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The symmetry group of the generalized curve shortening problem 
is determined and a corresponding optimal system is found. Group 
invariant solutions for the optimal system are discussed. 

Introduction. 

In the past fifteen years there has been constant progress in the study of 
the curve shortening problem. Prom a geometric point of view, this is the 
simplest evolution equation by which people employ^ to deform geometric 
objects to canonical ones. On the other hand, it also appears to be useful in 
describing the motion of the sharp interface in phase transition. Analytically 
it is a weakly parabolic system for a curve 7(-, t) 

(1) %-kn, 

where n and k are respectively a choice of unit normal for 7 and the cur- 
vature with respect to n. For a simple closed curve it was shown in Gage- 
Hamilton [15] and Grayson [16] that the curve will evolve into a convex one 
and then shrink to a point asymptotic to a circle. So the problem is well- 
understood in this case. However, for a closed immersed curve it is known 
that singularities may develop before it shrinks to a point. The analysis of 
the singularities is difficult and is not completed. Some progress has been 
made, for example, in Altschuler [2], Angenent [6], [7], [8], Huisken [18] and 
Oaks [21]. It turns out that certain group invariant solutions are crucial 
for the study. For instance, it was shown that when a locally convex closed 
immersed curve collapses into a point, its asymptotic shape must be one of 
the contracting self-similar solutions of (1) classified in Abresch-Langer [1]. 
On the other hand, the asymptotic profile for a "type-II singularity" looks 
like a "grim reaper", a traveling wave solution first observed in [15]. In fact, 
the "grim reaper" was also used by Hamilton [17] to give an alternate proof 
of the main result in [14] and [15]. Finally, a contracting spiral solution was 
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used in [8] in the analysis of type-I and type-II singularities. 

Problem (1) also makes sense for complete, noncompact curves. In [14] 
Ecker and Huisken established a long time existence result when the initial 
curve is a graph over the real line. (Actually, they also proved the result for 
the evolution of entire graphs for the mean curvature flow.) For a class of 
graphs of slow growth they showed that they are asymptotic to expanding 
self-similar solutions of (1). In a recent work, the first author and Zhu 
[12] have proved a long time existence result for a rather general class of 
complete, noncompact curves. It is the question of long time behavior of 
these curves that leads us to the present work. 

In this work we attempt to give a systematic investigation on the group 
invariant solutions of the generalized curve shortening problem 

(2) ^ = \k\''-1kn,    a>0. 

When a = 1/3, the problem is called affine curve shortening and is related 
to image processing (Alvarez, Guichard, Lions and Morel [3], Andrews [5], 
Angenent-Sapiro-Tannenbaum [9] and Sapiro-Tannenbaum [25], [26]). The 
problem for general a has been studied by Andrews [4] recently. To proceed 
our discussion further it is necessary to fix a parametrization of (2). Let's 
assume 7 = (x,u(x,t)). Then (2) becomes the non-uniformly parabolic 
equation 

<T-1 a  
(3) ut = 

ux 

(1 + ^)3/2 a > 0 . 
l + ux 

2 > 

In Lie's theory of symmetry groups for differential equations a one-parameter 
group of symmetries is a family of local diffeomorphisms 

x = I}e(x,u), 

u = $£(aj,tx),    e small , 

satisfying x = Eo(a;,ti) and u = &Q(X,U) which preserve solutions of (3). 
The vector field 

d       ,   d 

where 

v = iTx
+<t)du> 

£(x,u) = —        Se(x,u),     and 
OS e=0 

(f)(x,u) = — $s(x,u)  , 
de 6=0 
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is the infinitesimal symmetry for the 1-parameter group. In order to obtain 
all group invariant solutions of (3) we first determine the Lie algebra of all 
infinitesimal symmetries. Since the equation is geometric, it must admit 
the Euclidean motions (translations in x and u, rotation in x — u but not 
the reflection because it is discrete) as its symmetries. Furthermore, being 
independent of t explicitly means that it admits translation in t. Finally, 
the special form of (3) suggests that it also admits a certain scaling invari- 
ance. We shall show that in fact all these infinitesimal symmetries form a 
basis of all symmetries as long as a ^ 1/3. When a = 1/3, the Lie al- 
gebra of infinitesimal symmetries has seven dimension, two more than the 
non-affine case. After determining the Lie algebra, we consider the group 
invariant solutions of (3) and (2). According to the general theory, given 
any infinitesimal symmetry v, or more precisely the subspace spanned by 
v, usually there corresponds a r-invariant solution. In order to describe all 
group invariant solutions, one needs the concept of an optimal system. See 
Section 1 for details. We shall determine an optimal system for (3). In a 
certain sense all group invariant solutions are determined. This paper is 
organized as follows. We carry out the group analysis for (3) and determine 
an optimal system in the non-affine case in Section 1. In Section 2 we find an 
optimal system for the affine case. In Section 3 we discuss an affine invariant 
solutions in some details. 

Acknowledgement. The support of an Earmarked Grant for Research, 
H.K., is acknowledged. We would like to thank Dr. K.S. Li for preparing 
the figures in this paper. 

1. An Optimal System for a ^ 1/3. 

Consider the generalized curve shortening problem (2). In this section we 
determine an optimal system for non-affine (2). First of all, we observe 
that this system is geometric; any reparametrization of the curve leaves it 
invariant. As a result, any diffeomorphism on the parameter space is a 
symmetry for (2). To get rid of these reduntant symmetries we must fix a 
parametrization. Prom the analytic point of view, this is also useful since it 
reduces the weakly parabolic system (2) to a single parabolic equation. A 
frequently used parametrization is to represent 7 as graphs. Let's assume 
that during some time interval, 7(-, t) is the graph (sc, u(a;, £)), x € (a, b). We 
may choose the orientation of 7 so that it is along the positive x-axis. Then 
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the unit normal and curvature of 7(-,f) are given by the formulas 

n = —==(-ux, 1) , 
V1+Ux 

and 

(1 + ^)3/2  ' 

respectively. The normal velocity of 7 is given by 

(0,i6t) - n = 1^(1 + ul)" . 

Therefore, (2) becomes (3). Actually, it can be shown that this equation is 
equivalent to (2). Since our consideration is local in nature, it is without 
loss of generality to assume uxx is positive. Then it becomes 

(1.1) AM = ut(l + ul)3-^1 - <„ a > 0 , 

= 0 . 

The symmetry group of (1.1) can be obtained by a routine computation 
using Lie's infinitesimal criterion for symmetry [22]. 

