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Explicit construction of extremal Hermitian metrics 
with finite conical singularities on S2 

CHANG SHOU LIN AND XIAOHUA ZHU 

In this paper, we will use the ODE method and geometry of Gaus- 
sian curvature of HCMU metrics to construct a class of nonra- 
dial extremal Hermitian metrics with finite conical singular angles 
27r • integer on 52. 

0. Introduction. 

It is well-known that there is a metric with constant Gaussian curvature 
in each conformal class of any compact Riemann surface, by the classical 
uniformization theorem. It is a natural question to generalize this clas- 
sical uniformization theory to compact surfaces with conical singularities. 
However, there are surfaces with conical singularities which do not admit a 
metric with constant curvature. For example, a football with two different 
singular angles does not admit a metric with constant curvature (for the 
existence or non-existence results of constant curvature metric in a surface 
with conical singularities, to see [T], [M], [CY], [LT]). Recently, instead 
of using metrics of constant curvature, X. Chen in [Chi], [Ch2] and [Ch3] 
started to use the extremal Hermitian metrics to generalize the classical 
uniformization theory to Riemann surfaces with finite conical singularities. 
Besides a class of radial extremal Hermitian metrics on footballs (cf. [Ch2]), 
some nonradial examples of these metrics on S'2 with three conical angles 47r 
and nonconstant Gaussian curvature were found by E. Calabi and X. Chen 
(cf. [Ch3]). In [WZ], Wang and the second author also studied the extremal 
Hermitain metrics on Riemann surfaces with finite conical singularities and 
generalized Chen's results in [Ch2]. Let M be a compact Riemann surface 

and {pi}i=i,...,n C M. For any Hermitian metric go on M \ {pi}i=iim..ini con- 
sider the set Q(M) of metrics with same area which are pointwise conformal 

to go and agree with go in a small neighborhood of {pi}^!,...^- In the clo- 
sure of this set G(M) under some suitable JH

r2'2-norm, we define the energy 
functional 

E(g) = [ K2dg, 
JM 
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where K denotes the Gaussian curvature of g. A critical point of this func- 
tional is called an extremal Hermitian metric. It is easy to see that the 
Euler-Lagrange equation is 

(0.1) AgK + K2 = c,   on  M\fe}^i,..,n, 

for some constant c, where A^ denotes the Lapalace operator associated to 
metric g. Let g = e^ldzl2 be written in local coordinates. Then equation 
(0.1) is equivalent to a system, 

(0 2) <*<!> =-KJ* 

where A is the standard Lapalace operator on R2. 
Let 

K d2K     2d<l>dK 

dzdz       dz dz 

be the second derivative of K with respect to g.  Then, by (0.2), one can 
check 

(0.3) (KtZZ)j = 0. 

A special case of (0.3) is 

(0.4) K>zz = 0, 

which means that 

is a holomorphic vector field on M \ {pz}i=i,...,n-    In particular, in case 
M = S2, 

(0.5) F(z) = e-^Kj 

is a rationally holomorphic function on C (cf. Proposition 1.2). Usually, a 
Hermitian metric satisfying (0.4) is called HCMU ([Ch3]), which including 
the case of K = const. A HCMU metric on a compact Riemann surface 
with finite singularities is the simplest case of Calabi's extremal metrics in 
the singular spaces ([Cal], [Ca2]). 

In this paper, we will use the ODE method and geometry of Gaussian 
curvature of HCMU metrics to construct a class of nonradial extremal Her- 
mitian metrics with finite conical singular angles 27r • integer on S2. In fact, 
we shall classify all these HCMU metrics on S2 and give an explicit formula 
via rationally holomorphic functions on C. 
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Definition 0.1. A HCMU metric on a compact Riemann surface M with 
finite singularities {pi}i=i1...1n is called exceptional if all singular points have 
weak, integer conical singular angles 27ra; and F(z) defined by (0.5) has 
following expansion near those singular points p;, 

^) = (z-^)-^-1)(ci + ^(z)), 

for some complex-valued numbers a ^ 0 and holomorphic functions gi{z) 
near p;. 

Our main theorem can be stated as follows (cf. Theorem 2.1). 

Theorem 0.1. Let pi = (oo) and pi = (zi),i = 2, ...,n, be n points on 
S2 = C U {oo}, and ai > 2,..., an > 2, n positive integer numbers. Let 

n 

a = OLi +^{ai - 1). 

Then g — e2^\dz\2 is an exceptional HCMU metric with finite conical sin- 
gular angles 27rc^ at pi on S2 if and only if there are a positive integer k, 
a complex-valued B ^ 0 and a holomorphic polynomial function f{z) on 
C with degree (a + 1) and different (a + 1) roots 7/ of f(z) = 0 such that 
3k < a + 1, and (a + 1) roots 7/ satisfy 

k ^ a+l -2^  g       2     _BlX=2(Z-zi)(«^ 
1 = 1   J _ 7/ l'=ife+l 

where a = Q+^  k. Furthermore, K and (f) are given by 

1 ,W-*)(*H.«' + 1> 
(x + !£^) 2a 

a-1 

=^niz-^r2a n 
1=1 i'=k+i 

z-lv?, 

and 

*=\^{\Fw{-hK'+cK+d 

where A > 0 is some constant and 

= Vc(2a - i)/y/a2-a + l, 
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,     (a + l)(a-2)/33 

c = 
3(2a - I)2      ' 

F(z) = (z- Z2)-^-1) ■ ■ ■ (z - zn)-^-Vf(z), 

and 
,_, -3a(o - l)/32 "-i-1 

/W-ir'^f^nc-i.)- 
Prom Theorem 0.1, we see that an explicit HUMC metric on S2 is de- 

termined by a pair (a, k). 

Definition 0.2. An exceptional HCMU metrics on S2 is called minimal if 
(a, k) = (a, 1) in Theorem 0.1. 

In case of minimal exceptional HCMU metrics on S2, we can give an 
explicit formula (cf. Theorem 3.1). In particular, for any n singular points 
with conical angles 27r • integer and a positive number CQ, there is a family of 
extremal Hermitian metrics on S2 with same area CQ, which vary energy E(g) 
with three parameters (cf. Remark 3.1). This shows that a HCMU metric 
with finite integer conical singular angles on 52 could not be in general a local 
minimizer for energy functional E with respect to a general deformation, 
which preserves the area and conical angle structure at each singular point, 
although any HCMU metrics is a local minimizer in the class Q(M) (cf. 
[Ca2], [Ch3]). 

The organization of paper is as follows. In Section 1, by using the asymp- 
totic expansion of Gaussian curvature, we study the local behavior of Gaus- 
sian curvature of HCMU metric with finite energy and area near the singular 
point. In Section 2, we will use the ODE method and geometry of Gaussian 
curvature of HCMU metrics to classify all exceptional metrics with finite 
singularities on S2, and then prove Theorem 0.1 (Theorem 2.1). In Section 
3, we can give an explicit formula for any minimal exceptional, HCMU met- 
rics (cf. Theorem 3.1). In Section 4, we shall classify all HCMU metrics with 
finite energy and area on R2 as well as radial, extremal Hermitian metrics 
with two different weakly conical singular angles at the origin and infinity. 
In Section 5, as two examples, we discuss all exceptional, HCMU metrics on 
S2 with two and three weakly conical singular angles 47r respectively. 

