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In this paper we obtain a gap theorem for the Ricci curvature over 
complete noncompact locally conformally flat manifolds. We prove 
that if the Ricci curvature is nonnegative and decays faster than 
quadratic at infinity, then the manifold is flat. 

1. Introduction. 

Let Mn be an n-dimensional complete noncompact Riemannian manifold 
with nonnegative (sectional or Ricci) curvature. We are interested in the 
question that how much the curvature could have near the infinities. In 
views of the classical Bonnet-Meyers theorem there cannot too much pos- 
itive curvature there otherwise the manifold would close up, ceasing to be 
noncompact. At first sight, there seems to be no restriction in the other 
direction, no limit on how less positive curvature can have. For example, 
it is easy to construct complete metrics on R2 from surface of revolution 
such that their curvatures are zero outside some compact set, nonnegative 
everywhere, and positive somewhere. But it is rather surprising that the 
corresponding situation for a complete manifold Mn with dimension n > 2, 
can not occur. In [MSY] Mok, Siu and Yau proved that if a complete 
noncompact Kahler-Stein manifold of nonnegative holomorphic bisectional 
curvature of complex dimension m>2 has maximal volume growth and the 
scalar curvature decays faster than quadratic, in the sense that, for some 
C > 0 and e > 0, 

(1.1) supit:(z)<Cr-(2+s\ 

where the supremum of the scalar curvature is taken over all points x at 
distance r from a fixed point, then M is isometrically biholomorphic to 
Cm. 

1Research was partially supported by Fundation for Outstanding Young Schol- 
ars, the NSF of Guangdong Province and China. 
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This result shows that there is a gap between the flat metric and the 
other metrics of nonnegative curvature on Cm. Subsequently, Greene and 
Wu [GW] studied the corresponding, more general Riemannian situation and 
proved that a manifold with a pole, with faster than quadratic curvature 
decay (1.1), and with nonnegative sectional curvature is necessarily flat, if 
the dimension of the manifold is > 3 except when the dimension is 4 or 8. 
Recently the pole assumption was removed by Eschenburg, Schroeder and 
Strake [ESS] in the odd-dimensional case and by Dress [Dr] in the even- 
dimensional case. 

Naturally one would ask if there are similar gap phenomena for the Ricci 
curvature, instead of the sectional curvature, over complete noncompact 
Riemannian manifolds. In general, this seems no longer possible because 
there are many nonflat Ricci-flat metrics, for examples, the Eguchi-Hanson 
metric described in [P] and the Ricci-flat complete Kahler manifolds con- 
structed in [TY]. The Eguchi-Hanson metric has Ricci = 0, |i?rn| < -^-, and 
volB(x,r) > ^unrn for all x, where (jjn is the volume of the unit sphere in 
the Euclidean space. However, Bando,Kasue and Nakajima [BKN] could 
still get such a gap result for the Ricci curvature on a complete noncompact 
Riemannian manifold with maximal volume growth. More precisely, they 
proved in [BKN] that: 

Suppose a complete noncompact Riemannian manifold Mn of dimension 
n > 3 satisfies 

Ricci > 0, 

2' vol (B(xo,r)) > 7a;nr
n,    for some 7 > i, XQ G Mn, and all r > 0, 

sup \k(a)\ < Cr  2, if r is sufficiently large, 

and either 
(sup |/c((j)|) • r  2-> 0,     as r -> +00, 

or 

/     {Rmfi dv <+00, 

where the supremum of the sectional curvature is taken over all two-planes 
a at distance r from XQ and Rm is the curvature operator. Then Mn is 
isometric to Euclidean space Rn. 

The argument in [BKN] is via the Gromov convergence theorem. The 
maximal volume growth assumption which guarantees non-collapsing limit 
is crucial for their method. Moreover in view of the Eguchi-Hanson metric 
the assumption that the volume growth factor 7 > ^ is necessary for the 
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above theorem. Thus it is interesting to investigate the gap phenomena on 
non-maximal volume growth manifolds. In the recent work [N], Ni gave 
some of such gap results on complete noncompact Kahler manifolds. In par- 
ticular, Mok-Siu-Yau's gap theorem on maximal volume growth manifolds 
was extended to non-parabolic manifolds in [N]. The purpose of this present 
paper is also to provide such a gap phenomena for the Ricci curvature over 
non-maximal volume growth manifolds. The main result which we prove is 
the following: 

Main Theorem. Let Mn be an n-dimensional (n > 3) complete non- 
compact locally conformally flat manifold with nonnegative Ricci curvature. 
Suppose the scalar curvature is bounded and there exists a positive function 
e : R —> R with lim e(r) = 0 such that 

r—>oo 

1.2) 1/r! r- / R{x)dv < 
e{r) 

r2 
for XQ E M71, r > 0, 

where B(xQ^r) denotes the geodesic ball of radius r and centered at 
xo^vol(B(xQ)r)) denotes the volume of B(xo)r). Then Mn is flat. 

