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Let T be a cocompact discrete subgroup of SU(n, 1) which acts 
freely on Bn = 5C/(n, 1)/U(n). We suggest a construction of rel- 
ative Poincare series associated to loxodromic elements of F. For 
F C 517(2,1) we describe Bohr-Sommerfeld tori in T\B2 associ- 
ated to hyperbolic elements of F and compute the asymptotics of 
the relative Poincare series associated to hyperbolic elements of F 
in semi-classical limit. 

1. Introduction. 

1.1. General definitions. 

We shall start with a brief review of the general concept of an automorphic 
form. Let G be a connected non-compact real semi-simple Lie group with 
a finite center, which we also assume to be unimodular, if be a maximal 
compact subgroup of G, F be a discrete subgroup of G. Let V be a finite- 
dimensional vector space, p : K —> GL(V) be an (anti)-representation of K. 
A smooth Z(Q)-&mte function / : G —> V is called an automorphic form 
on G for T if 

(1) H-ygk) = f(g)p(k) 

for any 7 G F, g G G, k G if, and there are a positive constant C and a 
non-negative integer m such that 

(2) \f(9)\<C\\g\r 

for any g G G, here |.| is a norm in V, and ||p||2 = tr(g*g) is taken in the 
adjoint representation of G. 

The automorphy law (1) means geometrically that / defines a F-invariant 
section of the vector bundle G x^ V —> G/K associated to the principal 
bundle G —» G/K, where G XRV — G xV/ ^, and the equivalence relation 
is given by (gk,v) ~ (g,vp(k)). 
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The growth condition (2) is automatically satisfied with m = 0 in the 
case when r\G is compact. 

Recall also that a function / : G —> V is said to be Z(g)-finite if it 
is annihilated by an ideal / of Z(g) of a finite codimension, here Z(g) is 
the center of the universal enveloping algebra U(g) (over C). U(g) can be 
identified with the algebra D(G) of all left-invariant differential operators 
on G (with complex coefficients): to Y G g is associated a differential oper- 
ator Yf(g) = ■^f(getY)\t=zQ) this establishes a linear map g —> D(G) which 
extends to an isomorphism from U(g) onto D(G). Z(g) can be viewed as 
the subalgebra of all bi-invariant differential operators, it is isomorphic to 
a polynomial ring in I letters where I is the rank of G. A useful example 
to have in mind is G = 51/(2, i?) and codim J = 1, then we have: I = 1, 
Z(g) is generated by the Casimir operator C, and saying that a function / 
is Z(g)-finite is equivalent to stating that / is an eigenfunction of C. 

A well-known construction of an automorphic form on G is Poincare 
series 

where the function q : G —>- V is Z(g)-finite and K-finite on the right (i.e., 
the set of its right translates under elements of K is a finite-dimensional 
vector space), and q E L1(G). One can also consider relative Poincare 
series 

Yl 9(75), 
7ero\r 

where q : G -> V is Z(g)-finite, if-finite on the right, To-invariant, and 
q G L^ToXG). 

Let us explain now how to construct an automorphic form on G/K. An 
automorphy factor is a map /x : T x G/K —> GL(V) such that /i(^iP25 x) = 
fJ>(gi,g2x)lJ>(g2,x)- It allows to define an automorphic form on G/K as 
a function / : G/K —> V such that 

/ MMfr, a) = f(x) 

for any 7 E T, x G G/if. Notice that then the function 

F(g) = f(g{0)M9,0), 

where g e G, x — 5(0) G G/K, satisfies (1) with p(fc) = /x(fe,0), where 0 is 
the fixed point of K in G/K. If / is holomorphic then F is Z(g)-finite. 
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In particular, for a smooth function q G L1(GIK) the Poincare series on 
G/Kis 

(3) J^^T^MT^)- 

1.2. Automorphic forms on bounded symmetric domains and 
quantization. 

Consider a classical system (M,a;), where M is a manifold, and a; is a 
symplectic form on M. The main problem of quantization is to associate a 
quantum system (%, O) to (M, CJ), where % is a Hilbert space and O consists 
of symmetric operators with domain in %. Elements of % are wave functions 
(quantum-mechanical states), and elements of O are quantum observables. 

The map / h-> /, where / G C00(M) and / G (9, should satisfy the 
following requirements: 

1) it is M-linear, 
2) if / = const then / is the corresponding multiplication operator, 
3) if {/1, M = h then hh - /2/1 = ift/a- 
These are Dirac quantization conditions and they are famously impossi- 

ble to satisfy in most cases, so one should consider a certain modification of 
them. 

How do automorphic forms appear in the context of quantization ? 
Suppose that M is a compact Kahler manifold of complex dimension 

n which is a quotient of a bounded symmetric domain D = G/K by the 
action of a discrete subgroup F, i.e. M = T\D. Then H consists of holo- 
morphic automorphic forms on D for F. More precisely, let us consider the 
well-known quantization scheme for compact Kahler manifolds via Toeplitz 
operators (it is related to the standard scheme of geometric quantization 
with Kahler polarization). Automorphic forms are holomorphic sections of 
L®*1, where the canonical line bundle L — AnTj*olM is the quantizing line 
bundle on M, here k is a positive integer which determines the weight of an 
automorphic form, and h= ■%• 

We also notice that the automorphic form (3) is a sum of coherent states 
associated to a holomorphic discrete series representation of G. 

