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In this paper we investigate various properties of calibrated sub- 
manifolds and of Special Lagrangian fibrations. Our main result is 
a construction of a Special Lagrangian fibration on a certain com- 
pact, simply-connected almost Calabi-Yau threefold- we believe 
this to be the first known example of such a fibration. 

1. Introduction. 

The notion of a calibration was introduced by Harvey and Lawson in their 
seminal paper [3]. Let M be a Riemannian manifold and let 77 be a closed 
fc-form on M. We say that 77 is a calibration on M if for any oriented fc-plane 
K in the tangent bundle of M, r)\n < VOI(K) (here VOI(K,) is the volume form 
on K). An oriented fc-dimensional submanifold L of M is said to be calibrated 
by 77 if rj restricts to the volume form on L. Calibrated submanifolds are 
homologically volume minimizing (see [3], Theorem 11.4.2). Harvey and 
Lawson have also investigated the fundamental calibrated geometries in the 
Euclidean space. 

R.C. McLean had studied the deformation theory of calibrated subman- 
ifolds in [6]. He showed that in several cases the deformation theory is 
unobstructed and the moduli-space of calibrated submanifolds is a smooth 
manifold. This raises a natural question about a connection between the 
global properties of the moduli-space of calibrated submanifolds and the 
geometry of the ambient manifold. One instance of such a question is the 
SYZ conjecture (see [11]), which suggests in particular that a Calabi-Yau 
manifold has a fibration with generic fiber being a Special Lagrangian torus. 
In this paper we take some steps in investigating the geometry of calibrated 
submanifolds and the global structure of their moduli-space. The paper is 
organized as follows: 

In section 2 we prove a comparison theorem for volumes of small balls in a 
calibrated submanifold of a Riemannian manifold M. Suppose the sectional 
curvatures of M are bounded from above by some constant K. Let L be a 
minimal submanifold in M, p G L a point and B(p,r) be a ball of radius r 
around p in M. There are a number of results on comparison between the 
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volume of L f] B(p, r) and the volume of a ball of radius r in a space form 
of constant curvature K. Our main result in section 2 is Theorem 2.0.2, 
which states that if L is a calibrated fc-dimensional submanifold of M then 
the volume of a ball of radius r in the induced metric on L (which is smaller 
than Lp|jB(p, r)) is greater than the volume of a ball of the same radius 
in a fc-dimensional space form of constant curvature K for r < ro with ro 
depending only on the ambient manifold M. As a corollary we deduce that 
if 77 is a calibrating fc-form on M and j3 G if^M, Z) is a homology class then 
there is an a-priori bound on a diameter of submanifolds of M calibrated by 
77 representing the homology class /?. 

In section 3 we study one example of a calibrated geometry : the Special 
Lagrangian geometry on almost Calabi-Yau manifolds. Let (M2n,c<;) be a 
Kahler manifold with a non-vanishing holomorphic (n, 0)-form tp on M. We 
will call (M,CJ, ip) an almost Calabi-Yau manifold. (M5CJ, <p) is a Calabi-Yau 
manifold if tp has constant length (\/2)n. In this case one easily shows that 
ip is parallel, the metric is Ricci-flat and the holonomy of M is contained in 
SU{n). 

If (M2n,cc;, ip) is a compact almost Calabi-Yau manifold then Yau's res- 
olution of the Calabi conjecture (see [13]) gives a unique Kahler metric UCY 

in the same cohomology class as u s.t. ip has constant length C with re- 
spect to ucY' We can multiply <p by a constant to get C = (\/2)n. Thus 
(M, a;<7y, <£>) becomes a Calabi-Yau manifold and UJCY is called a Calabi-Yau 
metric. 

Let V be a complex vector space of complex dimension n with a Hermi- 
tian 2-form CJQ. Let y>o be an element of A(n'0) V* s.t. its length |(/?o| — (v^)72 

with respect to the Hermitian metric defined by CJQ- Harvey and Lawson 
have observed (see [3], Corollary III. 1.11) that the n-form Recpo, viewed as 
a constant n-form on the linear manifold V is a calibration on V. More- 

over a submanifold L C V is calibrated iff CJO|L = 0 , Im(po\L = 0. Those 
submanifolds are called Special Lagrangian (SLag) submanifolds. 

The notion of SLag submanifolds readily generalizes to almost Calabi- 
Yau manifolds. Let (M,u,(p) be an almost Calabi-Yau manifold. We can 
conformally scale the Kahler form ou to a Hermitian 2-form CJ* on M so that 
the form cp will have length (V2)n with respect to the metric defined by u*. 
Since CJ* defines a Hermitian metric g* on M and (p has constant length 
(V2)n with respect to this metric, the form Recp will be a calibrating n-form 
on (M,<7*). Following Harvey and Lawson we define SLag submanifolds to 
be submanifolds calibrated by Recp on (M,g*) (see [3], p. 153). Thus a 
submanifold L C M is a SLag submanifold iff o;*^ = 0 and Im<p\L = 0, 
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which is of course equivalent to 

UJ\L — 0 , Irrnpli = 0 

Let L be a (compact) SLag submanifold of an almost Calabi-Yau man- 
ifold (M,(jj,(p). Lemma 3.1.1 shows (generalizing McLean's Corollary 3.9 
of [6] for a Calabi-Yau metric) that the moduli-space $ of SLag submani- 
folds of M passing through L is smooth of dimension equal to the first Betti 
number of L. We will see that one can use automorphisms of (M,uj^(p) to 
understand some global properties of $ (see Lemmas 3.1.2-3.1.3). 

If bi(L) = n one can ask if the moduli-space of SLag submanifolds 
through L gives a fibration of some neighbourhood of L in M. Now SLag 
submanifolds are in particular Lagrangian submanifolds of (M,a;). If one 
has a fibration of some open subset of a symplectic manifold by compact 
Lagrangian submanifolds, then Duistermaat's theory of action-angle coor- 
dinates suggests in particular that those submanifolds are diffeomorphic to 
a torus (see [2] and [1], section 2). So tori are the only candidates for being 
fibers of a SLag fibration on an open subset of M. 

Suppose we have a SLag torus fibration on some open subset of M. 
We would like to see when this fibration extends to a fibration over the 
whole of M. Now there are obvious topological obstructions for that. Also 
there are geometric obstructions for the compactness of a moduli-space of 
SLag submanifolds (see Lemma 3.1.3). Thus we can't in general expect an 
"honest" SLag torus fibration on M. We make the following definition: 

Definition 1.0.1. Let (M2n,uj,(p) be an almost Calabi-Yau manifold. A 
SLag fibration for M is a surjective map a onto a topological space S and 
an open subset SQ C S s.t. 