Acknowledgment. Part of this work was done when the second author 
was visitting CTS at Taiwan in the spring of 1999. He thanks CTS for the 
hospitality. Both authors also thank Dr. X. Chen for pointing out an error 
in the first version of paper. 
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1. Local behavior of Gaussian curvature K. 

In this section, we discuss the local behavior of Gaussian curvature of a 
HCMU metric on D \ {0}, where D C R2 is a disk. 

Let g — e^ldz]2 be an extremal Hermitian metric with finite energy and 
area on D \ {0}. Then we have the following system, 

(i.i) 

with 

AK = (-K2 + c)e2*,    on D \ {0}, 

(1.2) [        e2<t,dx<oo  and    /        K2e2(t>dx < oo, 
JD\{0} JD\{0} 

where A is the standard Lapalace operator on M2. 
Let x = (z) = (r cos#,r sin0). Then following result was proved in [WZ]. 

Lemma 1.1 ([WZ]). Let g = e2^\dz\2 be an extremal Hermitian metric on 
D \ {0}. Suppose that (1.2) is satisfied. Then there is a number a > 0 such 
that 

r2n 86 
lim /     r-^-d6 = 2n{a-l). 
r-*oJ0       dr 

Furthermore, if a > 0, then 

i) lim^i^o l^fa) — (CK — 1) In \x\\ < C,   for some  C\ 

ii) limi^olX^l^r^O. 

Remark 1.1. We call the singular point {0} weakly conical with singular 
angle 27ra if a > 0 ([WZ]). Note that the singular point {0} is called conical 
with singular angle 2'KOL if (j){x) = (a — l)ln|x| + p(x) for some smooth 
function p(x) on D. In this paper, we always assume a > 0. For the case 
a — 0, we refer reader to [Ch2]. 

Next we shall use the technique of Kelvin transformation to refine Lemma 
1.1. Let w = i, and 

^{w) = -2ln\w\+(/)(-)    and  K(w) = K (- 
\w / \w 
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Then (ip, K) is a solution of system (1.1) on E2 \ B{^) for some sufficiently 
large number R. Furthermore, by Lemma 1.1, if a > 0, then we have 

(1.3) lim   \ip(x) - (a + l)ln|z|| < C,   for some  C, 
\x\—>oo 

and 

(1.4) lim   \K(x)\\x\-a = 0. 
\x\—*oo 

Let r)(x) > 0 be a smooth cut-off function on E2 so that 7](x) = 1 on 
E2 \B(R), ri(x) = 0, on B{§) and 0 < 77 < 1, on B(R)\B(§). Let ^* = r^ 
and K* = r]K. Then (ip^K*) is a solution of system (1.1) on R2 \ B(R), 
and satisfies on E2, 

f AT/;* = -ryKe2^ + 2Vr]V^ + ^*A77 = fc 

I AX* - ^(-X2 + c)e2^ + 2Vr?VK* + X*A7y - p. 

Clearly, fe^eL^R2). 
Let 

K{x) = ±- f  (ln(|x - y\) - ln(\y\ + l))g(y)dy. 
ZTT JR2 

Then we see that there are a constant CQ and a holomorphic polynomial 
function with degree &;, 

Jfe 
f(z) = ^2eiwl 

1=1 

such that 

K{x)* = K(x) + K(x) + co)   and  K(x) = Ref(w). 

Without loss of generality, we may assume e*. = 1. By (1.4), we see k < a. 
Hence by the standard regularity theorem, it follows 

^)-(a-l)ln|z| £C2cx-k(D), 

and 

K(-)+/3\n\z\eC2a-2k{D), 
KZ^ 

where /3 = ^ fR2 g(x)dx. So we may assume that 

[2a-fc]'       1 1 /      1      \ 
(1.5) rV;r = -(a + i)+   Y;   c}7l+am^=h+0[-^=k)^ 

1=1 v / 
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[2a-k]' 

E 
1=1 

[2a-2fc]' 

[2«-*]'       1 . /      1       \ 

(1.6) ^=   E   ^ + 6iW^z3f + o(^z3fJ, 

1 J 1 1 /       1       \ 
(1.7) rKr=P+   Y,   4-!+a2(e)-^=^ + ol-^z^) 

1=1 v / 

and 

(1.8) ^=    E   d/;T+^);ra + o(jraJ, 

where cj-,c^,dj-,d^,ai,02,61,62 are C^-functions about 0, and 

[2a-k]' = [2a-%   if 2a ^ integer 

and 
[2a — fc]' = 2a — fc — 1,   if 2a =  integer. 

Lemma 1.2. Let g = e2^\dz\2 be a HCMU metric on D\ {0}. Suppose that 
(1.2) is satisfied. Then K{x) = 0, i.e., the holomorphic polynomial function 
f(w) vanishes. 

Proof Let 

d   _   d r-j d     ^^   _d___d_       /-[ d 

dw      dxi 6x2 dw      dxi 8x2 

be two complex partial differential operators. Then the above two operators 
are equivalent to 

— - - (r— - V^l—}    and   — - - (r—     ^—^ 
dw      w \ dr 88 J dw      w \ dr 89 J ' 

Thus, for any smooth function $, one obtains 

3W, = -T(2r$r - (r(r$r)r - 900) - 2v/:^T(^ - r$r^)) 
w2 

and 

$,ww = &ww — 2<&w(j)w 

= o ((2r$r - (r(r$r)r - $00) + 2(r$r.r^r - ^^) 
w2 

2V^l((<f>e - 2r$r0) + (^ • r0r - ^ • r^))). 
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By using (1.5)-(1.8), we have 

(1-9) kw4>w = ^   and  Kww = ^. 

It follows 

(1.10) Kww = <M 

On the other hand, we see 

k 

(1.11) Kww = -^J22l(l-l)elw
l
J 

and 

(1.12) Kwtl>w = -(a + 1)^5 J^ te^ + 0(1) 

1=1 
ty^ f—'    " w2 

Hence, combining (1.10), (1.11) and (1.12), we get 

(1-13) K*ww = K,ww + KiWW - 2KW^W 

= 2k(a + k)wk-2 + o(\w\k-2). 

Since g is a HCMU metric, then by (0.4), we have 

K%w = K,ww = z4KtZX = 0}   onR2\B(R). 

Then by (1.13), it follows k = 0, and consequently, K(x) = 0. □ 

Lemma 1.3. Let g — e2(i)\dz\2 be a HCMU metric on D\{ti}. Suppose that 
(1.2) is satisfied.  Then the number (3 = 0 in (1.7). 