Let us describe all this in a bit more details. Let D = G/K be a bounded 
symmetric domain, it is a Hermitian symmetric space of noncompact type. 
The irreducible Hermitian spaces of non-compact type are 
l)SU(j>,q)IS{U{p)xU{q)), 
IT) Sp(p,R)/U(p), 
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III) SO*{2p)IU{p\ 
IV) S00(p,2)/S0(p) xS0(2) 
(and also there is the case of an exceptional Lie group). We have a metric 

(4) ds2 = gijdzldzj, 

the corresponding Kahler form is u = igijdz1 A dz^ — iddln.K(z,z), where 
K(z,w) is the Bergman kernel of the domain D. Recall that K(z,w) = 
K(w,z) and 

K(>yz,>yw) = [det J(7,^)]-1[det J^.w^Kiz.w). 

A quantizing line bundle L —> M = r\D is defined as a line bundle 
such that the curvature of its natural connection is the Kahler form UJ on 
M. Denoting the canonical line bundle by L we see that the potential 
1-form corresponding to the natural connection on L is 9 = idln(s,s) = 
—idlnK(ziz)) hence the curvature d9 = —iddlnK(z,z) = OJ and this is 
indeed a quantizing line bundle for M. 

A holomorphic function / : D —>» C is called an automorphic form of 
weight k if 

(5) /(7^)[detJ(7^)]A: = /(^) 

for any z E -D, 7 E F; here J(7, z) is the Jacobi matrix of transformation 7 at 
point z. In the context of 1.1 the automorphy factor /x(7,2) = [det 7(7, z)]^. 
The space of automorphic forms of weight k can be identified with the 
complex inner product space ijr0(M, L®k) of holomorphic sections of L®k. 

Now we consider a family of maps p^, here k is a positive integer, such 
that Pk(f) = T* , where / belongs to the Poisson algebra of smooth real- 

valued functions on M and Ti ' is the Toeplitz operator on H0(M,L®k) 

obtained from multiplication operator Mi ^(5) = /^ on L2(M,L®k) by the 

orthogonal compression to the closed subspace H0(M,L®k), i.e. Ti ^ = 

nW oMJ^ ODW, where H^) is the orthogonal projection from L2(M,L®k) 

toH0(M,L®k). 
In the Berezin scheme of quantization [1], [18] for each K — ^ we consider 

the space ^ of functions holomorphic in D and satisfying (5) with the scalar 
product defined by 

(f,g) = const (ft) /" /(z)5(z)[ir(Z,z)]-Hd^), 
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where d^{z) = UJ
71
 is the G-invariant volume form on D corresponding to 

the metric (4). It is clear that ^ is naturally identified with H0(M,L®k). 
For the sake of completeness let us also explain briefly how the operator 
A corresponding a classical observable A = A(z), is defined. First, we 
consider an analytic continuation A(z,w) of the function A(z) to D x D. 
The covariant symbol A(z, z) of A is defined as the diagonal value of the 
function 

_ SMA[(K{u,w))i]{K(z,u))Utiu) 
/!( Z) VO ) 

and 

fM(K(UiW))lh(K(z,u))Kdn(u) 

(Af)(z) = const (h) [ A(z,w)f(w)[K(z,w)]^K(w,w)]-*dti(w). 
JM 

So we end up with the algebra A^ of covariant symbols of bounded operators 
acting in T^. The *-product in An is given by 

Ax* A2 (z, z) = const (H) [ A1(z,w)A2(w,z) (^W^W'Z\)h d^w). 
JM \K(Z,Z)K(W,W)J 

In conclusion let us discuss the Poincare series (3).  Consider a unitary 
representation of G in L2(G/K) given by the operators 

[A9)(q)](z) = [detJ(g,z)}kq(gz). 

It can be regarded as a subrepresentation of the right regular representation 
of G in L2(r\G). Fix q G FK, then the set {/JTk(g)(q)\g E G} is a system of 
(generalized) coherent states. Strictly speaking, we should regard two coher- 
ent states 7rk(gi)(q) and /Kk(g2){(l) as equivalent if 7rk(gi)(q) — eia'Kk{g2){q)- 
Now it is clear that (3) is a sum of coherent states which belong to the 
subsystem associated to F. 

