estimate the resulting integrals. Since the left side of (30) is real, 
we must only consider the real parts of all terms. In the first integral on 
the right side of (30), we can integrate by parts once again. Using again 
the decay properties (3), (4), and (19), and the fact that dr) is bounded, we 
obtain, as in (20), 

Re   / (^)(VjVfc*|Vfc*)d// 
JM 

=   k f (fyv) (dj(Dky | Dk*) - ^Dky | hVGiDkVy) dfi 

=    \ I (Dky | (-AT? - G<Va Gi ^(d^)) Dk^) d^ 

We bound the obtained integral with the sup-norm and substitute in the 
Positive Energy Theorem (23), 

Re   [ (djri)(V
jVky\Vky)diJL 

JM 

< Jsup(|A77| + IdjTiWhul)  [  \D*\2d» z   M JM 

<27r sup (|At7| + 1^11^1) (E-\P\). 
M 

The second summand on the right side of (30) is more difficult because it 
involves third derivatives of the wave function. Our method is to commute 
the Vfc-derivative to the very left using the transformation 

V^ + V^V^V^. (31) VJV'V** = V* [Vj, V*] * + [V*, V* 

In the resulting third order term, we can apply the Weitzenbock formula, 

(32) V* V*V% = V*(£>pj)# = -Vk(TZ^) = -(DkK) ^-K (Dk^). 

The two commutators in (31) yield terms involving curvature and the second 
fundamental form, more precisely 

(33) 

(34) 

(35) 

V* VJ',Vfc 

k 
v 3 ' 

" # = I v* (B?*"? GaG0 *) 

V^'* ^ - [Vj, V*1] V% - [cVafy/G', Vfc] V^'* 

^-jRi^GaGpDjV - RklDi^ 

+ Gaua(Vkhji)G
lDj^. 
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We mention for clarity that the first summand in (35) comes about as the 
curvature of the spin connection, whereas the second summand arises as the 
Riemannian curvature of M; this can be seen more explicitly by writing out 
V with the spin derivative D and the Christoffel symbols of the Levi-Civita 
connection on M. The third summand in (35) is obtained by combining 
(14) with (17). 

With the transformations (32), (33), and (35), we can reduce the third 
order derivative of the wave function V^V-7 V^* to expressions which contain 
derivatives of * of at most first order. More precisely, using the Gauss 
equation, this allows us to estimate the scalar product (V!-V-7 V^* | V/*) in 
the form 

(36) (v;V'"V*tt|V,tf)   <   Cid^-wl + I^P + IV^wl) (D*\D*) 

(37) +C2 {iViRjklm] + IM \Rklmn\)   (* I DV) 

with suitable constants Ci and C2 which are independent of the geometry 
of M and TV. We multiply both sides of this inequality by r) and integrate 
over M. In the integral over (36), we estimate with the sup-norm, whereas 
the integral over (37) can be bounded using the Schwarz inequality, 

JM 

< CisMvilRijkil + lhjkf + lVjhkil))  [ (D^\D^)dfM 
M JM 

+ C2 SUp |*|   ||77(|V^/m| + Ihijl \Rklmn\)\\L2 lll^llb- 
M 

Finally, we substitute the Positive Energy Theorem (23). □ 

We now combine the results of Lemma 3.1 and 3.2. 

Corollary 3.3. There are constants ci and C2 independent of the geometry 
of M and N such that for any smooth, bounded function rj with bounded 
gradient on M and the Dirac wave function of the Positive Mass Theorem 
(23), 

j 77 LlRijkiRijkl - y/zRijka^frMvf))    (*|*)^ 

<ci(E- \P\) sup (Idjril \hkl\ + IT/I (IVJM + {Rijul + |^|2) + jA^I) 
M 

+ C2 y/E- \P\  \\r] (l^kRijaffl + \hij Vfe/l/m| + |/lij -RHmn|)||L2 SUp |*| 
M 
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It seems likely to the authors that this inequality is not optimal in the 
case of non-zero fundamental form, in the sense that E — \P\ — 0 does not 
imply that M3 is a submanifold of Minkowski space. Improvements of the 
estimate are still under investigation. However, in the case hij = 0, the 
above inequality is very useful, as we shall see in what follows. 

For the rest of this paper we will assume that hij = 0. Hence, all of the 
remaining theorems will concern Riemannian 3-manifolds (M3,^) which, 
by the dominant energy condition (II) and the Gauss equation, must have 
non-negative scalar curvature. Then in this zero second fundamental form 
setting, it follows from the Gauss and Codazzi equations that Rijki = Rijkl 
and Rijka^ = 0, where R is the Riemannian curvature tensor of (M3,^). 
It also follows in this setting that the total momentum is zero, so that the 
total energy E equals the total mass m. 

Corollary 3.4. There exist positive constants c\ and C2 such that for any 
smooth, complete, asymptotically flat manifold (M3,g) with non-negative 
scalar curvature and total mass m and any smooth, bounded function rj with 
bounded gradient on Ms, 

(38)       f r,RijklR^kl^\^)dfi 
JM 

< am sup (\ri\\Rijki\ + \Ar]\) + oi\fm \<r)\V kRijOLp\\L2 sup|*|, 
M M 

where \I> is the Dirac wave function of the Positive Mass Theorem (23). 

The interesting point of this estimate is that the terms on the right side 
of our inequality all contain factors m or y/m, which vanish when the total 
mass goes to zero. The disadvantage of our estimate is that it involves the 
Dirac wave function. In order to get a more explicit estimate, we shall in 
the next section derive a-priori bounds for $. 

