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Hamiltonian stationary Lagrangian surfaces in C2 

FREDERIC HELEIN AND PASCAL ROMON 

We study Hamiltonian stationary Lagrangian surfaces in C2, i.e., 
Lagrangian surfaces in C2 which are stationary points of the 
area functional under smooth Hamiltonian variations. Using loop 
groups, we propose a formulation of the equation as a completely 
integrable system. We construct a Weierstrass type representation 
and produce all tori through either the integrable systems machin- 
ery or more direct arguments. 

1. Introduction. 

This paper addresses the study of Hamiltonian stationary oriented Lagran- 
gian surfaces in a symplectic Euclidean vector space of dimension 4, using 
techniques of completely integrable systems. The ambient space may be 
seen as C2 with, using complex coordinates z1 = x1 +iy1 and z2 — x2 + iy2, 
the symplectic form UJ = dx1 Ady1 +dx2 Ady2 and the canonical scalar prod- 
uct. The Lagrangian surfaces in C2 are the immersed surfaces on which the 
restriction of UJ vanishes. On the set of oriented Lagrangian surfaces E in 
C2, we let the area functional to be 

.4(E) = f dv, 

where the volume form dv is defined using the induced metric on E. A critical 
point of this functional is a Lagrangian surface such that 8A(T,)(X) — 0 
for any compactly supported smooth vector field X on C2, satisfying some 
particular constraint: if X is arbitrary we just say that E is stationary (it 
is actually a minimal surface in C2 ~ M4), if X is Lagrangian, i.e., its flow 
preserves Lagrangian surfaces, E is called Lagrangian stationary1, and lastly 

if X is Hamiltonian, i.e., X = -JVh = ^^ - 0^ + f^ - $&, 

for some h G (^(C^R), E is called Hamiltonian stationary1. 
The first variation of the area involves the Lagrangian angle:   if m is 

a point in E and if (61,63) is a direct orthonormal basis of TmE, dzl A 
1 called isotropic minimal in [CM]. 
2called E-minimal in [CM] and H-minimal in [02] and [CU]. 
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efe2(ei, 63) is a complex number of modulus equal to 1, which we can denote 
e*^, for some real number /?. It builds up a map /3 from E to E/27rZ. This 
map is a part of the full Gauss map of the immersion of E. The mean 
curvature vector H on E is then given by H = JV/3, and thus 

M(E)(X)- f (X,H)dv=  f (-JVh,JVf3)dv= f (Vh,VP)dv, 

see [01] for more details. Hence Hamiltonian stationary surfaces are char- 
acterized by the equation — A/3 = 0, where A is the Laplace operator on 
E, which comes from the induced metric. Surfaces such that fi is constant 
(or H = 0) are a particular case, called special Lagrangian surfaces by R. 
Harvey and H.B. Lawson [HaL]: they are actually area minimizing since 
calibrated by e'^dz1 A dz2. 

Examples of Hamiltonian stationary surfaces are the standard square 
tori Tr = {(z1^2) e C2/!^1! = \z2\ = ry/2} and "rectangular" variants 
Tri)r2 = {(z1^2) e CVl^l/ri = \z2\/r2 = v^}. These are candidates to be 
area minimizing with respect to Hamiltonian deformations as conjectured 
by Y.G. Oh [01, 02]. More recently, 1. Castro and F. Urbano [CU] have 
constructed more exotic examples of Hamiltonian stationary tori. Beside 
these explicit instances, R. Schoen and J. Wolfson obtained recently vari- 
ous existence and partial regularity results and in particular a proof of the 
existence of a smooth solution to the Plateau problem in C2 [ScW]. 

A motivation to study Hamiltonian stationary surfaces is for instance 
the following model of incompressible elasticity. If ((/st/O is a diffeomor- 
phism between two two-dimensional domains U and U', which is incom- 
pressible, i.e., f^f^ — ^7^: = 1 everywhere, and which minimizes the area 

of the graph functional /^ ^2 + |V0|2 + \^7ip\2dxdy among all possible in- 
compressible diffeomorphisms with the same boundary data, then its graph 
E = {(#, y, (/>(£, y), —ip(x, y))/(x, y) € 17} is Hamiltonian stationary Lagran- 
gian and conversely. Such a problem has been considered by J. Wolfson in 
[W]. Also Hamiltonian stationary surfaces offer a nice generalization of the 
minimal surface theory. The conjecture of Y.G. Oh above is an interest- 
ing generalization of isoperimetric inequalities. Such an inequality would 
be related to many questions in symplectic geometry, as illustrated by C. 
Viterbo [V], who also gave a lower bound for the area functional of a torus. 
Also special Lagrangian surfaces has appeared in recent developments in 
mathematical Physics, in M-theory [AFS], and about Mirror symmetry for 
Calabi-Yau manifolds: see for example [SYZ], where A. Strominger, S.T. 
Yau and E. Zaslow proposed that the moduli space of special Lagrangian 
surfaces in a Calabi-Yau is related to the mirror of the manifold. 
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Our aim here is to show that the set of Hamiltonian stationary Lagran- 
gian surfaces in C2 forms a completely integrable system, and to use ideas 
from the Adler-Kostant-Symes theory in a similar way as it was done by 
F. Burstall, D. Ferus, F. Pedit, U. Pinkall [BFPP] and J. Dorfmeister, F. 
Pedit, H. Wu [DPW] for harmonic maps between a surface and a homo- 
geneous manifold, or by F. Helein [H2] for Willmore surfaces. (See also 
[U, SWi, Hi, FP, FPPS, DH] about previous results.) Our main results are: 
a formulation of the Hamiltonian stationary surfaces problem in terms of 
a family depending on a complex parameter of curvature free connections 
(a characteristic feature in integrable systems); a correspondence between 
conformal immersions of Hamiltonian stationary surfaces in C2 and holo- 
morphic maps into C3 (similar to [DPW]); a proof that all Hamiltonian 
stationary tori in C2 are obtained by a finite type construction (this is sim- 
ilar to [BFPP]); lastly a construction of all such tori by integrating linear 
elliptic equations. 

From the point of view of the theory of completely integrable systems, 
we obtain an original (at least for us!) example of situation where: 

• the family of curvature free connections has the form a\ = A-2^ + 
\~1a'_1 + ao + Ac// + A2a2 instead of A-1a/

1 + 0:0 + Ac// as in many 
integrable systems, 

• the situation is almost linear and, in some situations, simplifies in such 
a way that we could present the results without these techniques. 

However we choose to expose the full machinery in our situation since this 
is the way we obtained all the constructions here and it seems to illuminate 
how completely integrable systems work. 

Our paper is organized as follows. In section 2 we present the symme- 
try group of affine isometrics of R4 preserving the symplectic form and the 
description of conformal immersions of Hamiltonian stationary Lagrangian 
surfaces using moving frames. A Cartan decomposition of the Lie alge- 
bra appears to be the key of the formulation. In section 3 we show that 
the construction of conformal immersions of Hamiltonian stationary simply 
connected surfaces is equivalent to solving three simple linear PDE's as fol- 
lows: let /? to be a real harmonic map on a simply connected domain $7; we 
solve on $1 the linear equation 

^_l<9/3 
ai"2aJJ^ 
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for u = *(a/2,6/2, —ia/2,ib/2) and a and b complex valued functions. Then 
we integrate the equation 

dX = epj/2(udz + udz) 

to obtain a map X to R4. Then X is a weakly conformal Hamiltonian sta- 
tionary Lagrangian map. We use these ideas to deduce explicit parametriza- 
tions of all tori and we identify known examples: the standard torus and the 
surfaces of I. Castro and F. Urbano and we show other examples. In section 
4 we introduce loop groups and twisted loop groups and we prove various 
Riemann-Hilbert and Birkhoff-Grothendieck decomposition results. These 
constructions have been revisited in [HR3] and [H3], where the quaternionic 
structure has been put in evidence. In section 5 we use the previous re- 
sults to establish a Weierstrass type representation. In section 6 we use 
the finite gap ideas in integrable systems and prove that, for Hamiltonian 
stationary conformal immersions of tori, the set of solutions splits into a 
countable union of vector spaces ("finite type" solutions). Lastly we link 
this formulation with the one in section 3. 

We point out that our results could be generalized to Hamiltonian sta- 
tionary Lagrangian conformal immersions in CP2 (or isotropic surfaces in 
higher dimensional Kahler manifolds). This is the subject of [HR3]. 

Acknowledgements. The authors wish to thank Franz Pedit for his 
remarks during the preparation of this paper. 

2. Moving frames and groups. 

2.1. Symmetry groups for symplectic Euclidean affine 4-spaces. 

Let E4 be an affine oriented Euclidean symplectic space and JS4 the associ- 
ated oriented Euclidean vector space. We denote by (.,.) the scalar product 
and u the symplectic form on E4. There exists a unique complex structure 
J on E4, such that u(x,y) = (Jx,y), Vx,y G E4. We denote by J7, the 
set of all orthonormal bases e = (61,62,63,64) of E4, such that 62 = Jei 
and 64 = J63. We choose an origin O in E4 and an orthonormal basis of 
E4, (61,62,63,64) G J7. In the corresponding coordinates (x1,^2,^3,^4), the 
symplectic form reads 

LO = dx1 A dx2 + dxs A dx4. 
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And the complex structure J has the matrix 

Li = 

(0-10     0   \ 
10     0     0 
0     0     0-1 

V o   o   i   o / 

(the meaning of that notation will become clear below). 

The relevant symmetry groups here are 

• Q, the group of affine transformations of E4 which preserve (.,.) and 
UJ (or alternatively which preserve (.,.) and J) 

• <?, the group of linear transformations of E4 which preserve (.,.) and 
u (or (.,.) and J), which we may view as a subgroup of Q, namely the 

isotropy group at 0. 

—* —* 
Let us analyze first Q. A first description of Q is obtained by the identi- 

fication of E4 through the quaternions H: 

Q: E4 ~ M4 —»   M 
x1ei + x2€2 + x3€3 + x4:€4 ~ (z1, x2, x3, x4)  i—> x1 + ix2 + jx3 + kx4. 

