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In this paper, we describe a one-parameter family of nonstandard 
SU (n + l)-covariant (also known as SU (n + 1)-homogeneous) 
Poisson structures rc on the projective space CPn that represents 
the classical counterpart of the quantum family C(CP™C), and 
show that the standard Poisson §2n_1 is indeed embedded in each 
of these nonstandard Poisson CPn. We explicitly describe the La- 
grangian subalgebra associated with such a Poisson homogeneous 
space. We also give an elementary proof of the statement that 
(non-zero) SU (n)-invaraint contravariant alternating 2-tensors on 
S2™-1 with n ^ 3 (or CPn) are unique, up to a constant factor. 

Introduction. 

One of the most intriguing aspects of the theory of quantum groups and 
quantum spaces [Drl, RTF, So, Wol, Wo2, Po, Ri, VaSo] is the close inter- 
play between the geometric structure of the underlying Poisson Lie group 
(or Poisson space) [We2, LuWel] and the algebraic structure on the cor- 
responding quantum group (or quantum space). For example, Soibelman's 
classification [So] of all irreducible ^representations of the quantum algebra 
C (Gq) for compact Poisson simple Lie groups G gives a one-to-one corre- 
spondence between irreducible ^representations of C (Gq) and the symplec- 
tic leaves [We2] on G. This leads to a groupoid C*-algebraic [Re] approach 
to study the structure of the algebra C (Gq) [Sh2] which shows that the de- 
composition of SU (n) (or S2n+1) by symplectic leaves of various dimensions 

corresponds to a compatible decomposition of C (SU (n) ) (or C (S2n+1)) 

by its (closed) ideals in the spirit of noncommutative geometry. 
Given a Poisson Lie group G with Poisson structure TT, we call a Poisson 

structure r on a homogeneous space M of G a (G, 7r)-covariant [LuWe2] 
(also known as (G, 7r)-homogeneous [Dr2]) Poisson structure on M if the 
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G-action map G x M —> M is a Poisson map with respect to the prod- 
uct Poisson structure TT © r on G x M and the Poisson structure r on 
M. It is well known that the standard multiplicative Poisson structure on 
SU (n + 1) induces a standard covariant Poisson structure on the homo- 
geneous spaces S2n+1 = SU(n + 1) /SU (n) and CPn = SU (n + 1) /U (n) 
determined by the Poisson Lie subgroups SU (n) and U (n), respectively. On 
the other hand, Lu and Weinstein [LuWe2] described explicitly all SU (2)- 
covariant Poisson structures on §2 = CP1 including a one-parameter family 
of nonstandard SU (2)-covariant Poisson structures on S2, and showed that 
each nonstandard covariant Poisson sphere S2 contains a copy of the trivial 
Poisson 1-sphere S1 (consisting of a circle family of O-dimensional symplec- 
tic leaves) and exactly two 2-dimensional symplectic leaves. This geomet- 
ric structure is reflected faithfully in the algebraic structure of the algebra 
C (S2

C) of the nonstandard quantum spheres S2
C [Shi]. 

Dijkhuizen and Noumi studied in great detail [DiNo] a one-parameter 
family of nonstandard quantum projective spaces CP^C with quantum alge- 
bras C (CP£C). In [Sh3], the structure of C (CP£C) is'studied and analyzed 
as a groupoid C*-algebra, and an algebraic decomposition of C (CP^C) by a 
closed ideal indicates that the underlying nonstandard projective space Pois- 
son CPn should contain an embeded copy of the standard Poisson S2n_1. Us- 
ing the result of [KhRaRu], one can classify all SU (n + l)-covariant Poisson 
structures on CPn into a one-parameter family. In this paper, we describe 
the part of this one-parameter family of Poisson structures on CPn that 
represents the classical counterpart of the quantum family C (CP^C), and 
show that the standard Poisson S271-1 is indeed embedded in each of these 
nonstandard Poisson CPn. Furthermore we find explicitly the Lagrangian 
subalgebras [Dr2] associated with these nonstandard SU (n + l)-covariant 
Poisson structures on CP71. We also give an elementary proof of the fact that 
(non-zero) SU (n)-invaraint (contravariant alternating) 2-tensors on S2™-1 

with n ^ 3 (or on CPn) are unique, up to a constant factor. We remark 
that in [KhRaRu], Khoroshkin, Radul, and Rubtsov obtained interesting re- 
sults about covariant Poisson structures on coadjoint orbits, including CPn. 
Our approach, motivated by Dijkhuizen and Noumi's work [DiNo], is dif- 
ferent from theirs and the embedding of the standard Poisson S2n_1 in the 
nonstandard Poisson CPn is new. 