1) SQ is a smooth n-dimensional manifold and the map a : MQ = 
a'1 (SQ) h-> SQ is a smooth fibration with fibers being SLag tori in M 

2) The complement M — MQ (the total space of singular fibers) is con- 
tained in the image i : N H* M of a smooth map i from a compact, (2n — 2)- 
dimensional manifold iV into M. 

If (M,ci;,^) is a Calabi-Yau manifold then the Strominger-Yau-Zaslow 
(SYZ) conjecture (see [11]) suggests that M has a SLag fibration (see Def- 
inition 1.0.1). This conjecture naturally generalizes to almost Calabi-Yau 
manifolds. The conjecture also proposes an approach to constructing a mir- 
ror Calabi-Yau manifold to M using this SLag fibration (see [1] for some 
progress on constructing a mirror assuming that the SLag fibration on M 



130 Edward Goldstein 

exists). We will see in Lemma 3.1.4 that the singular fibers of a SLag torus 
fibration are related to the fixed points of automorphisms of (M, CJ, </?). 

In section 3.2 we study one example of an almost Calabi-Yau threefold 
in detail: the Borcea-Voisin threefold M. We define a certain Kahler metric 
UJ on M and we study a moduli-space $ of SLag tori with respect to this 
metric. We will characterize the singular SLag subvarieties, to which the 
elements of $ degenerate (those will be a product of a circle with a cusp 
curve). We consider the compactified moduli-space $ of SLag subvarieties in 
M. We will see that different elements of $ don't intersect in M. Moreover 
we prove that the boundary $ — $ will be parameterized by a finite union 
of circles. This will enable us to prove that $ fills M. More precisely we get 
a SLag fibration a from M onto $ according to Definition 1.0.1 with the 
generic fiber (in $) being a SLag torus in M. As far as we know this is a 
first example of a compact, simply connected almost Calabi-Yau threefold, 
which admits a SLag fibration (though the fibration is SLag with respect to 
a Kahler metric, which is not Ricci-flat). 

In section 3.3 we will examine holomorphic functions on an almost 
Calabi-Yau manifold in a neighbourhood of a SLag submanifold. An im- 
mediate consequence of the fact that SLag submanifolds are 'Special' is 
Theorem 3.3.1, which states that the integral of a holomorphic function 
over SLag submanifolds is a constant function on their moduli-space. This 
gives a restriction on how a family of SLag submanifolds might approach a 
singularity (Corollary 3.3.1) and also shows that smooth SLag submanifolds 
asymptotic to a cone in C71 can't be too "thin" (Lemma 3.3.1). 

Acknowledgments. This paper constitutes a part of author's Ph.D. at 
the Massachusetts Institute of Technology. The author wants to thank his 
advisor, Tom Mrowka, for initiating him into the subject and for continuing 
support. He is also grateful to Gang Tian for a number of useful conversa- 
tions. 

2. Volume Comparison for Calibrated Submanifolds. 

If a Riemannian manifold M has an upper bound K on its sectional curva- 
tures then the volume of a sufficiently small ball in M is greater then the 
volume of a ball of the same radius in a space form of constant curvature 
K. It turns out that this holds more generally for calibrated submanifolds 
of M: 

Theorem 2.0.1. Let rj be a calibrating k-form on a Riemannian manifold 
M and L be a calibrated submanifold. Let the sectional curvatures of M be 
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bounded from above by K. Let r < m.m(injrad(M), -7=). Letp G L, B(p,r) 

be a ball of radius r around p in M and BK{r) be a ball of radius r in a 
k-dimensional space of constant sectional curvature K. Then 

vol(L{]B(p,r)) > vol(BK(r)). 

Proof The proof is based on the following lemma, which is a counterpart to 
Ranch comparison theorem: 

Lemma 2.0.1. Let M be a (complete) Riemannian manifold whose sec- 
tional curvature is bounded from above by K and 7: [0,£] 1—> M be a unit 
speed geodesic. Let Y be a Jacobi field along 7 which vanishes at 0, or- 
thogonal to 7' and assume that t < -j=. Then its length \Y(9)\ satisfies the 

following differential inequality lyi^+i^lY"! > 0. Moreover if a function ^ is 
a solution to #" + #•* = 0; ^(0) = 0 and<&(t) = \Y(t)\ then *(0) > \Y(0)\ 
for 0 < 6 < t. 

Proof. First the condition on t means that Y doesn't vanish on (0,£] by- 
Ranch Comparison theorem. We have |y| = y^Y), \Y\' = (vf^jy), 

\VtY\2-{Y,R{i,Y)i)      (V^y)2 

\Y\" = |y| lyp 

by the Cauchy-Schwartz inequality.   Here R is the curvature operator, 7' 
is the (unit length) tangent field to 7.   Since Y is orthogonal to 7' then 

lyp is the sectional curvature of the plane through Y and 7', which 
is less then K. 

\Y\ For the second claim consider F = L^L. ^ is positive on the interval (0, t] 

and hence F is well defined on that interval. Also Ff —      ^^ ^y'. 
Consider G = \Y\'V - V'lYl G(0) - 0, Gf = ly]7'* - ^[y) > 0. 
So G > 0, i.e., Ff > 0 . Now F(t) = 1, so F < 1 i.e., |y| <F. D 

Now we can prove Theorem 2.0.1: Let dp be a distance function to p on 
M. Then for an open dense set of full measure of values t, t is a regular 
value of dp restricted to L. Let now 

fit) = vol(Lr\B(p,t)) and g(t) = f \VLdp\. 
JLC]B(p,t) 
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We can similarly define /(*) and g(t) on L - the fc-dimensional space form 
of constant curvature K. Then / = g because |S7dp\ = 1 on L. 
For t a regular value as above we have by the co-area formula: 

(1) /'(*) > </(*), g[(t) = vol{St), 7 = volffl 

here 5* = rf~1(t) f] L and 5* in the analogous object on L. 
Consider now a map f: 5* x [0, t] »-> M, ^(a, 0) = exp(f exp""1(a)). Here 

aeSt ,9 e [0,t]. We claim that vol(Z(St x [0,t])) > /(t). Indeed let p be a 
(fc - l)-form on B(p,r) s.t. dp = r/. By the calibrating condition: 

vomSt x [0,t])) > f ?*= f P= [ V = /(*)• 

Also on L we have /(t) = vol(^(Sl x [0,t])). We need to estimate h(t) = 
vol(€(St x [0,t])). Let ^ be the product metric on 5* x [0,t]. Then h(t) = 
/s xfo tl Jac(d0d9f' Here Jo.c(d£) is the Jacobian of £. To estimate Jac(d^) 
at a point (a, 5) G (5t, [0,t]) we take an o.n. basis vi. ..Vk-i to St at a. 
Then d£(vi)(a,6) is a value of a Jacobi field along a unit speed geodesic 

(expO • ^P"
1

 ("))!<; £ [0,oo)) at 5 = 9 which is orthogonal to this geodesic, 
vanishes at 0 and those length is 1 at s = t. Let Ft(9) solve F? + K • Ft = 0, 
Ft(0) = 0, *i(i) = 1. By Lemma 2.0.1 we have \d^(vi)(a,9)\ < Ft(9), so 

(2) Jac(dO(^9)<(Ft(9))k-1. 