1.3. Comments on the subject of the present paper. 

In [9] and in the present paper we consider holomorphic automorphic forms 
on D = Hg = SU(n, l)/U(n). In [9] we construct sets of relative Poincare 
series which span the spaces of C-valued holomorphic cusp forms on a finite 
volume quotient of D. In the present paper we regard holomorphic C- 
valued automorphic forms on Hg as holomorphic sections of the line bundle 
L®k —> r\H^, where L is a quantizing line bundle on r\EIg, k is an integer, 
and F is a discrete cocompact subgroup of SU(n, 1). We construct relative 
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Poincare series associated to loxodromic elements of F and we address an 
interesting problem which is not resolved for Poincare series in general: is 
it true that these series are not identically zero ? We restrict ourselves 
to the case of complex dimension 2 and answer "yes" to this question going 
through the following steps: 1) to each hyperbolic element of T we associate a 
sequence A(Z), I > 1, of Legendrian submanifolds of the unit circle bundle in 
L* such that the corresponding Lagrangian tori in r\Srf7(2,1)/U(2) satisfy 
a Bohr-Sommerfeld condition, 2) following the method of [6] we compute 
the k-th. component Uk of the delta-function associated to A(l) and the 
leading order asymptotics of ||iXfc||, which allows us to conclude that the 
relative Poincare series associated to hyperbolic elements are not zero for 
large values of k (i.e. in semi-classical limit h = £ —> 0). 

2. Preliminaries. 

2.1. Complex hyperbolic space. 

Consider the complex hyperbolic space 

Hg - SU{n, l)/S(U(n) x 17(1)) = F({z G C1*1 \ (z,z) < 0}) ~ £n, 

here Bn is the open unit ball in C™, ( . ,  . ) is the Hermitian product on 
Cn+1 given by (z, w) = ziwi H h ZnWn — zn+iWn+i. 

A vector z E C71"1"1 — {0} is called negative (resp.   null, positive) if the 
value of (z,z) is negative (resp. null, positive). 

For z,w e Bn the corresponding vectors in C71"1"1 are I     ] = 
z^ 

and 

w 
and we denote (z, w) = z\wi + • • • + znwn — 1. 

The group of isometrics of Hg is PU(n, 1) = 517(n, 1)/center. The 
group SU{n, 1) acts on Bn and on the boundary sphere dBn = ¥({z G 
£n-\-i _ |o}|(2;,z) = 0}) by fractional-linear transformations: for 

7 = 

/an 

a>ni 

Cn        d ) 
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and z G Bn (or z G dBn) we have: 

T1 

72: —   . , . . . , 
\   cizi H h cnzn + d ci^i H 1- cnzn + d 

and 

det 7(7, *) = (azi + -" + cnzn + d)-^4"1), 

where J(j, z) denotes the Jacobi matrix of transformation 7 at point z. 

An automorphism is called loxodromic if it has no fixed points in Bn and 
fixes two points in dBn. Notice that the fixed points of the automorphisms 
correspond to the eigenvectors of the corresponding matrices in C/(n, 1). A 
loxodromic automorphism is called hyperbolic if it has a lift to C/(n, 1) all of 
whose eigenvalues are real. 

A loxodromic element 70 G SU{n, 1) has n — 1 positive eigenvectors and 
two null eigenvectors. 

Let i>i,... ,fn-i be the positive eigenvectors of 70 and ri,... ,rn_i be the 
corresponding eigenvalues. Then \TJ\ = 1, 1 < j < n — 1. 

Let X, Y be the null eigenvectors of 70. Then the corresponding eigen- 
values are A and A-1 for some A G C, |A| > 1. 

A loxodromic transformation can always be represented by a matrix in 
t/(n, 1) with eigenvalues TI,. .. J^-I^AJA

-1
 where A G M, |A| > 1. 

The geodesic connecting X and Y is the geodesic in the Poincare metric 
on the complex line containing X and Y (so it is an arc of a circle orthogonal 
to dBn or a diameter), it is 70-invariant and is called the axis of 70. 

2.2. Automorphic forms and geometry of the quotient. 

Consider a compact manifold X ~ T \ Bn, where F is a discrete cocompact 
subgroup of 5(7(n, 1) which acts freely on Bn. 

The Bergman kernel for the domain Bn is K(z,w) = (_/2^\\n+i (UP to 

a multiplicative constant) and an SU(n, l)-invariant Kahler form on Bn is 

(   4- 1V I n 

Q = iddlnK(z,z) = — ry-     (z,z) ^^dzj ^dzj — (dz.z) A (z,dz) 
{Z'Z)     V i=i 

Remark 2.1. With this normalization the holomorphic sectional curvature 
IG Prm^l to —^1 and the sectional curvature is pinched between — ^— and 

1 
'n+l* 
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A holomorphic function / : Bn —t C satisfying the automorphy law 

(6) /(7z)(detJ(7,z))A; = /(^) 

for any 7 G F is called an automorphic form of weight (n + l)k for F. The 
corresponding automorphic form on SU(n, 1) is given by F(g) = /(5f(0))C/c, 
where ( = ((g) = det J(g, 0) and the origin 0 of Bn is the fixed point of 
K — S(U(n) x U(l)) ~U(ri). The automorphy law on the group is 

F(<ygK) = F(g)p(K), 

where P(K) = (det J(^,0))/c, for any g G G, 7 E F, ^c G if. Notice that 
7 : C -^ C det 7(7,2;) for any 7 G SU(n, 1). The automorphic form F^) 
can be regarded as a section of Lk where L = KnT^olX is the canonical line 
bundle, and T^olX denotes the holomorphic cotangent bundle on X. 