Proof. By Lemma 1.2, we see that there is a constant C such that 

\K-/3\nr\ < C, onR2\B(i2). 
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So we may assume that 

[2a]'  i i     /    i \ 
ripr = -(a + 1) + £ c}^ + ai Inr^ + o (inr^j , 

_ [2a1'    i i        / i \ 
(1.14) rKr=p + Y{d}-i + a2(lnr)2^ + o ((Inrf^ j , 

and 
[2a]' 

*' = E ^ + Mlnr)2^ + o ((lnr)2-L) , 

where 

1) [2a}' = [2a], if 2a ^ integer and [2a] = 2a - 1, if 2a = integer; 

2) ai, 61,02,62 are some constants; 

3) c}  = Reide^116),  cf  = Imide^116), dj  = Re((i^e^/^Tw),   df 

Then similar to (1.9), we obtain 

^ = -l(2^ + 0(i)+0((lnr)2-i 

and 

K^w = ± (-(a + 1)0 + 0 (i) + 0 ((Inr)2^ 

It follows 

-^*- )WW ::::::: ■**■ ww        A-t\. WYU 

This shows /? = 0, since Z^ = z4K}ZZ = 0 on R2 \ B(i2). D 

It!2 

By (1.14) and Lemma 1.3, we see 

'i)+0((lnr-)2-1 rKr = 0[^)+0[(lnr)2^ 
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This shows that the Guassian curvature K is continueous across the singular 
point {0}. In general, we prove 

Proposition 1.1. Let g = e2<^\dz\2 be a HCMU metric on a compact Rie- 
mann surface M with finite weakly conical singular angles at {pi}iz=ii.t.in' 
Suppose that 

f e2(t)dx<oo   and    f K2e2<i>dx < oo. 

Then the Guassian curvature of g is continueous across the singularities 

■{Px}i=l,...,n- 

Since 

dzdz       dz dz 

we see that there is a holomorphic function F(x) on D \ {0} such that 

e-^KY = F(x). 

Proposition 1.2. Let g = e2<t)\dz\2 be a HCMU metric on D\ {0} with a 
weakly conical singular angle I-KOL at the origin. Then F(z) has the following 
expansion near the origin, 

{zg(z), if a ^  integer, 
z-(a-i)(c + g(zj^    for some  c ^ o, 

or   = zg(z), if a =   integer, 

where g(z) is some holomorphic function on D. 

Proof. By Lemma 1.3, we may assume that 

[M'     1 1 f  l\ 

Z=l v       / 

_      W     1 ! / i \ 
(1.15) rirr = ^- + a2^+0(^J, 
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and 

[2a]' 

i.i6) ^ = E^+^+o(^). 
1=1 v     / 

where  01,61,02,62   are some constants,   and  cj   =   Re(Qev^^),   cf   = 
Im^e^1^),    dj = Re^e^*), df = Im^e^1^). 

It follows 

■**■ ,ww ""^ -£*■ ww       ^ivWYW 

_1/[2a]' [2a]' 

10 

[2a]' 

/ L2aj' [2aj' 

^ 2(1 + IJdiw-' - 2(a + 1) Y^ diw~l 

[2a]' x 

+2 E E cPd^1+0(r~2a) 
1=2 l=p+q / 

/ [2a}> [2*]> 

2       X^2^ + 1)~2a~2)^~' + 25Z   Y,   CPdQW~l 

\ 1=1 1=2 l=p+q =2 l=p+q 

+ 0(r-2a)). 

Since 'KiWW = 0 on M2 \ B(R), we get 

(1.17) ((I + 1) - a - l)di +  Yl cpdq = 0, I = 1,..., [2a]. 
l=p+q 

By using the induction to (1.17), we have 

d/ = 0, Z = !,...,[<*]-1, 

and 
^ = 0, Z = l,...,[2a], if da = 0. 

Puthermore, if a ^ integer, then da = 0 and consequently, 

4 = 0, Z = l,...,[2a]. 

Hence by (1.15) and (1.16), we get 
a) \er2^Kz\ < C\z\, if a ^ integer] 
b) le-^Kzl < C\zl or = Od^l"^"1)), if a = integer. 
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This shows that there is a holomorphic function g(z) on D such that 

zg(z), if a 7^  integer; 

F(z) = I z'^-^ic + giz)),    for some  c ^ 0, 

or   = zg(z), if a = integer. 

D 

Definition 1.1. A HCMU metric on a compact Riemann surface M with 
finite singularities {pi}i=if...in is called exceptional if all singular points have 
weak, integer conical angles 2'Kai and F(z) has following expansion near 
those singular points p^, 

F(z) = (z-zi)-^-1\ci + gi(z)), 

for some complex-valued numbers c; 7^ 0 and holomorphic functions gi(z) 
near p;. 

Remark 1.2. If g = e2(t>\dz\2 is a HCMU metric on D \ {0} with finite area 
and energy, and a weakly conical singular angle 27r at the origin, then by 
the system (1.1) together with Proposition 1.1, one can prove that g is in 
fact smooth on D (cf. an argument in the proof of Proposition 4.1). So in 
Definition 1.1, we may assume that all weakly conical singular angles are 
more than 27r. 

2. Classification of exceptional HCMU metrics on S2. 

Let g = e2^\dz\2 be an extremal Hermitian metric on M \ {pi}i=i,...,m and 
K its Gaussian curvature. Then ((f), K) is a local solution of system, 

Lemma 2.1. Let g = e~2^\dz\2 be an extremal Hermitian metric on M \ 
{pi}, i=l,... ,n. Then g is HCMU if and only if there are some constant c' 
and a holomorphic function F(z) such that F{z)-§^ is a holomorphic vector 
field on M\ {pi}i=i,...,Ti> and the Guassian curvature K of g is a solution of 
ODE, 

(2.3) Kz = F(z)-1 (~ + cK + A , 
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and (j) is given by 

(2.4) e2* = |F(z)|-2 (~ + cK + A > 0. 

Proof. Since g is HCMU, there is a holomorphic vector field F(z)-^ on 
M \ {pi}i=i,...,n, such that 

(2.5) K1t = e2<l>F(z). 

Then by using (2.2), we get 

K3 

KZz = F(z)-1(-^+cK + c"y 

for some constant cff. It follows 

(2.6) Kz = F(z)-1 (-^-+cK + c") + g(z) 

for some meromorphic function g(z) on M \ {pi}2=i,...,n- 
By (2.5) and (2.6), we see 

*i+ = \F{z)\-i(-£.+cK + /) + 
F(z) 

is a real-valued function, and consequently g(z) = CF(z)~1 for some con- 
stant real-valued number C. Thus there is a real-valued number cf such 
that 

e2* = |F(*)r2(-^+cK + C')>0, 

and consequently, K satisfies 

Kg = F(z)-l(~ + cK + </y 

Conversly, we assume that K is a solution of integrable equation (2.3) 
and (j) is given by (2.4). Then it is clear 

(2.7) <l> = ±]n{K*F(z)-1). 
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Differentiating (2.3) and using (2.7), we have 

KZz = (-K2 + c)KzF(z)-1 

= (_K2 + c)e20_ 

This shows (</>, K) satisfies equation (2.2). Now we need to check (K, (/>) also 
satisfies (2.1). 

Differentiating (2.7), we have 

Then again differentiating the above equation and using (2.3) and (2.7), it 
follows 

A0 = ^ = -KKzF(z)-1 

= -Ke2* 

D 

Now we assume that g = e2^\dz\2 is an exceptional HCMU metric on 
52 = C U {oo} with finite singularities {pi}i=i,...,n- Without the loss of 
generality, we may assume pi = (oo). Let 2'irai (ai > 2) be the weak, 
integer conical singular angles at pi,i = 1,... ,n. Then by Definition 1.1, it 
is easy to see that there is a meromorphic function F(z) on C such that 

n 

(2.8) F(z) = e-2(i>KY = J{{z - Zi)-^^f{z\ 

where f(z) is a holomorphic function on C with degree a = l+X^ILi(a*— 1L
)' 

Proposition 2.1. Let g = e^^z]2 be an exceptional HCMU metric on 
S2 = C U {oo} with finite singularities {pi}i=ir..,n, and f(z) and F{z) are 
given in (2.8). Let 71,... ,7a+i ^e (a + 1) roots 0f f(z) = 0-  Then 

and there are some real-valued numbers Q,Z = l,...,a + l, such that 

a+l 

1=1 
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and 
, a+l 

Before we prove Proposition 2.1, we need a series of lemmas. 