We briefly describe the proof of the theorem. Our method is via the 
study of the Yamabe flow on complete noncompact manifolds with nonneg- 
ative Ricci curvature. Suppose there exists such a manifold satisfying the 
quadratic decay condition (1.2). We evolve the metric by Yamabe flow. In 
section 2, we establish a short time existence result which concludes the 
solution either exists for all time or extracts to point in a finite time. Then 
in section 3, by using the decay assumption we can derive a dedicate zero 
order estimate for the evolving metric. Particularly, this will imply that 
the solution of the Yamabe flow exists for all time. Finally in section 4, by 
combining the zero order estimate with Chow's Li-Yau-Hamilton inequality 
[C] on locally conformally flat manifolds, we are able to show that the initial 
metric is actually Ricci flat. However any locally conformally flat manifold 
with vanishing Ricci curvature must be flat. 

2. Short Time Existence. 

Let Mn be an n-dimensional complete noncompact smooth Riemannian 
manifold with dimension n > 3. Suppose Mn has bounded scalar curva- 
ture. Denote by gij^Rij and R the metric tensor, the Ricci tensor and the 
scalar curvature.  The Yamabe flow is the following evolution equation for 
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the metric 

rd9i. 
dt 

Qij (X, 0) = Qij (x), x € Mn. 
/2 ^ ) -JT = -Rixtfgijfat),    x € Mn, t > 0, 

4 

Write gij(x,t) = [^(a;,*)]"1^ ^-(a;) for some positive function u(x,i). Then 
(2.1) can be written in the equivalent form 
(2.2) 

f^^ = (n-l)N [Au(x,t) - ^RWufat)] , 

x e Mn, t > o, 

u(x,t) > 0, xeMn, t >o, 

where iV = 2±| j A is the Laplace operator of the initial metric gij(x), and 
R(x) is the scalar curvature of the initial metric gij(x). 

To solve the problem (2.2), we first consider the corresponding Dirichlet 
problem 
(2.3) 

^^4^ = (n-l)N [Au(x,t) - ^RWufat)] , 

x e fi, t > o, 
u(x,t) > 0, x G O, t > 0, 

ifc(x,t) = i, x edn, t > o, 
u(a;,0) = l, a; e fi, 

where fi is a bounded smooth domain of Mn. In the following we will show 
that the solution of (2.3) exists for all times. Let us start with the local 
existence. 

Lemma 2.1. For each 5 G (0,1) and C > 1, there exists a constant T > 
0,depending only on 5, C and the geometry ofQ, such that if the initial data 
UQ(X) G C(O) H C2(fi) satisfies 

S < uo(x) < C,   x G O 

and 

^olan = 1, 
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then the Dirichlet problem 

'^i = (n- 1)N [Au(x,t) - ^R(x)u(x,tj\ 

(2-4) {u(x,t)>0, 

u(x,i) = 1, 

u(x,0) =uo(x)) 

has a unique classical (i.e., C(Q) fl C2(Q)) solution. 

(x,t) G Q^Qx (0,T), 

(x,t) €Q, 

(x,t) E^Q x (0,T), 

Proof. By applying the Leray-Schauder principle and the barrier argument 
in a standard way as in [LSU, §6, Chapter V], we only need to get a prior 
interior C2,a estimate for the solution u. Assume that u(x,t) achieves its 
maximum umdi^(t) in the interior of Q. Then by a result of Hamilton (see 
Lemma 3.5 in [HI]) we have 

dUmav(t)      n + 2 ln/ xl T      < -^-max\R{x)\ ■ umax{t), 
at 4     xeQ 

n-2 

c(*) < ( C^ +max|i?(x)| •tX 

which implies that 

(2.5) umaJt) < [ C^ +max|i?(x)| -t)       ,        for t > 0. 

Similarly the minimum umin(t) oi u(^t) on f2 satisfies 

(2.6) iXminC*) > f*^ -min|i?(x)| -t)   *   , for t > 0. 

Then there exists  a positive  constant T depending only  on 5,C and 
max|i?(x)| such that 
ccGO 

(2.7) '-6 < u(x,t) < 2C,        for x € ft, i € [0,T]. 