We shall denote the space of automorphic forms of weight (n + l)k for F 
on Bn by ^n+i^F) and the corresponding space of automorphic forms on 
SU{n, 1) by 5(n+1)fc(r). The inner product in each of these spaces is given 
by 

(/,s) = (/(*)Cfc,s(*)C*) - /     f9i-M)^kdV, 
Jr\Bn 

where 
.„ dzi A dzi A • • • A cfon A dzn 

dv = 1  — 
{-MY*1 

is a constant multiple of the SU(n, l)-invariant volume form for the metric 
corresponding to Vt. 

Given a subgroup FQ of F and a holomorphic function q(z) satisfying (6) 

for all 7 G FQ and such that Jr x Bn \q(z)\(—(z, z))    2    dV < 00, the relative 

Poincare series associated to FQ is defined as 

Q(z)=   Y,   ?(7^)(detJ(7^))fc. 
ieTo\r 

By Theorem A.l (Appendix) this series converges absolutely and uniformly 
on compact sets and belongs to the space S^n+ij^F). 

The potential 1-form 9 on L* is characterized by 

Vs = -iOs, 

where V is a connection on L* and s is the unit section. In local coordinates 
the potential 1-form corresponding to the natural connection on L* is 

9 = idln(s,s) = -idln(-(z1z})n+1. 
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The curvature on L* is d6 = — f2, hence L is the natural quantizing line 
bundle for X. 

Let 
Ek = H0(X,L®k) 

be the complex inner product space of holomorphic sections of the k-th 
tensor power of L.   Consider the unit circle bundle P C L*.   Denote also 
L = AnT£olB

n, P - the unit circle bundle in L*. 
The connection form a : TP -> M on P is 

„     .d( ,       ^(dz,z)      ,dC _.      n +1  Iz.dz) — (dz.z) 

C V y   (z,z) C ^ 2 (z,z) 

in local coordinates z G Bn, ( — (—(z, z))~^~e1^. It serves as a contact form 
on P and P. 

A Lagrangian submanifold AQ C X satisfies a Bohr-Sommerfeld condi- 
tion if 

for any closed curve C C AQ.    The constant ^ plays role of the Planck 
constant. 

The unit disk bundle in L* is a compact, strictly pseudoconvex domain 
with smooth boundary P. Let us consider the Hardy space of P: E C L2(P) 
and the Szego projector 

IL:L2(P)->E 

given by the orthogonal projection of L2(P) onto E. We identify: 

E = ®kLoEk' 

We also denote 

Ek = I f(z)Ck | (^,C) G P, /  is holomorphic on  Pn, 

^nl/W|2(-^^»(n+1)fc^<oo}. 

We shall denote the corresponding orthogonal projection by 

n: L2
(P) -> er=o4- 

Both projectors can be extended to a class of distributions including the 
delta function. 
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3. Construction of relative Poincare series associated to 
certain loxodromic elements of F. 

Consider a loxodromic automorphism of Bn, represent it by a matrix 
70 G U(n, 1) with eigenvalues TI, ..., Tn_i, A, A-1, \TJ\ = 1, j = 1,... ,n — 1, 
A E R, |A| > 1, denote the corresponding eigenvectors by ^i,... ,i;n_i,-X", Y" 
(vi,..., vn_i are positive, X, Y are null). Notice that if each TJ is a root of 
1 then some power of 70 is a hyperbolic element. 

Now consider an arbitrary loxodromic element 70 G T C SU(n, 1) repre- 
sented as described above and assume that 70 satisfies the following condi- 
tion. 

Assumption 3.1. Assume that 1 is among the eigenvalues of 70. 

Remark 3.2. If g G U(n, 1) is hyperbolic then g2 is a hyperbolic element 
of SU{n) 1) which satisfies Assumption 3.1 and has the same eigenvectors as 

9- 

Generalizing the construction suggested in [9], for any collection, w.l.o.g. 
ui,..., i;m, m < n — 1, of positive eigenvectors corresponding to eigenvalue 
1 we construct a relative Poincare series 

07oM=    Y,   ^(7^)(detJ(7,2;))2fcG52(n+1)fc(r), 
7ero\r 

where TQ = (70), 

Zi,..., Im are positive integers such that ZH hZm is even, Z = (Zi,..., Zm). 
The series converges absolutely and uniformly on the compact sets of Bn by 
the Theorem A.l (Appendix) for k > 1. 