We can consider an analogous situation on L and in that case we have an 
equality Jac(dC) = (i^))*-1. So 

/(«)=/        (^tW)*"1 = t;ol(SS) • /   (FtiO))"-1*® 
JStx[Q,t] J[0,t] 

= (by  (l)) = /,(t)-a(t). 

Here a(t) = L t](Ft(9))k~1d9. Returning now to our calibrated submanifold 

we deduce from (2) and (1) that f(t) < f'(t) • a(t).   So ^ > t^ , i.e., 

M/)' ^ ('n(7) - e)' for any e > 0. Having e fixed we can choose to small 
enough s.t. lnf(to) > Inffa) — e. 

Now lnf(9) is defined for a.e. 9 and is an increasing function of 9, so 

lnf{t) > lnf{to) + [     Inf > lnJ{to) - e + f     {InJ)' = lnj{t) - e. 
J[to,t] J[to,t] 
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Now e was arbitrary, hence lnf(t) > lnf(t) i.e. f(t) > f(t). □ 

We now come to the main result of this section. We wish to strengthen 
Theorem 2.0.1 by the analogous result for volumes of balls of radius r in the 
induced metric on calibrated submanifolds (which are smaller then the balls 
we considered before). We have the following: 

Theorem 2.0.2. Let M,r),p,L,K and BK(r) be as in Theorem 2.0.1 and 
let d^ be the distance function to p on L in the induced metric on L. Then 
forr < mm(injrad(M),R(K)) we have: 

vol(x £ L\dL(x) <r)> vol(BK(r)). 

Here R(K) > 0 and R(K) = n/VK for K positive. 

Corollary 2.0.1. Let M^rj be as before. Then there is an a priori bound on 
a diameter of submanifolds of M calibrated by rj in a given homology class 
P<EHk(M,Z). 

Proof Choose some r satisfying the conditions of Theorem 2.0.2. Let L be 
some calibrated submanifold representing the homology class /3. Let F be a 
maximal covering of L by disjoint balls of radius r. By Theorem 2.0.2 each 
such ball has volume at least e = e(r) and the volume of L is v — [ri](P). So 
the number of elements in F is at most N = ^. Every point in L is contained 
in one of the balls of radius 2r with the same centers as the balls in F. From 
this it is easy to deduce that the diameter of L is at most 4riV. □ 

Proof of Theorem 2.0.2. We wish to use the same argument as in the proof 
of Theorem 2.0.1 for the distance function di. The problem is that dz, is not 
a smooth function in the r-neighbourhood of p. But we can still smoothen 
it using the following technical lemma: 

Lemma 2.0.2. Let L C M be a submanifold, p G L and di as before. We 
can pick p > 0 and a (C00) function 0 < u < 1 on [0, oo) which is 0 on 
(0,p]; 1 on [2py oo) and nondecreasing s.t. for any e > 0 there is a function 
Xe on L which satisfies: 

1) Ae is C00 outside of p, 

2) dL< \e<dL{l + e), 
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3)  |VAc|<l + z/(dL)e. 

Proof. Pick a positive p <<C injrad(L). Choose a function K, on M s.t. K — 1 
on B(p,2p) and K, = 0 outside of B(p,3p). Choose a nonnegative radially 
symmetric function a on M^ with support in the unit ball which integrates 
to 1 and let crn(x) = nk • a(nx). Then c^ also integrates to 1. 

Choose a nonnegative function cf) < 1 , (/> = 0 on B(p) -£■) and (j) = 1 
outside of B(p,-£). For each integer n we define a function //* on L, 

/in(9) - /     dL(expL(e))(7n(e)c». 

Here TqL is the tangent space to L at g.  Since a71 was radially symmetric 
function and TqL has a metric, the expression an(9) is well defined and also 
the integration takes part only on a ball of radius ^ C TqL. 

Also it is clear that 

The point is that for large n, /in is a smooth function on L. Indeed let us 
denote by J(a, 6) the Jacobian of the exponential map on L from TaL that 
hits b for a, 6 points in L that are close enough. Then J(a, 6) is a smooth 
function of (a, 6) and we can rewrite 

It is clear from this definition that /in is a smooth function of q for n large 
enough. Also one can prove that |/in(gi) — f/l(q2)\ < d(qi,q2) • (1 + o(^)), so 

|VM«|<l+o(I). 

Now pick e > 0. Define A£ = (1 + ^e)(« • dL + (1 - K) • ^n). Then A^ = dL on 
jB(p, ^) and it is smooth outside of p. One can also directly verify that we 
can choose a constant C s.t. for sufficiently large n, the function A€ .= A^ 

satisfies properties 2) and 3) as desired. □ 

Now we can prove Theorem 2.0.2: We will use the fact that the function 
a(t), defined in the proof of Theorem 2.0.1, is an increasing function of t for 
0 < t < -7= for K positive and for 0 < t < R(K) for K negative. 
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Pick p as in Lemma 2.0.2. Let e > 0. We will follow the lines of proof 
of Theorem 2.0.1 for the function \e instead of the distance function. We 
denote by 

/(i)=t;oZ(Ar1([0)i])) St = \:1{t). 

Then conditions on Ae and the co-area formula imply that for a regular value 
t we have f(t) > ggfc. 

Also we can consider At = ((a,#)|a G 5^,0 < 6 < dp(a)) (here dp is the 
distance to p in the ambient manifold).   We have £ : At H> M, £(a,#) = 
eXPM(     d

P
p{a)   n- 

As before we will have f(t) < vol(€(At)) and Jac(d^) < (^(a)!^))^-1 

(see (2), we have the same notations as in Theorem 2.0.1). The estimate for 
Jacobian is true for the following reason: Let vi,..., Vfc-i be an o.n. basis 
to St at a. Then only the normal component of d^(vi) to the geodesic con- 
tributes to Jac(d£). The length of the normal component can be estimated 
by Lemma 2.0.1. 

So we will have vol{^{At)) < fs a(dp(a))da < vol(St)'a(t) (here we used 
the fact that a is an increasing function and dp (a) < d^a) < Ae(a) = t). 

Combining all this we get 

(taw,) > MM {j^j + eu'/{l + euf.lnCf) it). 