Proposition 1.1. Denote the vector space of all infinitesimal symmetries 
o/(l.l) by 3(a). Then 

(a) when a ^ 1/3, s(a) is spanned by 

{dx,du,-udx + xdu,dt,xdx + udu + (1 + cr)t^}; 

(b) when a — 1/3, s(a) is spanned by 

I dx,du, -udx + xdu, udx + xdu, xdx - udu, dt, xdx + udu + -tdt \. 

Prom now on we shall denote 

vi = dx ( translation in x ) 
V2 — du ( translation in u ) 
^3 = — udx + xdu ( rotation from x- to ix-axis ) 
V4 = udx + xdu 

vs = xdx - udu 

t = dt ( translation in t ) 
d = xdx + udu + (1 + cr)tdt    ( dilatation ) 
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Table 1: Composition for s(cr). The (i, j} - entry is [UJ, Vj] . 

s{o) Vl V2 V3 V4 Vb t d 

Vi 0 0 V2 V2 Vl 0 Vl 

V2 0 0 -Vi Vi -V2 0 «2 

V3 -t>2 Vi 0 2v5 -2V4 0 0 

V4 -V2 -Vl -2v5 0 -2vs 0 0 

V5 -Vi V2 2V4 2V3 0 0 0 

t 0 0 0 0 0 0 (a + l)t 

d -Vi -V2 0 0 0 -(a + l)t 0 

According to the general theory, 5(a) forms a Lie algebra under the usual 
Poisson bracket for vector fields. The structure of js(cr) is shown in Table 1. 

We shall regard any element of 5(a) as a vector field in (x,u,t) G M3. 
Since it is linear, the one-parameter group of diffeomorphisms it generates 
is global on M3. Let's denote the Lie group corresponding to S{G) by S(<J). 

In fact, it is the connected component of the identity of the full symmetry 
group of (1.1). Every element g in S{a) is a symmetry of (2) in the sense 
that gi^i'it)^) is a solution of (2) whenever (7(-,i),£) is a solution. The 
structure of S{a) is given by the following proposition. 

Proposition 1.2. Every element in S(a),cF / 1/3, can be expressed as 

g = DTE 

where E is a rigid motion on the plane, T is a translation in t and D is a 
dilatation: (x,u,t) h-> (e^z,eeu,e(a+1>£t) for some e. 

Proof. Observe that vi,V2 and ^3 generate the Euclidean group of rigid mo- 
tions on the plane and act trivially on the t-component. Using the relations 

T D = D T',    T' a translation in t , 

T E = ET, 
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it is easy to see that every finite product of exp £;!;;, i = 1,..., 3, exp ^t, 
and exp e^d, can be expressed in the form DTE. Since S(a) is a connected 
Lie group and so each of its elements can be represented by a finite product 
of this form, the proposition holds. □ 

For each one-dimensional subalgebra f) of s(cr)> there corresponds a one- 
parameter subgroup of S^cr) given by 

H = {exp sv : e G R} , 

where v is any nonzero element of f). According to Lie's theory, there is 
a group invariant solution, called H or [}-invariant, associated to each fj. 
The group invariant solution satisfies a "reduced equation", which, in our 
situation, is a second order ordinary differential equation. Let's take v — 
cdu + dt (c / 0) as an example. By solving the ODE 

dx __ du      dt 
0        c        1 ' 

we obtain the group action 

he(x,u,t) = expev(x,u,i) 
= (x, 14 + C£, t + 6),   £ G M . 

There are two invariants: a; and u — ct. Setting u(x, t) = ct + v(x) in (1.2), 
we see that v(x) satisfies the equation 

^r / Ox 3a—1 
v°x = c(l + v2

x)— . 

By solving this equation we obtain a i;-invariant solution which is in fact a 
traveling wave. 

Since there are infinitely many one-dimensional subalgebras, it is impos- 
sible to write down all reduced equations, let alone solving them. Following 
Ovsiannikov [23] , we shall classify them. A good discussion on optimal sys- 
tems can be found in Chapter 3 in [22]. We say two subalgebras fji and 1)2 
are equivalent if there exists g G S(cr) such that Ad g(t)i) = f)2- Here Ad g 
is the adjoint representation of g on s(a). It is a linear isomorphism on 
5(a). An optimal system (of one-dimensional subalgebras) is a collection 
of one-dimensional subalgebras {t)a}a£A satisfying (1) for any f) there exist 
g G S(a) and f)a such that Ad g(l)a) — f)> and (2) all f)^s are mutually 
inequivalent. At the group level, the relevance of this notion is that, (7,i) 
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is a iJ-invariant solution if and only if 5(7, t) is a gHg-^invariant solu- 
tion. See, e.g., Proposition 3.6 of [22]. Therefore, once an optimal system is 
constructed, all group invariant solutions can be obtained as images of the 
fja-invariant solution (a G A) under Ad S(a). 

Now we determine an optimal system for (1.1) in the non-affine case. 

Theorem 1.3. When a 7^ 1/3, an optimal system consists of 1-dimensional 
subalgebras generated by 

Wi = Vi 

W2 = t 

Ws = V2+t 

W5=V3+t 

WQ=V3-t 

W7 = d 

ws — d + cru 3 , a / 0 . 

Notice that w% contains infinitely many elements. We remark that when 
a — 1, (1.1) arises in nonlinear filtration and an optimal system for (1.1) is 
listed without proof in Chapter 10 of the handbook [19]. 

Proof. The action of the adjoint representation of S(cr) on s(cr) is shown in 
Table 2, discarding V4 and V5 for the moment. It is obtained by using the 
formula 

A(i(exp(^v))it; = w — e[v, w] + — [v, [v, ty]] — • • •  . 

Let 
3 

v = ^P a^j + a4t + asd 

be in 5(0"). We consider several cases separately. 

Case 1. as = a5 = 0. If further a^ = 0, we can use 74d(exp 6:^3) for a suitably 
chosen e to eliminate V2- Hence < v > is equivalent to < vi >. If a4 7^ 0, 
we use Ad(expevs) to eliminate vi and then A(i(exp£d) to normalize the 
resulting vector. Then < v > is equivalent to the space spanned by 

W2 = t if    ai = a2 = 0, 

<u;3 ■= V2 + t    if    af + ol 7^ 0. 
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Table 2: The (i,j) - entry is ^(exp £Vi)vj. 