Lemma 2.2. Let c' be the constant determined in Lemma 2.1. Suppose that 
there are three roots /3i,/32,^3 of equation, 

-Ks 

(2.9) -—+cK + cf = 0. 
o 

Then 

Proof. On the contrary, we assume Pi ^ fiz = Pz-   Then one can choose 
three real-valued numbers ai, a2, as / 0 such that 

(2 in)  - = ^ +      Q2      +      Q3 
K'    ) ^l + cK + d      (K-fr)^ K-fc^ K-fr 

Claim. Let 71,..., 7a+i be (a + 1) roots of f(z) = 0.  Then there are some 
i and j(y^ i) such that 7$ = jj. 

We also use an argument by contradiction, and assume 

Then one can choose some a + l complex-valued numbers Q = c] + ^/—\.c^ ^ 
0 such that 

a+l 

(2.11) Ec< = 0' 
z=i 

and 

1 a+l 

(2-12) ^r-^T-^- 

Thus by using (2.10) and (2.12), we can solve equation (2.3) as follow, 

—^V + a2 In \K-^\ + as In \K - fa] 
K — pi 

a+l a+l 
(2.13) ^^Inlz-^ + ^c^-T*), 

/=i 1=1 
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where 9i(z — 7/) denote functions of complex angles of z — 7/. 
Since by Proposition 1.1, K is a continueous function on S'2, from (2.11), 

we see that there are at least two nonzero numbers c*,Cy such that 

c} ■ c) < 0. 

This shows 
KM = 01 and Kfrj) = 02, 

and consequently, 

(2.14) K-p1 = o(^±-^,   asz-,7,. 

On the other hand, since </> is smooth at 7;, then by (2.4) in Lemma 2.1, 
one see that there is a constant Af =fi 0 such that 

which is contradict to (2.14). Claim is proved. 
By Claim, we see that there are complex-valued number Cj ^ 0 and a 

root 7i with multiple k > 2 of equation f(z) = 0 such that 

1 1 /        Ci        " + 0 
F(«)       (s-7»)* \k-7*lfc 

Then by (2.10), one can solve equation (2.4) as follow, 

= 4 real 
K-fa \(k-i)(z-'ri)

k-1 

1 
+ 0 

N-7i|fe_1 

It follows 

(2.15) K-01 = O(\z-'yi\
k-1),   as  z -»■ 7i- 

On the other hand, by (2.4) in Lemma 2.1, we see that there is a constant 
A' ^ 0 such that 

l*-7i|; 

which contradicts to (2.15). Lemma 2.2 is proved. □ 

z-^ji \z - 7i|fc 
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Lemma 2.3. Let 71,... ,7a+i be (a + 1) roots of f(z) = 0. Then 

Proof. On the contrary, we assume that there is a root 7$ with multiple fe > 2 
of equation f(z) = 0. Then there is a complex-valued number Q 7^ 0 such 
that 

1 Ci /        1 
+ 0 

By Lemma 2.2, there is only one root ft or are three different roots 
fiiifaifi?, of equation (2.9). In the late case, one can choose three nonzero 
real numbers ai,02,^3, such that 

1 ai ^2 ^3 
-X3 

+ CK + C'      tf-jSi     ^-^2     if-i83 3 

Then by using the argument in Lemma 2.2, we solve equation (2.3) as follow, 

ai In \K - /3i| + a2 In \K - ^l + ^3 In ^ - ^31 

= 4real I ——^ -7—r ) + o 
(k - i)(z - ji)k  1J \\z — 7fi\k  X

J 

This shows that there is one of roots (i\ (we may assume /?i) such that 

(2.16) ln(if - /3i) - 0(|* - ^r^"1^ as z -> 7^ 

On the other hand, by (2.4) in Lemma 2.1, we see there is constant A! ^ 0 
such that 

(2.17) lim .K~^2k=A!t 

which is contradict to (2.16). Thus this case is impossible. 
Now we assume that there is only one real-valued root /?.   Then there 

are some numbers a, 6, c^ such that 

—- + cK + c7        = -3    —n -i— + 

and 
0 < Ci < ^ + aiiT + 6. 
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Thus by using the above argument, one can solve equation (2.3) as follow, 

la\K-P\+ a'2 ln(K2 + aK + b) + F(K) 

= r real ( —7—^ -r—r ) + o 
3 \(k - l){z - ji)

k-1 J        Vl*-7i|fe-\ 
for some real number a^, where function ^(iiC)! < C for some constant C. 
By Proposition 1.1, it follows 

ln(ir-/3) = 0(|2-7i|-
(fc"1)),   as  z -»■ 7^ 

which contradicts to (2.17). Lemma 2.3 is proved. □ 

By Lemma 2.3, we see that there are some nonzero complex-valued num- 
bers Q, / = 1,..., a + 1, such that 

1 a+l 
1       _ V1^       Cj 

Lemma 2.4. All numbers Q, I = 1,..., a + 1, are real-valued. 

Proof. Similar to the proof Lemma 2.3, there are two cases: a) there is only 
one root f3 of equation (2.9); b) there are three different roots /3i,/32,/33 of 
equation (2.9). 

In case a). From the proof of Lemma 2.3, one can solve equation (2.3) 
as follow, 

- In \K - p\ + a'a ln(ii:2 + aK + b) + F(K) 

(2.18) =^E^^-'W) + lEc'lnl^'Wl2- 
1=1 i=i 

This shows 

(2.19) c? = 0, VZ = l,...,a + l, 

since functions O^z—ji) are non-continueous and K is continueous by Propo- 
sition 1.1. 

In case b).  Also from the proof of Lemma 2.3, one can solve equation 
(2.3) as follow, 

oi In \K - pi | + a2 In |K - fo \ + a3 In |K - fo \ 
a+l a+l 

i=i i=i 
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So we can also get (2.19). □ 

Proposition 2.1 follows from Lemma 2.3 and Lemma 2.4 immediately. 

Proposition 2.2. There are three different roots /3i,/?2,/33 of equation 
(2.9). In particular, there are three nonzero real numbers ai,a2,a3 such 
that 

(2.20) ai + as + as = 0, 

and 

(2-21) _„     1„ =1^V + T^V+      a3 
-X3 + CK + C'      ^-A     K-fo     K-fo 

Proof. On the contrary, we assume that there is only one real-valued root /? 
of equation (2.9). Then by Lemma 2.4 and (2.18) in Lemma 2.4, we solve 
(2.3) as follow, 

In \K-P\+ a'2 ln(K2 + aK + b) + F(K) = - J^ q1 In |^ - 7/I2. 