Now u{t) = 0 for t < p and v'(t) = 0 for t > 2p and ln(f) > -C for 
2p > t > p. Here C depends on p, but not on e. So 

W^(T^)'-^ 

i.e., (Inf + eC't)' > (j^)'. Also for 9 small we have f(6) = 6k(l + o{62)) 

and the same holds for / (here A; is the dimension of L). So we have 

InUm + eC'O > lnQ{6)) -    ^^ i + ev{ey 

Prom all this we deduce that : ln{f) + eC't > Inf /(I + eu). Here e was 
arbitrary and we are done. □ 
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3. Special Lagrangian geometry on almost Calabi-Yau 
manifolds. 

3.1.    Basic properties. 

Let (M2n,(jj,(p) be an almost Calabi-Yau manifold (see the Introduction). 
In this section we will explore some basic facts regarding the moduli-space 
of SLag submanifolds on M. 

Let L be a SLag submanifold of M. If a; is a Calabi-Yau metric, then R.C. 
McLean proved in Corollary 3.9 of [6] that the moduli-space of SLag subman- 
ifolds containing L is smooth of dimension bi(L). We will now demonstrate 
that the same holds for any Kahler form cu on M: 

Lemma 3.1.1. Let Ln be a compact connected n-dimensional manifold. 
Then the moduli-space of SLag embeddings of L into M is a smooth {though 
not necessarily a paracompact) manifold of dimension bi (L). 

Proof. The proof is a slight modification of McLean's proof for a Calabi-Yau 
metric (see [6], Corollary 3.9). 

Let i : L *-* M be a (smooth) SLag embedding of L into M. Locally 
the moduli-space F of C2'a-embeddings of L into M (modulo the diffeomor- 
phisms of L) can be identified with the C2,a sections of the normal bundle 
of i(L) to M via the exponential map. Also the normal bundle is naturally 
isomorphic to the cotangent bundle of L via the map v h-> ivu\L' Hence the 
tangent space to T at L can be identified with C2>a 1-forms on L. Let Vfc 
be the vector space of exact Cl,a fc-forms on L and let V = T^'© V^,. There 
is locally a map a : F *->> V given at an embedding j(L) G F by 

The moduli-space $ of SLag embeddings is just the zero set of a. The 
differential of a at i(L) in the direction of a (where a is a C2,a 1-form on L 
as above) is 

(da,d(f*a)) 

where / is the length of cp in the metric defined by u. We claim that 
the differential da is surjective and the tangent space to $ is naturally 
isomorphic to the first cohomology iJ1(L,R). To prove this consider first 
an operator P from the space of C3'a functions on L to the space of C1'" 
n-forms on L, P(h) = d(f*dh). We claim that P is surjective onto the space 
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Vn of exact n-forms and and the kernel of P is the space of constant functions 
on L. Since / is non-vanishing P is elliptic. To prove the surjectivity of P 
onto Vn it is enough to show that the co-kernel of P consists of constant 
multiples of the volume form on L. Let /i be in the co-kernel of P. Let 
h = *IA. One easily computes that 

jPh-n = ± f /|cf(M)|2 

JL JL 

So d*(/i) = 0, hence JJ, is a constant multiple of the volume form on M. Let 
now h be in the kernel of P. Then arguing as before we get that /i = *h is 
a constant multiple of the volume form on M, i.e., h is a constant. 

Now we can prove the lemma. First we prove that da is surjective. Let 
a be an exact 2-form on L, and /3 be an exact n-form on L. We need to find 
a 1-form 7 on L s.t. 

cfy = a, rf(/ * 7) = /?. 

Since a is exact there is a 1-form 7' s.t. dyf = a. We are looking for 7 of the 
form 7 = y + dh for a function /i. Since the operator P is surjective onto Vn, 
we get that such h exists, so da is surjective, hence $ is smooth. Next we 
prove that dim(&) = bi(L). Let W = ker(da). W is the tangent space to 
$ at i(L). Since W is represented by closed 1-forms on L, there is a natural 
map £ : W *-» i?1(I/, M). We claim that this map is an isomorphism. Indeed 
let a G i?1(L,]R) and let 7' be a closed 1-form on L representing the class 
a. From the properties of the operator P it is clear that there is a unique 
exact 1-form 7,/ = dh s.t. 7 — 7' + 7" is in the kernel of <T. Hence £ is an 
isomorphism. □ 

Remark 1. For a more general setup of deformations of SLag submanifolds 
in symplectic manifolds with trivialized canonical bundle we refer the reader 
to [10]. 

Let i : L f-> M be a SLag submanifold in M. By the moduli-space $ of 
SLag submanifolds through L we mean a connected component of the space 
of SLag embeddings of L into M which contains the embedding i(L). Next 
we investigate the connections between $ and the automorphisms of M. 

Lemma 3.1.2. Let g be an automorphism of (M,uj,(p), L be a SLag sub- 
manifold of M invariant under g and suppose g acts trivially on the first 
cohomology of L. Then g leaves invariant every element in the moduli-space 
$ of SLag submanifolds through L. Moreover suppose that x G M — L in an 
isolated fixed point of g. Then x cannot be contained in any element of $. 
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Proof. Since g is structure preserving, it sends SLag submanifolds to SLag 
submanifolds. Since g leaves L invariant, it preserves $. Prom the iden- 
tification of the tangent space of $ at L with iJ1(L,R) and the fact that 
g acts trivially on JH"

1
(L,E) we deduce that g acts trivially on the tangent 

space to $ at L. Hence g acts trivially on <&, i.e., it leaves each element of 
$ invariant. 

To prove the second statement, consider the set S of those elements in 
$ which contain x. Obviously S is closed and doesn't contain L. We prove 
that S is open and then it will be empty. 

Let 1/ G S. Let L" e $ be close to Lf. Then L" can be viewed uniquely 
as an image exp(t;)(L/), where v is a normal vector field to Z/. Suppose 
v(x) 7^ 0. Since Lff is ^-invariant then exp(dg(v(x))) is also in L", where 
dg is the differential of g at x. Since Lf is ^-invariant then dg preserves 
the tangent space to 1/ at x, hence it preserves the normal space to 1/ at 
x. Also since x is an isolated fixed point then dg has no nonzero invariant 
vectors. Hence v(x) / dg(v(x)). 

Since exponential map is a diffeomorphism from a small neighbourhood 
of the normal bundle of L' to M we see that exp(dg(v(x))) is not in L,f- a 
contradiction. So v(x) = 0 i.e., L,f G 5. □ 

Lemma 3.1.2 can be used to show that in some cases the moduli-space 
$ of SLag submanifolds through L is not compact. Suppose that bi(L) = n. 
We say that L satisfies the condition * if for ai,..., an a basis for i?1(I/) 
we have ai U ... U an ^ 0. This holds e.g., if L is a torus. 