Thus we write the equation in the following form 

du(x,t) n — 1 
(2.8) 

dt u N-l (x,t) 
n — 2 

Aifc(x,t) — — -rjR(x)?x(x,t) ,(a:,t) GQ. 
4(n-l)' 

The uniform estimate (2.7) implies that the equation (2.8) is uniformly 
parabolic. So it follows from the Krylov-Safonov estimate [KS] that there 
is a prior interior Ca estimate for the solution u(x,t) for some 0 < a < 1. 
And then we get a prior interior C2'a estimate from Schauder theory.       □ 
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Proposition 2.2.   The Dirichlet problem (2.3) has a unique classical solu- 
tion for all time t G [0, oo). 

Proof. By lemma 2.1, we know that the problem (2.3) has a unique classical 
solution u(x,i) on a maximal time interval [0,tmax) such that when tmax < 
oo, then as t -» tmax either the minimum umin(t) (of u(x, t) on ft) tends to 
zero or the maximum umax(t) (of n(x, t) on ft) tends to infinity. Whenever 
the maximum um^(t) is achieved in the interior of ft, it follows that 

Thus 

(2.9) ^n c(t)< 1 + max|i2(x)| V   tG[0,tmax). 

Suppose tmax < +oo, we then deduce that the minimum umin(i) must 
tend to zero as t —> tmax. Let us drop the restriction on positivity of the 
solution in (2.3). That is, we consider the problem 

f duN{x,t) 
dt 

(2.3) 

(n - l)N  Au(z, t) - ^^R{x)u{x, t) 

u(x,t) = 1, 

su(x,0) = 1, 

x e ft, t > o, 
x e aft, t > o, 
a G ft. 

By using DiBennedetto's estimate on the modulus of continuity of general 
porous medium equation [Di] (see also [Z]), we know from (2.9) that the 
solution ix(x, t) of (2.3) can be extended continuously to £max. In the following 
we adapt an argument of Ye in [Y] to show that the extension is positive 
everywhere which will give a contradiction. 

Since Tz(x,i) = 1 on <9ft x [0,tmax], we can find a positive constant ro > 
0 such that u(x,t) is positive on the ro—neighborhood of 5ft x [0,tmax]. 
Without loss of generality, we may assume ro is less than the infimum of the 
injectivity radius of the points on ft. By the compactness of ft, we only need 
to prove that u(x,tmax) is positive on the geodesic ball B(xo, ^) whenever 
^(^o^max) > 0. By continuity, there exist two small positive constants e,5 
such that 

(2.10) u(x,t) > e,        for x E B(xo,6), t € [0,imax]. 
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Let e be an arbitrary unit tangent vector at XQ. Denote by PQ = exp^Q (^-e) , 
D = B(xo, 8)r]dB(PQ) 

2^), and C to be the geodesic cone with tip PQ and cap 
D. Let r denote the distance to PQ and set 5r = dB(Po,r) and Dr = CnSr. 
Then the Laplacian operator of gij(x) can be written 

d2 d 

where H(r) is the mean curvature function of Sr = 9jB(Po5r) and Asr is 
the Laplacian operator on Sr for the induced metric. Let <^(r, •) denote the 
positive first eigenfunction of r2Asr on Dr with zero boundary values and 
the maximum one. Put v = rb(p, where b is to be determined. If we choose 
b sufficiently large ( depending only on n, e, 5, fi, max |i2(-X")|, tmax), then by 

the same calculation as in [Y], 

^-2    r, 
4(n — 1) 

for    r < ro 

Now choose a small e' > 0 such that e'v < u on D x [0,tmax] and C x {0}. 
The inequality e'v < u also holds on the remaining part of the parabolic 
boundary of C x [0,£max]> because v vanishes there. Since we have 

£ [uN - {e'v)N} >(n- 1)N 
dt 

A(u - e'v) - ^    2\R(U - e'v) 
4(n - 1) 

on C x [0,tmax], which implies u > e'v on C x [0,£max] by the maximum 
principle. Consequently u is positive along the geodesic expxo(r e),0 < r < 
Y- since e is arbitrary, we conclude that u is positive in B(xo^If). This 
completes the proof of proposition. □ 

The main result of this section is the following 

Theorem 2.3. The Yamabe flow (2.1) has a smooth solution on a maximal 
time interval [0,£max) with tmax > 0 such that either tmax = +oo, or the 
evolving metric contracts to a point at a finite time tmax in the sense that 
for any curve 7 on Mn, the length 0/7 with respect to the evolving metric 
gij(-,t) tends to zero as t —> tmax. 

