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1. Introduction. 

An important question in 3-manifold topology is whether a closed 3-manifold 
contains Tri-injective surfaces. Embedded 7ri-injective surfaces give a lot of 
information about 3-manifolds, e.g., [15]. But unfortunately, in some sense, 
most 3-manifolds do not contain embedded Tri-injective surfaces [8]. The 
main goal of this paper is to prove the contrary to [8] for immersed surfaces, 
i.e., (in some sense) most 3-manifolds do contain a surface subgroup. 

Theorem 1.1. Suppose X is a hyperbolic 3-manifold with boundary a single 
torus. Then all but finitely many Dehn fillings to X produce 3-manifolds 
containing Tri-injective surfaces. 

This theorem was also proved by Cooper and Long [3] earlier using 
different methods. The proof that we give here is topological, and an ad- 
vantage of this approach is that it gives an explicit bound on the number 
of exceptional surgeries. Theorem 1.1 follows directly from Theorem 1.2 by 
the deep results in   [6], [5]. See below for definitions of X(/i) and A(/i, s). 

Theorem 1.2. Suppose X is a hyperbolic 3-manifold with boundary a single 
torus, and S is a two-sided7 embedded, incompressible and d-incompressible 
surface with boundary slope s, and S is not a virtual fiber of X. Then there 
exists a number Y such that X{^) contains ni-injective surfaces for any 
boundary slope /i with A(/i, s) > T. 

Proof of Theorem 1.1 from Theorem 1.2. It follows from [6], [5] that X 
contains such incompressible surfaces with at least two distinct boundary 
slopes arising from the splitting of 7ri(X) associated with the ideal points of 
certain algebraic curves. Then by Proposition 1.2.7 of [5], the fundamental 
groups of the splitting surfaces cannot be normal subgroups of 7ri(X), hence 
they are not virtual fibers and Theorem 1.2 implies Theorem 1.1. □ 
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In this paper, we will mainly prove Theorem 1.2. Unlike [3], we actually 
do not use the hyperbolic structure. The only thing that we need is that 
ni(X) has no non-peripheral Z©Z subgroups, which is equivalent to saying 

o 

that X has a complete hyperbolic structure by Thurston [14]. Moreover, 
we will give an explicit bound to the number of exceptional surgeries. 

Theorem 1.3. In Theorem 1.2, T can be chosen to be an explicit linear 
function of the genus and number of boundary components of S. 

The idea of the proof is to construct a closed surface from S by connecting 
pairs of the boundary components of S using long annuli that wind around 
dX. By some combinatorial arguments, we show that if both the number of 
times that the annuli wind around dX and the distance between the surgery 
slope and the slope of OS are large, then this closed surface is 7ri-injective. 
Notice that the immersed surface constructed has no triple points. 

The techniques in this paper have been used on embedded incompressible 
surfaces in various papers (e.g., [12, 5]). The simplicity of the immersion in 
our construction allows us to apply them to this case. The idea of closing 
up boundaries of surfaces using long annuli was introduced by B. Preedman 
and M.H. Preedman in   [7], and extensively used in   [4, 2, 3]. 

Notation. Let a,/3 be two slopes on the boundary torus of X. X(a) de- 
notes the closed manifold by Dehn filling along a, i.e., by adding a two- 
handle to X along a simple closed curve with slope a and then capping off 
the resulting 2-sphere boundary component with a 3-cell. A(a,/3) denotes 
the minimal geometric intersection number between two closed curves rep- 
resenting a and /3. N(E) denotes a small regular neighborhood of E , and 

o 

\E\ denotes the number of components of E. We use both E and int(E) to 
denote the interior of E. 

Acknowledgments. I would like to thank Dave Gabai for many very 
helpful conversations, and thank Siddhartha Gadgil and the referee for many 
comments and corrections. 

2. I-bundle Regions. 

Definition 2.1. Suppose that M is an irreducible 3-manifold with bound- 
ary, and Ai, A2,..., As are disjoint annuli in dM such that dM — Ui=i ^ is 

incompressible in M and the vertical arcs of each annulus cannot be homo- 
toped rel boundary into dM — |Ji=i ^- Let i:D = IxI^Mbea, proper 
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map. We call i a product disk of (M, A), if i(dl x /) is a pair of vertical 

arcs of A = IJi=i ^i ail(i ^(^ x ^-0 is a pair of immersed arcs in dM — A 
which cannot be homotoped rel boundary into A. We call {p} x / a vertical 
arc of the product disk for any pel. 