Lemma 3.1.3. Let L be a SLag submanifold of M with &i(L) = n s.t. L 
satisfies the condition •. Suppose we have g, x satisfying the conditions of 
Lemma 3.1.2. T/ien $ zs not compact 

Proof We have a fiber bundle F over $, 

F C M x $, F = ((a,L')|I/ G $ , a G I/) 

(F is the total space of $). We have a projection map pr : F i—> $ onto the 
second factor (which is a fibration) and the evaluation map ev : F M* M, 
ei>(a, Z/) = a. The tangent space to F at a point (a, I/) G F naturally splits 

as 

(3) r(L,ia)$ = raL
,©T'. 
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Here TaL
f is the tangent space to 1/ at a (the tangent space to the fiber of 

the projection pr) and Tf = ((v(a),v)\v is a normal variation vector field in 
Ti^fr and a(v) is the value of v at a). 

We note that $ is orientable, in fact it has a natural volume element 
a. Let 1/ G $ and vi,... ,vn be elements of the tangent space to $ at Z/. 
According to the proof of Lemma 3.1.1 we can view ^i,... ,Vk as elements 
of IT^L'jR). We define: 

C7(vi,...,vfe) =vi U ...UvkiL'). 

F is also orientable, in fact the 2n-form a = pr*(cr) A ev*(Re(p) is a volume 
form on F. Suppose that $ is compact, then so is F. We will prove that 
the degree of the evaluation map ev : F i-» M is positive. Let r? be the 
Riemannian volume form on M. Then 

deg(e^) =   / ev*{r})/vol{M). 

Let Lffj e <&. We can view L^ C F as a fiber of the projection pr : F i->- $. 
Let ai,... ,an be a basis for iJ1(L^) s.t. ai U ... U an[L^] = 1. Then (a^) 
give rise to the corresponding vector fields vi,...,vn along L^ C F, which 
form a frame for the bundle T7 (see (3)) along L^. So i1,j.eT;*(a;) restricted 
to Lcf) represents the cohomology class ay on L^ and pr*(cr)(vi,..., ?;n) = 1. 
Since pr : F !->• $ is a fiber bundle we can use the integration over the fiber 
formula to compute: 

/  ev*(ri) = /   ( /    ivx-'-ivn^iv) d(f>. 

Also iVl ... ivnev*(v) ^ easily seen to be equal to 

zvie^*(ci;) A ... A iVnev*(uj) 

(all restricted to the fiber L^). So 

^i • • • ivnev*(r]) = ai U ... U an^] = 1. / 

So deg(e^) - /^ 1/I;OZ(M) = T;OZ($)/VOZ(M) > 0. 
Suppose g,x satisfy the conditions of Lemma 3.1.2. Since deg^) > 0, 

ev is surjective. But x is not in the image of ev - a contradiction. □ 

Next we would like to discuss a connection between automorphisms of 
(M,a;,<p) and SLag fibrations on M (see Definition 1.0.1): 
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Lemma 3.1.4. Let M be an almost Calabi-Yau manifold with a SLag torus 
fibration a : M >-> S and a (non-trivial) automorphism g of M, which 

commutes with a. Then the fixed point set fix(g) is contained in M — MQ. 

Suppose moreover that S is a smooth manifold and a is a smooth map. Then 

for any point p G fix(g) the differential da of a is not surjective at p (i.e., 
fix(g) is contained in the singular locus of a). 

Proof. Suppose that m is a point in fix(g) C)MQ. Let L be the fiber of a 
through m and let Nm be the normal bundle of L in M at m. Then Nm is a 
Lagrangian subspace of TmM. Also g preserves L, hence the differential dg 
of g at m acts on Nm. We claim that this action can't be trivial. Indeed dg 
is complex-linear on TmM, so if the dg-action is trivial on Nm, it would be 
trivial on the complexification N^ of Nm in TmM. But iV^ = TmM, and 
so the ^-action would be trivial on M - a contradiction. 

So there is a vector 0 ^ v G iVm s.t. dg(v) ^ v. For any t G R consider 
the level set Lt of a passing through exp(tv). Then Lt is g-invariant, hence 
the point exp(tdg(v)) is also contained in L*. But level sets of a near L are 
given uniquely as graphs of normal vector fields on L via the exponential 
map. Hence exp(tdg(v)) cannot be contained on Lt - a contradiction. 

Suppose now that 5 is smooth and a is a smooth map. Let p G fix(g) 
and assume that da is surjective at p. The level set L of a through p is a 
smooth Lagrangian submanifold of M near p. Arguing as before we get to 
a contradiction. □ 

Remark 2. The fixed point set of a (non-trivial) automorphism of an 
almost Calabi-Yau manifold has complex codimension at least 2, i.e. real 
codimension at least 4. Moreover this codimension is attained in many 
examples. Also the singular locus of a hypothetical SLag torus fibration 
has real codimension 4. Thus the previous lemma potentially suggests the 
location of the singular locus of a SLag torus fibration on an almost Calabi- 
Yau manifold. 

3.2. SLag torus fibration on a Borcea-Voisin threefold. 

In this section we investigate one example of an almost Calabi-Yau manifold 
in detail- the Borcea-Voisin threefold M. It will turn out that for a suitable 
choice of a Kahler metric on M we can prove that M has a SLag torus 
fibration. 

The property, which we will utilize in studying M, is the fact that M 
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is a union of neighbourhoods, each of those is biholomorphic to a product 
of an elliptic curve E with an open subset X of a K3 surface. We will 
define a certain Kahler metric on M and a moduli-space $ of SLag tori on 
M such that in any such neighbourhood the elements of $ will look like 
S1 x T, where S1 is a circle in E and T is a pseudoholomorphic 2-torus 
for an appropriate almost complex structure on X. We will use Gromov's 
compactness theorem to study the compactification $ of our moduli-space $ 
of SLag tori. A crucial point will be the fact that the boundary 3$ = $ — $ 
has dimension 1 (i.e. co-dimension 2). We will show that the image ev(F) 
of the total space F of $ under the evaluation map (see section 3.1) is open 
in M. Moreover we will use 5$ to show that the boundary of ev(F) in M is 
contained in the image i : iV \-¥ M of a smooth map i from a 4-dimensional 
compact manifold N into M. This proves that the total space of $ fills the 
whole M. Moreover we will see that different elements of $ don't intersect 
in M and M has a SLag fibration a over $ according to Definition 1.0.1. 

We adopt the definition of M from [5], so we define M to be the resolution 
of singularities of a 6-torus T6 = T2 x T2 x T2 by a Z2 0 ^-action, where 
the generators of the Z2 actions are: 

1 1 
a : Z! -+ -zx + -,22 -> -32 + 2>23 -> ^3 

P :zi-> -21,22 -> 22,23 _> -^3. 