We would like to thank the referee for very helpful suggestions and com- 
ments. 
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1. Poisson structure on Lie groups. 

In this section, we discuss some basic properties of affine Poisson structures 
in the form needed later. We recall that an affine Poisson structure on a Lie 
group G is given by a Poisson 2-tensor TT € Y (A

2
TG) , such that 

TT (gh) = Lg (TT (h)) + Rh (TT (g)) - LgRh (TT (e)) 

for any g, h E G [We3], or equivalently, 

ni(g) :=n(g)-Lg(ir(e)) 

for g G G defines a multiplicative Poisson 2-tensor on G [Lu, DaSo], where 
Lg and Rg are the left and the right actions by g G G, respectively, and e is 
the identity element of G. For an affine Poisson 2-tensor TT on a Lie group 
G, the left action of the Poisson-Lie group (G, TTJ) on the Poisson manifold 
(G, TT) by left translation is a Poisson action, i.e., the multiplication map 
G x G —>> G is a Poisson map, where G x G and G are endowed with the 
Poisson structures TT/ X TT and TT, respectively. In another word, TT on G (as 
a homogeneous space of G) is a (left) (G,7rj)-covariant Poisson structure. 

A typical example of an affine Poisson structure on a Poisson-Lie group 
G with multiplicative Poisson 2-tensor TT is provided by a right translation 
TTo- of TT by an element a G G, i.e., 

7ra(g) := Ro- (TT (ga'1)) 

for g G G. Since the right translation by a on G is a diffeomorphism on 
G, the 'push-forward' TT^ of TT by i?^ is clearly a Poisson 2-tensor on G. 
Furthermore, 

M, (g) = Ra (TT (ga-1)) - Lg (Ra (TT (a"1))) 

= R. {Lg (TT (a"1)) + Ra-i (TT ((,))) - L, {R. (TT (a"1))) 

- i^ (TT (a-1)) + TT (#) - RrLg (TT (a"1))  - TT (<?) 

which is a multiplicative Poisson 2-tensor on G. So TTV on G (as a homo- 
geneous space of G) is a (left) (G, 7r)-covariant Poisson structure, for any 
cr E G. Note that 

TT^ = TT + (Xa)/ 

where Xo- := TTO- (e) = fJo- (TT (cr~1)) G g A g and X* (g) := 1^ (X) is the 
left-invariant 2-tensor generated by X G 0 A g, since (/7ra)z = TT. 
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When a closed subgroup H of a Lie group G is coisotropic [Wei] with 
respect to a Poisson structure p on G, i.e., 

p(gh)-Rh(p(g))eLgh(l)AQ) 

for all g G G and h G iJ, it is easy to see that the Poisson bracket {/i, /2} •= 
(rf/i A d/2) (p) of /x, /a e C00 (G/ff) C G00 (G) is still in G00 (G/iJ) and 
hence induces a Poisson structure on G/iJ, or equivalently, a Poisson 2- 
tensor p on the homogeneous space G/H is well defined by 

p ([gH]) := [p (5)] G Lg (A2 (s/0)) = A2T[sH] (G/H). 

Given a Poisson-Lie group (G, TT) and a G G, if a closed subgroup i? of 
G is coisotropic with respect to TT, then H is coisotropic with respect to the 
affine Poisson structure TTO- on G if and only if 

(Xa)1 (gh) - Rh (pca)1 (g)) € Lgh (!) A Q) , 

since ira = TT + (X^ and TT (5/1) - Rh (TT (p)) € Lgh (f) A g). Now 

(X,)' (0/1) - iih ((X,)' (5)) = Lgh (Xa) - Rh (Lg (Xa)) 

= Lg (LfrXo- — RhXcr) 

— LgLh {Xa- — Lh-iRhXa) 

= Lgh(id-Adh-i)(Xa). 

So {Xa)1 (gh) - Rh ((Xa)1 (5)) G Lgh (f, A g) for all {g,h) e G x H if and 

only if 

(id-Adh-i)(Xa)ef)Ag 

for all /i G iJ, or equivalently, 

ad^ (Xa) C f) A 0. 

Thus we get the following result. 