By our definition, any vertical arc of a product disk cannot be homotoped 
rel boundary into M — A. 

The following lemma is a simple case of the characteristic pairs in [10, 9], 
see also   [11]. For completeness, we give a proof here. 

Lemma 2.1. Let (M,A) be as above. Then there is a maximal I-bundle 
region J in M such that any product disk can be homotoped into J. 

Proof. First, we will show that there exists such a region J for embedded 
product disks. Given any two embedded product disks, by the standard 
cutting and pasting argument, we can assume after isotopy that their inter- 
section is a union of vertical arcs. So, in our proof, we always assume that 
the intersection of any two embedded product disks is a union of vertical 
arcs. 

We start with A and an embedded product disk Di. We thicken them a 
little to get a small neighborhood of the union of A and Z?i, which is clearly 
an /-bundle. We call it Ji. Assume that we have constructed J^, which is 
a neighborhood of the union of Di, D2,. •., D^ and A. If there is still an 
embedded product disk Dk+i that cannot be isotoped into J/., then we let 
Jfc+i be a neighborhood of the union of JDI, ... ,.Dfc+i and A. Since Dfc+i 
cannot be isotoped into J^ such operations increase the Euler characteristic 
of the non-disk components of dM — J^. Thus the operations must stop at 
a certain stage, and we get an /-bundle J' such that any embedded product 
disk can be isotoped into J'. 

Furthermore, suppose some component of dM—J', say /), is a disk. Then 
by the definition of a product disk, each fiber of J' cannot be homotoped rel 
boundary into dM — A, and hence D together with the fibers of J1 incident 
to dD is a disk, denoted by D'. Since dM — A is incompressible, dD' bounds 
a disk D" in dM — A, and D'UD" bounds a 3-ball because M is irreducible. 
Therefore, by adding such 3-balls to J', we can enlarge J1 to another /- 
bundle J with canonical fibration such that no component of dM — J is a 
disk. We call (dM — A) fl J the horizontal boundary, which we denote by 
dhJ, and dJ — dhJ — A the vertical boundary of J, which we denote by 
dv J. Notice that M — J does not contain any embedded product disks with 
respect to (M — J, dvJ). 
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Now we show that any product disk can be homotoped into J. Let 
i : P = IxI^Mbea, product disk. Then ^(dyJ) is a union of disjoint 
simple arcs and simple closed curves in P since dJ is embedded in M. 

If there are simple closed curves in i~l(dvJ), we choose an innermost one 
which bounds a disk A in P. Then i(dA) is a homotopically trivial curve 
in the vertical boundary of J, and i(A) lies in J (or M — J). Since ^(M) 
is trivial, we can homotope i(A) to a point on dv J and move it out of J 
(or M — J) reducing the number of components of 2_1(3V J). Hence, we can 
assume that i~l(dvJ) does not contain any simple closed curves. 

Since i(dl x I) C A C J, each component of 2~1(5V J) is either a vertical 
arc of P or an arc with both endpoints on the same component of I x dl. 
In the latter case, we choose an outermost such arc, say a. a together with 
a subarc of / x 5/, say /?, bounds a disk 8 in P. Now i{a) is a <9-parallel arc 
in dvJ and, since dM — A is incompressible and M is irreducible, i(/3) is a 
<9-parallel arc in (9^ J (or <9M — J). Since ^(M) is trivial, we can homotope 
i($) out of J (or M — J) reducing the number of components of i~1(5t, J). 
So we can assume that i~l{dvJ) consists of only disjoint vertical arcs in P. 

If P cannot be homotoped into J, then z~1(M — J) is a collection of 
rectangles of the form [a, b] x / in P, where [a, b] is a subinterval of /. i 
restricted to each of these rectangles is a product disk of (M — J, dvJ). By 
doing some cutting and pasting to P and dv J, we get an embedded product 
disk in M — J, which contradicts the assumption that J is maximal. Thus 
any product disk can be homotoped into J. □ 

Notation. Let S be an orientable surface and R C S be a subsurface of 

5 with dS C i?. Let i?' = R U (disk components of S - P), and P = 
P' — (disk components of P'). 