The fixed locus of a is 16 2-tori : Ax AxT2 

and the one of f3 is 16 2-tori: B xT2 x B. 
Here ,4 C T2 is a set {2+2i±l±i} and B C T2 is a set {0, ±, j, i±i}. The 

fixed loci of a and (3 do not intersect. Also a o (3 has no fixed points. 
Consider a fixed torus T2 (say of a). Near T2 the quotient looks like 

(4) V = (U/±l)x T2. 

Here U is a ball of radius r around a fixed point in T4 (we can also view U as 
a neighbourhood of the origin in C2). The resolution of singularities U/ ±1 
is a neighbourhood U of the zero set in the total space of 7<g)2, where 7 is 
the universal line bundle over CP1 (thus the singular point will be replaced 
by CP1). We get a resolution of singularities of T6/Z2 © Z2 by replacing 
each neighbourhood V as in (4) by a neighbourhood 

(5) V = UxT2. 

U has 1-parameter family of HyperKahler metrics ut (the Eguchi-Hanson 
metrics) (see [4], p. 304). Their Kahler potentials ft are given by 

■ft(u) = Vu2 + t2+t2 log u-t2 log(Vu2 + t2 + t2) 
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here u — \zi\2 + 1^212. The Eguchi-Hanson Kahler form ojt can be glued to 
the Euclidean metric outside of U by gluing their Kahler potentials for t 
small enough (see [4]). Thus we obtain a Kahler form u' on U. We consider 
the corresponding product metric in V (see (5)). Doing this for every fixed 
2-torus (both of a and of/3) we get a Kahler metric on M, which is Euclidean 
outside of the neighbourhoods V as in (5). Also the holomorphic volume 
form (p — idzi A dz2 A dzs on T6 lifts to a holomorphic volume form on M, 
thus M becomes an almost Calabi-Yau manifold. Here is the main result of 
section 3.2, whose proof will occupy the rest of section 3.2: 

Theorem 3.2.1. The Borcea-Voisin 3-fold (M^cj^ip) admits a SLag fibra- 
tion according to Definition 1.0.1. 

Proof. Consider a family of 3-tori Ta^c C M, 

(6) Tafrc = ((zi,Z2>zs)\Rezi = a, Rez2 = 6, Rezs = c) 

which don't intersect the neighbourhoods V of fixed components as in (5). 
Tafoc will be SLag tori in M. We would like to see what happens to this 
family then its elements intersect some neighbourhood V as in (5). 

We wish to point out that P. Lu considered SLag submanifolds for a 
Calabi-Yau metric on M in [5]. He was able to produce a big open set of 
those submanifolds. We are using a different metric and this will allow us 
to characterize the compactified moduli-space and to prove that M fibers 
over it. 

We return to the question of characterizing those elements which in- 
tersect a 'bad' neighbourhood V. If this is a neighbourhood of a fixed 
component of a, we consider the following setup: Let Z2 act on T4 with a 
generator 

1 1 
a : zi -> -zi - -,22 -» -Z2 - -. 

This action has 16 fixed points and the resolution of singularities gives a K3 
surface. Also M can be viewed as a resolution of singularities of 

(T4/af x T2)//3. 

For each fixed point of a' we introduce a neighbourhood U C T4 as before 

(see (4)). We consider a bigger neighbourhood 

(7) X = ((*! + ia,Z2 + ib)\(zuz2) GU,a,bG M/Z) 
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in T4 and a corresponding neighbourhood X1 in the quotient T4/a1'. We 
have a resolution of singularities X of X' (now we have 4 singular points in 
X') and a corresponding domain W = X x T2 in M (since /3(W) p| W = 0, 
we can view W as a domain in M). The moduli-space Ta^c of SLag tori in 
M as in (6) fills the complement of all those neighbourhoods W in M. We 
need to understand what happens to this moduli-space when its elements 
intersect such a neighbourhood W. 

Consider a canonical (2,0)-form 77 = dzi A dz2 on X C T4. The collec- 
tion w^Rerj^Imrj is the standard HyperKahler package on T4. rj lifts to a 

holomorphic (2,0)-form on X and we have i • 77 A daft = ¥? on W. So the 
almost Calabi-Yau structure on TV is a product structure. On X we have a 
moduli-space of embedded SLag tori with respect to (u/,77) (here a/ is the 
Kahler form on X described earlier in this section). We have a connected 
component $' of this moduli-space, which contains the SLag tori of the form 

(8) Taj6 = ((*!,z2)\Rez1 = a , Rez2 = b)cX. 

Those SLag tori give a fibration of the neighbourhood of the boundary of X. 
By Lemma 3.1.1 $' is a smooth 2-dimensional manifold. We can consider 
the space &,f of submanifolds of W of the form 

(9) $" = (L, = Lx TC\L e $', Tc = (slUe* - c) C T2). 

The elements of $" are SLag tori in W and ^^ is a 3-dimensional manifold, 
contained in $, which is also 3-dimensional. Next we investigate $" and 
show that ^^ is the set of those elements in $, which intersect W. 

To investigate $,f consider the almost Calabi-Yau manifold (X,ujf,r}f). 
We can conformally scale OJ' to some Hermitian 2-form a;" on X s.t. in the 
metric g" defined by u" the form 77 will have length 2. So each of the 2-forms 
uj^Rerj^Imrj is a self-dual 2-form, which has length y/2 with respect to g,f. 
If /i is a self-dual 2-form of length y/2 with respect to #", then it induces an 
almost complex structure 1^ on X, defined by: 

li(Y,Z)=g"(IllY,Z). 

Let I,J,K be the almost complex structures defined by (juff ^Rerj^Imrj cor- 
respondingly (/ is the original complex structure on X). Those almost 
complex structures satisfy 

IJ = K, JK = /, KI = J. 

SLag submanifolds L in X are defined by the conditions UJ^L = 
0,  Imr]\L = 0, which is of course equivalent to un\L' — 0,   ImrjlLt = 0. 
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By the HyperKahler trick (see [6], p.824), this is equivalent to L being a 
pseudoholomorphic submanifold with respect to the almost complex struc- 
ture J. 

The elements of $' are J-holomorphic, they carry in the same homology 
class in X and they have a trivial self-intersection. Hence different elements 
of $' don't intersect in X. Also a neighbourhood of the boundary of X is 
fibered by pseudoholomorphic tori in $' of the form Ta^ (see (8)). So the 
elements of $' cannot approach the boundary of X unless they are of the 
form Ta£ (see (8)). Prom this it is clear that $" (see (9)) is the set of those 
elements in $, which intersect W. Also to study the subvarieties of W, to 
which elements of $" degenerate it is enough to study the subvarieties of X, 
to which elements of $' degenerate. 