Let S^ — {p G H/IPI — 1}.   To each pair (p,q) G 5^ x S^ corresponds a 
rotation G(P}q) G 50(4) defined by: \/x G M4, 

(5oG?(p,g)(x) =pQ(x)q- 

The surjective map      ^     N
M ^ is a 2-sheeted covering map 

(since G(_p^q} = G(p^). Explicitly we have, 

G(p,q)X — LpRqX = RqLpX, 

where, denoting p — p1 + ip2 + jp3 + fcp4 and g = q1 + iQ2 + J^3 + fcg4, 

Lp - p114 + p2^ + p3^- + p4Lk 

is the left multiplication by p in H, 

Rq = q1^ - q2Ri - q3Rj - q4Rk 
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is the right multiplication by q in H (notice that RqR-, = R—-), and 

A: = 

^ = 

ito 

/0 -i 0 0 ^ 
1 0 0 0 
0 0 0 -1 

Vo 0 1 o  / 
Z^0 0 0 -1 \ 

0 0 -1 0 
0 1 0 0 

\1 0 0 o  / 

z"0 0 -1 0   \ 
0 0 0 -1 
1 0 0 0 

Vo 1 0 o  / 

Li = 

Ri = 

Rk = 

nau JL tqJi.g — 1 V' 

[0 0 -1 M 
0 0 0 1 
1 0 0 0 

\o -1 0 0/ 

f0 -1 0 0 \ 
1 0 0 0 
0 0 0 1 

\o 0 -1 0/ 

f0 0 0 -1 \ 
0 0 1 0 
0 -1 0 0 

V i   o   o   o / 

Then, from G ~ {G G 50(4)/[G,jLi] = 0}, we obtain 

where So = {Rq = q1tA-q2Ri-qzRj-qARk/q E 5^} and ^2 = {^p = p1l4 + 
p2Li/p £ S^}. Notice that, for any G G Q, there exists (Go, G2) E Go x ^2> 
such that G = G0G2 = G2G0, and (Go, G2) is unique up to change of sign. 

Alternatively, we can describe Q using the isomorphism 

C : E4 ~ M4 

x1ei + x2e2 + x3e3 + x4e4 2^ (x1,x2, x3, x4) 
C2 

(x1 +^x2,x3 +ix4), 

which is holomorphic from (J54, J) to C2.   Through that identification, Q 
corresponds to 17(2), Go to 5/7(2) and G2 to 

/0eM> ~[/(i). 

It is useful to keep in mind these representations. However, we shall 
mostly represent G as a subgroup of the 4x4 matrices .M(4, R) (which 
we can also identify with a subgroup of At(5,R), see below), since several 
complex structures will be involved. 

The group G is just the semidirect product G K R4. If G, G' E G and 
T7T' E M4, the product is (G,T).(G\T) = (GG\GT + T). This group is 
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embedded in .M(5,IR) through 

(G,T) 
G   T 
0    1 

We shall call G the rotation component of (G,T) and T the translation 
component of (G,T). (Notice that we also have the representation Q ~ 
17(2) K C2.) 

The Lie algebra of Q will be identified with 

Q = {(aLi + b1^ + tfRj + bsRk,t)/a, b1^2, b3 G R, t G M4} . 

The Lie bracket of two elements (77, £), (77, £) € g is 

[fa*)* fa*)] = (w - frn^i-fft). 

We denote by go the Lie algebra of £/o> generated by (^,0), (Rj,0) and 
(jRfc,0), and 32 the Lie algebra of ^2? generated by (Li,0). Then the Lie 
algebra of Q is g = go © 92- 

2.2. Action on the Lagrangian Stiefel manifold and on the 
Lagrangian Grassmannian. 

Let us define the Lagrangian Grassmannian Griag to be the set of all ori- 
ented 2-dimensional Lagrangian subspaces of J54, and the Lagrangian Stiefel 
manifold by 

Stieflag = {(61,63) G i4 x i4/|ei| - \e3\ = 1, (61,63) = 0,6^61,63) - 0}. 

Notice that Stiefiag is nothing but the set of oriented orthonormal bases of 
planes in Griag. Actually, we may identify Stiefiag with J7 by the following: 
to each basis (ei, 62,63,64) G T, we associate (ei, 63) in Stiefiag. Conversely, 
we associate to each (61,63) G Stiefiag the frame (61,62,63,64) such that 

62 = Liei and 64 = 1^63. (Through the identification E4 2^ C2, it just 
amounts to say that (ei, 63) is a Hermitian basis of C over C if and only if 
(61,261,63,263) is an orthonormal basis of C2 over M.) 

Now the group Q acts freely and transitively on J7, i.e., for any 
(61,62,63,64) G .F, there exists a unique G G Q such that (61,62,63,64) = 
(ei,€2,€3,€4)G. To prove that, it suffices to realize that the columns of G 
are the components of each vector ei in the basis (61,62,63,64). Hence G 
acts freely and transitively on Stiefiag as well, and transitively on Griag: if 

(ei, 63) G Stieflag and G G Q we shall denote (Gei, Ges) its image by G. 
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An important object for the study of Hamiltonian stationary surfaces 
is the Lagrangian angle map 0 : Stieflag —> M/27rZ. For any (61,63) G 

Stieflag, let G be the unique element in Q such that Gei = e\ and Ge^ — 63, 
i.e., (61,^61,63,^63) = (61,62,63,64)0. Then, viewing G as a matrix in 
17(2), we may compute its determinant: it is a complex number of modulus 
one, which we denote ei0(ei,e3). It builds up the Lagrangian angle map 6. 
Alternatively, 0 is defined implicitly by the decomposition G = G0G2, where 

Go € Go and G2 = e   C123      G £2 (3)- A last possible definition is given by: 

(dx1+idx2) A (dx3 + idx4)(eues) = eiG^e*\ 

One can check easily that 0(ei, 63) does not change if we replace (ei, 63) by 
another direct orthonormal basis of the oriented Lagrangian plane spanned 
by (ei, 63). Hence it defines a map from Griag to lR/27rZ which we shall also 
denote 0. 

Lastly, in the following we shall abuse notations and identify vectors 
/ x1 \ 

x = x1ei + x2€2 + x3es + x4e4 in E4 with column matrices 
x 
x 

particular we let ei = 

/ 1 \ 
_ 1 0 

and 6=2 

0 

0 
i 

62 63 

, Lie — 2 

\ 0 / 

2.3. Moving frames for conformal Lagrangian immersions 

1 
0 

W 
/ 0 \ 

1 
0 

0 
1 

voy 

\x* ) 

In 

,  e4  = 

and L^ = \ 

/0\ 
0 
0 

viy 

1 
0 

Let us consider a smooth conformal Lagrangian immersion of a simply 
connected open domain SI of C ~ M2, X : ft —> E4. We shall de- 
note z = x + iy ~ (x,y) the coordinates on M2. We let f : ft —> R, 
such that e^W = |^| - ||f | and we set e1(z) = e-^%{z) and 

63(2) = 6-^)|J(2), so that 

dX = ef(eidx + e^dy), 

3In particular it proves that 0(0X6!, GX€3) = e(Gei, Gea), VG G ff, Vif G go- 
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and then, X is a conformal Lagrangian immersion if and only if for z G O, 
(ei(^), 63(2)) is in Stieflag. Without loss of generality, we will normalize X by 

assuming that X(ZQ) = 0 and (ei(zo), ^(ZQ)) = (ei, 63), for some fixed point 
ZQ G Q. We let X to be the set of such conformal Lagrangian immersions. 
We denote 62(2) := 1^1(2) and 64(2) := 2^63(2). Therefore the system 
6(2) := (61(2), 62(2), 63(2), 64(2)) belongs to J7: let -Px^) ^ ^ such that 
e(z) — (€i,e2,e3,€4)Fx-(2) and (abusing notations) let X(2) be the column 
vector of the components of X in the basis (ei, 62,63, €4). Then we construct 
a map X : fi —► Q lifting X, defined by 

We shall call X the fundamental lift of X. According to our normalization, 
we have X(ZQ) = (1,0). The Maurer-Cartan form of X is 

X^dX = (F^dFxiF^dX). 

It is a 1-form with coefficients in g, with the property that its translation 
component has the form 

(1) F^dX = ef(eidx + e^dy) = ef (edz + edz). 

The key idea in the following will be to study suitably defined lifts of confor- 
mal Lagrangian immersions instead of immersions themselves - which has 
the effect of decreasing by one the order of the PDE. One could use the 
fundamental lift. We shall however enlarge the possibilities as follows: 

Definition 1. A lifted conformal Lagrangian immersion (LCLI) is a map 
U = (F, X) : ft —> Q: satisfying one of the three following equivalent 
hypotheses. 

a) U(z) = (Fx(z),X(z)).(K(z)-1,0) = (Fx(z)K(z)-\X(z)) where X 
is a conformal Lagrangian immersion, (Fx,X) is its fundamental lift 
and K e C~(fi, Qo) = {K e C00^, gQ)/K{zQ) = 1}. 

b) U{ZQ) = (1,0) and the translation component of the Maurer-Cartan 
form U~ldU has the form 

t = F^dX = efK(eidx + e3dy) = efK(edz + edz), 

where K e C00^,^) and / G C00^,^). 
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c) U(ZQ) = (1,0) and X is a conformal Lagrangian immersion and, \fz € 
n, 

@(^(z)>^(z)^Q(F(z)el,F(z)e3), 

where we let © [ §f-(^), ^r(z)) to be the value of 9 on the oriented 

Lagrangian plane spanned by ^:(z) and ^-(z). 

We shall denote by QX the set of all LCLI's. 

Proof of the equivalence between a)? b) and c). 
a) =$> b): it is a direct computation. 
b) ^> c):  from b), it follows that ^ = e^FKex and |f = efFKe3, 

therefore, using the remark in the footnote, section 2.2, 0 ( ^-(z), ^-(z)) = 

eiFKe^FKes) = e(FeuFe3). 
c) => a): let (Fx, X) be the fundamental lift of X and let K = F^Fx € 

Coc(0, Q). Then a computation shows that the relation G (ff (z), ^(2)) = 

e(Fei,Fe3) is equivalent to @(Fxei,Fxe3) = e(FxK-1ei,FxK-1e3) and 
using the remark in the footnote of section 2.3, this implies that K € 
c?(n,go). □ 

For any simply connected domain Q and for any conformal Lagrangian 
immersion X : O —> E4, we shall lift the Lagrangian angle map and define 

a map /? : Q —> M, such that Vz G fi, 6 (^(z), ^(z)) = f3(z) modulo 27r. 

The (lifted) Lagrangian angle map /? of a LCLI U is characterized by the 
- unique up to sign - decomposition U(z) — (e^^Lijf2MQ(z),X(z))^ where 
Mo E C00(fi,5o). In the following, for any X G X, we shall choose ft to be 
the unique Lagrangian angle map such that l3(zo) = 0. 

Remark 1. It is clear that the gauge group 'C™(Q,Qo) acts on the right 
on QX and that the quotient of QX under this gauge action coincides with 
X. Furthermore, in a given gauge orbit, there are three special LCLFs: the 
fundamental lift X and a pair of lifts such that F E C00(ri, C/2)> namely 

U+(z) - (e^/2,X) and U-(z) = (-e^/2,X). 

(Note that by a change /3 -* ft + 27r of the choice of the determination of /3, 
[/+ and U- would be exchanged.) We call U+ and U- the spinor lifts. 
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We have the following characterization of Hamiltonian stationary surfaces 
(see [01], [ScW]). 

Theorem 1. Let X : O —> E4 be a conformal Lagrangian immersion, 
then, X is Hamiltonian stationary if and only if the Lagrangian angle map 
is a harmonic function on the surface (with the induced metric), i.e., 

Af3 = 0 on n. 