We define an equivalence relation: Pi ^ P2, if Pi and P2 are isotopic 
in S. Denote the set of surfaces equivalent to P by [P]. 

Proposition 2.2. Suppose Pi,P2 are subsurfaces of S, and dS C Pi nP2. 
Then there exist R^ G [Pi] and R'2 € [P2] such that if a non-trivial curve 
can be homotoped into each of Ri and R2, it can be homotoped into R^ flP^. 

Proof If S is a disk or an annulus, then the proof is trivial. So, we can assume 
that 5 is a hyperbolic surface with geodesic boundary. For simplicity, we 
only consider the case that Pi and P2 are connected. By our definition, there 
are no disk components in S—Ri. We isotope Pi and P2 to be subsurfaces of 
S with quasi-geodesic boundaries as follows. If 8 — Ri (i = 1 or 2) contains 
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annular components, we isotope Ri such that the annular components are e- 
neighborhood of geodesies for some small e. For other boundary components 
of i?i, we first isotope Ri so that these boundary components are geodesies, 
then enlarge Ri by adding a 2e-neighborhood of the geodesies to it. By 
choosing e small enough, we can assume that there is no overlapping of Ri 
with itself, i = 1, 2. 

For any nontrivial curve of S which can be homotoped into both Ri and 
i?2, we first homotope it to be a geodesic. It then lies either in both surface 
constructed above or in an annular component of S — Ri, for some i. In the 
later case we homotope the curve out of the e-neighborhood so that it still 
remains in the 2e-neighborhood of the geodesies. By our construction, it lies 
in the intersection of the two surfaces. □ 

Let i2i, i?2, R'IIR^ be the surfaces of Proposition 2.2. We denote [jR^fii?^] 
by [Ri] fi [R2}' To simplify our notation, we do not distinguish between [R\ 
and a properly chosen element in [i?]. 

Definition 2.2. Let X be an irreducible 3-manifold whose boundary com- 
ponents are tori, S a two-sided, incompressible, d-incompressible, embedded 
surface in X, and M be the 3-manifold obtained by cutting X along 5, i.e., 

M = X-N(S) (M may not be connected). Let A = dX-N(dS) be a union 
of annuli in dM. We call a map i : / x [0,n] -> X an essential rectangle 
of length n, if i intersects S transversely and i\ix[k,k+i] is a product disk 
of (M,A) for each k G {0,1,... ,n - 1}. 

The following lemma is important to our proof. The same result was 
proved in   [2] for the non-separating case. 

Lemma 2.3. Let X be a hyperbolic 3-manifold with boundary a single torus 
and S be a two-sided, incompressible, d-incompressible surface in X. Sup- 
pose S is not a virtual fiber. Then there exists a number P(S) E N 
such that the length of any essential rectangle is less than P(S), where 
P(S) = 6g + 4fo — 6 and g, b are the genus and the number of boundary 
components of S. 

Proof. We assume that S is separating. If not, we can take S together with 
a parallel copy of S (disconnected) to be our surface. 

Let Mi and M2 be the closures of the two components of X — 5, and 
let M be the disjoint union of Mi and M2. Let A; = Mi fl dX for i = 1,2. 
Then dMi - Ax £ dMs - A2. 
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Let Ji be the maximal /-bundle region of {Mi^Ai) constructed in 
Lemma 2.1. Let Si = Ji fl (dMi — Ai) be the horizontal boundary of Ji 
for i = 1, 2. Note that Si and <9M; — Ai — Si have no disk components. We 
can also assume that Ai C Ji. Define TJ to be an involution of Si such that 
Ti ' Po *-> Pi> where po an(i Pi are the endpoints of a fiber of Ji, i = 1 or 2. 

If Ji — Mi for both i, then both Mi and M2 are /-bundles. Hence 7ri(5) 
is a normal subgroup of 'Ki(X) and S is a virtual fiber. So we can assume 
that Si ^ dMi - Ai. Let cp : dMi - Ai -> dM2 - A2 be the gluing map, 
then X = Mi U M2/X ~ <p(x). For any S' G [Si], we can isotope Ji so that 
Ji fl (dMi — Ai) = Sf and define n coherently. So we do not distinguish 
between [Si] and an element in the equivalent class and always use Ji for 
the coherent /-bundle. 