So let Ti be a sequence of elements in $'. All of those tori will carry the 
same homology class h in X. We can assume that Ti stay away from the 
boundary of X, for otherwise T* will be of the form Ta^ (see (8)), and their 
limit will also be of the form Ta^. The volume of each Ti is Rer)(h). By 
Gromov's compactness theorem (see [12]), we can find a subsequence (which 
we still call T^), which has a limit Too, which is a cusp curve with at most 
1 component being a torus and the rest are J-holomorphic spheres in X. 
Suppose we have 1 component being a torus T. We will prove that T is the 
only component, it is embedded and lives in $/. 

We can represent T as a composition a o p : T2 i-> X, where p : T2 i-» T2 

is a k-fold covering and a : T2 \-> X is a simple curve (see [7], p. 18). Let 
T' = a(T2). Since T doesn't intersect any of the Ta^ (see (8)) we have 
[Tf] 'h = 0. Also h = &[T'] + E[Si] for some J-holomorphic spheres 5*. We 
have [Tf] • S[5i] > 0 with equality iff there are no Si (because the limiting 
curve Too is connected). Also since a is simple we get by Theorem 7.3 in [8] 
that [T'] • [T7] > 0 with equality iff T' is embedded. Prom all this we deduce 
that there are no rational components and T7 is embedded. 

Since Tf is J-holomorphic, it is a SLag torus in X. By Lemma 3.1.1 the 
moduli-space $* of SLag tori of X through T7 is smooth and 2-dimensional. 
We claim that elements of $* fill some neighbourhood of some point in 
T'. Indeed let aua2 be 2 generators of fl^T'jR) ~ TT/$* and VUV2 be 
the corresponding normal deformation vector fields. Then iVlu

f A i^o/ is 
nonzero in jHr2(T/), so it doesn't vanish at some point p G T'. Hence vi and 
V2 are linearly independent at p, so $* fills a neighbourhood U of p in X. 

Ti converge to T' in the distance topology, hence they intersect U for i 
large enough. So they intersect the elements of $*. These elements are J- 
holomorphic and carry the homology class h/k and h- h = 0. So we deduce 
that Ti are in $*.  So k = 1 and T; converge to T' in the C^-topology.  So 
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T' is in $'. 

Let d§' be the set of those cusp curves in X, to which elements of 
$' degenerate. We saw that elements of dQ' are unions of J-holomorphic 
spheres. Let S be a cusp curve in dQ1. Then E doesn't intersect any 
elements of $/. We want to prove that S doesn't intersect any over cusp- 
curve in dQ1. To prove that we have to understand the second homology 
H2{X,7L) in detail. Let X be a neighbourhood of the torus T — {Rez\ — 

1/2 , Rez2 = 1/2) in T4 as in (7). In the quotient X' = X/ZQ, T becomes 
a sphere S and one easily sees that S is a strong deformation retract of 
Xf, hence [S] is a generator of ^(X^Z). Let XQ = X1— singular points. 
Prom the Mayer-Vietoris sequence we deduce that the inclusion map i : 
XQ *-» X' induces an isomorphism in second homology modulo torsion. Let 
S' E i?2(Xo,Z) s.t. u(S') = [S\. We have 2-tori Ta,b C XQ C X'. One 
easily shows that the homology class [Taj&], which Ta^ carries in H2(Xf

)Z) 
is 2 • [5]. Prom this we deduce that in i?2(Xo,Z) we also have [Ta^} = 2Sf. 
So [Rer)](S') = 1/2 /^ b Rer) = 1/2. 

The resolution of singularities X is obtained from X7 by replacing the 
singular points with the exceptional spheres Si. One easily deduces from the 
Mayer-Vietoris sequence that the second homology J?2(X, Z) modulo torsion 
is freely generated by S! and [Si], Also [Rer]](Sf) — 1/2 and fsRer] = 

0. Prom this we easily get that if a G H2(X,Z) and [Rerj](a) > 0 then 
[Rerj](a) > 1/2. 

Let now E G d<£>f be as before. Then E represents the homology class 
/i, so JE i^ery = 1. Also the integral of Rerj on every component of E is at 
least 1/2, so E has at most 2 components. Let E' be another cusp curve 
in d<&f. Suppose E' intersects E. Since h • h — 0, E and S' must have a 
common component. Suppose E has a component P which is not in Yl. 
Then 0 = [P] • h = [P] • [E'] > 0- a contradiction. So E and E' have the 
same components, and since their total number (counted with multiplicity) 
is at most 2, then E = E7. 

Next we prove that the number of curves in d§f is finite. As we have 
seen, there are 2 types of those curves: 

1) A curve with 2 components Ai and Bi. Then 0 = [Ai] - h = [Ai] • 
{[Ai] + [Bi]). Now [Ai] • [Bi] > 0, so [Ai] • [Ai] < 0. 

If Aj,Bj is another curve like that, then we have seen that Ai doesn't 
intersect it, so in particular [Ai] • [Aj] = 0. So one easily sees that the 
numbers of such curves is at most 5 = b2(X). 

2) A curve with 1 component (possibly with multiplicity 2). Let this 
curve be k- Pi, where Pi is a simple rational curve and k • [P;] = h. To study 
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those Pi we make the following observation : There is a IQ © ^2 action on 
T4 with generators 

7i : (21,22) ^ (21+2/2,22), 
72 : (21,Z2) *-> {zuZ2 + V2)- _ 
This action commutes with the a' action and it induces an action on X. 

Next we find those points in X, which do not have a full orbit (of length 4) 
under the action. A point (21,22) doesn't have a full orbit if it is preserved 
under one of 71,72,71 0 72- Now the fixed points are: 

Fixin) = ((21,22) : (21+2/2,23) = (-21 + 1/2,-22 + 1/2)). These are 
2 points in X, disjoint from the exceptional spheres Si. A similar analysis 
for 72 and 71 o 72 produces 2 points for each. 

The actions of 7; are structure preserving on X. Moreover 7; preserve 
the SLag tori Ta^ in X (see (8)). By Lemma 3.1.2 7; leave the elements 
of $' invariant. Hence they preserve the limiting curves Pi (because the 
convergence is in particular in the distance topology). 

For a limiting curve P;, consider x(Pi) = [-Pi] ■ [Pi] - ci(X)([Pi\) + 2 = 2. 
By Theorem 7.3 of [8] we can count x(Pi) by adding the contributions of 
singular points of Pi (which are multiple points or branch points), and each 
singular point gives a positive contribution. So Pi has singular points and 
there are at most 2 of those. Let x be a singular point of Pi. Then its orbit 
under the Z2 © Z2 action consists of singular points. So the orbit cannot 
have length 4, so x belongs to the set D of 6 points with orbit of length 2. 
So Pi contains at least 2 points of the set D. 