4. Upper and Lower Bounds for the Norm of the Spinor. 

First, we observe that we can use the maximum principle to prove that 
|*(^)| < 1. To do this, we must derive a second order scalar inequality 
for |\I/(£)|2. Recall that we are still assuming that M3 has zero second 
fundamental form, as we will do for the remainder of the paper. Then we 
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have 

(39) a,-^]*)        =        (Dj-tf | tf) + (tf | .Djtf) 

A(*|*)     =     Vj ((!»% | *) + (^ | r>j*)) 

(Vj/y* | *) ■+ 2 (Dj* | £>»'tf) + (* | Vj^'*) 

(2iyi7)   _(D*Dji21 ^) + 2 |D*|2 - (* | DtDiV). 

Substituting in the Weitzenbock formula (23), we find that, by (16), 

A|*|2> -(^\R^) + 2\D^\2, 

where R is the scalar curvature of (M3,#). Since R > 0 in the zero second 
fundamental form context, it follows that |*(x)|2 is subharmonic. Using 
that |^(x)|2 goes to one at infinity by construction, the maximum principle 
yields that 

(40) |*(x)| < 1 

for all x. 
To get a lower bound for |*(a;)|, we let f(x) = |*(^)|2 and observe that 

equations (39), (40), and (23) imply that 

f  \Vf\2<4;[  |£>#|2|*|2 < 167rm. 

Then the Sobolev inequality applied to 1 — f(x) yields for some positive 
constant C3 

(41) k2 ( f (1 - f(x)A       < C3 f   |V/|2 < 167rc3m, 
V^M / JM 

where k is the isoperimetric constant of M defined to be 

k = inf y2/3' 

and the infimum is taken over all smooth regions with volume V and bound- 
ary area A (the Sobolev constant of M3 can be bounded by y/cs/k, where 
C3 is a constant independent of the geometry of M). The inequality (41) 
immediately implies the following lemma, which gives a lower bound for |*|2 

except on a set of small measure. 
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Lemma 4.1. Let k be the isoperimetric constant of M.  Then for any c < 1, 

|*|2 >c 

except on a set D(c) with 

(42) Vol(C(c))^<i^|_=i. 

5. Proof of the Main Theorem and Applications. 

Our main Theorem 1.1 immediately follows by combining the bound (40) 
and Lemma 4.1 (where we set c = 1/2) with Corollary 3.4. We note that 
the constants ci ,C2, and C3 could be computed in a straightforward manner, 
although we do not carry this out since their actual value is not important 
for our applications of the theorem. Also, we see that by choosing 77 to be 
zero everywhere except in a neighborhood of a given point, Theorem 1.1 
yields the following corollary. 

Corollary 5.1. Suppose {gi} is a sequence of smooth, complete, asymptoti- 
cally flat metrics on M3 with non-negative scalar curvature and total masses 
{mi} which converge to a possibly non-smooth limit metric g in the C0 sense. 
Let U be the interior of the set of points where this convergence of metrics 
is locally C3 and nondegenerate. 

Then if the metrics {#;} have uniformly positive isoperimetric constants 
and their masses {nrii} converge to zero, then g is flat in U. 

Equivalently, we can restate the above corollary in a manner which ex- 
tends the case of equality of the Positive Mass Theorem to manifolds which 
are not necessarily smooth. 

Definition 5.2. Given a metric g on a manifold M3 which is not necessarily 
smooth, we say that it has generalized non-negative scalar curvature 
if it is the limit in the C0 sense of a sequence of smooth, complete, asymp- 
totically fiat metrics {^} on M3 which have non-negative scalar curvature. 
We will also require that g is smooth outside a bounded set, and that its 
total mass equals the limit of the total masses of the smooth metrics. Fur- 
thermore, given such a manifold, let U(M3) denote the interior of the set 
of points in M3 where the convergence of metrics is locally C3 and nonde- 
generate. 
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Theorem 5.3. Suppose that (M3,g) is not necessarily smooth but is com- 
plete, asymptotically flat, and has generalized non-negative scalar curvature, 
total mass m, and isoperimetric constant k. Then m = 0 and k > 0 implies 
that g is flat in U(M3). 

We note that the above theorem is not true without the requirement 
that the isoperimetric constant k > 0. For example, the induced metric 
on a 3-plane which is tangent to a round 3-sphere in Euclidean 4-space 
has generalized non-negative scalar curvature and is the limit of portions 
of space-like Schwarzschild metrics of small mass joined to the 3-sphere 
minus a small neighborhood of the north pole. This singular manifold has 
zero mass, but it is not flat everywhere in U(MS) since U(MS) equals the 
whole manifold minus the point where the 3-plane and 3-sphere are tangent. 
However, Theorem 5.3 is not contradicted by this example since this singular 
manifold has zero isoperimetric constant. 

Among other possible applications, Theorem 5.3 is used in [2] to handle 
the cases of equality of Theorems 1,9, and 10 of that paper. These three 
theorems are generalizations of the Positive Mass Theorem and give lower 
bounds on the total mass of an asymptotically flat manifold in terms of the 
geometry of the manifold. In particular, Theorem 1, which is the main the- 
orem of [2], is a slight generalization of the Riemannian Penrose Inequality, 
which states that the total mass of a 3-manifold with non-negative scalar cur- 
vature is greater than or equal to the mass contributed by any black holes it 
may contain. The above Theorem 5.3 is then needed to prove that, if the to- 
tal mass of the 3-manifold exactly equals the mass contributed by the black 
holes it contains, then the 3-manifold is a Schwarzschild 3-manifold (de- 
fined to be a time-symmetric, space-like slice of the usual 3+1 dimensional 
Schwarzschild metric) which corresponds to a single non-rotating black hole 
in vacuum. 
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