Since 
a+l 

1=1 

then there is some 7; and another number a' / 0 such that 

lim \K(z) - P\(K2 + aK + b)a' = 00, 

which is impossible, since K is continueous by Proposition 1.1. This shows 
that there are three different roots ^1,^2,^3 of equation (2.9). Furthermore, 
by Lemma 2.2, # / /%, Vi 7^ 3. (2.20) and (2.21) follows directly. D 

By Proposition 2.1 and Proposition 2.2, we see, if g = e2^|Gk|2 is an 
exceptional HCMU metric on S2 = CU {00} with finite singular angles 27ra; 
at pi,i = 1,... ,n, and ^(2;) and f(z) is given in (2.8), then there are some 
nonzero numbers a > 2 , ci,... , ca+i and another three different numbers 
Piifoifis such that 

a+l 

(2-22) Ec< = 0' 
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and equation (2.3) is equivalent to 

Moreover, we can determine 

0 = 0! = Vc(2a - l)/Va2-a+l, 

(3(a + l) 
(32 = 

03 = 

2a- 1  ' 
(a - 2)i9 
2a -1 ' 

and 

r2 2^ i^-ri      (2Q"1)2   V1   Q (2-24) ^      - -3a(a - 1)^ 1- 7^ 

= /w-in(2-^r-1. 
i=2 

Theorem 2.1. Let pi = (oo) and pi = (^),z = 2, ...,n, 6e n points on 
S2 = C U {oo}, and ai > 2,..., an > 2, n positive integer numbers. Let 

n 

a = ai + ^(a; - 1). 
i=2 

Then g — e2^\dz\2 is an exceptional HCMU metric with finite conical sin- 
gular angles 27rai at pi on S2 if and only if there are a positive integer k, 
a complex-valued B ^ 0 and a holomorphic polynomial function f(z) on 
C with degree (a + 1) and different (a + 1) roots 7/ of f(z) = 0 such that 
3k < a + 1, and (a + 1) roots 7/ satisfy 

where a — a4"?:  k. Furthermore, K and (/> are given by 

(2-26)  ^(/? -K)(K + ^±1)X ^ 

a+1 
2 ^niz-^r2a n i^-^ 

i=l l'=k+l 
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and 

1.    /       1        f    l.,3 (2'27)       *=2x"{wmA-iK+cKJlc']]' 
where A > 0 is some constant and 

0 = y/c(2a - l)/Va2-a+l, 

cl=(a+l)(a-2)P3 

3(2a-l)2      ' 

F(z) = (z- z2)-^-V ...(Z- zn)-^-Vf(z), 

and 

nz)-B        (2a -I)2     fj^"70" 

Proof. Necessity. By (2.23), one solves the Gaussian curvature K as follow, 

(ir + i^M) V      2a-i; 

- A|2 - 7i|Clk - 72|C2 • • • \z - 7a+l|Ca+1, 

where A is some positive number. Then by (2.22) amd (2.4) in Lemma 2.1, 
we see that there is some c, < 0 such that c* = —2a and 

lim * + to-i   = ^ 

for some constant A'. On the other hand, it is easy to see 
(2 29) 

Thus the condition 

^K3 + cK + c'>0 

implies 

2a-1     -      -H 
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This shows, for any I = 1,..., a + 1, 

Q = —2a, or ci — 2. 

Let k > 1 be the integer such that 

ci = —2a, I = 1,..., fc,   and  c// = 2, Z7 = fc,..., a + 1. 

Then by (2.22), we have 

z < a =  
k 

and consequently, 
3k < a + l. 

(2.26) follows from (2.28) directly as well as (2.27) follows from (2.4). 
Sufficiency. Let 

-3a(a-l)/52      . 
C0=    2(2a-l)'   B    • 

Then by condition (2.25), we have, 

(Z - Z2)a2-1 • • • {Z - Zn)^-1 

co(z - 71) • • • (2 - 7a+l) 

(2a-1)2       (*_-2a_     ^      2     ^ 

Since 

(-3a) (a - 1)£2 ^^ z - 71     £?kz- IV 

-3a(a - l)/32 1 
(2a-I)2     -!if3 + cif + c/ 

—a 1 a — 1 
+ T7 ?: + 

""■ ^    2a-l ■"■ ^    2a-l 

then function K defined by (2.26) satisfies equation 

^(-^ + cK + c') 

(2 - za)"2-1 • • • {z - ZnY"-1 _    1 

co{z - 71) • • • {z - 7a+i) F(z) 
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Prom (2.26), it is clear 

2~a P<0<K <p 
2a- 1 

and 

min^l^x) = #"(71) = ^—jP 

and 

m3)^R2K(x) = K(ji) = (J, i = 2,..., a + 1 

This shows -Ks + cK + d > 0 and 

1 -^3 + cif+ c') >0. 
|F(z)|H   3 

Thus </) defined by (2.27) is a smooth function on E2 away from points 

{Pi}i=i,...,n and consequently , by Lemma 2.1, g = e2^\dz\2 is a HCMU 
metric. 

Since 

Zi^lh Vi = 2,..., n, Z = 1,... a + 1, 

we see that (t){x) have the following behaviors near these singular points 

0(z) = (ai - 1) In \z - Zi\ + pi (a), 

where pi(x), i = 2,..., n, are smooth functions near p^. Furthermore, there 
is some constant CQ such that 

</)(x) + (ai + 1) In |x| —> CQ, as |x| -^ 00. 

Thus we also prove g = e2^\dz\2 is a conical metric on ^S2 with finite conical 
singular angles 27ra^ at each p^, i = 2,..., n. D 

Theorem 0.1 follows from Theorem 2.1. 

Prom the above theorem, any exceptianl HCMU metric on S2 with n 
weak, integer conical singular angles 27rai at {pi}i=i n, is determined by a 

pair(a,fc) = (si^lfc). 

Definition 2.1. An exceptionl HCMU metric with finite weak,  integer 
conical angles on S2  is called minimal if (a,fc)   =   (a, 1),  where a   = 
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3. An explicit formula for minimal exceptional HCMU 
metrics. 

Theorem 3.1. Let pi = (oo) and pi = (zi),i = 2, ...,n, be n points on 
S2 = C U {oo}; and ai > 2,..., an > 2, n positive integer numbers. Then 
for given c > 0; any minimal exceptional HCMU metric on S with finite 
conical singular angles 2'Kai at pi are determined by a positive number A, 
and two complex-valued parameters 71 and B ^ 0 besides oti^i = 1,... ,n. 
In precise, K and (j) are given by 

(^+^)       l    2a"lJ 

= A|z - 7ir2ak - 72|2 • • • \z - 7a+i|27 

and 

where 
*=b"{]m?{-\Ki+cK^))' 

a - ai + J](ai - 1) > 2, 
i=2 

/3 = Vc(2a - IJ/V^-a + l, 

c,= (a + l)(a-2)^3_ 

ii) 

and 

3(2a - I)2      ' 

F{z) = {z- z2)-^-V ... (Z _ zny^-^f(z), 

^)=    2(2a-l)^    (z-7l)-(ag-7tt+l)' 
and 72;.. • ;7a+i are a root5 o/ ^Zie polynomial function equation with degree 

a, 
g(z) = za- axz*-1 + • • • + (-l)aaa = 0, 

where 

'Ca7i, j = l,...,^i - 1, 
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and 

dl = (_i)«-«i-i    Y,   (^a"1"iac£_1 • • • C-^-ct-i), 

Z = 0,... ,a — ai. 