Let Tx = [Si], T^ = TI([SI] n [v?-1 o r2([52] n ^(rfc)])]), and Tk+1 = 
[Tk]n[rk]. 

Claim. [Tfc] ^ [Tfc+i] for any k unless [Tfc] = [5Ai], where [dAi] is a small 
neighborhood of dAi in 9Mi — Ai. 

Proo/ 0/ the claim. We have [rfc] = (p[Tk} D [52] n [¥>(!*)] = y-1 o ^([52] n 
[<p(Tk)]) 2 [51]nb-1oT2([52]n^(Tfc)])] = [T'k} D [Tk}n[T£ = [Tk+1]. Equal- 
ities hold if and only if [^(Tfc)] = [52] n [<p{Tk)], [tp-1 o r2([52] n [<p(Tk)])] = 
[Si] n fo,-1 o r2([52] n b(rfe)])], and [rk] = [Tk]. 

If [Tfc+i] = [Tfc] and [T^] ^ [dAi] for some fc, then there exists a boundary 
component 7 of [/&] such that 7 is not parallel to dAi. Note that 7 is a 
non-trivial curve by our construction. Hence ^(7) is a boundary component 
of [<p(Tk)] = [S2] H [(p(Tk)], and 71 = n o cp'1 o T2 o ^(7) is a boundary 
component of [T^] = [T^]. 

By our construction, S U Ti(8) bound an annulus or Mobius band in Ji 
for any simple closed curve 5 in Si. Hence, if 7 is isotopic to 71, we can 
close up the two annuli or Mobius bands bounded by ^(7) U T2 o ^(7) and 
(p~l 0T20 (^(7) U 71 to get a torus or Klein bottle in M. If 7 is not isotopic 
to 71 then 72 = TI o y?-1 o T2 o (f(ji) is also a boundary component of [Tk]. 
In this way, we can define 7; for any i. Since [Tk] has only finitely many 
boundary components, there exist i ^ j G N such that 7; is isotopic to jj. 
So we can always close up some annuli or Mobius bands to get an immersed 
torus or Klein bottle. We shall show that the immersed torus (or Klein 
bottle) is Tri-injective. 

To simplify notation, we do not distinguish between the torus (or Klein 
bottle) and its image in X under the immersion and denote both by T. 
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The 7i 's are parallel non-trivial curves in T and their images are non-trivial 
curves in S. Since S is two-sided and incompressible, the 7;'s are non- 
trivial in M. If the immersion is not TTi-injective, then there is a non-trivial 
curve, say 7', in T which intersects each 7; non-trivially and is mapped to a 
trivial curve in M. By our construction of T, we can homotope 7' so that 
it consists of vertical arcs of Ji and J2. Now that 7' bounds a disk Df in 
M. The pull-back of the intersection of D' with S is a collection of simple 
curves in D*. By using homotopies as before we can assume that there are 
no simple closed curves in Df. We then choose an outermost arc. This arc 
together with a subarc of 7' bounds a subdisk in Df. This subdisk is mapped 
to either Mi or M2, which means that the subarc of 7' (i.e., a vertical arc 
of J^, by assumption) can be homotoped rel boundary into dMi — Ai. This 
contradicts our assumption on J;. Hence the immersion is TTi-injective. 

Now we show that 7^ is not homotopic into dX. Note that, since S is 
TTi-injective, any non-trivial and non <9-parallel curve in dM^ — A^ (h = 1 
or 2) is not homotopic into A^ in M^. Suppose that 7^ is homotopic into 
dX in X. Then there is an immersed annulus / : E — S1 x [0,1] —> X such 
that / is transverse to S, f^idX) = Sl x {0}, and f(Sl x {1}) C mt(Mi) 
is a curve parallel and close to 7;. Thus f~1(S) fl S1 x {1} = 0. Since S 
is incompressible and <9-incompressible, by some homotopies, we can get rid 
of trivial circles in f~1(S) and those arcs in f~1(S) with both endpoints on 
S1 x {0}. Hence, we can assume that f~1(S) is a union of disjoint meridian 
circles in E. Since 7^ is non-trivial and non <9-parallel in 5, the image of 
each component of f~1(S) is non-trivial and non 5-parallel in S. Let EQ 

be the component of E - /~1(S') that contains S'1 x {0}. Then f\EQ is an 
annulus connecting Ah (h = 1 or 2) to a non-trivial and non 9-parallel curve 
in dMh - Ah, which gives a contradiction. Therefore, we get a TTi-injective 
and non-peripheral torus in X which contradicts the hypothesis that X is 
hyperbolic. □ 