Ad Vi V2 V3 .        V4 V5 t d 

Vi Vi V2 VS - SV2 V4 - SV2 ^5 - evi t d — evi 

V2 Vi V2 vs + evi V4 - evi Vs + £V2 t d — ev2 

vs V\ COS£+ 

V2^^S 

V2COS6— 

vising 

vs V4 cos 2e— 

V5 sin 2s 

vs cos 2e+ 

V4 sin 2e 

t d 

V4 ^1008^+ 

V2sinh£ 

V2C0Sh£+ 

visinhe 

i;3COsh2£:+ V4 vscosh.2£+ 

'U3sinh2£ 

t d 

vs eevi e~eV2 'U3Cosh2s— 

i;4sinh2e 

'y4COsh2£- 

x;3smh2£ 

^5 t d 

t Vl V2 ^3 V4 ^5 t d-lst 
d eevi eeV2 ^3 V4 ^5 el£t d 

Case 2. al + al ^ 0. If as = 0, then as ^ 0. We use Ad(ex.p£Vi) and 
Ad(expSV2) to eliminate vi and V2, and then use Ad(ex-ped) to normalize 
the vector. Then < v > is equivalent to the space spanned by 

W4 = vs if    a4 = 0, 

^5 = ^3 + *     if    ^3^4 > 0, 

^6 = ^3 — *     if     a3a4 < 0. 

If as 7^ 0, we use Ad(expevi),Ad(expev2) and .Ad(expet) to eliminate 
vi,V2 and t. So < v > is equivalent to 

W7 = d if    as = 0, 

w$ = d + avs, a / 0      if    as ^ 0. 

We have shown that any one-dimensional subspace of s(a) is equivalent to 
one of the subspaces spanned by wi,.. .w$. 

Now we claim that they are inequivalent, and hence form an optimal 
system. To prove this we define some invariants [22]. A mapping i : s(a) -> 
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R is called an invariant if i(Adg v) = i(v) for all g G S(<J). Notice that any 
element in S(a) is of the form 

exp(eiVi1) • • • exp(eNViN) exp(st) exp^d) . 

So i is an invariant if and only if i(Ad(expeVi)v)  = i(Ad(exp et)v)  = 
i(Ad(exped)v) = i(v) for all e,Vi(i = 1,... ,3) and v. 

Fact 1.   as and a^ are invariants. This can be easily seen from Table 2. 

Fact 2.   b is an invariant where 

=   < 

1 a§ + a§ = 0, af + a| ^ 0 , 

0 a| + a§ = 0, a? + a^ = 0 , 
2 
5 0 a§ + a§ ^ 0 . 

Since a^ + al is an invariant, it suffices to check the invariance of b under 
a! + a! = 0. However, observe that the adjoint actions of expev^i = 1,2, 
and expet do not change vi and V2. We only need to check the actions 
of Adexpsvs and Adexped. In fact, after acted by Adfexpevs), the new- 
coefficients of vi and V2, say di and a2, satisfy al + al = a\ + a^, and 6 is 
unchanged. On the other hand, under Ad(exp£(i), the new coefficients of 
vi and ^2, say ai and a2, satisfy a\ + a^ = e2£(a\ + a^). Hence b is also 
unchanged. We conclude that 6 is actually an invariant. 

jFact 3.   c is an invariant where 

c — 
as = 0 , 

as^O. 

This is obvious from Table 2. Now we put everything in the following table. 
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Table 3. 

03 as b c 

Wi 0 0 1 0 

W2 0 0 0 1 

W3 0 0 1 1 

W4 1 0 0 0 

w5 1 0 0 1 

WQ 1 0 0 -1 

WJ 0 1 0 0 

Ws a 1 0 0 

It is clear from Table 3 that w^s are mutually inequivalent. We have estab- 
lished the optimality of {wi,..., w$}. □ 

Now we list the reduced equations of the optimal system in the following 
table. Both reduced equations for wi and W2 (t-translational invariant and 
x-translational invariant solutions respectively) yield the same solutions, 
namely, u(x) = ax + b, a, 6 G M. Therefore, all invariant solutions equivalent 
to wi or W2 are straight lines. Rotational invariant solutions are solutions 
to the reduced equation for W4 whose general solution is given by 

v(t) = [R-(a + l)t]^T , RX) . 

Since v = x2 +^2, the solutions is a shrinking circle, collapsing to a point at 
time = R/(a + l) where R^+i is the initial radius. The ic;4-invariant solution 
is a traveling wave called the grim reaper when a = 1 [16]. Both W5- and 
tug-invarient solutions are spirals called yin-yang curves when a = 1 [2]. 
Contracting (t < 0) and expanding (t > 0) self-similar solutions (Abresh- 
Langer [1], Brakke [10] and [14]) correspond to the vector field tuy. All these 
solutions are discussed in Chou-Zhu [13]. Finally, the contracting\expanding 
spirals corresponding to ws are discussed in [8] and Li [20]. 
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Table 4. 

group action on (x,u,t) invariant (y,f) reduced equation 

W1 {x + e, u, t) (*,ti) Vy=0 

W2 (x,u,t + e) (a:,iz) ^yy = 0 

Ws (x,u + e,t + e) (x, w -1) 
/^              ox 3<r-l 

«yv = (l + t#  2' 

W4 (xcose - usine, 

ucos£ + xsme,t) (t,x2 + u2) uy = -2t;  2 

W5 (xcose — w sine:, 

w cos e + a; sin 6:, t + e) {x2 + u2 M^'1 ^jx - t) 2AI,=y1i"/(l + A2)8^1 

-1,-^(1 +A2) 

w6 (xcose — lAsine, 

u cos e + x sin e, t — e) {x2 +w2,tan~1n/a; + t) 

uy = ^ 

2A1, = -y1i-/(i + A2)^1 

-IZ-^l + A2) 

w7 (e£x, eeiA, et1"^) (x|t|-+i,u|^+i) _   sign(t)   ,,       ^^^Z^i 

•(V-J/Wj,)' 

Ws (e£ (x cos ae - u sin ae), 

ee (u cos ae: + x sin ae), ((ii2 + a;2)|th+i, 

tan"1 */*-;£-log |t|) 

„   _ A 

2AI, = -=E^»1-(a-A)* 
(cr+l)c7 

.(l + A2)8^l-tf ^(l + A2) 

2. An optimal system for a — 1/3. 

Each element of 5(1/3) is a vector field in (x,u,t) G M2. Since it is linear, 
it generates a global diffeomorphism on M2. The first five vectors, v\ to vs, 
are independent of t. They generate the special affine group in M2. On the 
other hand, t generates the diffeomorphism T : (#, ^,i) —> (#,n, t+e), e G R, 
and d generates D(x,u,t) -> (eea;,eeit,e4/3et). It is not hard to verify that 
any element in 5(1/3) can be written in the form DTA for some D,T and 
-A, where A is a special affine transformation. 