If n = 2 then the loxodromic elements of T satisfying Assumption 3.1 are 
exactly the hyperbolic elements of F. The relative Poincare series associated 
to a hyperbolic element 70 G F is 

0,0,1,*=   Yl   QlM(detJ^,z))2kGS6k(r), 
7ero\r 

where TQ — (70}, 

qiyZ) ~ {{z,X){z,Y)Yk+v 

and Z is a non-negative integer. 
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Remark 3.3. Let 71 and 72 be hyperbolic elements of F. If 71 = 7^ for a 
positive integer N, then ©71,/,/c = NQ12yiik. 

Remark 3.4. In further exposition we assume that I > 0. The relative 
Poincare series with I = 0 studied in [9] are associated to closed geodesies 
(not to Lagrangian tori). 

4. Bohr-Sommerfeld tori. 

Consider a hyperbolic element 70 G F C SU(2,1), denote its null eigenvec- 

(Xi\   (Vi\ tors by X = \ X2    , Y = I Y2    , denote its positive eigenvector by v, then 

W       W 
the corresponding eigenvalues are A, A  1, 1, for A G R, |A| > 1. We have: 

(v,X) = (v,Y) = (X,X) = (Y,Y) = 0. 

We normalize v so that (v,v) — 1, then the matrix 

X Y        X Y 
A:= 

Y 
(X,Y)+^     (X,Y)      2 

belongs to SU(2,1). 
/ 

The transformation A 1 = s 
\ 

(Y,X) +   2 
XT YT 

'10     0 
s, where s = [ 0    1     0 

.0   0   -1, 

maps the complex line containing X and y to the complex line {zi = 0} 
and maps the geodesic connecting X and Y to the geodesic C connecting 
(0,-1) and (0,1). More precisely 

/   o   \ 
■ x = (X,Y) A'1 ■Y = 

0 
1 

where • stands for the standard linear action of GL(3, C) on C3, so 

A^X = 

also A~l ■ v = | 0 
.0> 
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The following loxodromic element of 5/7(2,1) preserves C and the com- 
plex line {zi =0}: 

/l   o  o\ 
7 := A-SoA =     0    a    b    , 

\0   6   a/ 

where 
A2 + l   L     A2-l 

a = IT-' 6 =-2A- 
Denote 

ty = (^1,^2)   — A~lZi wi = A~'lzij W2 = ^4._ ^2? 

and apply the change of variables 

I  &     O 1 _— AC\ 

W2 =  nr :,  IWi = V 1 — WiWiRe     , 

0 < (^ < TT, 0<r< +00, 0 < i? < 1, 0 < 6 < 27r. 

Proposition 4.1. ^ny 2-cylinder C^R = {(j) = const,  i? = const} is 7- 

Remark 4.2. The coordinates (r, (j)) are the polar coordinates on the upper- 
half plane, (it!, ©) are the polar coordinates in the unit disc, and the coor- 
dinates (r, ©) on the cylinder C^^R ~ R x S1 are the axial and the angular 
coordinates respectively. 

Proof. Under the action of 7 

W2       bw2 + a      fere^-i  , rfa + fye^ + Ha-b)      r^-e^ + i' 

SO 

r->r -,   0->0, 
a — 0 

also 
I       I I    wi     I 1       1 

\/l — ^2^2 /l        10^2+612 \/l — ^2^2 ' 

so R -> i2. a 
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For a positive integer I consider the following submanifold of P: 

f{l) := {(n,, (-(ti,, w))lj+) | w e {0 = ^ R = ^^h ^ = -^e}. 

The natural projection of f{l) to B2 is the cylinder Cn   j—^— whose axis of 

symmetry is the geodesic C.  Denote r(Z) = (7) \ f (Z), A(Z) = Af(X) and 

To = (7o). 

Proposition 4.3. A(Z) := ATif) = To \ A(Z) w a compact Legendrian sub- 
manifold of P. 

Proof Both T(Z) and A(Z) are compact submanifolds of P of real dimension 
2. 

Let us prove that A(Z) is Legendrian. The restriction of a onto f^Z) is 

(dw,w)      .d( 

{w,w) C 

3 . widwi + W2dw2       3 . widwi + wodwo 
— "o2 = = 7 + ^^ = = dib 

1 W\W\ + 11)211)2 — 1        2   Wxttf! + ^2^2 — 1 

_     3,(1- W2W2)R2id& + A/1 - W2W2R2dy/l - W2W2 + W2dW2 

2 (1 - W2W2)R2 + ^2^2 - 1 

3 . -(1 - W2W2)R2id@ + y/T^W2W2lPdy/l - W2W2 + ^2^2 

2 (1 — W2W2)R2 +W2W2 - 1 

3.(1- W2)R2ide +y/l- wZR2dy/T^I% + W2dw2 
2' (l-^)(^-l) 

3 . -(1 - wl)R2idQ + ^/l - w^d^/l - w2 + ^2^2      _ # 
+ 2 (1-. 2){R2-l) ^ 

0. (i-^)i?2zde    J/   oi?2de 

imde ^z 
1      k 

= 3 3t+'      + f de = 0. 