Proposition 1. Given a Poisson-Lie group (G,7r) and a closed subgroup 
H of G that is coisotropic with respect to TT, the subgroup H is coisotropic 

with respect to TT^ for a £ G, if and only if ad^ (Xa) C f) A Q, where Xa := 
Rr (TT (a-1)) G0A0. 



Covariant Poisson Structures 65 

In case the multiplicative Poisson structure TT on G is given by an r- 
matrix r G Q A Q (satisfying the modified Yang-Baxter equation), i.e., 

^ {9) = Lgr - RgT, 

we have 

X* = ik (TT (CJ-
1
)) - ^ (L^-ir - fl^-ir) = Ad^-i (r) - r. 

A closed subgroup H being coisotropic with respect to TT is equivalent to 

ad^(r) C f) Afl, 

since 

TT (p/i) - i4 (TT (5)) = Lghr - Rghr - Rh {Lgr - Rgr) 

= Lghr - Rghr - LgRhr + RhRgr = L^^r - LgRhr 

= Lgh (r - Lh-iRhr) = Lgh (id - Ad^-i) (r) 

and Lgh (id - Ad^-i) (r) G L^^ (fj A g) for all (g,h) G G x H if and only if 

(id-Ad^i)(r)Gf)A0 

for all he H. 

Corollary 2. Given a Poisson-Lie group (G,7r) with TT defined by an r- 
matrix r G g A g; a TT-coisotropic closed subgroup H of G is coisotropic with 
respect to ir^ for a G G, if and only if ad^ (Ad^-i (r)) C f) A g. 

2. Non-standard Poisson CP71. 

In this section, we construct via affine Poisson structures on SU (n) some 
SU (n)-covariant Poisson structures on CPn_1 that represent the classical 
counterpart of the nonstandard quantum projective spaces CP^C [DiNo]. 

Recall that the standard Poisson SU (n) is defined (up to a constant 
multiple) by the Poisson 2-tensor TT (U) = 7r(n) (u) := Lur — Rur determined 
by the r-matrix 

l<.i<j<.n 

where X^ = e^ — eji, X^ = i (e^- + eji), and e^- are the matrix units. 
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It is well known that 517 (n - 1) = {1}®SU (n - 1) (or SU (n - 1)0(1}) 
and 

U (n - 1) ^ |det (u)'1 ®u:u£U(n-l)\ 

are Poisson-Lie subgroups of SU (n) and hence induce the 'standard' SU (n)- 
covariant Poisson structures p = p(n) (also called Bruhat Poisson structure 
[LuWel]) and r = T^

71-1
) on the sphere 

S2n-i ^ su (n) / ^y QSU(n- 1)] 

and the complex projective space 

Cpn-1 ^ 5[7 ^ JJJ (n _ 1) j 

respectively. 

Theorem 3. T/ie closed subgroup U (n — 1) o/ St/ (n) 25 coisotropic with 
respect to the (left) SU (n)-covariant affine Poisson structure /

KCTC on SU (n) 
defined by 

n-l 

^c := (\/ceii + Vl - ceni - y/l - cein + >/cenn) + ^ en G 5J7 (n) 
z=2 

mtf/i c E [0,1]. Hence TT^ induces a (left) SU (n)-covariant Poisson structure 
TC on CP71"1 - 517 (n) /U (n-l). 

Proof. We set <T = (jc for simplicity. It is easy to see that if the Poisson struc- 
ture rc induced by TZ(TC on CPn_1 = SU (n) /U (n — 1) is well defined, then 
it is automatically (left) SU (n)-covariant since TT^ is. Now since U (n — 1) 
is a Poisson-Lie subgroup and hence coisotropic with respect to TT, we have 

adu(n_i) (r) C u (n - 1) A su (n), 

and hence only need to show that 

adu(n-i) (Mr-* (r)) C u (n - 1) A 5U (n). 