We now introduce the vectors 
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Wg — V4, 

Wio = V3 - V4, 

Wn = ^3 + ^4+ Vi, 

Wu = V4 + t, 

Wis = V3 + V4+ t, 

Wu = V3 + V4- £, 

Wl5 = V3 + V4 +Vi+t, 

WIQ = V3 + V4+V1 -*, 

W17 = d + V4, 

Wis = d + V4 + V2, 

Wig = d + av4(a > 0, a ^ 1) , and 

W2Q = d + V3 + V4. 

Theorem 2.1. An optimal system of one-dimensional subalgebras consists 
of the family {wi,i = 1,..., 20}. 

Proof. The action of the adjoint representation of 5(1/3) on s(l/3) is given 
in Table 2. Let 

V = 2_\ aivi + a6^ + a7d 
i=l 

be in 5(1/3). First of all, let us observe that by using i4d(exp £^3) we may 
rotate t;4 and V5. As a result, we shall always assume that as = 0 in the 
following discussion. 

Case 1.   a\ > a\ or as = a4 = 0. 

We can use Ad{exp ev§) for a suitable e to eliminate a4 while keep- 
ing as = 0. Then < v > is equivalent to a subspace spanned by 
{vi)V2j 1*3, t, d}, which, is simply the non-affine case. Using the same 
arguement as in the proof of Theorem 1.3 we conclude that < v > 
is equivalent to the subalgebra generated by one of the vectors in 
{wu...,ws}. 
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Case 2.   a^ = a^ > 0. 

Using Ad(exp evs), we may assume as = a4 = 1. If a4 7^ 0, by 
Ad(exp €ivi) and Ad(exp £2^2) < ^ > is equivalent to 

(ai - eia7)vi + (a2 - ^2^7 - 261)^2 + V3 + V4 + agt + ayd , 

which, by choosing ei = ai/ay and £2 = (02 — 2ai/a7)/a7, becomes 
^3 + V4 + aet + a7d. Using Ad(exp et) to eliminate t and Ad(exp evs) 
to normalize the resulting vector, we conclude that v is equivalent to 

If a? = 0, use ^4dl(exp £Vi) to eliminate ^2 and then use ^4d(exp £1^5) 
and Ad(exp €2(1) to get 

e£l+£2aivi + e-2eivs + e"2eii;4 + ef£2a6t . 

Since we can change aivi + a^vs + a^v^ + ICLQ into —aiv\ + a^v^ + 
a4t;4 + agt by ^4(i(exp TT^S), we may assume without loss of generality 
that ai > 0. If ai = 0, we see that x; is equivalent to one of the 
following vectors: 

^3 + ^4    (orva-iM), 

^3 + ^4 + *,    or 

^3 + ^4 - t\ 

if ai > 0 and ae = 0, v is equivalent to 

^3 + ^4 + ^1  • 

Finally, if a\ > 0 and as 7^ 0, we solve 

e£l+£2|ai|=e-2£l 

et£2|a6|-e-2£l 

to determine £1 and £2. Then ai — a^ = a^ — \aQ\. After a normaliza- 
tion, v is equivalent to 

V3 + ^4 + vi + t,   or 

^3 + ^4 + «1 - t . 
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Case 3.   a\ < a\. 

We may choose e in ^4d(exp ev^) to eliminate ^3 while keeping a^ ■=£ 0. 
If ay = 0, we use ^4d(exp eiV\) ^4d(exp £2^2) for suitable £^€2 to 
eliminate vi and V2 and then use Ad(exp ed) to normalize the resulting 
vector. We get 

^4 , or 

174 + £ ,    or 

V4 — t . 

Notice that the last two vectors are equivalent via ^4d(exp f ^3). 
If ay 7^ 0, using 74d(exp f V3) to change the sign of 04. We may assume 
07 = 1 and 04 > 0. Then by ^4o!(exp ed) we may eliminate t. A further 
action by .Ad(exp eivi) and Ad(exp £2^2) reduces v to 

(ai — £\ — £2^4)^1 + {0,2 — £2 — ^1^4)^2 + a^v^ + d . 

If 04 ^ 1, we may choose £1 and £2 so that 1; is equivalent to 

d + avi, a > 0, a 7^ 1 . 

If a4 = 1, take ei = 0 and £2 = #1 to get d + V4 + 02^2. 
Using Ad(exp ed) to do a normalization, v is seen to be equivalent to 

d + V4 , or 

d + ^4 + v2 ,     or 

d + s^ -^2 . 

Notice that the last two vectors are related by Ad(exp TTVS). 

Thus we have shown that any one-dimensional subspace of 5(1/3) is 
equivalent to one of the subspaces spanned by {wi,..., 1^20}- Now we are 
going to show that these subspaces are mutually inequivalent. Following 
[22], we shall establish this result by looking for invariants of the adjoint 
representation. Recall that a function i : 5(1/3) -^ R is an invariant if 
i(Adg)v) = i(v) for all v in 5(1/3) and g € 5(1/3). 

Fact 1.   a? is an invariant. 

This is obvious. 
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Fact 2.   a = a^ — a^ — a^ is an invariant. 

First of all, under the adjoint action of vi^V211 and d, the coefficients 
of V3, V4, and ^5 do not change. Next, AZ(exp 6V3) does not change 
as and al + a^, and hence a. On the other hand, Ad(exp ev^) does not 
change a4 and 0% — a^. Similarly, a is unchanged under Ad(exp evs). 
We conclude that a is an invariant. 

3.   Let 

x = det 
fai —as — ay 

, y = det 
'ai as — a4 

\02 —as — 04 / 1^2 as — ar 

6 ^  fl,    a^ + a = 0,(a;,j/)^(0,0) 
1 0 ,    otherwise , 

is an invariant. As a^ + a is an invariant, it suffices to check (x,y) / 
(0,0) is invariant under a? + a = 0. 

Under the action of vi^v goes over to a new vector whose coefficient 
satisfies 

So (x,y) = (x,y) by a direct verification. Similarly we can show that 
(x,y) = (x,y) under Ad(exp £^2). Denote 74c?(exp e^s)!; by ^tiiVi + 
agt + ayd. 

Using 

+ 

=  j4   (-a1     a2 as      + ^      -a4    a5 |   ^   /a, 

-a2    —ai/    VaW \ as     04. 
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where 

(cos e    — sin e 

sm e     cos e 

One can check that 

A ra4 a51 A = 
as       (24, 

It follows that (x,y) = (x,?/)*^, and so 52 +y2 = x2 + y2. 
Using 

2 

and 

1 (ai + a2    -2(0,4+ a7) 
x + y = —-det 

ai — as     2(a3 — as) 

1 (01 + 02    -2(03+05) 
x — y = —-det   I 

\ ai — 02     2(a4 — 07) 2 

We see that the coefficient of v = -Ad(exp 5^4)^ satisfy 

0,1 + 0,2 = (ai ± 02)e^ , 

as ± 04 = (as ± a^)e±2€ , 

0-4 = 04 , 

and 
07 = 07 . 