If Pj is another curve of type 2), then [P;] • [Pj] = 0, so they don't 
intersect. Also Pj contains at least 2 points from the set D. So it is clear 
that the number of Pi is at most 3. So the number of curves in d&f is finite. 

Let $ be the moduli-space of SLag tori on M as before, F be its total 
space and ev : F \-> M be the evaluation map (see the proof of Lemma 3.1.3). 
We claim that the differential of the evaluation map is an isomorphism 
everywhere. This is clearly true outside our cbad' neighbourhoods. Inside 
a bad neighbourhood W, it is enough to prove that for an element L G $', 
if 0 7^ v is in the tangent space T^' then the normal variation vector field 
on L, which realizes the deformation given by v, does not vanish. But this 
deformation is a deformation of J-holomorphic tori, hence it follows from 
the standard argument that each zero of such a vector field gives a positive 
contribution to the first Chern class of the normal bundle of L, which is 
trivial. So the differential of ev is an isomorphism everywhere, hence the 
image ev(F) is open in M. 

We have a compactified moduli-space $, with the boundary d3> = $ — $ 
parameterized by a finite union of circles Ki (with each point in Ki repre- 
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senting a SLag submanifold in M of the form L x S1 for L being a cusp 
curve). It is clear that the image T of the total space of 5$ under the evalu- 
ation map is contained in the image i : N i—> M of a compact 4-dimensional 
manifold iV into M. Also the boundary of ev(F) in M is contained in F. By 
the standard transversality argument we deduce that ev(F) (JF = M. Also 
we have seen that different elements in $ don't intersect in M. Thus we get 
a map a : M f-> <£, which is a SLag fibration according to the Definition 
1.0.1. □ 

3.3.    Holomorphic functions near SLag Submanifolds. 

In this section we examine holomorphic functions in a neighbourhood of 
a SLag submanifold. This setup appears, for instance, on a Calabi-Yau 
manifold M in CPn defined as a zero locus of a collection of real polynomials. 
In that case we have L = MQIRP71 is a SLag submanifold of M. Let 
P be some real polynomial of degree k without real roots. Then for any 
polynomial Q of degree k the function f is a holomorphic function on M 
in a neighbourhood of L. More generally let L be a fixed point set of an 
antiholomorphic involution a of an almost Calabi-Yau manifold M and let 
h be a meromorphic function on M. Then ho a is also a meromorphic 
function on M and so is g — h • (h o a) + 1. Also on L g is real valued and 
> 1. So / = 1/g is a holomorpic function in a neighbourhood of L in M. 

An immediate consequence of the fact that SLag submanifolds are 'Spe- 
cial', i.e., Irmp\L = 0 is the following: 

Theorem 3.3.1. Let LQ be SLag submanifold of an almost Calabi-Yau man- 
ifold (M,LJ,<P) and f be a holomorphic function in a neighbourhood of LQ 

in M. Consider the function £ on the moduli-space $ of SLag submanifolds 
through LQ, 

t(L) = j fRetp. 

Then £ is a constant function. 

Proof. Consider the following (n, 0)-form fi = f<p. Then /j, is holomorphic, 
hence closed and obviously £(L) = fL ji. □ 

For 0 < 6 < n we denote by AQ an open cone in the complex plane C 
given by 

(10) Ae = (z = reip\r > 0, 0 < p < 9). 
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Corollary 3.3.1. Let M be an almost Calabi-Yau n-fold and f a holomor- 
phic function on some domain U in M. Let L(t) be l-parameter family 
of (compact) SLag submanifolds contained in U and p G U a point s.t. 

/OP) 
= 0- Suppose that the distance d(p,L{t)) -> 0 as t —> 0. Then L{t) 

cannot be contained in in the domain f~1(Ao) for 9 < ^. 

Proof Suppose L(t) are contained in W = /_1(A^) as above. We can find 
an e > 0 s.t. g = fnJre is well defined an holomorphic on W and g(W) C ATL . 
Then h = ^- is holomorphic on W, h(W) C Az. and for z G W close to p 

we have \h(z)\ > const • d(z,p)~n~e. 
Since fL^ h is constant in t and Reh , /ra/i > 0 on L(t) then /L/tx |/i| 

is a-priori bounded by a constant C. Take now any 5 > 0 and pick t and 
p* G L(t) s.t. d(p,pt) < 5. Consider B = B(pt, 6) ft L(t). By Theorem 2.0.1, 
vol(B) > const • Sn and on B we have |/i| > ^. So /j.^ |^| > JB \h\ > 

const - 5~e. Now S was arbitrary - a contradiction. □ 

Applying those ideas we can also get a restriction on SLag submanifolds 
in Cn, which are asymptotic to a cone: 

Lemma 3.3.1. Let L C Cn be a (smooth) SLag submanifold s.t. L is 
asymptotic to a cone A C Cn and let z\... zn be coordinates on Cn. Then 
L cannot be contained in the cone 

B5
e - (fo,..., zn)^ G Ao, |si| > 8 • II^H) 

for 8 > 0, 6 < 7r/2n. Here AQ is given by (10). 

Here by being asymptotic to a cone A we mean the following : We have 
a l-parameter family of submanifolds L1 — (z\z/t G L, 1/2 < ||2|| < 1) 
with boundary contained in the annulus D = (*|l/2 < ||*|| < 1). We define 
lP — A p) D and L* is a smooth family of submanifolds of D for t > 0. 

Proof Consider a l-parameter family (Lt\t > 0) of SLag submanifolds in the 
unit ball in Cn with boundary in the unit sphere, Lt = (z\z/t G L , ||z|| < 1) 
(so L* = Lt fl D). We wish to prove that JL |*i|~n""e is uniformly bounded 
in t as t i-)- 0 for some e > 0. This will lead us to a contradiction as in the 
proof of Corollary 3.3.1 because there are points in Lt which converge to the 
origin in Cn for t —> 0. 

We can choose an e > 0 s.t. for / = 7r/2 • 2:{"n~e both Ref, Imf > 0 on 
BQ. SO it is enough to prove that h(t) = JL /is uniformly bounded in t as 
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t »-> 0. Consider 

Qt = (z\z e Lt, for t' e [t, 1], \\z\\ = 1). 

Then Ft — Lt (J Qt U -^i is a closed cycle in B5
Q. Also clearly Ft is homologous 

to 0 in BQ. The form ip1 = fdzi A ... A dzn is a closed form on £$, hence 
fF (pf = 0. Prom this we get that 

^(t) 
jQt 

The fact that L is asymptotic to a cone implies that the volume of Qt 
is uniformly bounded in t. Also the conditions on BQ imply that H^'H is 
uniformly bounded on Qt. Hence \h(t)\ is uniformly bounded. □ 
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