Proof Let fii C ^2 C • • • be a sequence of exhausting bounded smooth 
domains of Mn. We solve the problem (2.3) for fi = fij, j = 1, 2, • • • . to 
get a sequence of solutions Uj(x, t) on Ctj x [0, +00), j = 1,2, • • • . Let XQ be 
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any fixed point in Qi. For simplicity, we may assume that the geodesic ball 
( w.r.t. the initial metric gij(x) ) B(xo, 1) is contained in $~2i. 

Define 

and 

Uj(t) = inf Uj{x,t), 
JK (x,t)eB(xo,l)x[0,t}   JK 

IJb{t) — lim inf jij (t). 

By assumption, the initial metric gij(x) has bounded scalar curvature . 
We know from (2.6) that ^(t) is positive for t small enough. It is also clear 
that /j,(t) is non-increasing in t. Thus we can distinguish two cases: 

(i) n(t) > 0 for all t G [0, +oo); 

(ii) there exists a finite time tmax > 0 such that /j,(t) > 0 for t G [0, £max) 
and /i(£max) = 0. 

First, we consider the case (i). For any fixed T < +oo, we know from 
(2.9) that Uj(x) t) has a uniform upper bound on Mn x [0, T]. Since ^(T) > 0, 
we still known from the proof of Proposition 2.2 that for any fixed compact 
subset K of Mn, Uj(x,t) has a positive lower bound on K x [0,T] for j 
large enough. That says, the equation is uniformly parabolic on K x [0,T] 
Thus we can get the uniform Ca(0 < a < 1) estimate from Krylov-Safonov 
estimate [KS] and then the uniform C2,a(0 < a < 1) estimate on K x [0,T]. 
from Schauder theory for j. Hence by the arbitrariness of K and T, it follows 
from a standard diagonal argument that (2.2) has a positive solution u(x, t) 
onMn x [0,+oo). 

Next, we consider the case (ii).  That is, 0 < tm3iX < +oo, fi(t) > 0 on 
[0, tmax) and ^(^max) = 0. Denote by tk = (1 - ^I)tmax, k = 1,2, • • • . Since 
/i(ti) > 0, by repeating the above argument we can get a subsequence of Uj 
so that it converges on every compact subset of Mn x [0,£i). Similarly by 
M^) > 0, we can further get a subseqence from the previous subsequence so 
that it converges on every compact subset of Mn x [0, £2). Then by repeating 
this procedure and the standard diagonal argument, we can get a smooth 
positive solution u{x,t) defined on Mn x [0,tmax), moreover by applying 
the result of DiBennedetto [Di] we can extend the solution u{x,t) to tmax 

continuously. Again, the same argument in the proof of Proposition2.2 shows 
that u(x, imax) must be identically zero on Mn. This implies that the length 

4 

of any arc 7 with respect to the metric gij(x,t) = (u(x,t))n-2gij(x) tends 
to zero as t —> £max. □ 
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3. Zero Order Estimate. 

In this section we use the decay assumption on the curvature to drive a lower 
bound estimate for the solution of the Yamabe flow (2.2). Our argument is 
inspired by the work of Shi in [S]. 

Let (Mn,gij) be a smooth complete noncompact Riemannian manifold 
with nonnegative Ricci curvature. Suppose the scalar curvature is bounded 
and satisfies (1.2). 

Prom Theorem 2.3 we have a smooth solution gijix^t) of (2.1) on 
a  maximal  time   interval   [0,tmax).   Write   the   solution   as   gij(x,t)    — 

4 

(^(x,t))^-25f^(x), where u(x,t) is a positive solution of (2.2) on [0,tmax). 
We first present the following lemma. 

Lemma 3.1. For any 1 < r < +oo, we have 

(3.1)     - 
vol(B(xo,r)) 

/       log u(x, t)dv < C [1 - (log lOminOO] ' 

JB(xo,r) 

t>0, 

where (log?x)min(£) is the infimum oflogu(x,t) for x G Mn
: and C is some 

positive constant depending only on n. 

Proof. Since the Ricci curvature of the initial metric gij(x) is nonnegative, 
there exists a constant C(n) > 0 depending only on the dimension such that 
for any fixed point XQ e Mn and any number 1 < r < +oo, there exists a 
smooth function ip(x) G C00(Mn) such that 

(3.2) 

exp C{n) (l + feo))] < ^x) < exp [- (l + feai) 

< C(n) 
V. —      r 

where d(x,XQ) is the distance between x and XQ in the metric gij. The con- 
struction of this kind of exponential decay function can be found in Shi [S] 
or Schoen-Yau [SY]. 