Thus we are led to study LCLFs with harmonic Lagrangian angle map. 
Alternatively, we can isolate the differential df3 by a decomposition of the 
Maurer-Cartan form of U = (e^L^2Mo,X) (according to g = $2 © 00 © 
(0,] 

(2) a = U^dU = ^(Li, 0) + (M^dMo, 0) + (0, t). 

Therefore, we may study connection 1-forms a G C00(fi,T*]R2 ® g) on a 
simply connected domain ft which satisfy relation (2) with coclosed df3, and 
the zero curvature equation 

(3) da + a A a = 0, 

a necessary and sufficient condition for the existence of a map U : ft —> 
Q such that dll = U.a] furthermore, U is unique, if we assume also the 
condition 

(4) U(zo) = (1,0), for some fixed point ZQ G ft. 

We shall concentrate in the following on this last characterization. 

Remark 2. The gauge action of ^(fl^Qo) on QX induces an action on 
Maurer-Cartan 1-forms described by 

(77, t)  ^  (Kr)K-1 -dKK-\Kt). 

In any orbit of this gauge action, the fundamental lift X = (Fx^X) = 
(ePLi/2Mx^x) has the Maurer-Cartan form 

X-ldX    -    (F/dFx,0) + (0,e/(€^ + edf)) 

=    ^(Li, 0) + (M-ldMx, 0) + (0, ef(edz + edz)) 

i.e., with "simplest" translation component, whereas the spinor lifts has the 
Maurer-Cartan forms 

U±ldU± = ^(Li, 0) + (0,0) + (0, ±e-^/2dX), 

i.e., with zero go component. 
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2.4. Splitting the Lie algebra. 

Our aim will be to refine the decomposition given in (2). We introduce the 
following automorphism r acting on Q through conjugation by (—Lj, 0), i.e., 

r(G,T) = (-Lj,0)(G,T)(-ij,0)-1 = (-LjGL^-LjT). 

It induces a linear action on g, which diagonalizes on gc = Q (g> C, with 
eigenvalues z-1, z0, i1 and i2, since r4 = 1. For k = —1,0,1,2, we denote by 
0^ the eigenspace of r for the eigenvalue ik, and we have 

• for the eigenvalue —i, g^ = (0, Ce ffi CL^e) (notice that Ce © CL;6 is 
the (— z)-eigenspace of —Lj), 

• for the eigenvalue 1, flo = go ® C, where go is the Lie algebra of QQ, 

• for the eigenvalue i, gf = (0, Ce © CL^e) (notice that Ce © CL^e is the 

i-eigenspace of —Lj), 

• for the eigenvalue -1, g^ = 82 ® C, where g2 is the Lie algebra of ^2- 

We also have the following characterization of the dzi-eigenspaces. 

Lemma 1. The group M^. x QQ acts freely and transitively on the ±i-eigen- 
spaces of Lj (minus the origin)] in particular the i-eigenspace of Lj, Ce ffi 
CLi€, coincides with the orbit of e and the —i-eigenspace of Lj, CeffiCZ^e; 

coincides with the orbit of e. 

Proof Since QQ commutes with Lj, it preserves its eigenspaces. We now 
prove the freeness and transitivity of the action. Let £ = ae + 6L;e = 
i(a, 6, — ia, ib) be an eigenvector associated to the eigenvalue i (for the other 
eigenspace use conjugation). If H G E+ x QQ maps e to £, then we infer 
necessary conditions: He = ^(Hei - iHes) = £; thus jffei = ^Re[£] and 
ifes = — ^Im[£]. Since we want H to commute with Z^, iJe2 = HLiCi = 
^LiRe[^] = iRe[Ljf], and Jye4 = -^Im[L^]. So i? is uniquely determined. 
Check easily that (Uei, -H^, He^.He^) is a conformal basis of R4, and write 
i? = rK for some isometry if and some r G R+. By construction K com- 

mutes with L^ so K belongs in Q. It cannot have any nontrivial component 
in Q2 otherwise £ would not be a eigenvector of Lj (whose eigenspaces are 
not stable under Li). Thus K belongs to QQ. Therefore there exists a unique 

H e M+ x <3o sending e to f. 
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Notice that the action of E^ x QQ coincides with the right action of W 
on Ce 0 CLie as a subset of H ® C. □ 

Using the decomposition gc = 0^1©0o ®3i®22 » we define the projection 
mapping [.]/. : gc —>- g^. Then denoting a^ := [a]fc, we have 

(5) a = a_i + ao + ai + a2. 

We now substitute (5) in (3). We use the relations [flj^, flp] C 0^.. n mod 4 and 

[fl±ij0±i] = [00,02] = [02,02] = 0. The projection of the resulting equation 
on each eigenspace gives us four relations 

da-i + [a_i A ao] + [ai A (22] = 0, 
//j\ 1 dao + 5 [ao A ao] =0, 

*    dai + [ao A ai] + [a_i A a2] = 0, 
da2 = 0, 

where [aa A a&] = aa A a^ + a^ A aa. We further decompose each form a^ 
as ak = cxfk H-ajfe, with a^ = ak{^)dz and a£ = ak{-§=)dz. We remark that, 

because a derives from a LCLI, a_i + ai = {Q,e^z^K{z){edz + ed^)) and 
hence, Lemma 1 implies that 

(7) a_i = (0, ef^K(z)edz) = a!.! and a!!.! = 0, 

and similarly, 

(8) ai = a" and ai = 0. 

Thus, 

a = 0L2 + a_1 + ao + a'/ + a^. 

Now we exploit (7) and (8) in (6) and we obtain 

da'-i + [a'-i A ao] + [a7/ A a'2] = 0, 
dao + ^[aoAao] = 0, 

da'l + [ao A a'/] + [a'^ A a^] = 0, 

da2 = 0. 

A convenient way to rewrite this system is to introduce a complex parameter 
A E C* and to let 

aA := \~2
OL2 + ylOL_i + OLQ + Xa'l + A2a/

2
/, 
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and then 

da\ + a\ A a\    — A""2da2 
+    A-^dc/.i + [a!Li A ao] + [a7/ A a^]) 
+    (dao + ^[ceo Aao]) 
+    \{ddl + [ao A a'/] + \ol_x A a^]) 
+   A2da2 

A-^ + A2^. 

We now are in position to prove the 

Theorem 2. Assume that ti is a simply connected domain ofC ~ M2. £e£ 
a &e m C^^T^R2 ® g).  T/ien 

© a Z5 ^fte Maurer-Cartan form of a LCLI if and only if da + a A a = 0; 

a/l1 = ai = 0 and a/_1 ^ 0, aj ^ 0; 

• furthermore, a corresponds to some Hamiltonian stationary immer- 
sion if and only if the extended Maurer-Cartan form a\ = A-2^ + 
A~1a/_1 + ao + Aa" + A2a2 satisfies 

(9) dax + axAax = 0i VA e C*. 

Proof First, according to Definition 1, b), a will be the Maurer-Cartan form 
of a LCLI if and only if da + a A a = 0 and 

(a-x + ax) (J^j = (0, e^K(z)e) and 

(a^ + ^O^^^e^K^e). 

But, from Lemma 1, this is equivalent to 

(a_i + ai) (j£) E £, \ {0} and («_! + ai) (Jz^j € flf \ {0}, 

or a'^ = ai = 0 and a'^ ^ 0, a'{ ^ 0. 
Second, the previous computation shows that 
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which vanishes if and only if the immersion is Hamiltonian stationary, ac- 
cording to Theorem 1. □ 

Notice that it suffices to check Relation (9) for A G S'1 C C*, or even 
for one value of A different from ±1 to ensure the Hamiltonian stationary 
condition. 

Corollary 1. Assume that ft is simply connected. Let a be inC^^^T^M2^ 

Q), a Maurer-Cartan form of a Hamiltonian stationary LCLI and ZQ G ft. 

Then for any A G S1, there exists a unique LCLI U\ G C00(f2, Q) such that 

(10) dUx = Uxax andUx(z0) = t. 

Thus there is a S1-family of Hamiltonian stationary Lagrangian conformal 
immersions Xx given by Ux = (F\,X\). 

Proof. First the condition A G 51 ensures that ax is g-valued (and not Q
C
- 

valued). Then equation (9) is the necessary and sufficient condition for the 
existence of a unique solution to (10). □ 

Recovering Ux from ax can be done in two steps (this is due to the 
semiproduct structure of Q), namely: the rotation term can be obtained by 
solving (F^CLFAJO) = [Q:A]2 + ^o; recall however that Fx is defined only 
up to gauge transformation, which leaves [ax]2 invariant but changes all the 
other components. The immersion Xx is obtained by solving (0, F^dXx) = 
A-V.i + AV/. 

The family of solutions (Xx)X(ESi is quite similar to the conjugate family 
of minimal surfaces, also obtained by varying a parameter in S1. As in 
the classical minimal case, this family is in general not well-defined if the 
parameter domain is not simply connected; there may be period problem (in 
our setting: non trivial monodromy). Notice a big difference though: the 
group involved in the classical minimal surface theory is simply E3, which 
unlike Q is commutative. 

3. An associated linear problem. 

In this section we show how a particular choice of gauge (or equivalently a 
particular moving frame) reduces the problem to solving successively three 
surprisingly simple linear PDEs, the two first involving the conformal struc- 
ture, the third being simply the integration procedure from the connection 
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1-form to the immersion. We are then in the position to describe explicitly 
all weakly conformal Hamiltonian stationary Lagrangian tori. 

3.1. Using the spinor lift. 

In this section we still assume that the immersion X is defined on some 
simply connected domain fi. Hence there is no problem in considering a 
spinor lift U = (e^Li/2,X), whose Maurer-Cartan form is 

a = U-ldU = Q§^,0) + (O.ii)) dz + (Vn) + ^(ii.O)) dz 

where u — ae + bLie for some smooth complex valued functions a, b (recall 
Lemma 1). Equation (9) yields the condition 

(11) A/3 = 0. 

Using the fact that in our connection form ao = 0, the only other condition 
in (9) is another linear PDE: 

(0>u)>^(£<,0) = 0; 

written more simply: 

du      ld0r 

Finally, once /? and u are found, X is obtained by integrating 

(13) dX - e^Li,2{udz + udz). 

Notice that the set of solutions of (12) is a real vector space; thus the set 
of solutions for X is the orbit under Q of a vector space. Beware also 
that solving (12) does not guarantee that u (and hence the induced metric) 
will never vanish; so we may actually obtain weakly conformal solutions. 
Therefore the conclusion: 

Theorem 3. The Hamiltonian stationary conformal Lagrangian immer- 
sions from a simply connected domain SI into E4 are given by solving suc- 
cessively three linear partial differential equations (11), (12) and (13). Then 
for given conformal structure and Lagrangian angle map (J, the set of weakly 
conformal solutions is the Q-orbit of a vector space. 
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3.2. Hamiltonian stationary Lagrangian tori. 