It is easy to see that if [Tfc+i] ^ [!&] then there exists a non-trivial simple 
closed curve o^ in [Tfc+i] - [T/J. Moreover, we can choose the simple closed 
curves such that a; is not parallel to ay ifi^j. By an Euler Characteristic 
argument, there are at most 3g + 26 — 3 disjoint, essential and non-parallel 
simple closed curves in dMi — A\. By our assumption that S\ 7^ dM\ — A\, 
there is at least one non-trivial simple closed curve in dM\ — A\ — S\. Hence 
iffc>3# + 26-3, [rfc] = [0i4i]. 
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Let i : / x [0,n] —>• M be an essential rectangle of length n. Suppose 

(2.1) ^|/x[o,i] is a product disk of (Mi,-Ai), 

(2.2) *|jx[i,2] ^ a product disk of (M2, A2), 

(2.3) ^l/x[2,3] is a product disk of (Mi, Ai), 

By(l),    t(Jx{l})G[ri], 
by (2),    ^/xllDG^n^Tx)], 

z(/x{2})Gr2([52]nHr1)]), 

by (3),    i(I x {2}) G [Si] fl (p-1 o r2([52] n bm)]), 

t(/x{3})GK]n[r1] = [r2], 

Thus, if n > 2(3g + 2b - 4) + 1, i(I x {2(3^ + 26 - 4) +1}) e ^+26-3] = 
[5Ai] which contradicts our definition of a product disk. 

Hence we have   n < 2(3g + 26 — 4). 

Similarly, if i(I x [0,1]) is a product disk of (M2, A2) and J2 = M2 then 
we get n < 2(3g + 26 — 4) + 1. So in any case, we have 

n < 6g + 46 - 7. 

□ 
Corollary 2.4. Letf X be a hyperbolic 3-manifold with boundary a single 
torus and i : (S^dS) S-> (X,dX) a iri-injective surface. Suppose there is a 
constant C E N such that the genus of S is less than C. Then there are only 
finitely many possible slopes for the boundary circles of i(dS). 

Proof. Let S' be an embedded, two-sided, incompressible, cMncompressible 
surface in X and suppose S' is not a virtual fiber. Let the boundary slope 
of dS' be 5 and the boundary slope of i{dS) be /x. As in the proof of 
Theorem 1.1 it suffices to show that A(^, s) is bounded. 

The components of 2~1(5/) are disjoint simple arcs or simple closed 
curves in S because S' is embedded. Let g be the genus of S and 6 be 
the number of boundary components of S. Then i~1(5'/) consists of at least 
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5&A(/z,s) simple arcs in 5. By an Euler characteristic argument, there are 
at most 6<7 + 36 — 6 disjoint nonparallel nontrivial simple arcs in S. Since 
9 < C, if A(/i, s) is large, there are many parallel arcs in S and we get an 
essential rectangle with large length violating Lemma 2.3. So A(/i, s) cannot 
be too large. □ 

Remarks. 
1. In [1] and [13], it was shown that for many 3-manifolds with bound- 

ary a torus there are infinitely many boundary slopes realizing 7ri-injective 
surfaces. Corollary 2.4 says that as the boundary slope increases, the genus 
of the surface increases. 