Therefore, x + y = e~£(x + y) and x — y = e£(x — y). 

Under Ad(exp ev^) we have 

a-i = aie£ , 

a2 = a2e~e , 

03 ± 04 = (03 ± a^e^26 . 

As a result, x = e_£x and y — eey. 
Finally, it is easy to see that Ad(exp et) keeps (x,y) unchanged and 
Ad(exp ed) sends (cc,y) to ee(x,y).    We have verified that b is an 
invariant. 
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Fact 4. 
{sign CLQ ,    a7 = 0 , 

0, a7 ^ 0 , 

is an invariant. 

It is easily checked that the sign of ag does not change when a? = 0. 

Fact 5. 
=  f sign as ,    a > 0 , 

1 0, otherwise , 

is an invariant. 

It suffices to check the sign of as is preserved under the adjoint action. 
When a > 0, the adjoint actions of vi, ^2,^3,* and d do not change 
as. On the other hand, under Ad(exp ev4) we have 

^3 = ascosh 2£ ( 1 H tanh 2£ 
V       a3 

(assuming as is nonzero). Since al > a\ + a^ > a^ and |tanh2£| < 
l,sign as must be equal to sign as. Similarly, one can show that sign 
as is unchanged under ^4d(exp ev§). When as vanishes, we must have 
a4 = as = 0 under a > 0. So as = 0 is preserved. We have shown that 
d is an invariant. 

Fact 6. 

=    fl,     03 = 04 = 05 = 07 = 0,(01,02)^(0,0), 

1^0,     otherwise , 

is an invariant. 

Since the simultaneous vanishing of 03,04,05 and 07 is preserved un- 
der the adjoint action, we shall verify the invariance of e under this 
vanishing condition. First of all, the adjoint actions of ^1,^2,^5,* 
and d clearly do not change e. On the other hand, 74d(exp evz) keeps 
a\ + al constant. Finally, Ad^exp ev^) preserves a\ — a*. If a? — 0% 
is non-zero, trivially (01,02) / (0,0). If oi = 02, (resp. oi = -02), 
ai = 02 = aie£ (resp. ai = —02 = aie~e). Hence e is also unchanged. 
We have shown that e is an invariant. 
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Table 5. 

a7 a b c d e 

toi 0 0 0 0 0 0 

Wi 0 0 0 1 0 0 

Wz 0 0 0 1 0 1 

W4 0 1 0 0 1 0 

w5 0 1 0 1 1 0 

WQ 0 1 0 -1 1 0 

WJ 1 0 0 0 0 0 

WS 1 a2 0 0 sign a 0 

WQ 0 -1 0 0 0 0 

Wio 0 0 0 0 1 0 

ton 0 0 1 0 1 0 

Wl2 0 -1 0 1 0 0 

W13 0 0 0 1 1 0 

Wu 0 0 0 -1 1 0 

Wl5 0 0 1 1 1 0 

Wie 0 0 1 -1 1 0 

wn 1 -1 0 0 0 0 

Wl& 1 -1 1 0 0 0 

Wig 1 -a2 0 0 0 0 

W20 1 0 0 0 1 0 

Now we put everything in Table 5. It is clear from this table that all 
w'iS are mutually inequivalent, and hence they form an optimal system. The 
proof of Theorem 2.1 is completed. □ 

A powerful method of finding optimal systems was developed in a series 
of papers started with Patera-Winternitz-Zassenhaus [24]. One may use this 
approach to determine optimal systems for (3). Here our new approach is 
elementary and is inspired by the treatment on the same problem for the 
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heat equation in Olver [22] (see also Chou-Li-Qu [11]). While the invariants 
are used in [22] to reduce the number of non-equivalent vectors, we further 
introduce more invariants to achieve a complete classification. This approach 
has the advantage that through the evaluation of the invariants (see Tables 
3 and 5) one can write out the explicit equivalence between the subalgebras. 

We may group the twenty families of vectors in the optimal system into 
three families: 

{wuw^WQyWiQtWn} , 

{^2, ^3, ^5, WQ, WUJ WxSiWu, W15, WIQ} , 

{^7,^8,^17,^18,^19,^20} • 

In the first family the vectors do not contain the time variable. Hence the 
group acts trivially on the t-component. In the second family, translation 
in t is presented but dilatation is absent in each of its vectors. The corre- 
sponding invariant solutions are eternal solutions. The third family consists 
of similarity solutions; all vectors therein contain the dilatation but not the 
time-translation. The group actions and reduced equations for the invari- 
ant solutions corresponding to W9,..., and W20 are listed below. They are 
further classified and studied in [20] in some details. All reduced equations 
are second order ODE's. As the curve may be closed or has large total cur- 
vature, the solution (or its derivatives) to these equations often blows up. 
However, the Euclidean invariance of the flow ensures that the form of the 
ODE does not change under any change of coordinates. As a result, we may 
remove the singularities in derivatives by rotating the coordinates. In order 
to obtain the largest invariant curve we need to match invariant local graphs 
in different coordinates together and this is one of the main tasks in [20]. 
As an illustation we shall work out the matching process for the invariant 
curves corresponding to 1^12 in the next section. 

WQ = udx + xdu 

Group action: (#, u, t) —>• {x cosh e + u sinh 6, u cosh e + x sinh e, t) 
Invariant: y = t, v = u2 — x2 

Invariant solutions: v = v(y) satisfies Vy = 2vlfi.  Hence the solutions are 
u2 = x2 + (3t + constant)3/2, i.e., propagating hyperbolas. 

wio = -2udx 

Group action: (x,u,t) —» (x — 2euJu}t) 
Invariants: y = t, v — u. 
Invariant solutioins: v = v{y) satisfies Vy = 0. Hence like wi, they are hor- 
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izontal straight lines. 

wn = 2xdu + dx 

Group action: (x,u^t) —^ (x + £,u + 2£:x + e2,t) 
Invariants: y = t,v = u — x2 . 
Invariant solutions: y = y(y) satisfies Vy = 21/3. It leads to traveling waves 
u = x2 + 21/3£+ constant, i.e., parabolas translating in constant speed. 

wu = xdu + udx + dt, 
Group action: (#, i6, t) —> (a; cosh e + ^ sinh e, x sinh e + u cosh e, t + e) 
Invariants: y — (u — x)et,v = (u + x)e~t 

Invariant solutions: Let u = etv — x. Then v = v{y) satisfies 

(2.1) Vyy    =    -(v+yVy)3. 