We specialize to the case of Hamiltonian stationary Lagrangian tori. Let 
us fix some notations: L is a lattice in C, with dual lattice F* = {7 G 
C, (7, F) C Z} (here (.,.) is the usual dot product in C ~ R2); then any torus 
T is conformally equivalent to some C/F. We want to classify Hamiltonian 
stationary conformal Lagrangian maps X from T to R4, or equivalently 
their F-periodic lift to the universal cover, that we will also write abusively 
X : C —>• R4. This amounts to finding solutions of Equations (11), (12) and 
(13) which give F-periodic maps on C. 

First one should notice that the rotation part in the spinor lift U — 
(ePLi'2,X), is not F-periodic but only 2r-periodic a priori4; so is the trans- 
lation part of the corresponding Maurer-Cartan form and in particular the 
complex vector u = e_/3Li/2^-. So we will distinguish the "truly periodic" 

solutions, for which e^/2 is F-periodic, from the "anti-periodic" ones; still, 
given an anti-periodic solution, its fourfold5 cover is truly periodic. This 
detail will become important when we restrict the solutions obtained on the 
universal cover C to the torus T. 

The solutions of equation (11) are particularly simple: since e1^ is peri- 
odic, i.e., 13(z + T) = /3(z) mod 27r, we have 

(14) I3(z) = 2ir(l3o,z-zo) 

for some ZQ G ft and fio G F*. Up to a translation in z we may suppose that 
ZQ = 0. We see that e^Li/2 is F-periodic if and only if /3o/2 belongs to F*; 
otherwise e^Li/2 is just anti-periodic (we will give examples of both cases). 
Now, setting u — ae + frZ^e, equation (12) is equivalent to 

,    , da TTPOT 1      db      7v(30_ 
(15) — = —b     and     — = -—a. 

oz 2 az        2 

A necessary condition for (a, b) to be a solution of (15), is that a and b solve 
the eigenvalue problem: 

(16) Aip + 7r2\f30\2ip = 0. 

Since a is 2r-periodic, it has the Fourier expansion a = X}7er*/2 a7e2z7r(7'^, 
and a is a solution of (16) if and only if all coefficient a7 vanish unless I7I = 
|/?o/2|. Notice that except for ±/3o/2, existence of such lattice points is far 

4recall that the dual lattice to 2r is just |r*. 
5i.e., twofold in each lattice direction. 
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from obvious and depends strongly on the conformal structure together with 
the choice of the lattice point fio- We remark now that if a is a solution of (16) 
and if b is given by the first equation of (15), then a and b are automatically 
solutions of the second equation in (15). We deduce the following (all sums 
being taken with 7 G ^F*) 

a(z) =     2_]    ^7e 2i7r(7,2 

h\=m/2 

H  h\=\M/2 w I7NIAI/2 

We conclude that, for /3 given by (14), any solution to (12) has the form 
u — Z)|7|=|^o|/2u7' where each it7 = a7e227r^'^e + ^d7e~227r^7'^Lie. In 
other words, the set of solutions to (12) is a finite real vector space with 
basis vectors 

= c2«r<7lz>6 + ^le-2i,{l^)Li-e and = ie2t7r<7lz>c + ^e-2^<7>z>L.- 

PO PO 

for 7 G {7 G ir*/|7| - |/3o|/2}. 
The last step is finding X, by integrating (13).   Again, assuming that 

X(0) = 0, the set of solutions is a vector space, with the basis vectors 

Jo 

and 

Jo 

and any solution has the form 

X =     Y^     Re(a7)^47 + Im(a7)B7. 

l7MA)|/2 

In the computation of Aj and B7, two cases occur: either 7 = =b^/3o, and 
then Ay and 57 cannot be periodic, but only pseudo-periodic (and both 
periods cannot compensate). If 7 7^ ±^A), then Ay and 57 have frequencies 
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7 ± hfo and more precisely: 

oi'Y  — 

4.e7r(i3o,z)Li 

Re 
TT 

e-2i7r(7,z) 

/3o2-472 

/     -«7    \ 
-Po/2 

7 
V -i/30/2 J J 

and 

B^ = 
4e7r(A),z)£z 

Im 
TT ^02-472 

-/5o/2 
7 

v -tA>/2 y 

A necessary and sufficient condition for X = ^i ..o . ^ Re(a7)Ay + 

Im(a7)B7 to be T-periodic is obviously 7 — ^0 € F* (then 7+^0? —7+^0, 
—7 — ^/3o automatically belong to F*). So we define the set 

7€ y+F* such that |7|2 = 
2 and 72 / f y 

Remark 3. In the truly periodic case, ^/3Q belongs to F*, thus F^ is just 

the intersection of the dual lattice with the circle through ^/3o, minus ib|/3o- 

Remark 4. As noted above, multiplication of the solution by a constant 
matrix in Q2 is equivalent to a translation in z-space; such a change of 
variable in turn amounts to multiplying each a7 by a constant (depending 
on 7). Furthermore, the group action of IR+ x QQ on X descends to a free 
action on the couples (a7,d_7), so that all solutions are obtained once for 
each choice of the a7, up to the obvious /3(0) = 0 assumption. 

We may now conclude by the following classification theorem: 

Theorem 4. The Hamiltonian stationary weakly conformal Lagrangian im- 
mersions from C/F into E4 are characterized by their Lagrangian angle 0 in 
as much as fio = ^df3/dz belongs to the dual lattice F*. The set of solutions 
for a chosen fio is the orbit under G2 of the vector space generated by the 
Ay, JB7 and translations in 4-space, as 7 ranges over the (possibly empty) 
set r*n . Its dimension - if not empty - is 2Card(rS ) + 5 (counting the Q2 
action and the translations), or 2Card(ro ) — 3 if one identifies solutions in 
the same Q-orbit. 
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Remark 5. A torus constructed with this method may well be a multiple 
cover of another torus (with a potentially different conformal type): while X 

is by hypothesis T-periodic, its lattice of periods A may strictly contain F. 
Indeed the relevant dual lattice A* is obtained as the one generated by all 

7 - i/3o» 7 + 3A) for 7 € r^0 
and ^7 T^ 

0> so A* C F* and equality is not 
always true. For instance, truly periodic examples are not always covers of 
antiperiodic ones, but that is the case for square tori: 

Proposition 1. Let T = C/F be a square torus; then a truly periodic solu- 
tion X is always a twofold cover of some simpler (i.e. less periodic) solution. 

Proof. For simplicity assume F = F* is just Z ©Z. By hypothesis fa belongs 
to 2r* . We denote A*, dual to A, the lattice generated by the 7 - ^/Jo 
and 7 + iPo for all relevant6 7 G F^. We claim that A* is a subgroup of 
A^ = {(n,m) G r;n + m = 0 mod 2} = (1 - i)Z © (1 + i)Z. Indeed let 
7 = (p, q) and ±p0 = (po, qo) - both in F -, then p2 + q2 = Po + ql implies 

p - po = (p - Po)(p + Po) = (? - 9o)(9 + qo) = Q-Qo mod 2 

Now A* C A£ is equivalent to AQ = ^Z © ^Z C A, so X is Ao-periodic, 
and C/F is a double cover of C/AQ. Notice that AQ is again square. □ 

Remark 6. Examples with arbitrarily many frequencies can be constructed 
by taking for instance the square lattice Z © Z and /3o = 2(p + iq)n where 
p, <? are integers. Then the set F^ contains all the ±(p + iq)n~k(p - iq)k for 

fc ranging from 1 to n. 

3.3. Some toric examples. 

A truly periodic example on a rhombic torus. 
Set UJ = ei7r/3, and F* = Z © CJZ. Taking /3o = 2 G 2r* and non zero coef- 
ficients fio,, 0^2, we construct a F-periodic Hamiltonian stationary (weakly 
conformal) Lagrangian immersion X. Let A be the lattice of periods of 
X, and A* its dual. Then A* contains 1 = (OJ - ±/3o) - (UJ

2
 - |/3o) and 

OJ = (CJ + i^So) - 1- So A* = F* and X does not cover another torus. Taking 

6that is a7 7^ 0. 
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for instance a^ = au2 — 1, we have X{z) — A^z) + AUJ2{z): 

X{z) = 
nV3 

TTVS 

//       cos(7r(a; + yv/3))       \ 
- sin(7r(x + y\^3 + 5)) 

sin(7r(x + y\/3)) 
W   cos(7r(x + yV3+l))   J 

(       cos(7r(-x + 2/v/3))       \\ 
sin(7r(-x + y\/3 - |)) 

sin(7r(-x + 7/\/3)) 
V -cos(7r(-^ + yV3-|)) // 

/ cos(7ryv/3) (cos(27rx) cos(7rx) + sin(27rx) sin(7ra; + \)) \ 
cos(7ry\/3) (sin(27rx) cos(7ra;) — cos(27rx) sin(7ra; + ^)) 
sin(7ry\/3) (cos(27r£) cos(7rx) + sin(27rx) sin(7r^ + ^)) 

\ sin(7ry\/3) (sin(27rx) cos(7rx) — cos(27rx) sin(7rx + |))  / 

+ 

Figure 1: A rhombic torus. 

The standard torus and its rectangular counterparts. 
The simplest - and until recently (cf [CU]) - only known tori were the 
product of circles 51 x S'1  C C x C = E4; more precisely define on the 
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rectangular torus T = C/a;iZ © ia^Z (001,(^2 ^ 

X(x + iy) 

/   ct;isin(27ra:/a;i)    \ 
—ui cos(27rx/uJi) 

UJ2 sm(27ry/oj2) 
\ -oj2cos(27ry/oj2) / 

When ui = U2 = 1, X(T) is the standard square torus. 
The Lagrangian angle of X is /3(z) = 2/K{x/uJi+y/u2) so /JQ = cc;^1+w^1 

which belongs to T* = c^jf 1Z © ZCJ^Z but not to ^r*, so we are in the 
antiperiodic case. Then T^ = {\^,— \fio} 7. That torus corresponds 
exactly to cipQ/2 — ^-/W2 — /7r)- As noted in remark 4, other choices of those 
coefficients amount to multiplying X by an element in R+ x QQ. 

 r1 

    _ 

1 

~~^\| Po/2 

/ h 
iy 

-fV2 J^f 
Figure 2: The standard torus. 

The examples of I. Castro and F. Urbano. 
In a recent article a new 3-parameter family of Hamiltonian stationary La- 

7except for some particular lattices: if 1 + w\liJ\ = m2 for some m G Z then 
±ma;^1 also belongs to F^. 
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grangian surfaces was described, some of them giving rise to tori (when 
the periodicity conditions were satisfied). The construction was based on 
geometric properties of parallel lifts on the 3-sphere, instead of the more 
analytic methods used here. These examples also satisfied the rigidity prop- 
erty of being invariant under a one-parameter group of isometries, which 
characterizes them among tori without parallel mean curvature vector (thus 
excluding the above rectangular tori). Though we will not describe explicitly 
the examples (we refer the interested Reader to [CU]), we indicate how they 
fit in our classification and how their properties are linked with a special 
lattice structure. Prom now on we will use their notations. 