Recall the solution u{x,t) is obtained by a sequence of approximating 
solutions i6j(a;,t),  j — 1,2, •••, which solves the corresponding Dirichlet 
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problem (2.3) for a sequence of exhausting domains Qj, j = 1, 2, • • •  By a 
direct computation, 

(3-3) 
d_ 
dt 

(n - tfNAuj - (n + 2^Rui / ipu^dv = / 

\ L n U L n 

= (n - 1)N / A^ • Ujdv 

4 

n + 2 

dv 

-  / Rcpujdv 

+ (n - 1)^ 
/ 

I ^ds - f u3^-ds 

where v denotes the outer unit normal vector of dVtj. 

By noting that R(x) is nonnegative, it follows from (2.3) and the maximal 
principle that Uj(x,t) < 1 on Clj x [0,+oo). Since Ujld^ = 1, we deduce 

that -T^- > 0 on dClj. To estimate the other boundary term, without loss of 
generality, we may assume ttj = B(xo,j). Thus vol (dftj) < Cjn~~l for some 
constant C (depending only on n) by the volume comparison theorem. And 
by (3.2) we have 

IT_^   .  ^ C(n)  _i 
on    dftj. 

Then we get 

J  Uj 
dcp 
dv 

ds <  ^-J      e   r -> 0, as j ->• oo. 

So by integrating (3.3) from 0 to t and setting j —> oo, we obtain 

t t 

(3.4) / ^(1 - uN)dv <-2 ucpdv + C utpRdv 

0  Mn 0  Mn 

Ct\~2 ^dv +   /   iPRdv 

\     Mn M71 

for some positive constant C depending only on n. 

Mn 

< 
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Prom (1.2) and (3.2), we have ( see also [S] ) 

f Rydv<   f R(x)e~y1+^^)dv 

Mn Mn 

R(x)e  V1+    r    )dv 

B(x0,r) 

+ V / R(x)e   \1+    r    )dv 
^QJ B(xo,2>>+1r)\B(xo,2>°r) 

oo 

vol (B(xo,r)) + £e-2fc2-2(fc+1W (B (xo,2k+1r)) 

By the volume comparison theorem, 

oo 

^e-2*2-2(fc+i)vol (B(xo,2fc+1r)) 

oo 

< ^e-2*2-2(fc+1) .2n(fe+1W(B(so,r)) 
fe=0 

<Cvol(B(xo,r)), 

thus (3.5) becomes 

R(pdv< -^yo\(B(xo,r)), 

(3-5) < § 

Mn 

for some positive constant C depending only on n. 
Similarly, by (3.2) we have 

(3.7) C^vol (B{xo, r)) <   f ydv < Cvol {B{x^ r)) 

Mn 

for some positive constant C depending only on n. 
Substituting (3.6) and (3.7) into (3.4) we deduce 

(3.8) f (fi{l - uN)dv < C^vol (B(xo, r)) 
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for some positive constant C depending only on n. 
On the other hand, since u < 1 and 1 — ex > — | for — 1 < x < 0, we get 

(3.9) f (p(l - uN)dv >   f (p(l - u)dv 

+        f      <p(l- el^u)dv 

{\ogu<-l} 

--        /       ip\ogudv + -        /       tpdv. 

{logn>-l} 

{logu<-l} 

> - 
r 

{logn>-l} {logw<-l} 

Note that the last two terms are positive.   We deduce 

— /        cplogudv   <2    /  (p (l — u   )dv, 

{logu>-l} Mn 

and 

/       cplogudv < -(logu)min(t) /       (pdv 

{logu<-l} {logit<-l} 

<-2(log^)min(t)   [    <p(l-uN)dv. 

That is, 

(3.10) -  f cplogudv  <2(l-(logu)min(t))        (p(l-uN)dv. 