Theorem 3.1 follows from Theorem 2.1 and the followimg lemma. 

Lemma 3.1. Let 71   and B   7^   0  be two  complex-valued numbers and 
Z2) - - •, zn are another (n — 1)-different complex-valued numbers. Let 

l=J2-\ \-jn 

I = 0,... ,a — ai, 

and 

{Cili, 3 = l,...,ai-l, 
CL-A-Bi-iyifl. 
-BE&{-lYdc^TT'^fcit?-1*-*, 3 = ai, • • • a, 

where a — Q!i+Er=2(Q:J —■'■)•  ^1'ien 72K • • j7a+i ^^e cc roois o/ i/ie polynomial 
function equation with degree a, 

g{z) = za- axz"'1 + ■■■ + (-l)aaa = 0 

if and only if 72,. • • ,7a+i saiis/y 

5(2 - Z2)a2-1 • • • {Z - ZnY"-1 

(3.1) 
{Z - 7l) • • • {* - 7a+l) 

a+1        T 

+ E-1 —a 

Proof. Let 

2 - T1        S * - ^ 

a+1 
—a        T—«,     1 
_7l      ^2-7, 

(^-7l)---(2-7a+l)' 
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Then a direct computation shows 

(3.2) bj = (-iy{-a J2 (7n---7i,) 
2<zi< —<zj<a+l 

1=2   2<ii<»'<ij<a+l 

a+1 
+ ^1X] S (Tti-'-Ttj-i)) 

'/=2   2<ii<-<z:7-_i<a+l 
ii,...,Zj_i^ 

= (-l)J(-J        E        (7ii---7t,) 
2<ii<---<ij<a 

+ (a-jH-l)7i Yl (7u •••7^-i)), 
2<zi<-<iJ_i<Q:+l 

where j = 1,..., a. Let 

2<ii< —<ij<a+l 

Then (3.2) becomes 

(3.3) ^ = (-lyt-jaj + (a-j + 1)71^-1). 

Since 

(Z _ Z2)«1-\Z - 23)^-1 . . . (z _ Zn)"n-1 

i=2 \j=o 

a—ai 

E 
z=o 

a—ai 

/= J2H \-jn 

z=o 

where 

dl = {-1) Z^       ^2 0a2-l '^n 0a„-l^ 

/=J2H hjn 
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then 

a—ai 

(3.4) B^dtz^YsbjZ^ 
1=0 j=l 

is equivalent to 

(3.5) 6       ro>j = l,...1a1-l> 

{Bda-j, j = ai, ,a. 

Thus combining (3.3) and (3.5), we get 

(3.6) 

ai-=a7i, 

-jaj + (a - j + 1)71 aj_i = 0, j = 2,..., ai - 1, 

^-jaj + (a - j + l)7i «j-i = (-l^^da-j, j = ai,...,a. 

By using iteration to (3.6), one obtains 
(3.7) 

'CaTl,  3 = 1, •••,"! - 1, 
Ci7j-B(-iy^=i 

. -B E?^ (-lR-«^-f (Q-J+1lj^)-(a'0, J = ^ ..., a. 

This shows that (3.4) is true if and only if (3.7) is satisfied. Hence by the 
fundamental theorem, (3.1) is true if and only if 72,... ,7a+i are a roots of 
the polynomial function equation, 

g(z) = za- CHZ*-
1
 + • • • + (-l)aaa - 0. 

The lemma is proved. □ 

Remark 3.1. By (2.29) and Theorem 3.1, one can prove that, for any n 
singular points with conical angles 2^-integer on 52, there are two uniform 
constnats C\ and C2 depending only on I?, A, 71 such that the areas of the 
family of minimal exceptional HCMU metrics constructed in Theorem 3.1 
satisfy, 

(^ C* 
—=. < Area(g) < -7=,   as  c —» 0, 

and 
C1 C1 

—p < Area (g) < —=.   as  c -> 00. 
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Hence for any n singular points with conical angles 27r • integer on g2 and 
a positive number CQ, there is a family of HCMU metrics on S2 with same 
area CQ, which vary energy E(g) with the parameters B,A,ii. This shows 
that a HCMU metric with finite integer conical singular angles on S2 could 
not be in general a local minimizer for energy functional E with respect to 
a general deformation, which preserves the area and conical angle structure 
at each singular point, although any HCMU metrics is a local minimizer in 
the class Q(M) defined in O. Introduction (cf. [Ca2], [Ch3]). 

4. HCMU metrics on M2. 

In this section, we shall classify all HCMU metrics with finite energy and 
area on M2. First by Proposition 1.1, we have 

Proposition 4.1. Let g = e2^\dz\2 be a HCMU metric with finite energy 

and area on R2. Let 2'7ra > 0 be the weakly conical singular angle at the 
infinity on R2.  Then 

i) If a ^ integer, g is a radial HCMU metric on R2. 

ii) If a = 1, then the Gaussian curvature K = ^/c of g, and consequently 
the metric g can be extended to a smooth one with constant Gaussian 
curvature on S2. 

iii) If a = integer > 2, then g is an either radial or exceptional metric on 
R2. 

Proof. Let g — e2^\dz\2 be a HCMU metric with finite energy and area on 
R2. Let K be the Gaussian curvature of g. Then (</>, K) is a global solution 
of system (1.1) on R2. If K = const., then the metric g can be extended to 
a smooth one with constant Guassian curvature on S2, which was proved in 
[CL]. In particular, the weakly conical singular angle is 27r. Hence, the case 
K = const, is of case ii) in Proposition 4.1. Now we assume K ^ const. 
Then there is a holomorphic function F(z) on R2 such that F(z) = e-2^^. 
Therefore, by Proposition 1.2, we see that there is a holomorphic function 
g(z) on R2 such that 

{^(i),   if a ^  integer; 

^(«+i)(c + fl(I))j   for some  c ^ 0, 

or   2ff(^), if a =  integer. 
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i) In case a ^ integer. By (4.1), we see that the holomorphic vector field 
onE2 

can be extended to a holomorphic vector field on S2 with vanishing at the 
origin and infinity. Then by using a suitable rotation of coordinate, we may 
assume 

e-2<f,Kz = az 

for some real number a / 0. It follows the one-parameter actions generated 
by the imaginary part of holomorphic vector field e~2^Kz-§^ are rotation 
transformations. By a well-known result, 0 is invariant under these rota- 
tions. This shows that </> is radial and g is radial HCMU metric on R2. 

ii) In case a = 1. As in Section 1, it is convenient to use Kelvin trans- 
formation, w = -. Let 

^(w) = -2ln\w\+(/)(-)    and  K(W) = K(- 

Then (ip^K) is a solution of system (1.1) on D \ {0}. By Lemma 1.1, it 
follows |V>| < C for some constant C as a — 1. On the other hand, by 
Proposition 1.1, K € C0(D). Thus \Ke2^\ < C and \(-K2 + c)e2^\ < C. 
By the standard regularity theorem, ip G C1,S(D) and K G CljS(D). Using 
the iteration method, we prove ip G C00{D). This shows the metric defined 
by e2<^\dz\2 can be extended to a smooth one on S2. By a well-known 
result of Kazdan-Warner ([KW]), we see that the vector field e~2(^Kz^ is 
holomorphic on S2 implies K = const, and consequently (0, K) is radial by 
a result in [CL]. K = y/c follows from the relation 