Let XQV be an immersion with real parameters a, (3,6 G [0,7r/2) x 
(0,7r/2) x (—7r/2,7r/2) satisfying 0, |a| < /3. The double periodicity con- 
dition amounts to ^^ and %£% being rational8, so we write fP^f = £ and snip cosp 0 ' sinp s 
2£% = 2   The lattice of periods T is -^Z ®i^Z, and the dual lattice is cosp q r cosp sinp     7 

.      cos/3 .sin^ coso' .sinar77 r* = —-z e i—-z = z e ^—z . 
qn sir pir rir 

Using the expression for the mean curvature vector9 is (in conformal coor- 
dinates) 

_      e-*f (d*. dXfo      d<t>    BXfj, 

dx        dx dy        dy 

where (/> denotes here the Lagrangian angle, together with (f)(z) = 27r(<^0j ^) + 

constant10, we deduce that </>o = ^|| = ^ has lattice coordinates (p,r) (in 
F*). The periodicity condition above translates as the geometric property 
that the circle of radius |<£o| = l/fl" possesses 8 lattice points (instead of the 

generic 4), namely: ±~-, ±^—, ±^r, i^T"' ^ may ^e ^^ a = ^' ^^ ^e 

property still remains that there are 4 extra points more than usual. These 
are exactly the points that come into play. Denoting 7 = ^ £ ^F*, 

- /    _    - _- ^2. _^£\ - |7,    7,7,    7, 2 ,     2 j 

where the two last points are removed if </>o is real (i.e. a = 0). It also 
comes naturally that the limit case a = f3 corresponds to the previous (and 
simpler) rectangular tori; if furthermore /3 = 7r/4 the lattice structure is 
exactly that of the (square) torus. 

8take for instance /? £ (7r/4,7r/2) such that tan/3 is rational and a = 7r/2 — /?. 
9i.e., the half trace of the second fundamental form. 

10a careful computation shows that the constant is TT. 
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-e-iP __^ e'P 

/* \ 

■e-ioc 

 ? L    

 ^ 

eia 

x  

-eia v ) 
e-ia 

\ y 
-eiF' 

^^ 
e-iP 

Figure 3: A Castro and Urbano torus. 

The isometry described by I. Castro and F. Urbano is 

X%fi{z + it) = € t (sin aLi—sin jSRi >*(*). 

This property implies that the only dual lattice elements in the Fourier ex- 

pansion oiu = e^1'2 Q^ are precisely 7, —7,7 and —7; moreover opposite 
elements vanish simultaneously and we have the conditions: 

-*(/3+a) 
CZ /y      O Ctcv 5 Ci — 'V    —   o = „*(£-«) XT 

Using this the coefficients can be computed in terms of the functions defined 
in [CU]. 
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4. Introducing loop groups. 

4.1. Twisted loop groups. 

We introduce loop groups, sets of maps A i-» G\ from the circle S1 = {A G 
C/|A| = 1} to some Lie groups (here various subgroups of <?c), with a 
multiplication law given as follows: the product of two elements A *-> G\ 
and A *-)► G^ is just A i-> G\G'X. We denote 

Kg := {[A h-> GA]; 51 -> e?} and A£c := {[A ^ GA]; S1 -> gc}. 

We endow these groups with the Hs topology for some 5 > 1/2: if GA = 
Ylkez Gk^k is the Fourier expansion of GA, its Hs norm is 

1/2 

iiGAiis=fEi^i2(1+fc2)s/2) 
\kez / 

Other topologies can be used (for instance the C00 topology), for more de- 
tails, see [PS]. We define the twisted loop groups 

AgT = {[A h+ GA] € AG/Gix = T(GA)} and 

A^ = {[A M> GA] E A^/GiA = r(GA)}, 

twisted meaning equivariant with respect to r. Also 

A-g^    =   {[A H^ GA] e Ag^/Gx extends holomorphically 
to the complement of the unit disk and GQO = 1} 

A+g^ = {[A ^ GA] e Ag^/Gx extends holomorphically 
to the unit disk} 

A+^ = {[A ^ GA] € A^/GA extends holomorphically 
to the unit disk and Go G (Z3,0)} 

where B is some subgroup of QQ. In an analogous way define the corre- 
sponding Lie algebras Agr, Ag^, A~Q^ A+gJ: and A^g^ where b is the Lie 
algebra of B. 

Afl^      =   {[A^7A];51^0
c/7a = r(7A)} 

Asr     =   {[X^^eAQ^/jxe^XeS1} 
A*Qr    :=    {[X ^ 7A] E Ag^/lx extends holomorphically 

to the complement of the unit disk and 700 = 0} 
A+g^ = {[A i->» 7A] E Ag T/7A extends holomorphically 

to the unit disk} 
A^sfi: = {[A i->- 7A] E Ag^/^x extends holomorphically 

to the unit disk and 70 E (b,0)} 
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An analysis of the relation 7^ = T^), for any 7A G Ag^r, shows that, writing 
7A = J2kez TfcA^, this twisting condition is equivalent to 7^ G QkmodA- 

We remark in particular that Ag^ = A~g^ © A+g^, thus defining a 
projection [.]A7nc • Ag^ -> A~g^. Using this language, we can state the 

JA*fl? 

Corollary 2. To each Q-valued 1-form a giving rise to a Hamiltonian sta- 
tionary conformal Lagrangian immersion corresponds a Agr -valued 1-form 
ax (extended 1-form) satisfying relation (9) and such that 

(17) a\ 

aA    TTI 

dzj 

d 
dz 

= \-2a- 
A^fl? 

d_ 
dz 

+ \-la- d_ 
dz 

and 

-0, 
A^S? 

and 

(18) «-i(^)#o. 

and conversely. Moreover there exists a unique map U\ : ft —> AQT such 
that dU\ = U\a\ and U\(zo) = 1. U\ is called an extended lift. If ft is 
not simply connected, ax is still well defined but Ux will be multivalued in 
general. 

Proof. On one hand, Theorem 2 implies obviously that each g-valued 1-form 
a associated with a Hamiltonian stationary conformal Lagrangian immersion 
can be deformed into such a a^. On the other hand, any Agr valued 1-form 
a;\ satisfying (17) and (18) should satisfy 

ax = A 2a. -2 + A  1d_i + ao + A1^ + \2&2, 

with 6>i(-§^) — &2(-§z) = 0 and &i (-$=) ^ 0, because of the reality condition 
&k = oc-k contained in the definition of AgT. If furthermore ax satisfies 
(9), then we conclude by using Theorem 2. The existence of U\ is just a 
reformulation of Corollary 1. □ 

Remark 7. 
a) If U is a LCLI and U\ is an extended LCLI such that U\ = £/, then the 
gauge action of C^ftjf/o) on U extends in a natural way on U\. Precisely 
if K G ^(ft^Qo) and if we denote (KU)x the extended LCLI constructed 
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from UiK-1,0), then (KU)\ = UxiK'1,0). To prove it, since we know that 
(KU)x(zo) = Ux(K~1jO)(zo) = 1, it suffices to check that both functions 
have the same Maurer-Cartan form, namely 

A-V2 + A-^Oy.i + (K^aoiK.O)-1 

- (dK.K-\0) + X(K,0)^[ + \2(K,0)^. 

b) The extended LCLI of the fundamental lift has the Maurer-Cartan form 

X-ldXx   =    ^- ^(Li,0)dz + \-1ef(0,6)dz + (M-1dMx,0) 

A2 88 
+Xef(0,e)dz + —-^{Liy0)dz, 

which implies that X\ = (Mxe'^.Xx), where df3\ = X~2^dz + \2^dz. 
Denoting 7 the harmonic conjugate function of /?, i.e., such that ^(/3 + ry) 
vanishes at 2:0 and is holomorphic, f3\ = ^(A~2 + A2)^ + |(A~2 - A2)7. The 
extended LCLI's of the spinors lifts have the Maurer-Cartan form 

UZ;xdU±,x    =    -T-£(Li,0)dz±\-L[0,e~——)dz 

and hence [/I^A = (±e   2   , X^). 

4.2. Group decompositions. 

The main tool for Weierstrass representations, as those proven in [DPW], 
are loop groups decompositions. They are infinite dimensional analogs of 
Iwasawa decompositions such as SU(n)c — SL(n,C) = SU(n).B, where 
B is a solvable (Borel) subgroup of 5L(n, C). For the convenience of the 
Reader, we first give here the proof of this splitting for the case n = 2 (recall 
that in our language, 5/7(2) ~ C/Q)- 

Proposition 2. Let BQ be the subgroup of matrices in QQ leaving M^e in- 
variant, then QQ = GQ.BQ. More precisely the map 

Go* Bo    ^£oC 

(K,B)    y-^KB 

is a diffeomorphism. 



106 F. Helein and P. Romon 

Proof. We use essentially Lemma 1 and recall that R+ x Go acts freely and 
transitively on Ce©CLie\{0} which is the pointed i eigenspace ofLj. Since 
GQ commutes with Lj, so does (?£, hence Ge belongs to Ce ® CL^e for any 
G E QQ. By Lemma 1, there exist unique K G Go and r <E M+ such that 
Ge = rKe. Just set £ = K^G G So- Notice that we might as well use BQ 

to construct our Iwasawa decomposition. □ 

Before stating the main results of this section, we shall establish a pre- 
liminary one. We set 

A^ = {[A -► GA] G A^MGA) = GiA.VA € S1}. 

Notice that, since VG € Qc, r2(G) = G, any GA € A^ satisfies GA = 
r2(GA) = G_A. Also we denote 

Ag%T = Ag%r\Ag£ 

= I [A H. if A] G A^/i^A = J] K2k\
2k,K4k G Cl, ^4fc+2 e CLf I, 

I fcez J 

and 

(19) AC?oC
r = A<5oC n A^ = {[A ^ FA] G A^/FA = £ ^fcA4*}. 

fcez 

Lemma 2. For any A M- GA G A^r , there exists (K\,M\) G Ag$ x A^, 
unique up to sign, such that 

GA = JTAMA. 

Moreover 

(i) eii/ier Kx G Ag^T and MA G Ag^T, 

(ii) or KA = Liitx and MA = Q(A2 + A-2)l+ ^(A2 - A-2)i?i) MA, with 
(Kx,Mx)eAg%TxAgCT. 