Mn Mn 

By (3.2), we have 

(3.11) -   f cplogudv >-   flogu-e  c(n)(1+l£^)^ 

Mn Mn 

>_e-2C(n)        f     logudv, 

B(xo,r) 

The combination of (3.8), (3.10) and (3.11) implies the estimate (3.1).      □ 
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We   next   want   to   estimate   — (log^)min(t)   in  terms   of   vowmx r))' 

J    (—logu)dv by means of the positive Green function.   Since in gen- 
B(xo,r) 

eral the manifold Mn is not necessary nonparabolic, we adapt a trick of Shi 
in [S] by considering a new manifold M = Mn x R3, where R3 is equipped 
with the flat Euclidean metric and M is equipped with the product met- 
ric. Let x, y denote the points in Mn and R3 respectively, R(x) denote 
the scalar curvature of Mn at #, and R(x,y) denote the scalar curvature of 
Mn x R3 at (x,y). It is clear that R(x,y) = R(x) for all x G Mn,y e R3. 
Thus the function it, defined by u(x,y,t) — u(x,t) for x G Mn,y G R3 and 
t > 0, is a solution of the following evolution equation. 
(3.12) 

- du^t) ={n_1)N ^(x, y,t)- 40j£(z, vHx, y, t)] , 

(a;,y)GM, t > 0, 

ti(x,y,t)>0, (a;>y)€M,t>0, 

^(x)y,0) = l, (x,y)GM) 

where A is the Laplacian operator of M = Mn x R3. 
We note that the manifold M still has nonnegative Ricci curvature and 

SM" ^o, x) x -^R3 (2/0, x) c B{{xQ,yQ),r) C BM»(a;o,r) x 5R3(yo,r). 

Then by the volume comparison theorem, we have 

(3.13)        C(n) (^ < VOl^((X0'y0)'r2) < (^V^ ,   for n < r2> 

and 

/R{x,y) dv < R(x,y) dv 
J    BMnixo^xB^iyo^r) 

/       jR(a;)rfv 

^M^ (aJcr) xBR3 (yo,r) 
^((^0,2/0)^) 

<Crd 

BMn(a;o,r) 

<C'^volJB((a;o,yo),r), 

that is, 

(3.14) r2 /       i?(z,y)^<C£(r), 
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where C, C(n) and C are positive constants depending only on n. It is also 
clear that to estimate -(log^)min(^) in terms of    w^1,      v-     /    (- log u)dv 

B(xo,r) 
1 is   equivalent   to   estimate   —(logfi)min(t)   in   terms   of , -,, 

vo\B((xo,yo),r) 
f       [—logu(x,i)] dv. So in the next lemma we study the solution 

B((xo,yo),r) 

u(x,y,t) of (3.12) with the manifold M satisfying (3.13) and (3.14).   For 
simplicity, we drop the symbol "~" and the variable "y" off. 

Lemma 3.2.   There exist a positive constant C(n) and a positive function 
e(r) defined on [1, +oo) satisfying e(r) —> 0 as r —> +oo 5^c/z ^/ia^ 

(3.15) 

logit(a;o,t) 

>C -e(r)logr-  sup R(x)+      /    logu(x,t)dv 
xeM" vol(B(xo,r))    J 

B(xo,r) 

for all t > 0 and r > 1. 

Proof Since the Ricci curvature of M is nonnegative and (3.13) holds, we 
know from [LY] ( see also Lemma 6.6 of [S] ) that there exists a positive 
Green function G(XQ,X) satisfying 

/Q1^ d?(xo,x) Cd2(xo1x) 

C/vol (S(xo, a(a;o,»)) vol (jB(a;o, d(xo, x)) 

and 

(3.17) |VG?(xo,x)| <     .ffl*0'?     ,v        x G M. 
vol{B(xo,d{xo,x)) 

Here and in the following we denote C to be variant positive constant de- 
pending only on n. For any a > 0, we define 

fia = {x £ M | G(xo, x) > a}. 

It is easy to see from (3.13) and (3.16) that 

11 C 
< G(xo,x) < 

C   d{x^x)n+lvo\{B(xoA)) " ~ d(a;o,a;)vol(B(a;o,l)) 
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for d(xo,x)   >   1. Thus fta is compact subset of M and dQa  =  {x  G 
M | G(xo) x) = a}. Moreover for each a > 0 there is a d(a) such that 

d2(a) 
(3.18) —, /rw —T/  xx = a    arici    ^(a) ^0  as a "^ 00- vol{B(xo,d{a)) 

This implies that for any x G SQa, 

d2 (xo, x) rf2(a) Cd2 (xo, x) 
Cvol (B(a;o, d(xQ, x))      vol (S(xo, d(a))      vol (JB(xo, d(a;o, x))' 

and then 

vol(B(go,d(a))       ^    6g2(a)    ^   Cvol (B(xo,d(a))) 

Cvol (B(XQ, d(xo, x)))      c?2(xo, x)      vol (B(xo, d(xo, x))) 

Combining (3.13) and (3.19) we get 

(3.20) C~1d(a) < d(xo,x) < Cd(a),        for x G afia, 

and 

(3.21) S(xo, C"1^)) C na c S(xo, Cd(a)). 