L (-K2 + c)e2(t,dx = 0. 

hi) In case a = integer > 2, there are two cases: one is F(z) = £#(-), 
the other is F(z) = za+1(c + g(l)). In the first case, g must be radial by the 
argument in case i). In the second case, g is an extremal metric according 
to Definition 1.1. □ 

Since E2 = 5'2\{oo}, then by Theorem 2.1, we can classify all exceptional 
HCMU metrics on E2. In the case of minimal, exceptional HCMU metrics, 
we have 
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Theorem 4.1. Let g = e2<^\dz\2 be a minimal, exceptional HCMU metric 
with a conical singular angle 27ra > 47r at the infinity on R2. Then there are 
a positive number A and two complex-valued parameters 71 and T (7^ 7f) 
such that K and (f) are given by 

1      o-jofr+fl"-1-1)^1 

and 

where 

* = ^ln(i7MFHif3 + cir+c' 

^ = Vc(2a - l)/v/a2-a + l, 

c,= (a + l)(a-2)/33_ 
2      ' 

ii) 

3(2a - 1) 

f(z) = co(z - 71) • • • (z - 7a+l), 

-3a(a - l)/32      (-l)a 

CO 2(2tt-l)2    -ar + a7f' 

and 72,... ,7a+i are Q1 TOO^S o/ i/ie polynomial function equation with degree 
a, 

g(z) = za- CHZ*-
1
 + ■■■ + (-l)aaa = 0, 

where 
foj = CWi = ^("ij-jiTi. j = 1, • • • ,ai - 1, 

I o„ = r. 

Proof. Applying Theorem 3.1 to the case a = ai, we have 

foj = C^ = ji^.Ti,    j = 1,..., a - 1, 

laQ = 7f-(-l)af- 
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Let aa = T. Then B = (-l)a(aji - aT), and Theorem 4.1 follows immedi- 

ately. □ 

Now we assume that g = e2*|d;z|2 is a radial, extremal Hermitian metric 
on R2 with two different weakly conical singular angles 27rai and 27ra2 at 
the origin and infinity. In the other hand, </> satisfies 

](/) — (ai — 1) In |a;|| < oo,   as   \x\ —> 0, 

and 
|0 — (012 + 1) In |x|| < oo , as   \x\ —> oo. 

Recently, X. Chen discussed these radial metrics by using ODE method 
([Ch2]). In addition of HCMU, we can use a new ODE method to give an 
explicit formula for these metrics. In fact, we can prove that any radial, 
extremal Hermitian metric with finite energy and area on R2 \ {0} must be 
HCMU (cf. Proposition A in Appendix). 

Since the Gaussian curvature K of g is a function only on one variable 
r, then by the proof of Proposition 1.2, one see 

\e'2(t>KY\ < C\zl   near  ^ = 0, 

and 
\e~2ct>Kz\ < C\zl   near  z = +oo. 

This shows that the holomorphic vector field on R2 

oz 

can be extended to a holomorphic vector field on S2 with vanishing at the 
origin and infinity. Hence there is some constant ci ^ 0 such that 

(4.2) e-2(pKf = cir. 

In particular, 0,2 ^ 0 in (1.15). 
Prom (2.1), we have 

(4.3) (r^ = -if re2*. 

Combining (4.2) and (4.3), it follows 

-K2 

(4.4) r<$: = —— + c2. 
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Similarly, by (2.2) and (4.2), we have 

4.5) rK' = —— + — + C3. 
3ci        ci 

Lemma 4.1.  There are three real-valued roots of equation 

(4.6) -K3 + ZcK + Scics = 0. 

Proof. On the contrary, we assume that there is only one real-valued roof /5 
of eqaution (4.6). Then there are some a, b, dx such that 

-^ + c^ + ciC3        = -3     _, ,     T) , ^ + 

and 
0 < Ci < X2 + aK + 6. 

Thus one can solve equation (4.5) as follows, 

eF(K) (K2 + aK + hf (K-i3)= Ara 

for some a ^ 0 and a', where function |.F(iiQI < C- This shows 

lim (K2 + aK + b)a'\K(x) - /3| = oo, 
|x|->-0 

or 
lim (K2 + aK + b)a'\K(x) - /3| = oo. 

|a;|—>-oo 

But this is impossible since K is bounded by Proposition 1.1. The contra- 
dition implies Lemma 4.1. □ 

Proposition 4.2. Let g = e2^\dz\2 be a radial, extremal Hermitian metric 
with finite energy and area on R2 \ {0}. Suppose that two weakly conical 
singular angles 27rai and 2na2 at the origin and infinity are different Then 
(j) and K are given by 

(K - fay^^-K + P2)(K - ft)0"/0*"1 = Br-2a\ 

and 
M     1      (-K^ + ?>cK + C\      1 2. 
^ = - In    5     " o H?>ci), 2      V r2 /      2 

where B > 0 is some constant and Pufcifo, and C can be uniquely deter- 
mined by c, ai, a2- 
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Proof. By Lemma 4.1, there are three roots PiifaiPs, of equation 

-K3 + 3cK + C = 0, 

where C = Scics and 

c= f   K2e2^dx/ [   e2^dx>0. 
JR2 '   JR? 

Moreover, by using the argument in Lemma 4.1, one can prove these three 
roots are different. So we may assume ^2 > Pi > fiz- Since a2 ^ 0, it is not 
hard to check K(fy,K{po) ^ fo. Hence we may further assume 

P1 = K(0)   and  02 = K(+oo). 

By (4.5), we see that there are numbers C4,ai,a2 such that 

01 + ^2 + 1 = 0, 

and 
1                  1                      1      \ rW      c4 

ttlTT TT + 77 TT + a2T7 TT )K   = — ■ 
■K-fa  '  K-02 K-fo 

Then we solve the above equation as follow, 

(4.7) ■(# - /3i)ai(i92 - K)(K - for = SrC4, 

for some positive number B. On the other hand, by (1.15) and the condition 
&2 ^ 0, one can prove 

lixn ^LZ^ = S/ and    lim   ^-^ = s^ 

for some constant B,f > 0 and Bf < 0. It follows 

-a2 0^2 
C4 = — za2, ai = , a2 = 1, 

ai ai 

and consequently, 

(if - /3i)~a2/ai(^2 - if)(if - Ps)"2/011-1 = Br-2a2. 

Moreover, there are three identies 

'01+02+03=0, 
/52(a2 - 2ai) + j9i(2a2 - ai) = 0, 
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This solves 

Pi = (2ai-a2)J-2 
V ai 

9 .        9 ' z - aia2 + a^ 

and 
/ c 

#2 = (2^2 -ai) 
a^ — aia2 + a^ 

By (1.15), one can determine the constant ci in (4.2), 

2a2 

Combining (4.2) and (4.5), we have 

(4.8)                     *=-ln^            r2            j- -1^4), 
where C = Pifofe. D 

Remark 4.1. By Proposition 4.2, the area of metric g = e2^\dz\2 on R2 

can be computed by 

Area =  /        „ * n     ax. -Li; 3c2r2 

Then c is uniquely determined by Area, ai and a2, if we normalize the area. 
This shows that any radial, extremal Hermitian metric on M2 \ {0} with two 
different weakly conical singular angles at the origin and infinity is uniquely 
determined by angles under the nomalized area. 