In other words,  setting TTA  := Li (|(A2 + A"2)! + ^(A2 - A-2)i?i)   G 

ACIr, 
Ag? = Ag^T.Ag^ u WA.A^T.A^T. 
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Proof. Let A H> G\ <E AQ^ and consider a lift g : M —> Qc such that ^(0) = 
Geie, V6> G M. For any 9 e M, there exists fc(0) G ^2 and m((9) G ^0 such that 
g(9) — k(Q)m{9), and k{6) and 771(6) are unique up to sign. Moreover we 
can choose k{9) and m{&) to be continuous functions of 6. Since G-\ = G\, 
we have k(9 + 7r)m(9 + TT) = k(9)m(0), and therefore &(# + TT) = ±k(9) and 
m(6> + TT) = ±m(9). Hence fc(0 + 27r) = fc((9) and m((9 + 27r) = m((9) and we 
may define (irA,MA) G A^ x A^ by /c((9) = Keie and m(l9) = Me»e. This 
proves the first assertion of the Lemma. 

Notice that T(K\)T(M\) = T(G\) = Gi\ = Ki\Mi\, which implies that 

(KixY^Kx) = MiA(r(MA))-
1 G ^c n ^ = {±1}- Hence 

(20) T(KX) = sKa and T(MA) = 5MiA, with 5 = ±1. 

Moreover because of the parity of GA, i;C_AM_A = K\M\, which leads to 
the alternatives 

a) K-x = Kx and M_A = MA, 

b) JFf_A = -ii:A and M_A = -MA. 

If b) occurs, Kx has the Fourier decomposition Kx = X^^GZ ^2fc+i^2/c+1- 

Then equation (20) implies that T(K"2A;+I) — 5^(—1)^^2^4-1? which is possible 
only if all the i^/c+i 's vanish, because the eigenvalues of the action of r on 
C1 + CL; are 1 and -1. We exclude that since Kx G G2' Hence only case a) 
may occur. 

To conclude we inspect the consequence of (20). If s — 1, case (i) of 
the Lemma occurs. If s = —1, we define Kx in AQ2 and MA in AC/Q- 

by Kx = UKx and MA = (i(A2 + A"2)! + i(A2 - A"2)^) MA. Then we 

check that T(KX) = Kix and T(MA) = Mix which shows that we are in case 
(ii). D 

We recall results in [PS]: let © be a compact Lie group and ©c its 
complexification, and assume that the Iwasawa decomposition (&c = (S.S^ 
holds, for some solvable subgroup S^ of (5C. Define as before the loop 
groups A0C, A0, A+0C, A+ 0C and A-0C. 

Theorem 5 (Pressley-Segal). 

a)   The product mapping 

A©xA+a©
c    —^    A©c 

is a diffeomorphism. 
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b)   There exists an open subset C® of A(SC
; called the big cell, such that 

the product mapping 

A-0C x A+(5C    —>      C0 

(7A ,7A) •—^   7A -TA" 

is a diffeomorphism. 

We now use these results for proving the following decomposition theo- 
rems, adapted to our situation. 

Theorem 6.   We have the decomposition AQ^ = AGT.Ag Q^, i.e-, the map 

(FX,BX)        ^   FX.BX 

is a diffeomorphism. 

Theorem 7.  There exists an open subset C of AQ^:, called the big cell, such 
that C = A~GT-A+GT, i.e., the product mapping 

A-g^ x A+g^  —»     c 
(GA'GA)        '—>    G\'GX 

is a diffeomorphism. 

Proof of Theorem 6. 
Step 1.    We prove the decomposition Agjr = AQr.A^G^. 

Let GA G A^. By Lemma 2, 3^,MA) G AG^T X A^T such that 
either (i) GA = ^A-MA, or'(ii) GA = TTA-KA-MA- 

We use Theorem 5 a) for © = 517(2) ~ Go- Let MA G A^f such that 
MA = MA

4
- Then there exists a unique {4>\,P\) G A£o x A^GQ such that 

MA = 4>\A- Setting <f)X = ^A4 G A^cr (recall (19)) and /3A = ^ G A+o^r, 
we obtain MA = </>A/3A- 

Similarly, we apply Theorem 5 a) for © = 17(1) ^ Cfo since K\ G A^ 
there exists a unique (^A> 7A) ^ A£/2 x Ag G2 such that KA = ^ATA (here we 

set B2 = {eitLi/t G R}.) Thus r(^A)r(7A) = r(ifA) = ^iA = ^A7iA, which 
implies that T^A)^

1
 = r(7A)7z

:^1 G A^2 H A^2^ = {1}. (Here we used 
the fact that #2 is stable under the action of r and therefore ^A^C/Ip) C 

A^2G2') Hence T('0A) = V^A and T(7A) = 7tA, meaning that VA G A^2,r and 

7A G A^G^T- Lastly we remark that A£2<7£T = AtG^r and tim8 7o = 1- 
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Hence we conclude that 

Gx = FXBX, 

where in case (i), 

F\ = VA</>A € A<72,I-A0O,T C AgT, and 

5A = 1X(3X e AtGftTA+og0,T C A+&. 

And, in case (ii), 

^A = TTA^A^A G Aft-, and £A = 7A/3A G A^Gr- 

The diffeomorphism property of the decomposition is easy to check. 

Step 2. We prove the decomposition A</*r = A^T.A^o^. Let (GA,TA) G 
A^. We want to prove that there exist unique (F\,X\) G AQT and 
(SA,6A)GA+o^, such that 

(21) (Fx,Xx)(BXjbx) = (FASA,FAfeA + XA) = (GA,TA). 

Since GA G A<7*r, the equation GA = -FA-BA has a unique solution (FA, JBA) G 
A^r D Ajo</*r, according to Step 1. The other equation, FA&A + Xx = TA, is 
equivalent to 

(22) FA-1rA = 6A + FA-1JfA. 

Let us denote AC^ = {[A ^ T^]; 51 -»• C4/ - LjVx = ViX}, AM4 = {[A ^ 
7A]j^1 -»■ R4/ - LjVx = FiA} and A+C4 = {[A ^ Vx} e AC4/FA extends 
holomorphically to the unit disk }. We have the following splitting 

AC4=AR4eA+C4. 

We define P : AC4 —> AM4 to be the projection on the first factor. Explic- 
itly, 

P (E V2n+l\2n+1)  = £ V2n-lX2n~l + £ V^A2"*1. 
\n€Z /        n<0 n>0 

Then the solution of (22) is given by Xx = FXP (F^Tx) and bx = F~lTx - 
P{F^Tx). D 
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Proof of Theorem 7. We use Theorem (5) b) with 0 = Q ~ U{2): let 
C = A-gc.A+gc and C = {(Gx,Tx) G M^/Gx € C}. The latter is clearly 
an open subset of A^. For any (GA, TA) € C, we look for (G^, T") € A"^ 
and (G+,rA

+) G A+^ such that (GAG+,G^T+ + T^) - (GA.TA). Let 
(G^, Gj) be the unique element in A-^c x A+cfc such that GA = G^Gj. 
Since GA € A^, r(GA)T(G+) = r(GA) = Ga = G^G^, which implies 

(Ga)-1r(G^) = G+r(G+)-1 G A;^ n K+Gc = {1}. 

Hence (G^,G^) G A"^ x A4"^. To conclude, we look at the equation 

(23) G^T+ + T" = TA ^^ T+ + (G")-1^" = (G^)-
1
TA. 

We let A-C^ = {[A M- V\] G AC*/V\ extends holomorphically to the 
complement of the unit disk in C U {oo}} and use the linear splitting 
AC^ = A-C^ © A+C*. Let Q- : AC^ —»■ A'C^ and Q+ : AC^ —> A+C^ 

be the projection maps on each factor, namely Q~ (^2nez ^2n+iA2n+1J = 

En^o^n-iA2""1 and Q+ (Enez ^n+iA2^1) = En>o^n+iA2n+1. Then 

the unique solution to (23) is given by 

TA- = G-XQ- ((G^-^A) and T+ = Q+ ((G^)"1^) . 

Thus we obtained the right decomposition. □ 

5. Weierstrass representations. 

5.1. Prom Hamiltonian stationary surfaces to holomorphic 
potentials. 

First we shall here sketch how to use ideas from [DPW] in order to construct 
Weierstrass type data, starting from a Hamiltonian stationary Lagrangian 
conformal immersion. Then we will revisit the obtained results and see how 
it simplifies in our situation. 

Let U = (F, X) : O —> Q be a Hamiltonian stationary LCLI. Then it 
follows from Corollary 2, that U extends to a map U\ = (F\,X\) : ft —> 
Agr satisfying (17), (18) and Ui = U. 

5.1.1. A family of holomorphic potentials. There exists a holomorphic 
map H\ : ft —> AQ? and a map Bx : ft —> ABoSr such that 

Ux(z) = Hx(z)Bx(z), VA G S\\/z G ft. 
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The construction if H\(z) and B\(z) is done as follows: one looks for a map 
B\ : ft —> ^Bo^r suc^1 ^^ H\(z) — Ux(z)Bx(z)~1 is holomorphic, i.e., 

which is equivalent to 

dz \     \dzj \dzJ \9z 

The existence of a solution B\ to this equation is first obtained locally (see 
[DPW] or [H2]), then one can glue the local solutions into a global one 
[DPW]. Then we write 

H-'dHx = Bx (ax - B-ldBx) Bj}, 

and using the fact that Bx takes its values in A^ Q^: and that z \—> Hx(z) 
is holomorphic, we deduce that 

H^dHx :=nx=Y, ^An, 
n>-2 

where each /in is a closed (l,0)-form (i.e., holomorphic). As we shall see, 
in 4.2, we can reconstruct Ux from fix- J- Dorfmeister, F. Pedit and H.Y. 
Wu call the form fix a holomorphic potential. Notice that fix is far from 
being uniquely defined, so we associate to Ux a whole family of holomorphic 
potentials. 

5.1.2. A single meromorphic potential. We can refine the above result 
as follows. First one can show that there exists a non accumulating set of 
points ai, a2,... in fi such that Ux(z) belongs to the big cell C (see Theorem 
7), for all z G ft \ {ai,a2,...}. The proof of that is delicate and uses in 
particular the result of 5.1.1. Thus applying Theorem 7, we deduce that 
Vz G n \ {ai,a2,...}, 3!([/A-», */+(*)) G A"^ x A+^ such that 

(24) Ux(z) = U;(z)U+(z), 

and then 

(25) MA := (Z7-)-1 dU- = U+ (ax - (E^)"1^) (U+y1. 
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We analyze equation (25): the right hand side tells us that /}n = 0 for 
n < -2 and the left hand side that /in = 0 for n > 0. Hence 

(26) MA^A^/i-s + A-^-i. 

Moreover, by writing the Fourier expansion of the right hand side of (25), 
one shows that fix {£=) — 0. Hence z i—> U^(z) is holomorphic on O \ 
{ai,a2,...}. The analysis in [DPW] shows furthermore that z \—> U^(z) 
extends as a meromorphic map on fi: the potential fix is a uniquely defined 
meromorphic potential. 