The form a is 577(2, l)-invariant, indeed, under the action of M G SU(2,1), 

(z,0 H-*. (Mz,Cdet J(M,Z)) = (MZ,Cc3), 



164 Tatyana Foth 

where c = c(z) = (rrtsizi +1713222 + rris^)'1. We have: 

a = i^ - 3iSln(-^, z)) -> i^P- - 3i01ii(-(M*, Mz)) 

.c3dC + 3c2C& 
— z Szalnf — (2;,2;)cc) 

c C 

= i-^ + 32— -3z51n(-(zJz)) -3i91n(cc) 

= i^- + 3i— - 3i01n(-<s, ^)) - 3i— 
C c c 

= i—— 3z<91n(— (z,z)). 

D 

The natural projection Ao(0 of A(l) onto X is a compact Lagrangian 
submanifold of X. 

Proposition 4.4. Ao(Z) satisfies a Bohr-Sommerfeld condition. 

Proof. Let TQ(1) be the natural projection of T(l) onto JB
2
, and let To(Z) be 

the natural projection of T(l) onto X, ATQ(1) = Ao(Z). If C C Ao(Z) is a 
closed curve then A~lC C To(Z) is closed too. Let z G Ao(0> w ^ 2o(0> 
c = c(iy) = (asi^i + a32U>2 + ^ss)-1, we have: 

- f 9 = 3i [ d]n(-{z,z)) = 3i /        ain(-(A^, Aw)) 
JC JC JA-^C 

= 3i [       dln{-(w1w)cc) = 3i f      (dln(-(w,w)) + dine) 
JA-^C JA-^C 

= 3i /       (ain(-(w;,ty)) + dliic) = 3z /        51ii(-(ii;,it;», 

so /^ 0 is A-1-invariant (in fact SU{2, l)-invariant) and it is enough to prove 
that To(Z) satisfies the Bohr-Sommerfeld condition.  The restriction of 6 to 
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To(0 is 

n. widwi -\-w2dw2 
— 3i- 

WlWl + W2W2 — 1 

n.(l — W2W2)R2id@ + y/l — W2W2R2d^/l — W2W2 + W2dW2 
— oZ"^  

(1 — W2W2)R2 + W2W2 — 1 

_        (1 - w%)R2idQ + A/I - w^d^l -wj + W2dw2 
~~l (i-^D^-i) 

(1 - wl)R2idQ + y/T^fi?2-2^ + ^2^2 
_o-___ v 2       20-^  

(l-toSX*8-!) 
/^R2^ «^2\ -R2     ^^      o-^w, 2^ 

then 

L 
Zn JA-ic \k 

I    f I 
- dQ= —27rra = Im G Z. 

Zn .1A-1C ^TT 

D 

So the torus Ao(Z) is a Lagrangian submanifold satisfying the Bohr- 
Sommerfeld condition. 

Proposition 4.5. The orthogonal projection of the delta function at 

(w,r)) G P into E^ is 

«,       (zn-fi(S       ,      (3fc-l)(3A;-2)    CV 

Remark 4.6. The orthogonal projection of the delta function at (it;, 77) G P 
into Ek is the coherent state in J5/. associated to the point (w^rj) G P, by 
definition y*^,^) = ^(^,77) for P ^ SU(2,1). 

Proof The fact that ^(u;,^) = fifc^^^)) is equivalent to the reproducing 
property: 

F(w, r,) = j ^{WtV) (z, ()F(z, QdV A dV 
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for all F E Ek> Given any orthonormal basis {F^k} for Ek, we can write the 
reproducing kernel as the series ^^^(JZ, () = YliFi,k{'w->r))Fi,k(ziQ which 
converges absolutely and uniformly on compact sets. 

Using the basis 

1    /(3fc + i + m-l)!  ,       k 

which is orthonormal with respect to the inner product 

U^)Ci\g{z)Ck) = i2 [   m-(z,z))3k-3dzlAdz1Adz2Adz2, 
JB

2 

we obtain: 

^(i^foC) = X)^,m,fc(w^)^lmJife(^C) 
l,m 

^     1    (Sfc + Z + m-l)! _, _m , m k_k 

= 22 (2^    «m!(3fc-3)!    "^ ZlZ2 C ^ 

= 4^(3^-3)! E ' Ji^ L(«'i-i)I(^)m 

To calculate 

^(3k + l + m-l)\  , m _ y^ j/m y^ (3fc + I + m - 1)!  , 
^ /!m! ^^    ~^m!^ i! X 

l,m rn I 

we notice that 

^      Z! dtN ^ dtNl-t 
i 1=0 

dN ftN-l        1 + 
dtN \ 1 - t      l-t 

dN    1 N\ 
dtNl-t     {l-t)N+1' 
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hence 

ym v^ (3fc + I + m - 1)!   l     ^^ ym (3fc + m - 1)1 Ey    s-^ {OK -t L -t-rn, — L)'.   i __ sr-y 
~\ 2-/ l\ X   " 1^ m\ (1 _ x)3/c+m 

m v / 

_ 1 ^(Sfc + m-l)!      y 
l m 

1 _   (Zb 4-rr> - 1M -ii 
771 

(l-rr)2 

1 (3ft-1)! (3ft-1)! 