Note by the Green formula,it follows 

log u(xo, t)   =     / (a - G(xo, x)) A log it(x, tjdv 

i ^CK 

eGCxo,*)^ 
(3.22) -   /" log.«(s,t) ^ 

dCtcx 

where u denotes the outer unit normal vector of <9fia. 
By a direct computation (see also Lemma 2.2 in [C]) we known that the 

scalar curvature R(x,t) of the solution evolves by 

^^ = (n - l)Ati2(x,t) + {R{x,t))\ 

where At is the Laplacian operator with respect to the metric ^j(x, t). Since 
the scalar curvature of the initial metric is nonnegative, we know from the 
maximum principle that R(x,t) > 0, for x G M and t > 0. Thus by the fact 

4 
that gij(x,t) = (u(x,t))n-2gij(x) for x G M and t > 0, we obtain 

Au(x,t) - ^y      ^R(x)u(x,t) < 0,        for x G M, t > 0. 
4(n — 1) 
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This concludes that 

n — 2 
(3.23) Alogu(x,t) <        _uR(x),        for x G M, t > 0. 

4(n     Ij 

Substituting (3.23) into (3.22), we get 

n — 2     f 
logu(xo,t)    > _ (a- G(xo,x)) R(x)dv 

' Lex 

-   /  \ogu(x,t) ' 

> 

dv 

n-2 
4(n 

— / G(xQ:x)R(x)dv 

(3.24) +   f logu(x,t) • \VG(xo,x)\ds. 

We estimate the last two terms as follows: 

For any a > 0, by (3.16), (3.20) and (3.21), we obtain 

G(xo,x)R(x)dv    < / G(xo,x) R(x)dv 

^a B(xo,Cd(a) ) 

< /     G(xo,x)R(x)dv 

B(xo,l ) 

+ /] / G(xo,x)R(x)dv, 
r~lJB(xn.2k)\B(xn.2k-1) ^JBixo^XBixo^-1) 
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where s is the integer satisfying 2s-1 < Cd{a) < 2°, and 
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B(xo,l ) 

f    G(xo,x)R{x)dv 

=0,1  ) 

<fsupi?(a;))      f    G(xo,x)dv 

B{XQ,\ ) 

( \^  r Cd2(xo,x)        rfr 

_—-vol(B(xo,2-k)) sup#(sOj£w(B(^ 
xeM        / jt^-o       v 

<C (svpRix)) , 
VrreM / 

s 02fc /• ,   .   , 

^ 0 2^ voUBCxo^^-1)) yB(*o,2*) 

^ JBCXO^^NBCXO^*-
1
) 

G{xo,x) R(x)dv 

Gd2{x^x) R{x)dv 

fc=i 
>2fc 

£@.vol(B(xo,2fc)) 

thus 

/c=l 

<cX;e(2fc) 

<c(-^e(2fc)>) -(l + logdCa)), 

J?(a;) + I^e(2fc)-(l + logd(a)) sup 
cc€M 

(3.25) f G{xQjx)R{x)dv < 

By (3.17), (3.13) and (3.20), we have 

(3.26) f logu(x,t) • \VG(xQ,x)\ds > ^|g^)) / ^u(x,t)ds. 
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We know from the definition of d(a) that for /3 > a, 

$_ = (<P{p)\   /(vol(B(xQ,d(P))\ 

a      \d^a)J I \vo\{B{x^d{pL))) 

and by (3.13) 

(3.27) 
n+l 

mx^KtKc d(a) 

Thus by integrating (3.26)  from a to 2a, we get 

2a 

(3.28) f   ! \ogu{x,t) ■ \VG{xo,x)\dsdp 

oc dQp 

> Cd(a) 
vol (B(xo 

2a 

d,a-fi I   / logu{x,t)dsd(3. 

a dtlp 

Since dp = f^di/, we have 

dsdp = 
dG 
du 

Then (3.28) becomes 

ds \du\ < |VG| dv < C 
d({3) 

vol(B(xo,d(0)) 
dv,    on dQp. 