5.1.3. Explicit description. We shall now revisit the previous facts. 
Since the 1-form /x\ defined in (25) has his coefficients in A~g^, we may 
write it as 

(27) fix = X~2{cLi,0)dz + X~1(0,ae + bLie)dz, 

where a, 6, c are a priori meromorphic functions on O. Moreover, it follows 
from (25) that 

(cLi^dz = U+af
2 (U+y1 = [/+ Q^o) (U+y'dz 

where we used the fact that U£ G GQ. Thus c = |||. Hence, letting 
U^ — (G^,T^) and using dU^ ^U^fix, we obtain 

d(G-,TA-) = U^Gl^^Lidz^Gliae + bLi^d^ , 

from which we deduce 

where 7 : ft —>• C is such that 7(2:0) = 0 and d(\(l5 + 27)) = |f dz (11), and 

also dTA- - A-^^^+^^^ae + ^e)^. Thus 

{G-x{z),T;{z)) 

(/3(z)+i7(z))Li) A-i  r e
Aii(^(^)+i7(^))ii(a(u)e + b(v)Lie)dv = I e 4 

^0 

11 recall that |(/3 + 27) is the only holomorphic function vanishing at ZQ with a 
real part equal to ^. 
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Now, letting Uf = (G^,T^),we can write (24) as 

(e-^^+i^z»LiFx(z),e-^M+i^z»LiXx(z)\ 

= (G$(z),T+(z) 

+ e-^(^W+*7W)i-«A-i  I" e^VW+i-rWHaWe + b^L^dv) . 
JZQ J ' ZQ 

We conclude that 

(G+,rA
+) = Ce-^i09-H7)iiFA>Q+ L-^iP+^ixXs. 

Moreover we have obtained two different expressions of T^ which imply the 
relation 

(a + bLtfdz = Xe-^V+W'd fe^+^Q" (e'^+^xX , 

from which we deduce a posteriori that a and b are holomorphic. After this 
analysis, we are led to the following 

Theorem 8. For any Hamiltonian stationary LCLI U\ = (F\,X\), there 
exist unique U~ = (F~,X~) <E A~^ and U+ = (FA

h,X+) £ A+^ such 
that U\ = U^U^, defined explicitly by 

for 7 solution 0/7(20) — 0 and d(|(/3 + ^7)) = fadz. Moreover, 

MA = (U^)     dU^ = f ——Li—dz, X~1{ae + bLie)dz J 

for some holomorphic functions a, b. 
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Proof. The uniqueness of the decomposition follows from Theorem 7. One 
checks easily that U\ = U^U^ and U^ G A~£c. For the verification of 
U^ G A+C?c, we assume first that U\ corresponds to the fundamental lift: 

then (see Remark 3) F\ — Mxe   2   5 which implies 

Therefore G$ belongs to A+gc. Thus obviously U£ € A+^c. If i7A 
corresponds to an arbitrary lift, then, according to Remark 3, there ex- 

ists K  €  C°°(Sl,go)* such that FA   =  Mxe^K'1,  and thus G|   = 
A2 

MxK~1e^'^~'L'y)Li and we obtain the same conclusion. 
Lastly repeating the argument of Theorem 7, we can deduce that U^ G 

A~QT and U^ G A+Q^. The computation of fix was done before. D 

The data a)b^c= \-^ are called the Weierstrass data of U\. 

5.2. From a Weierstrass data to a Hamiltonian stationary 
conformal immersion. 

We shall now see that the construction of the previous section has a converse. 
As above, we first sketch how to adapt the strategy of [DPW] and then we 
explore in more details what it means in our context. 

Let fix = ^n>-2 AnAn be a holomorphic potential; it is a 1-form on ft 
with coefficients in Ag^ which is holomorphic, i.e., which satisfies fix (■§=) = 
0 and dfix = 0. Then, fix {■§=) = 0 implies in particular that fix A fix = 0. 
Thus 

dfix + MA A fix = 0, 

and there exists a unique map Hx G AQ^ such that Hx(zo) = 0 and 

(28) dHx = HxHx- 

For any z G f2, we use Theorem 6 with H\(z): there exists a unique 
(Ux(z),Vx(z)) G AgT x A+^ such that ifA(z) = 17A(^V^W. A straight- 
forward computation using (28) shows that 

(29) U-'dUx = Vx (fix - V^dVx) V-1. 

Let us denote aA := U^dUx- Again the right hand side of (29) tells us that 
QA should be of the form 

^A =  Yl ^nAn' 
n>-2 
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but the left hand side says that an — a_n and thus 

a\ = X~ a-2 + A~ a_i + ao + Ac^i + A a2- 

Moreover, using V^1 - V^1 + AFf1 + • • • = V^1 - \VQ~
1ViVQ~

1 + ■ • •, it 
follows also from (29) that 

&-2 == VroA-2Vro"'1 and d_i = VbA-i^o"1 + t^ij A-2]Vr
0~

1 

are (l,0)-forms. Hence, since a^ satisfies condition (9) automatically, Corol- 
lary 2 implies that - provided that we can prove the condition d_i 7^ 0 - U\ 
is an extended lift of a Hamiltonian stationary conformal immersion. Lastly, 
by the relation U\ = HxV^1, we see that /ix is a holomorphic potential for 
U\ in the sense of the above section. 

Let us now look at the particular case where fix has the form 

fix = {——Lit^fae + bLi^Jdz, 

for some holomorphic /3,a, b. We integrate the equation dHx = Hxj^x- De- 
noting Hx = (h\,ri\), it gives 

/A-2 9/3 \ 
(dhx.drjx) = f ——/lA^i^^'^A^e + ^e)^) . 

It has the following solution 

ifA(z) = (/lA(z),77A(z)) 

= (e^^W+^W)^, re^W»)+i7(«))iiA-i(a(v)e + 6(t;)L^)d^ ) 

where 7 is the harmonic conjugate function of 0 vanishing at ZQ. We now look 
for Ux = (Fx,Xx) € AgT and Vx = (Bx,bx) € A+^ such that #* = UXVX. 
We first use that 0X = ^(X-2+X2)/3+^(X-2-X2)^ (see the proof of Theorem 
6) and thus 

1 A2 

meaning that we have i^ = e^^xLi and Bx = e~^^~l^Li. Now we need to 
solve 

rjx(z) =  [\^Wv^i^v»Li\-1(a(v)e + b(v)Lie)dv 
J ZQ 

= Fx(z)bx(z) + Xx(z), 
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or 

e-i/3A(,)L;   r eAZi(/3(i;)+i7(v))L.A_1(a^)e + h^Lit)dv 

= bx(z) + e-12^LiXx(z). 

We deduce that 

e-hMz)LiXx(z) 

= P (e-*Mz)Li ^^^^^^^X-^a^e + b^Li^dv) . 

Hence we proved 

Theorem 9. For any harmonic ft and holomorphic data a, b, the potential 

IJL\ = l—2-^Li^X~1(ae + bLie)) dz leads to construct the map U\ : Ct —> 

AgT by 

Ux(z) = (Fx{z),Xx{z)) 

• A~1(a(?;)e + b{v)Lit)dv ) ), 

where f5x = ^(A-2 + A2)/? + |(A_2 — A2)7 and 7 is the harmonic conjugate 
map to 13 vanishing at ZQ (i.e. d(/3 + i^)/dz = 0). And Ux is an extended 
lift of a Hamiltonian stationary conformal immersion if and only if Xx is 
an immersion. 

6. Tori and finite type solutions. 

Going back to the torus, we will apply the concept of holomorphic poten- 
tial defined in the previous section to the study of Hamiltonian stationary 
Lagrangian tori (in conformal coordinates). What makes the torus specific 
is that we can define - intrinsically - a notion of constant potential, i.e. 
jj, — r]dz, where dz is any globally defined holomorphic 1-form and rj is 
a constant twisted loop of Lie-algebra elements. Indeed two globally de- 
fined holomorphic 1-forms on a torus T differ by a multiplicative constant. 
We may further restrict to those potentials having only a finite number 
of nonzero terms in their Fourier expansion (known as polynomial loops). 
While such conditions may seem (i) far-fetched and (ii) too restrictive, it 
turns out that 
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• integrating potentials that are constant (in z) and polynomial (in A) 
is equivalent to integrating commuting flows, which in our case leads 
to a much simpler integration process than the one described in sec- 
tion 5.2 (also known as the Adler-Kostant-Symes (AKS) scheme); the 
corresponding Hamiltonian stationary immersions are called finite type 
solutions; 

• all immersed tori are finite type solutions. 

Notice also that in the toric case, the considerations below prove the exis- 
tence of potential (without resorting to the previous section). Such ideas 
originate in the theory of completely integrable systems, however we will not 
explain here the link between commuting flows and finite type solutions, and 
refer the Reader to [BFPP] for a good description of both sides of the AKS 
scheme. Finally we will see how this new description relates to the one given 
in section 3. 

6.1. Construction of finite type solutions. 

Throughout the section, dz will denote some fixed global holomorphic 1-form 
on a torus T, or its universal cover C. Then for any d G N define 

AV = I [A -► &] € A0T; 6 = E 6»An f 

the space of real polynomial loops of degree d. 

Proposition 3. Let d G 4N + 2 and rjx G Adjgr be a polynomial loop. Then 
the extended I-form ax obtained through the AKS scheme from the constant 
potential \d~2r)\dz on C {with starting point ZQ) is exactly the projection 
7rAQT(^

d~2Cxdz) of the solution ^ to the following differential equation: 

m fd^ = [^nAgT(Xd-^xdz)) 

where 7rAST denotes the projection on AgT in the direct sum Ag^ = Agr © 
A^g^r. Reciprocally, the solution exists and is defined for all z G C. 