so 

(1 _ x)3fc (i _ ^3*      (1-x-y) 

q>     r-n CV- (3fc-i)! 
*(u;,,)^» U      4^2(3^ _ 3)1 (! _ ^^ _ ^2^)3* 

_(3ft-l)(3ft-2)  k k 1 

Sfe' 

47r2 s   ' (-(z,w))3k' 

D 

For E2k we have: 

*     r, n-f\  (t     ^    (6fc-i)(6fc-2)c2Vfc 

We omit the weight in the notation ty(u^(zX) but further exposition will 
be for E2k (i.e., weight 6fc) so this will not lead to any confusion. 

To get the orthogonal projection of the delta function at [(^,77)] G P = 
F \ P (by [(12,77)] we denote the equivalence class of (72,77)) ^0 ^2k we 

average over the action of F: 

(7) n2*(*[M)]) = E^M)- 

The series (7) converges absolutely and uniformly on compact sets by The- 
orem 9.1 [4]. 

Following the method of [6], to the submanifold A(Z) C P we associate 
a section U2k €• E^ifc defined as follows: 

U2k =   /       U2k(S[(u,r))})u = ^2 9^{u,rt)^ 

^Gr/rom=-oo,/A(0 
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+00      « 

ger/rom=-ooJA(l) 

where 

^= -h—i—— A 

Proposition 4.7. 

(0 I :== /A(0 ^MjC^iC)^ = C((z,x)(z!Y))^+iC2k> where the constant C is 
given by 

28fc+i-2((3A; + f-l)l)2    (3fc)3¥ 3fc+/ 

TT       (20!(6A;-3)!   (SJb + 03*+' ' 

(") /A(olH = 27rln|A|. 

Remark 4.8. The 2-form 1/ on A(Z) is 70-invariant and in properly chosen 
coordinates (r, 6) on Ao(0 it is expressed as 1/ = ^dQ A dr 

Proof. Let u € A(l), w = A^u £ f(l), then 

=2fe      JC/J-l^A Jt A-l _ (6fc-l)(6fc-2)  2fc  /" 
47r2 ^    yA(0 

(6fc-l)(6fe-2)  2fc 

772fe    ^(A-1^) (^(A-1^) 

(z,u)6fc   A-^x        l-^-1^)2 

X 
3 

((-(w,™))!^^ detJ(A,w))2k dwi       dw2 
A 

f (0 (z, Aw)6k wi      l-wl 

Jft 

(6fc-l)(6fc-2)  2fc  /*     (-(w,^))3fce-i2^(det J(A,^))2A: 

47r2 C    /f(0      (A-1z)u;)6fc(detJ(A,u;))2fc 

let A-1^ = I V2 ] , then we get: 

j = (5*Z^zi) C*(det J(A-\z)fk 
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J, 
(-(w^^e-^W   dwi        dw2 

f(l) (viWi + V2W2 - l)6k   Wi 1 - W% ' 

on f (/) 

W2 
r-1 

r+ 1 
, w1 = x/l-w2

2ReiQ= 2VT »"i@ 

r + 1 
Re^, 

-(w,w) = (1 - i?2)(l - w%) = (1 - R2 4r 

(r + 1) 2' 

so we have: 

/ = ^ ~ ^f ~ 2)C2fc(det J^-1,^)2^^! - R2))3k 

(      r      \3k„-i2kil) 

p 
(6fc-l)(6fc-2)  2A!       j^-i^)^*^! _ ^2^3* j 

47rz 2 

i 7^ dr 
—-dOA — 
Qk 2 r 

/•oo /'27r 

• /     dr /     dG 
Jo Jo 

rSk-lei2lQ 

(vi2y/rRe-ie + ^(r - 1) - r - l)6/c' 

The integral 
dty 

> 1 

is equal to 

2m   d 21 27rz (6fc + 2Z-l)!    A2/ 

(2Z)!dii;2i(^7i; + B)6fe ky=0 — 
(20!     (6A;-1)!     5^+^' 

Let w = e ze, A = vi2y/rR, B — ^(r — 1) — r — 1.   Let us check that 

> 1. 

i>2(r — 1) — r — 1 

vi 2^rR 

V2W2 - 1 

vi wz 

> 

R^l^ 

\v2w2 — 11 

> 
^2^2 - 1| 

y/1 — V2V2\f:^ 

A/1 - V2V2R\J^ — W2 

= > 1 
Wo 

because 

0 < \V2 - W2\2 = (^2 - ^2)(^2 - ^2) = ^2^2 " ^2^2 " ^2^2 + ^2 

= —^2^2 - ^2^2 + V2V2W2 + 1 + ^2^2 + ^2 _ V2V2W2 - 1 
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= (V2W2 - 1){V2W2 - 1) - (1 - V2V2)0- — ^l)' 

We get: 

(6fc-l)(6fc-2)  2fc 2   3ki 2-Ki (6k + 2l-l)\ 
/= 4^ C   W1-^))    2(20!     (6fc-l)! 