^13,^14 = 2xdu ±dt, 
Group action: (x, u, t) -^ (x,u + 2ex, t±e) 
Invariants: y = x, v = u =F 2xt 
Invariant solutions : u = v(y) ± 2xt, where v satisfies 
Vyy = ±8ys 

The invariant solutions for itfis, 1^14 are explicitly given by 

u(x, t) = ±lx5 + (±2t + Ci)x + C2 . 
5 

^15, ^16 = 2a:0u + dx ± dt, 
Group action: (x, u,t) —> (x + e,u + 2ex + s2, t ± e) 
Invariants: y = x^ft^v = u — x2 

Invariant solutions: u = v{x — t) + x2, where v satisfies 
Vyy   +   2   =   ^VI. 

After this work was completed, Professor Olver kindly informed us that 
the invariant curves for wiz — WIA were found in Calabi-Olver-Tannenbaum 
[27]. 

wu = d + udx + x9u 

Groi^p    action:       (x,u,t)     ->      (e£ cosh £x  +  ee sinh eit, e£ sinh ex  +' 

ee cosh eiA, e"3"£) 
Invariants: y = u — x,v = \t\~2(u + x) 
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Invariant solutions:  x = - l\t\^v(y) — y) ,u = - l\t\^v(y) +y) , where v 

satisfies 

27 
Vyy     =     T^V3     (t > 0),  OI 

27 

32^ 
vyy    =    -^3    (*<0) 

It is interesting to observe that in the contracting case (t < 0), any 
solutuion v is periodic over the entire y-axis.     So the invariant curve 

y,—(—t)3'2v(—p J becomes zero at t = 0.   This solution was also de- 

scribed in Angenent-Sapiro-Tannenbaum [9]. 

wig = d + udx + xdu + du, 

Group action:   (x^u^t) —>•[ - 

1 
2 

e2£\x + u+^\ -^-(u-x-e) 

e2e (x + u+-) -- + (u-x) + e,eft 

Invariants: y = u — x — - log |t|, t; = |t|   2 1 u + x H— 1. 

Invariant solutions: u = \t\s/2v(y) — x — 1/2 where v satisfies 

27 

^   =    256(2u_Uy)3    (t>0)' 0r 

27 
Vyy   =    ~256{2v~Vy)3    (t<0)- 

Group action:   (x, ii, £) ^(es(a; cosh as + u sinh as), 

e£:('U cosh ae + x sinh s), e~3"t) 

Invariants: y= ^^^(u — x),v = \t\~*(1+a\u + x). 

Invariant solutions:  x = -(|^|i^1+a^(y) — |t|4^1_a^y), 

u = -(|t|4(1+a)v(y).+ |t|4(1"a)l/) where v satisfies 

27 3 
t,ro= 256[(1+Q!)1,~(1~Q!)S't,i'] (i>0)' or 

27 3 
Vyy = -ggg [(! + <*)« - (! - <x)vvv]  (* < 0). 
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We point out that for some a € (0,1), there corresponds a contracting 
lUig-invariant solution which is a figure-eight [20]. 

1020 = d + 2a;<9„ 
Group action: (x,u,t) —)■ (xes, (u + 2ex)ee,te3e j 

Invariant: y = x\t\   3 ^ =  log |t|. 

Invariant solutions: u= [v(t~3x\ + -logt 1 where v satisfies 

yVyy  + 2Vy 

yVyy  +2Vy   =   - 

3     3 
y \ 2 - iyvy 

n3 

3     3 
Vl 2 " 4y^ 

(« > 0),   or 

3 

(t > 0). 

3. Eternal solutions for W\2* 

We reduce (2.1) to a first order equation as follows. Let 

(3.1) 

Equation (2.1) goes over to 

£ = log \y\ 
r} = yv. 

(3-2) ^ = -3^ + 2^-1. 

The function u — ^ satisifies 

(3-3) Ur, = -3w2 + 2r)uj6 - -. 

Now we classify the solutions of (3.3). First of all, the zero set of the right 
hand side of (3.3) can be expressed as the union of A and A' where A is the 
graph of a convex function c = c(rj) defined in (0, oo) satisfying 

and 

lim   drj) - —    = 0, 

lim    c^) r    = 0; 



Optimal Systems 263 

and, by the symmetry of (3.3), A' = {(77, — c(—rj)) : r] £ (—00,0)}. Accord- 
ingly, any solution of (3.3) is increasing at points lying above A or below A', 
and is decreasing in the region bounded between A and A'. 

In the following lemmas, whose proofs are straightforward, ^(77) always 
is a solution of (3.3). 

Lemma 3.1. For every positive 770, there exists a sufficiently large MQ such 
that, if \uir}Q)\ > MQ, then \UJ\ blows up at some 771 > 770. Furthermore^ 

the blow-up point 771 strictly decreases to 770 as ^(770) | strictly increases to 
infinity. 

Lemma 3.2. If 00(170) < I/770 (resp. ^(770) < I/2770) for some 770 > 0; then 
oj(r]) < I/77 (resp. uj(r}) < I/277) for 77 > 770. 

Let a; be a solution of (3.3) satisfying u(0) = UQ > 0. By Lemma 3.1 OJ 

is a decreasing function defined in a maximal interval (A,B)y —00 < A < 
0 < B < 00, satisfying 

lima; (77) = 00,     and 
VIA 

limct;(77) = —00 

By Lemma 3.2, 

(3.4) OJ(V) < -2CJ
2
 - -. 

Hence ^(770) = 0 for a unique 770 > 0. By integrating (3.4) from 0 to 770, we 
have 

770 < v^tan-1 2UJQ 

<Tir- 
Therefore, as UQ increases from 0 to 00, the zero points of the corresponding 
solutions strictly increase to a finite number A* not greater than \/27r/2. 
After passing the 77-axis, u becomes negative and blows up to —00 at some 
771. Using (3.4) one can see that these blow-up points have a finite supre- 
mum, say, B*. We shall call any solution passing (O^LUQ),^ > 0, a type-I 
solution and the solution passing (A*, 0) and blows up at 77 = B* the type- 
A solution. It is clear that the type-A is the upper envelope of all type-I 
solutions. In particular, we know that it is defined over (0,2?*) and blows 
up as 77 tends to 0. Call any solution passing (^4,0), A > A*, a type-II so- 
lution. It is clear that the type-A solution is the separatrix between type-I 
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and type-II solutions. Each type-II solution is decreasing over a maximal 
interval (0,J5), B > B*, and it satisfies 

lima; (77) = 00,    and 
774,0 

limu;^) = —00. 
rjtB 

All type-II solutions lie beneath A. Their supremum also defines a solution 
which we call the type-B solution. This curve is defined in (0,00) and it 
satisfies 

lim.(ju(r]) = 00,     and 
7)10 

lim u)(r)) = 0. 
77—>oo 

Finally, call any solution passing A a type-III solution. It is defined over 
a maximal interval (0,^4), A > 0, decreasing all the way until it hits A, 
and then it becomes increasing and blows up at A. By Lemma 3.1 and 
Lemma 3.2 it is not hard to see that given any positive A, there exists a 
unique type-III solution which blows up at A. By the symmetry of the 
equation (3.3), —uj{—r]) is a solution whenever ^(77) is a solution. We use 

this observation to define type-/, -I/, -///, -A, and -B solutions in an 
obvious way. It is easy to see that together with all type-I, -II, -III, -A and 
-B solutions, they form a foliation of the entire plane, provided the B-curve 
forms a separatrix between II- and III- curves. In fact, this is the content 
of the following lemma. 