2. Corollary 2.4 is not a deep result. The following elegant argument is 
due to Dave Gabai. Let X be a hyperbolic 3-manifold with a single cusp 
and let S be a Tri-injective surface mapping cusps to cusp. Suppose S has 
the least area in its homotopy class. Then, by Gauss-Bonnet, Area(S) < 
—x(S) — 2g - 2 + b. On the other hand, we let T be a horospherical torus 
in X. Then S fl T is a union of b closed curves (in T) of length at least I, 
where I depends on the slope of the closed curves. By hyperbolic geometry, 
the area of the cusps of S is at least kbl, where A; is a constant and b is the 
number of cusps of S. Hence we have kbl < Area(S) < 2g — 2 + b. Since g is 
bounded, I cannot be too large and S can realize only finitely many slopes. 

3. Construction of the injective surfaces. 

Let X be a hyperbolic 3-manifold with boundary a torus and S be a two- 
sided, incompressible, d-incompressible, embedded surface which is not a 
virtual fiber. As before, we assume that S is separating, otherwise we take 
S together with a parallel copy of S (disconnected) to be our surface. For 
simplicity we only consider the case that S has two boundary components. 
The proof is similar for the case that S has more than two boundary com- 
ponents. 

Let T2 x / be a product neighborhood of dX and Sf be a parallel copy 
of S. We construct our immersed surface T by connecting the two circles of 
8(3' — T2 x I) using an annulus that winds (in T2 x /) around dX K times 
as shown in Figure 1 (a). Thus TnS is a collection of 2K 5-parallel disjoint 
simple closed curves. We call this annulus the long annulus. 

We define a retraction map 7r:X->X-T2x/by fixing points in 
X — T2 x I and mapping every interval {p} x I of T2 x / to the point (p, 1), 
where peT2. 
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Lemma 3.1. If K > P(S) + 1 then T is Tri-injective in X. 

Proof. Suppose not, then there exists an immersed closed curve I in T such 
that I is contractible in X but not contractible in T. 

Let p be the number of arcs in the intersection of I with the long annulus. 
Notice that p > 1 since S is incompressible and two-sided. We homotope I 
to minimize p and the number of points in its intersection with S. 

Since I is contractible in X, there is a map j : D —> X such that j(dD) = 
Z, where D is a disk. We see that |Z fl S\ = 2Kp and j~1(S) is a collection 
of disjoint simple arcs in D since S is embedded. 

The two circle components of 8(3' — T2 x I) divides I into 2p subarcs, 

namely ai,/3i,a2,/32, • • • j®p,(3p, where Uf=i(a;uA) = ^A j{f3i) is asubarc 
of I lying entirely in the long annulus and j(ai) is a subarc of I lying entirely 

in S'. Thus j^iS) H dD C ULi ft and LT1^) n Pi\ = 2K for each i. We 
call the a^'s a-arcs, and the ^'s /?-arcs. These a-arcs and /3-arcs appear on 
dD alternately. 

Claim 1. There are no arcs in j~1(S) whose endpoints are both in the 
same /3;. 

Proof of Claim 1. Suppose there are such arcs. We choose an outermost 
one, say 7, then 7 together with a subarc J3 of /% bounds a bigon in D. 
Hence TTO^(7) must be a <9-parallel arc in 'jr(S). Since 7 is outermost and S 
is ^-incompressible, both endpoints of jf(/3) must lie in the same component 
of Tn5 and j(int(J3))nS = 0. So we can homotope I to have fewer points of 
intersection with 5, which contradicts our assumption. This proves Claim 
1. 

We call an arc in j~l(S) a long arc if it cuts D into two components 
such that each of them contains at least two a-arcs. 

Claim 2. There exists a k E N such that the endpoints of no long arc lie 

in/?*. 

Proof of Claim 2. Consider all the long arcs of j~1(S) in D and choose an 
outermost one. This together with a subarc of dD bounds a bigon that does 
not contain long arcs. Suppose the bigon contains arcs o^ and a^+i, then 
Pk is as needed because j~1(S) consists of disjoint simple arcs. This proves 
Claim 2. 

Consider all the arcs with an endpoint in /3fc (fik as in claim 2). By claim 
1, the other endpoint of such an arc must lie in either Pk-i or fik+v Since 
l/5/c H j~1(S)\ = 2K, we have at least K parallel arcs which are all parallel 
to ak (or afc+i), as shown in Figure 1 (b). 
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'k+i 

T\I 

(a) (b) 

Figure 1. 