R21{1 - i?2)3A:C2fc(det JiA-1^))'2 4?k-1+l(M + 2l-l)\o2ln        n2,Zk,2k(A^  TfA-l     ~2k 
TT      (2Z)!(6Jfe-3)! 

v2l roo rZk-l+l 

■ („2 _ [fk+ll Jo      (r-H|±l)6fc+2/dr- 

Notice that jj^j can not be a real non-negative number, and the integration 
by parts gives: 

roo r3fe-l+f _  ((3fc + Z-l)!)2   /    ^2-l\3fe+f 

yo    (r _ ^±i)6/c+2Z  r-   (6fc + 2Z-l)!   V   ^2 + 1 

hence 

4^-i((3fc + /-l)!)2
7?2;n     ^3* 

J = "^ (2Z)!(6fc-3)! ^  (1
~

JR) 

■(detJiA-^z)) 1   „\\2fc % S> 

[(l-v2)(l + v2)]3k+l, 

and 
,,2/ 

[(l-W2)(l + t;2)]3fc+' 

~ ((A-1z,A-1X)(A-lz,A-1Y))3k+l 

((z,X)(z,Y))M+' 

therefore 

,_23fc+'-2((3fc + Z-l)!)2    (3fc)3¥ 3^ ^.t;)" 
TT       (20!(6A;-3)!   {3k + lfk+l{   {  '    /;       ((^X)^^))3^ 

>2fc 

Proof of (ii): 

/ -/ JMI)       JA: 'A(0 ^AT(0 

^(A-^i)       d^-1^) 
A-1^! 1 - (vi-1^) 
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r    dwi     dw2        rw   ,   r2w ^ 1     n , .,. 
=  /       —-A H  = /       dr /     dB— = 27rln A 

yTW   wi       l-u/|       y|A|-i      Jo 2^ 

D 

We got: 

«2*(^C)=C2fc   E   «M(detJ(5^))2fc€52(n+1)fc(r), 
s€ro\r 

where 
(z,v)21 

qi(z) = C- 
((z,X)(z,Y))M+i 

"and the relative Poincare series associated to Ao(/) is 

9ero\r 

From the results of [6] (Theorem 3.2, Corollary 3.3) it follows that for 
large values of k 

2k  r 
l|u2fc||2HI©To,J,*ll2 /      M=4Hn|A|), 

^ Jk{l) 

and, in particular, the relative Poincare series ©70j/}A; are not identically zero 
for large weights. 

Acknowledgements. The author would like to thank Svetlana Katok for 
suggesting to consider the problem and the referee for useful and interesting 
comments. 

Appendix A. 

We shall prove the following theorem modifying the proof of convergence of 
Poincare series contained in [4] and [3]. 

Theorem A.l. Let cp be a C-valued function on G — S,C/(n, 1). Assume 
that 

1) ip is Z($)-finite, 

2) ^GL1(ro\G); 
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3) if is K-finite on the right. 

Letp^x) = E7Gro\r^(7^). 
Then p^ converges absolutely and uniformly on compact sets. 

Proof. By Lemma 9.2 [4] there exists a G C^0(G) satisfying a(k~1xk) = 
a(x), k G K, x E G, such that (p = (p * a. Fix a neighborhood U of 1 in G 
such that U~l = U, the closure of U is compact, and U D supp a. We have: 

ip(nx) = ((/p*a)(7x) = /  ip(-fxy)a(y~1)dy = /  (p(jxy)a(y~1)dy, 
JG JU 

hence 

1^(7^)1 < IMIoo / lv(7^2/)|dy = II^Hoo /   |^(7^)|^y 

Here Hajloo = supyeC/ |a(y)|. 
Fix a compact subset C of G. We want to prove absolute and uniform 

convergence on C. The closure of CU is compact. CU is covered by N copies 
of a fundamental domain of T in G (i.e., a connected set of representatives 
of r\G), where TV is a positive integer. Denote these domains by Fi,... ,F/v. 

Let x G G. Then 

1^(7^)1 < Nloo /   |</>(72/)|d2/ < IN loo /    \v(iy)\dy 
JxU JCU 

and we get 

V  ||a||oo /   \v{iy)\dy 
7Gro\r Jcu 

= Halloo   Y)    /     |^(7!/)|dy 
7Ero\ryOT 

<Hoo Y)   (/ \viny)\dy + -" + I   Hiy)\dy) 

y / i<p(7i/)Mi/ 

^iVHalU /       |V(y)|dy 

= Wm + •••+   ^    /    l¥>(72/)|dy 

< oo. 
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So we proved that 

1^(7^)1 < c7 '•= IMIoo /     Miy)\dy 
Jcu 

and that the numerical series X}7ero\r c7 converges, hence by Weierstrass 
theorem the series X)7€ro\r ^(jx) converges absolutely and uniformly on C. 

D 
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