Lemma 3.3. 

inf{a;(77) : u   is a type-III solution} 

= sup{(jj(r)) : u   is a type-II solution}. 

Proof. Denote the infimum and the supremum by ui and 002 respectively. 

Both solutions satisfy 

1 
u —> —j-    as  77 —> 00. 

2773 

If UJI > 002, then 

— log (UJI - 002) = —S(ui + 0J2) + 2r}(uji + (JU1UJ2 + 002) 
ar] 

1 
> 773 
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for large 77. Therefore, 

1   4 
log(a;i -U2)(v) > 2rl3 

for large 77, which is impossible. We conclude that ui = U2.     . □ 

For later use we must determine the asymptotic behavior of a solution 
at its end points. It is not hard to see that if a;(77) tends to infinity at some 
771 7^ 0, then 

(3.5) lim wfa) [4771(771-77)]* = 1. 

On the other hand, for the type-B solution, 

(3.6) lim ^(77)773 = - 
77—>-oo 2 

It remains to study the asymptotic behavior of those solutions blowing up 
at 77 = 0. 

Lemma 3.4. If 00(17) tends to infinity as 77 4* 0, then lim77^(77) exists and is 

equal to I or \. 

Proof. Denote ( = rju. We have 

The zero set of the right hand side of (3.7) consists of two disjoint 
parametrized curves given by 

77 = 2[C(2C-l)(C-l)]", 

w = §[c(2c-i)(c-i)r*, 

where £ G (0, g) and £ > 1 respectively. Denote the former curve by Ci and 
the latter by C2. It is not hard to see that C2 is the graph of a decreasing 
function over (0,00), asymptotic to a;77 = 1 as 77 tends to zero. On the other 
hand, Ci is the graph of a function over the cj-axis, passing through the 
origin and is asymptotic to cur] = 1/2 as 77 tends to zero. We observe that 
whenever a solution 07(77) passes Ci or C2, d2(/dr]2 = —1/2. This means 
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that for any solution CJ, 77^(77) must be eventually monotonic increasing or 
decreasing. Since near 77 = 0, r)(jj(r)) is bounded between 0 and 3/2, the limit 
of 77a; must exist as 77 tends to zero. Letting a = limTja;^), it follows from 

77IO' 
(3.7) that a(2a — l)(a — 1) = 0. If a — 0, a;(77) must tend to infinity. However, 
then the function h—l/u satisfies 

/l?7^3-2C+~/i2. 

So h^ tends to 3 as 77 \, 0.   But then £ tends to 1/3, which leads to a 
contradiction. So a must be equal to \ or 1. □ 

Using Lemma 3.2 and the fact that the type-A solution is the upper 
envelope of all type-I solutions, it follows from Lemma 3.4 that 

(3.8) lim77a;(77) = 1/2. 
774,0 

for the type-A solution.   It turns out that all other solutions behave in a 
different way. 

Lemma 3.5.   The solution satisfying (3.8) is unique. 

Proof. Let UJI and 6J2 be two such solutions with U2 > wi-   Denote their 
inverses by 771 and 772 respectively. Then 

dlogfe -771) -2CJ3 

du (-Sec;2 + 2772a;3 - |)(-3a;2 + 2771a;3 - \) 

> -3/4a; 

for large u. Therefore, 
_3 

772 — T?! ^ cw   4 

for some positive c. But, since 771 — 772 < l/2a;, this is impossible. □ 

Combining Lemmas 3.4 and 3.5, we know that any type-II, -B or -III 
solution must satisfy 

(3.9) lim77a;(77) = 1. 
774,0 

Let us write 
£(77)=77(1-77T(77)). 
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Then r satisfies the equation 

2^          1,,           ^2 

This equation is uniquely solvable near rj = 0 subject to 

T(0) = TQ. 

We have 

(3.10) 

f \      1      1 

rjl -r]T 

= -(l + Tor) + o(r))). 
V 

267 

As ro increases from —oo to oo, UJ runs through type-II, -B and -III solutions. 
Notice that the type-B solution corresponds to a positive TQ , since according 
to Lemma 3.2 UJ with non-positive TQ must cross the positive 77-axis. 

Now all solutions £ to (3.2) can be obtained by integrating u. For each 
UJ the solution £ is unique up to the addition of an arbitrary constant. In 
the following we fix a particular solution £ depending on the type of u. 

For type-I solution CJ, we set 

JO 

For the type-A solution, 

t(Tl) = £ u(T)dT. 

For a type-II, -B or -III solution, 

€(v) = logr]+        (U)(T) --)dT' 

Notice that by (3.10) £ is well-defined. 
Let £ be any one of these solutions. Any i/^-invariant curve is given in 

the form 
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in the (i^^-plane where rj is regarded as a parameter. Now we study the 
shapes of these solutions for different types of a;. Clearly it suffices to con- 
centrate on C = 1. First, we have 

and 
dv 

drj 
= e t(l-urj), 

dy _ 

drj 
- e^u. 

dy        e2^LU 

dv       1 — CJ77 

Hence 

(3.11) 

and the curvature of the curve is give by 

(3.12) k==l[r)20J2+rl-2{l_UJr})2^ 

Combining our classification of the solutions of (3.3) with (3.11) and (3.12), 
we readily obtain the following result. 

Proposition 3.1. 

(i) Let (v^y) be a type-I solution. Then y = y{v) is a positive concave 
function over [a,6], where a — r)Qe~^m\b = rjie~^'ni^ and rjo^rji are 
the blow-up points of the corresponding UJ. It satisfies 

(a) there is some c E (0, b) such that y is strictly increasing in [a, c) 
and is strictly decreasing in (c, 6]; 

(b) dy/dv(a) > 0 and dy/dv(b) < 0; and 

(c) the curvature of (v^y(v)) vanishes only at v — a,6 and 0. 