Notice that TT O j{ak) is not a 5-parallel arc in 7r(S"), otherwise we can 
homotope I to have fewer points of intersection with S. Thus the images 
of the K arcs which are parallel to o^ (or a^+i) are essential arcs in 7r(5). 
Hence we get an essential rectangle of length K — 1 > P{S) with respect to 
the 3-manifold Trpf) and surface 7r(5), which contradicts Lemma 2.3.       □ 

Proof of Theorem 1.2 and Theorem 1.3. We will prove that the surface T 
constructed at the beginning of this section is TTi-injective in X(/i) if both 
A(/i, s) and K are large. 

Suppose not, then there exists a closed essential curve I in T contractible 
in X(ii). Hence for any i > 1 there is an immersion j : P ^ X, where P is 

a planar surface with k + 1 boundary components, dP = IJi-o^> J(Po) — ^ 
and j(pi) is an immersed curve of slope /i in dX. We assume that I has been 
homotoped to have the fewest points of intersection with S and k (> 1) is 
the minimal number for all such planar surfaces. The case where k = 0 
follows from Lemma 3.1. Now j~1(S) is a union of disjoint simple arcs or 
simple closed curves in P because S is embedded.  By the same argument 
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as before we can assume that there are no trivial circles in P. 

Claim. There are no 9-parallel arcs in P with both endpoints on the same 
Pi for any i > 1. 

Proof of the Claim. Suppose there are such arcs. We choose an outermost 
one, say 7, which together with a subarc 7' of pi bounds a bigon in P. Hence 
.7(7) can be homotoped rel boundary into dX. Since S is ^-incompressible, 
both endpoints o{j(jf) must lie in the same component of OS and j{int{^l))r\ 

83 = 0 (because 7 is outermost). So we can homotope pi to get fewer points 
of intersection with 35, which contradicts our assumption. □ 

Let B be the subset of j~1(S) consisting of arcs with at least one endpoint 
on pi for some i > 1. Since j(pi) is a curve of slope fi in dX for i > 1, j(pi) 
intersects S in at least 2A(//, s) points (we have assumed that S has two 
boundary components). Hence \B\ > &A(^, 5). By an Euler Characteristic 
argument, the maximal number of non-parallel arcs in P is 3k — 3 if k > 1, 
and 1 if k = 1. So, if \B\ > fcA(/i, s) > 3kN: there are at least N + 1 arcs in 
B which are parallel to each other. Let JQ, £1,..., 8N be the N + 1 parallel 
arcs. 

Case 1.    The N + 1 parallel arcs have endpoints on pi and pj with both 

Recall that by our construction j(pi) C dX if i > 1. 
Suppose j(Si) is a 9-parallel arc in S for some z. Then we can homotope 

j(8i) to <9X, then cut along Si to get a map of a planar surface with fewer 
boundary components, which contradicts our assumption. 

Therefore j(Si) is an essential arc for every i and 5o, 5i,..., 5JV form an 
essential rectangle of length iV. By Lemma 2.3, if iV > P(S), no such 
essential rectangle exists. 

Case 2. Each of the N + 1 parallel arcs has one endpoint on po and the 
other endpoint on pi for some i > 1. 

As in the proof of Lemma 3.1, we divide po into segments ai, 

/3i,... jaq,f3q, where £>o — Ui=i(ai U A) aild each j(/3i) is a subarc of Z 
lying entirely in the long annulus, each j(ai) is a subarc of I lying entirely 
in the surface Sf. We call the a^s a-arcs and the /Vs /3-arcs. 

SQ U Sjsf together with a subarc a of po and a subarc p of p^ form a 
quadrilateral Q in P (see Figure 2 (a)). By the claim, there are no arcs in 
Q with both endpoints on p. So the arcs of j~l(S) — B in Q are arcs with 
both endpoints on a. By the claim 1 in Lemma 3.1, there are no arcs in Q 
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Figure 2. 

with both endpoints on the same /3-arc. As in the proof of Lemma 3.1, we 
can assume that there is no long arc in Q, i.e. no arc cutting off a bigon in 
Q which contains at least two a-arcs. 

Next we choose K and TV such that 2K > 3P(5) + 1 and N + 1 > 
2K + 2P(S) + 1. Since each /3-arc contains exactly 2K endpoints of arcs in 
j~1(S), there is at least one a-arc in Q. 