As a corollary of Proposition 4.2, we have 

Corollary 4.1. Let g — e2^\dz\2 be a radial, extremal Hermitian metric on 
R2 with a weakly conical singular angle Zira ^ 27r at the infinity. Then <j) 
and K are given by 

f3{* + l)Y-1    D„_2Q 

J.O-*>(*^)    — 
and 

'k~2ilL\ r^ I      2 ^w-g3+r+cv^). 
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where B > 0 is some constant and 

(3 = Vc^a - l)/y/a2-a + l, 

(a + l)(a-2)/33 

C = 

ci = 

(2a - I)2 

3c(a - 1) 
2(a2-a + l)' 

Remark 4.2. It seems that any extremal Hermitain metrics on R2 should 
be HCMU. If it is true, then Proposition 4.1 classifies all extremal Hermitian 
metrics on S2 with only one weakly conical singular point. In Appendix, we 
will show that any radial, extremal Hermitain metric with finite energy and 
area on M2 \ {0} must be HCMU. 

5. Examples. 

Example 1. S^- 

In this case, there are two singular points with conical angles ATT on 
S'2. Without the loss of generality, we may assume two singular points are 
pi = (oo) and p2 = (0). 

Proposition 5.1. For fixed c > 0; any exceptional HCMU metrics on S2 

with two conical singular angles 47r at the origin and infinity respectivly are 
determined by a real number A > 0 and two complex-valued parameters 71 
and F (^ 71). In precise, K and </> are given by 

1   ,(p-K){K+wi$r 
(# + /?/5)3 

= A\z - 7ir6|z - 72|2N - 73|2|2 - 74|2, 

^ = \ln (TFTTr? (-lK3 + cK + d 

where 

ii) 

2     VUWV   3 

_     5  rr       ,   ,     20c ,— 
P = -V7c   and c = —=V7c; 

7 147 

—3c 
F(z) = TATT/—T^2'1^ - ^(z - ^t2 - 73)(« - 74), 14(-l/7i +7J 
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where 72,73,74 are three roots of the polynomial function equation with 
degree 3; 

g(z) = zs - aiz2 + a2Zl - as = 0, 

and ai = 871, a2 = ^T and as = F / 7^. 

Proof. By the condition in Theorem 2.1, 3A: < a + 1 = 4, we have fc = 1. 
This shows any exceptional HCMU metrics with two singular conical angles 
47r on S2 are minimal. Then by using condition (2.27) in Theorem 2.1, we 
get 

rai = 871 

B - 2(-2a2 + 271a!) = 12(^ + 71
2). 

Let as = F 7^ 7^. Then 

3 
ai = 371   and  a2 = —F. 

71 

Moreover, by using Theorem 3.1, we can determine numbers /?, c', and prove 
Proposition 5.1. □ 

Example 2. S'2 2 2- 

In this case, there are three singular points with conical angles ATT on 
S2. Without the loss of generality, we may assume three singular points are 
pi = (00), P2 = (0) and ps = 1. 

Proposition 5.2. Let pi = (00),P2 = (0) and ps — (1). Then for fixed 
c > 0; any exceptional HCMU metrics on S2 with three conical singular 
angles 47r at pi, P2 and ps respectivly are determined by a real number A > 0 
and two complex-valued parameters 71 and B ^ 0. /n precise, K and (j) are 
given by 

;(/3-K)(K + 5/?/7)2 

(JR: + 2/?/7)3 

= Alz - Til-8^ - 72|2|-2 - 73|2k - 74|2k - 75|2, 

where 
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i) 

") 

„     9lVc      ,  ,     70c\/l3c 
p =    ,_    ana c = 

13 507 

no = -18c. 
^3" Bz-1{z-l)-\z->n)---(z-'K), 

where 72,... ,75 are three roots of the polynomial function equation 
with degree 4; 

g(z) — z4 — aiz3 + a2Z2 — a^z + a^ = 0, 

and ai,..., 04 determined by 

ai = 471 

a2 = 67? - f 

-3 = 47? + !-^ 

[a4 = 7i4-S(S + S)- 

Proof. By Theorem 3.1, one can compute, 

< 

ai = 471 

a2 = 67^ 

as = 47? 

a4 

Sf = 67l
2-f 

Cf B 

= it-c{^ 
cd2^ = H+z B31 

3 
dr 

12 
i) = 7i4--B(^ + ^). 

Moreover, by Theorem 3.1, we can determine /^c', and prove Proposition 
5.2. □ 

Remark 5.1. In [Ch3], X. Chen described the Calabi's example of HCMU 
metric on S2 with three conical singular angles 47r. By Proposition 5.2, this 
metric is belonged to the family of exceptional HCMU metrics constructed 
in Proposition 5.2, since it is nonradial near each sigular point. 

Appendix A. 

The following proposition is needed in Section 4. 

Proposition A. Let g — e^^dz^ be a radial, extremal Hermitian metric 
with finite energy and area on R2 \ {0}.  Then g is HCMU. 
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Proof. Let 27rai and 27ra2 be two weakly conical singular angles at the origin 
and infinity respectively. Since the Gaussian curvature K must be constant 
as ai = a2 ([Ch2]), we may assume ai ^0^2. 

Let 

K(x) = ±- [        (H\x - y\) - ln(M + 1))(-K2 + c)e^dy. 
27r JR

2
\{O} 

Then it is clear 

(A.l) AK = {-K2 + c)e2^? on  R2 \ {0} 

Since K is also a solution of (A.l), we get 

A(if -£) = (). 

It follows 
(JRr-ir) = Ite (/(*)),      onM2\{0} 

for some meromorphic function f(z) on R2.   On the other hand, one can 
prove 

\K — I3\n.r\ <C, as  r —> +00, 

where 

0 = -^/ (-X2 + c)e2^. 

Hence by using the condition that K is radial, we see that f(z) must be 
constant, and consequently, 

K = K + const.. 

Since (/> and K are radial, as in the proof of Lemma 1.3, we may assume 
that 

1 / 1 
riljr = -(0:2 + 1) + ai Inr-x— + o   Inr- 

/v»2a2 \ -r*2Q:2 

^ = 6ilnr^— + o(lnr ^2a2 I ^2a2 

and 

r^ = (1 + ^(Inr)2-^ + o ((Inr)2-^ 

^ = &2(lnr-)2i + of(lnr)2-^ 
^.2a2 \ ^        ^   -r>2a2 



Explicit construction ... 215 

where ai,6i,a2,&2 are some constants. Then we can obtain 

Kww = ^J (2a^ + 0 (W)2- -1 yj2   \ H \ ^2a2 

Since X^^ is holomorphic on C\{0}, we see that there is some holomorphic 
function g(z) on C such that 

(A.2) K9WW = ^(2a2/3 + w^gi-)). 

On the other hand, by using Kelvin transfomation, z = —, and the above 
argument, we can also prove that there is another holomorphic function gf(z) 
on C such that 

(A.3) Kzz = -£ f 2aljS + z-lg' Q 

Since 

then combining (A.2) and (A.3), we get 

/? = 0,   and  0(*) = g\z) = 0, 

and consequently, KiWW = 0, i.e., ^ is HCMU. D 
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