(ii) Let (v,y) be a type-A solution. Then y = y(v) is a positive concave 
function in (0, b] for b = ryie-^771), where rji is the blow-up point of the 
corresponding u. It satisfies 

(a) there is some c G (0, b) such that y is strictly increasing in (0, c) 
and is strictly decreasing in (c, 6]; 

(b) dy/dv(0) = 1 and dy/dv(b) < 0; and 

(c) the curvature of (v,y{v)) vanishes only atv — b only. 
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Proposition 3.2. Any type-II, -B or -III solution is a concave arc emitting 

from (1,0) and staying in {v > 0, y > 0}. Its other endpoint atb = 7iie~^m\ 
where TJI is the blow-up point of the corresponding u, is the only inflecting 
point. Moreover, 

(a) When the solution corresponds to a type-II solution with TQ < 0, the 
solution is a graph of y — y(v) over [1,6], b > 1, where dy/dv(l) = 
— I/TQ and dy/dv(b) < 0. 

(b) When the solution corresponds to a type-II solution with TQ G (0,TO); 

it can be decomposed into the graphs of yi(v) and 3/2(v), where yi is 
convex over some [a, l],a > 0,dyi/dv(a) = —00 and y2 is concave in 
(a)b},dy2/dv(b) < 0, and yi(a) = y2(a>). 

(c) When the solution corresponds to a type-B solution, it is the graph of 
y{v), a convex function over (0,1] which satisfies \\my{v) = 00 and 

dy/dv(l) = -l/TS. 

(d) When the solution corresponds to a type-Ill solution, it is the graph 
0fy(v)> a convex function over [a, 1] for some a > 0. y(v) is strictly 
decreasing in [a, l])dy/dv(a) < 0 and dy/dv(l) — —1/TQ. 

We have described the solution curves corresponding to all "normal- 
ized" ^s in these two propositions. Notice if (v,y) is such a solution curve, 

(77-, Cy) is also a solution curve for any non-zero C, and it stays above or 
Cy 

below the positive f-axis depending on whether C is positive or negative. 
We call a solution curve of type-I^ A1*1, IF^'B* or IIP1 in an obvious way. 

Similarly we define I'^-, A±-, II -, B^- and /// - solutions. 
Starting with a piece of solution curve we shall show how to extend it 

to get a complete invariant curve. First, let us consider a II+-solution. We 
extend it from its right by a III+-solution. The right end point of this III+- 
solution touches the i^-axis. We extend it by a II--solution, and then follows 
by a III_-solution. The resulting curve hits the i>-axis again, and we may 
extend it by a II+-solution. The procedure can be carried indefinitely to 
obtain a solution curve which is a graph over some interval [A,B). (In the 
following we shall show that B = 00.) This semi-infinite invariant curve will 

be called a II+-tail.  A similar construction will yield II""-, II - and // - 
tails. 
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Lemma 3.6. Let y = y(v) be a solution of (3.11) which defines a tail 
in [A,B) (or (B, A]). Then B = oo (or — oo) and lim^^ooy(v) = 0 (or 
lini1,^_oo3/(v) = 0). 

Proof. Without loss of generality we assume the tail starts at v = 1 with 
a II+-curve. Consider a piece of this tail which is a II+-curve followed by 
a III+-curve: (v,y(v)) is a II+-curve in [a, c] and a III+-curve in [c,d]. We 
also let b £ (a, c) be the maximum of y in [a, d}. We claim 

(3^3) \y(v)\ < </8 \yv(a)\-i, and 

\yv(v)\ < |jfo(a)|, 

for v € [a, d]. For, from the equation 

(3.14) yvv = -^(y + vyv)
3, 

we have 

Vw < -jy3'        v€(a,b). 

Therefore, 

On the other hand, 

Vw > -^y3»        v€(b,c). 

So 

\y2v(v) + ±y4(v)<ly2
v(b) + ±yHb) 

(3.15) 1 

for v € [a, c]. For v € (c, d), y is decreasing and convex. Therefore, 

(3-16) \y(v)\ < \y(c)\ 

and 

(3.17) \yv(v)\ < \yv(c)\, 

for v € (c,d). Combining (3.15), (3.16) and (3.17), we see that (3.13) holds. 
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The inequalities in (3.13) imply that y and yv are uniformly bounded 
for any tail in [A, JB). Since y satisfies (3.14), we must have B = oo. Let 
ao = 1 < ai < a2 < ... be the left endpoints of the H^-curves forming the 
tail. We would like to show that |yv(aj)| —> 0 as j -» oo. Together with 
(3.13) it implies the C^-decay of the tail. 

We observe that each II+-curve is headed by a III~-curve whose slope 
at aj is controlled by I/CLJTQ. Therefore, as CLJ —> oo, 

ajTo 

a 

Now we can describe the invariant curves corresponding to ii;i2. As we 
shall see, there are basically four types of them. Clearly it is sufficient to 
look at curves passing the point (1,0). Let us consider a II+-tail starting 

at (1,0) with slope dy/dv(l) = —I/TQ. When the slope is equal to zero, 
the invariant curve is simply the t;-axis. As the slope increases from 0 and 
remains small, we extend the II+-tail from (1,0) by a type-Ill- solution, 
and the type-Ill- solution is subsequently connected to a II--tail and turns 
back. The resulting invariant complete curve is an immersed one, with two 
tails oscillating and converging to the -u-axis as v goes to infinity. When 
the slope increases further, the Il^-tail will be connected to the type-A+ 

solution. By symmetry we obtain an invariant curve which is an odd function 
over the ^-axis. After that the Il^-tails will be connected to a type-I- 

solution to form complete curves which are graphs of functions over v. It is 
worthwhile to see that there exists an even invariant curve which corresponds 
to u with a;(0) = 0. When we increase the slope until TQ = TQ, the II+- 
tail is connected to the type-B- solution at (1,0). The resulting invariant 
curve is complete and is the graph of a function over (0,oo). When the 
slope increases further, the II+-tail is directly connected to a II~-tail. The 
resulting invariant curve has two tails, just like in the first case. When 
TQ = 0, it is worthwhile to see that the invariant curve is symmetric with 
respect to the v-axis. When the slope goes beyond TQ = 0, all invariant 
curves can be obtained by reflecting the four types of invariant curves with 
respect to the i;-axis. Clearly, considering the extension from any other point 
on the iJ-axis yields essentially the same picture. Thus we have completely 
described the invariant curves for W12. See Figure 1 for some typical samples. 
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Figure 1: (a)-(d) Four types of eterenal itfi2-invariant curves. 
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