Suppose there are at least two a-arcs, say G^ and a^+i, in Q (by choosing 
N larger, we can always ensure that). Then all the arcs with one endpoint 
on Pk are contained in Q. As in the proof of Lemma 3.1, there are at most 
P(S) arcs parallel to a^ or a^+i, otherwise we have an essential rectangle 
of length P(S). So there are at least 2K - 2P(S) > P(S) + 1 arcs with one 
endpoint on (3k and the other endpoint on p, as shown in Figure 2 (b). If the 
images of these P(S) + 1 arcs under the map TT O j are not trivial in 7r(S'), 
we get an essential rectangle of length P(S), which contradicts Lemma 2.3. 
Therefore we assume that they are trivial arcs in ir(S). 

Since N + 1 > 2K + 2P(S) + 1, we have at least P(S) + 1 parallel arcs 
in B with one endpoint on /3/c+1 (or fik-i)- Again we assume the image of 
these parallel arcs under TT O j are trivial in 7r(5); otherwise it contradicts 
Lemma 2.3. 

Let Uz=i h ^ T (1 S, where each ^ is a simple closed curve.   Then by 
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our construction of T and assumption on /, the intersection of each fy with 
T fl S appears either in the order (with respect of a certain orientation of I) 

h,h> — - •> hx or in the order hie, hK-i, • • •»^i- An arc that has one endpoint 
in the central portion of /J*. or Pk+i (or Pk-i) must have the other endpoint 
on p, and hence is one of the N + 1 parallel arcs that we considered above 
(see Figure 2 (b)). The reason is that we cannot have too many arcs parallel 
to the two a-arcs adjacent to this /3-arc, otherwise we will get a long essential 
rectangle. So it is easy to see that there must be an arc Si with Si fl fik = & 
and an arc Sj with Sj fl f3k±i — b such that j(a) and j(b) lie on the same 
simple closed curve component of T fl S. Since by our assumption TT O j(Si) 
and TT o j(Sj) are trivial arcs in ^(5), we can homotope j(Si)) moving j(a) 
along the simple closed curve component of T fl S to j(b) and closing up 
j(Si) and j(Sj)) as shown in Figure 3, to get an immersed annulus in X. 

One boundary component, say or', of this immersed annulus is mapped 
into T and the other boundary component is mapped into dX with slope 
different from that of dS. Notice that there is exactly one a-arc between Si 
and Sj in Q. If af is mapped to a trivial curve in T, then the a-arc between 
Si and Sj must be a <9-parallel arc in S", and we can homotope I to get fewer 
points of intersection with 5, which contradicts our assumptions. So af is 
a non-trivial curve in T. Now the simple closed curve component of T fl S 
containing j(a) and j(b) together with a boundary component of dS bounds 
another annulus in 5, and the intersections of the two annuli are vertical 
arcs in both of them. Therefore we get two elements in 7ri(T) simultaneously 
homotopic to two curves in dX of different slopes. Since T is TTi-injective 
in X and clearly T is not peripheral, Z ffi Z is a non-peripheral subgroup of 
7ri(X). This contradicts the hypothesis that X is hyperbolic. 

So, as long as 2K > 3P(S) + 1 and N + 1 > 2K + 2P(S) + 1 (i.e. 
N > 5P(S) + 1), T is TTi-injective in X(fi). Recall that we have chosen 
kA(/jL, s) > 3kN to get N + 1 parallel arcs. Hence it suffices that A(/i, s) > 

3N > 15P(5) + 3. 

If Q contains exactly one a-arc, then as in the proof of Lemma 3.1, there 
are at most P(S) arcs parallel to this a-arc. Since N > 2K-\-2P(S)) incident 
to each /3-arc that is adjacent to this a-arc, there are at least 2P(S) arcs 
belonging to the set of the N + 1 parallel arcs that we considered above. 
Now the proof is as earlier. □ 

Remarks. If S has more that two boundary components, then \B\ > 
|/cA(/i, s). In this case, there are | long annuli and we need j(a) and j(b) 
to be on the same long annulus. Hence the factor b will be canceled and we 
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boundary ofX 

Figure 3. 

get a bound for A(/i, s) that is a linear function of g and b. 
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