2a 

(3.29) f   f Iogu(x,t)-\S/G(x0,x)\dsdj3 

d(a) V      f ,     x /     \o%u{x,t)dv 

a   dtta 

>c 
vol(B(xQ,d(a)) 

^a\^2o 

>C 
a 

-IT/ a)) JB(x0,Cd(a) 
logu(x,t)dv. 

vol(B(xo,Cd( 

By integrating (3.24) from a to 2a and substituting the estimates (3.25) 
and (3.29) into the expression, we obtain 

(3.30)       logu(xo,t) > C 
vo\(B(xo 

1 f 
o,Cd(a))) JB{xo, ,Cd(a)) 

logu(x,t)dv 

-C 
1        S 

sup R(x) + - V e (2k) • (1 + log d(a)) 
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2 

Finally for any r > 0, set   a = VO\(B(X r\\- From the definition of d(a), 
we have 

r2 d2(a) 

vol(5(xo,r))      vol(B(xo,d(a))y 

which together with (3.13) implies 

(3.31) C-V < d{a) < Cr. 

It is easy to know that 

(3.32) -J^M"^0        as    d(a)-^+00i 
S fe=i 

because s(r) —>> 0 as r —»> +oo. Therefore by combining (3.30), (3.31) and 
5 

(3.32) we get the desired estimate (3.15) with i(r) defined by i ^ £(2/c)- n 

fe=i 

The combination of Lemma 3.1 and Lemma 3.2 is the following lower 
bound estimate for the solution of (2.2). 

Theorem 3.3. Suppose (Mn,gij) is a smooth n-dimensional (n > 3) com- 
plete, noncompact Riemannian manifold with nonnegative Ricci curvature. 
Suppose also the scalar curvature is bounded and satisfies (1.2). Then the 
solution u(x, t) of (2.2) obtained in section 2 exists for all times and satisfies 

(3.33)    (logu)min(t) > -e(r) logr - C 1 + SUp R(x) + -g (loglOminCO 
x€M r 

for allt>0 and 1 < r < +oo, where C is some positive constant depending 
only on n and e{r) is some positive function defined on [l,+oo) satisfying 
e{r) —> 0 as r —>- +oo. 

4. The Proof of the Main Theorem. 

In this section we will give a proof for the main theorem based on the lower 
bound estimate of the previous section and the Li-Yau-Hamilton inequality 
of Chow [C] on locally conformally flat manifolds. We first recall the Li- 
Yau-Hamilton inequality as follows. 

Theorem 4.1 (Chow). Suppose (Mn,gij) is an n-dimensional (n > 3) 
complete locally conformally flat Riemannian manifold with bounded and 
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nonnegative Ricci curvature. Let R(x, t) be the scalar curvature of the solu- 
tion of the Yamabe flow with gij as initial metric.  Then we have 

f)R 1 R 
(4.1) - + iVRiX)t + w-.RijX<X, + J>0 

for any vector X. Particularly if let X = — -^ in (4.1), we have 

OR    R ^ l\VR\t 
(4.2)  1 > ^, {     ) dt       t - 2    R    ' 

where (•, -)t and \-\t are the inner product and norm with respect to the evolv- 
ing metric gij(x,t). 

In his paper [C], Chow proved the above theorem for compact locally 
comformally flat manifolds with positive Ricci curvature. However, by a 
perturbation argument as in [H2], it is pretty clear that the Li-Yau-Hamilton 
inequality actually holds for complete locally conformally flat manifolds with 
nonnegative Ricci curvature. 

Proof of the Main Theorem. 
Suppose (Mn,gij) is an n—dimensional (n > 3) complete noncompact 

locally conformally flat manifold with nonnegative Ricci curvature. Suppose 
also the scalar curvature is bounded and satisfies (1.2). We evolve the metric 
by the Yamabe flow (2.1). Prom Theorem 3.3 we know that the solution 
exists for all time t > 0 and satisfies the lower bound estimate (3.33). By 
setting t = r in (3.33), it follows 

(4.3) lim   -^minit) = 0 

4 
Thus by the evolution equation (2.1) and gij(x,t) = (u(x,t))n-2gij(x), we 
have 

t 

(4.4) f R{x,r)dT = i-logtiOM) < i- (logu)min (t). J n — 2 n — 2 
o 

Let t > 1. It follows from (4.2) that 

R(X,T) > R{x,Vt) — , for r > Vt. 
T 
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Then we obtain 

(4.5) / R{x,T)dT >  / R(x,T)dT 

t 

> R(x, Vi)Vi f * 

St 

> -R(x,Vi)Vi\ogt. 

By combining (4.4) and (4.5), we have 

n — 2        log t 

which together with (4.3) implies 

lim  i^x/^Vt^O. 

But (4.2) tells us that R{x, \/i)\/i is nondecreasing in time. This shows that 
R{x,t) EE 0 for all x G M, t > 0. Therefore the manifold M with the initial 
metric must be flat. □ 
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