Proof First notice that Xd 2r]\ is a constant real polynomial loop with 
lowest Fourier coefficient A~277_d, thus also a holomorphic potential, that 
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we integrate on C. Let M\ G AQ^ be such that MX(ZQ) = 1 and 
fix = M^dMx = \d~2r]xdz. Use the Iwasawa decomposition (Theorem 
6) as in section 5 to write Mx = HxBx and by definition a^ = H^dHx- 
Set €\(z) = H^l(z)rixHx) which is well-defined on all C. By construction 
£A is real (i.e., belongs to AQT) since rjx and H\(z) are. Using the fact that 
77A commutes with Mx we write 

Vx = MxVxM^ = HxBxrjxB^H^1 

so t;x — BxVxBx1' which proves that £x has no Fourier coefficient with 
exponent lower than — d (simply write the Fourier expansions). Being real, 
£A is AdQT valued. To prove that it solves the differential equation above, 
we write d£\ = [^H^dHx]] but 

H-'dHx    =   7rAQT(H-1dHx)=7TA,T(Bx/ixB^-dBxB-1) 

=   7rAQT (KBx(Xd-2Vxdz)B-1)=7rAQT (x^xdz) 

a 

Any Hamiltonian stationary conformal Lagrangian immersion so ob- 
tained, either by integrating a constant polynomial loop as above, or by 
solving the differential equation (30), is called a finite type solution. Equa- 
tion (30) can be written more explicitly, thus showing how to derive from 
€\ the extended 1-form Q^A- Indeed writing £A = X^-d^nln5 the projection 
7rAQT(\

d-2Zxdz) is 

7TAQT(Xd-2C\dz) = \-2£-ddz + \-li.d+ldz + 7rfl0(|_d+2^) 

+ \i-d+idz + \2€-ddz 

where 7r0o is the projection in the direct sum QQ = QQ 0 b; define on ^Q the 
operator 

satisfying iTQ0((dz) = r(Qdz + r(Qdz. Then we rewrite equation (30) as 

(31) H = [6, A-2|_d + A"1!-^ i + r(£-d+2)] 

plus the initial condition; the conjugate equation is implied by the reality of 
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Since we aim at constructing solutions on a torus T, we ought to notice 
that our construction, while valid on C, does not necessarily give an im- 
mersion of the torus. To produce an actual torus we need to verify period 
conditions (a.k.a. monodromy conditions) obtained by integrating ax. Also 
recall that the regularity of the immersion is equivalent to %-d+i being non 
zero, otherwise the solution is only weakly conformal. 

6.2. A finiteness result. 

Theorem 10. Let T be a 2-torus; then any Hamiltonian stationary confor- 
mal Lagrangian immersion in R4 is of finite type. 

This may seem surprising, especially if we think how restrictive the fi- 
nite type condition is; however this result is almost classical in the theory 
of infinite dimensional integrable systems. As a consequence the space of 
solutions is a countable union of finite dimensional spaces. 

Proof. We will adapt here an idea found in [BFPP]. Let X be a Hamiltonian 
stationary conformal Lagrangian immersion, a an associated Maurer-Cartan 
form (for some LCLI) and a^ its extended 1-form. We first consider all 
quantities as being defined on the universal cover C of T. We also choose 
a global holomorphic 1-form dz on T (and C). A necessary and sufficient 
condition for X to be of finite type is the existence of ^ : C —>» AdQr such 
that both equations hold 

(32) <*& = [&,<**] 

and 

(33) ^ (dlj = ^^ + A~1£-d+1 + r(£-d+2) 

Before we step into the proof, notice that finite type imposes a condition 
obviously not satisfied in generality: consider the first Fourier term (multiple 
of X~d) in equation (32), then 

dC-d = [f-d, (r(C-d+2) - t-d+2)dz - r{^d+2)dz} E [$2,$} = 0 

by the commutations properties of g; so £_d is constant. Using condi- 
tion (33), we see that £_d = 5gf (£*,()), so that the Lagrangian angle is 
an affine function of x and y. On a torus this condition is trivially satisfied 
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since ^j is holomorphic hence constant. This constant cannot vanish, oth- 
erwise the immersed torus would be special-Lagrangian (or minimal); but 
there are no compact minimal tori. 

The proof is divided in two steps: we first prove the existence of a formal 
solution to (32) and (33), then extract a polynomial solution from these solu- 
tions, using the property that each Fourier coefficient of the formal solution 
satisfies an elliptic equation on the torus. By taking a proper combination 
we infer the existence of f;\. 

Step 1: existence of adapted formal Killing fields. A formal Killing 
field CA is a formal Laurent series in A verifying (32). Such a field is said 
adapted if its first three terms are respectively equal to a_2 (gj)? a-i (Jj) 

and r (OLQ (gj)). Using the gauge action, we may suppose without loss of 

generality that ao = 0, so that a (Jj) = a_2 (gj) + a_i (gj) = (aL^u) 
for some nonzero complex constant a, and u(z) £ Ce©CL;e. Let us 
look for (x of the following form (typical of a gauge change used in [FT]): 
(x = (l,w\)~1(aLi,u)(l,w\) where wx has non negative Fourier exponents 
(beware: (l,iu\) is a matrix in Qc, not in gc). The expression of (x sim- 
plifies here to give £\ = [aL^u + aLiWx), and we solve the (1,0) part of 
equation (32): 

0, — + aLi——|    =    [{aLi)u + aLiWx))(\~2aLi)X~lu)} 

=    (0, A- aLiU — X~ aLiu + \~ a w\) 

so, using a ^ 0 

,9   -1r  d^A       > 2   -i^u _-, _ .       i _ 
w\ = Xa    Li— hAa    ——ha    LiU — Aa    LiU 

oz oz 

Writing the hypothesis wx = J2n>0 ^^n-, we obtain wx by simple recurrence 
(hence the formal series): 

wi = —a~lLiU 

W2 — a    L 

wn = a~ Li 

ir dwQ ydu 

dz dz 

_!    dwn-2 
for n > 2 
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So wx = a-lLiU - £n>o A^+V-1^)"*1!^. Finally 

,dnu 
Cx=    aL^A^a-L: 

n>0 

We now check that the (0,1) equation holds. Using the same idea as in 
section 3, da'^ + [a'{ A a^] + [o;'_1 A (XQ] = 0, which in our notations yields 
ff = oLiS. Then 

0, aL.Xu - tfaU J^ \2n+1a-nL^ j = [CA, (A2aL,, AtZ)] 

Finally we verify that CA is adapted: (o = (aL;,0) = af_2 (^■), Ci = (0,^) = 

QJ!_I (^) and (2 = 0. It should be noted that for any n G Z, AnCA is still an 
adapted formal Killing field. 

Step 2: elliptic equation and polynomial Killing fields. The pos- 
sibility of reducing formal Killing fields to polynomial ones relies on the 
following property: all coefficients of the formal series CA satisfy the elliptic 
equation 

Recall that u being doubly periodic (since originally defined on T), so are 
all these coefficients. The space of solutions to an elliptic equation on a 
compact Riemann surface is finite dimensional. Consider now the sequence 
(CAl)m>o of (linearly independent) truncated formal Killing fields: (™ = 
(A~~4m-2CA)-5 truncated meaning that we keep only negative powers of A. 
The image of the sequence by the operator d + adaA is finite dimensional, 
indeed for any 4>x = X'^Hx = £n>-4m-2 A^n 

(d + adaA)(</»A)_    -   d(0A)_ + [aA,(fo)-] = (#A)--[(0A)-,aA] 

=    [&>«*]--[(&)-,a*] 

=   [A~ </>_2 + A~ 0_i + (/>o + A^i + A 4>2, ocx\- 

-[A^^ + A-^-I + ^O.OA] 
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All other terms either vanish in the truncation or compensate between the 
two brackets. Since each coefficient </>& belongs to a finite dimensional space, 
we have our claim. So a finite combination of the ("AN call it (/>, lies in the 
kernel of d + adaA, and is automatically adapted. Then £\ = tfix + <j)\ is 
adapted, satisfies equation (32) and is real; that is £\ belongs to some AdgT. 

□ 

Remark 8. The solutions of (32) we have constructed have the following 
property:  £\ has no term of Fourier exponent equal to 0 (mod 4), except 

the first and last ones; i;n = 0 but for £_d = (aLi, 0) and ^ = £_d. 

Remark 9. So far we have used a fixed complex coordinate z on T (or C), 
but we might want to switch to another coordinate say w = fiz. A quick 
look at (30) shows that a solution in the z variable is usually not valid in the 
w variable (that can also be seen on (31)). However the immersion stays of 
finite type whatever the coordinate may be; so an Hamiltonian stationary 
immersion can be of finite type d for some variable z and d1 ^ d for another 
variable w. The type itself is not a well-defined invariant, and an example 
of this will be given in the next section. 

6.3. Finite type and lattice properties. 

We will now use the information given by section 3 together with the finite 
type point of view. Let F be a lattice, with dual lattice F*, and set T = C/F. 
For any Hamiltonian stationary conformal Lagrangian immersion X there 
exists p G N and £A in A4p+20T solution of (32) projecting to the extended 
1-form a\ associated with X (more precisely with one of the spinor lifts of 
X). As mentioned in remark 8 above, we may assume that ^\ has no term 
of Fourier exponent equal to 0 mod 4. So we can write 

6 = A-4-2(^Ll)o) 

+ £ (A^-^O.^ + A^HO^^ + A^^^L^O)) 

with /3o G F* - 0, uq(z) G 0^ and vq(z) G gf. Equation (31) can be 
rewritten using the Fourier expansion, 

(35) -^ = [£rH-2,£-4p-2] + [£n+i,£_4p-l]. 
oz 
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Commutation properties [0o 582] = [fl^flf] — [flf^fl-i] = ^ show that terms 
with even Fourier exponent - hence the c^'s - are constant (and given by the 
initial condition in (30)). We can then use (35) or its conjugate to derive a 
recurrence relation: 

2   _ duq 

7r(3o     oz 

2   r dvq (2  \2 d2uq 
uq+i=cqu-p-{ ^-Li—— = cqu-        ' l 

TTpo    l dz q   ^        \7rpoJ      dz2    ' 

Conjugating equation (35) (or recalling (34)) one easily derives the second 
order equation Auq+7r2\(3o\2uq = 0, so all terms have Fourier frequencies 7 E 

if* such that |7| - i^ol- Thus we write uq = E7(a7,Qe + b^qLtfe2**^ 
and the recurrence relation yields 

Q"y,g+1 — CqQ"y)—p   i 
27 

a^ 

(same equation for 67)g). Taking the first and last gS1 terms: 

a7jP — a7j_p 1 2^cp-g-i 1  n  j 
q=0 

with the convention that C-p-i = 1. Now we may compare both ends of the 
chain using the reality of £\: vp = U-p, while 

2       c^p 

TTpQ        dz 

which yields (recalling from section 3 the expression for U-p):   7a75_p = 
—7a7)p. So for each frequency 7 such that a7j_p 7^ 0 

We may rewrite this condition as a polynomial equation of degree exactly 
d — Ap + 2 in 7: 

(36) ^++T(VTJ        g^-^UJ    =0' 
We conclude with the following result: 
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Theorem 11. A finite type solution with type d E 4N + 2 and Lagran- 
gian angle (3 — 27r(/3o,2) + constant has all its Fourier frequencies in F^ 
and satisfying a polynomial equation of degree d, depending only on /3o and 
the initial value in (32) (i.e.; the constant potential). As a consequence 
Card(r^) < d. 

Genus zero solutions. We conclude with the study of the simplest 
case of type d — 2, also called genus zero solutions (the genus here being 
the genus of the associated spectral curve, see [Hi]). Then condition (36) 
implies that 7 = ±i\^Po\. There are only two possibilities, and if the lattice 
is rectangular, we find - after a change of variable - the rectangular gener- 
alizations of the standard torus. It should be noted that the condition on 
7 implies that - in the original complex coordinate - the term e~PLi'2^- 
depends only on y. This is clearly variable-dependent, and shows that the 
type d may well change if one changes the variable. 
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