Prom 

Ad<r-i(x+')=X+, iil<i<j<n 

Ad,-! (X+.) = ^X1+. + v/r^X+,    if 1< j < 
Ad(T-l{X+) = -VT=-cX+ + ^Xl,   ifl<i< 

I AcU-i (X+) = X+, 

n 

n 
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and 

AcL-i [X, ij )  ~ Xi3 ' 
if 1 < i < j < n 

Ad^-i [X^j = V^^ij - v/r^Xj;, if 1< j < n 

Ad.-i (X-) - vT^Xfi + V^^' if K i < n 
Ad(J-i(X1-)^(2c-l)X1- 

+2^0(1-0) (en - enn). 

we get 

Ad,-! (r) 

l<i<j<n 

^    Xj A Xr: + X+ A [(2c - 1) X{n + 2y/c{l-c)i (en - enn)_ 
l<i<j<n 

+ J2 (V-cX+ + VT^~cX+) A (v^x- - VT^~cXr) 
l<i<n 

+ J2 (-v/r^X+ + V3X+)A(v/T^X1- + v^Xr;) 
l<i<n 

= 2(l-c)    X]    XjA^ + 2Vc(r-c)X1+ A*(eii-e„„) 
l<t<jf<Tl 

+ (2C-l)r + 2v^(r^)  J]   KA^-X+AX") 
l<i<n 

which is in (2c - 1) r + (u (n - 1) A su (n)), since 

X^Xr^X&Xr^iien-enn) eu{n-l) 

for all 1 < i < j < n. So we get 

adu^-i) (Adff-i (r)) 

C (2c - 1) adu^-i) (r) + adu(n_1) (u (n - 1) A su (n)) 

C u (n - 1) A su (n), 

because ad^^i) (r) C u (n - 1) A su (n) and 

adu(n_i) (u (n - 1) A su (n)) C u (n - 1) A su (n). 

D 
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The Poisson manifold (CP71-1,^) with c G (0,1) is referred to as a 
nonstandard Poisson CP71"1. Note that ri = r^71-1) the standard Pois- 
son structure on CP71-1 since <Ji — 1 € SU (n) and hence 7r(J1 = TT. 

On the other hand, R^ simply swaps the first column with the n-th 
column and hence TQ is the standard Poisson structure on CPn_1 = 

SU (n) / iu 0 det (u)~l : u e U (n - 1)| induced by TT. 

We remark that the above nonstandard Poisson structures on CPn_1 

form only a part of the one-parameter family of all SU (n)-covariant Pois- 
son structures on CP71-1 that can be classified using the results of [KhRaRu] 
and [Kos2] as follows. (We thank the referee for providing this argument.) 
Indeed it is easy to see, as in [LuWe2], that the difference of two covari- 
ant Poisson 2-tensors is an invariant alternating 2-tensor. Applying the 
known fact that the p-th de Rham cohomology of the Grassmannian G^ of 
fc-dimensional subspaces in Cn is isomorphic to the space of SU (n)-invariant 
p-forms on G^ [Kos2] to the case of k = 1 and p = 2, we see that the known 
de Rham cohomology group iff^ (CP71-1) = M (for n > 2) is isomorphic 
to the space of all SU (n)-invariant 2-forms on CP71-1. So every SU (n)- 
invariant 2-form, or equivalently, every SU (n)-invariant 2-tensor (by dual- 
ity via the standard U (l)-invariant Euclidean structure of Cn) on CP71-1 

is a scalar multiple of the SU (n)-invariant Pubini-Study symplectic form 
on the compact Kahler manifold CP72-1, or equivalently, the corresponding 
nondegenerate SU (n)-invariant 2-tensor f on CPn_1. (In section 4, we give 
an elementary direct proof of this fact.) So every SU (n)-covariant Poisson 
2-tensor on CP71-1 belongs to the family TI + Rf. On the other hand, it 
is easy to see that the sum of an SU (n)-covariant 2-tensor and an SU (n)- 
invariant 2-tensor is 5C/(n)-covariant. Furthermore it is known [KhRaRu] 
that the Schouten-Nijenhuis bracket [[T,TI]] = 0 and hence every 2-tensor 
in TI + Mr is a Poisson 2-tensor. (In fact, the covariance of TI implies that 
the 3-tensor [[f,ri]] is SU (n)-invariant. However since HpR (CPn~1) — 0, 
there is no non-zero SU (n)-invariant 3-tensor on CP71-1.) Thus ri + Rf 
consists of all SU (n)-covariant Poisson 2-tensors on CPn_1. 

In [Dr2], Drinfeld associated a Lagrangian subalgebra of the double Lie 
algebra D = Q CXI g* with each G-covariant Poisson structure r on a homoge- 
neous space M of G. More precisely, 

|(z,0 Ggx (gm)-L :z + gm = £jT(ra)| 

[Dr2, ELu] is the Lagrangian subalgebra associated with (M, r) at a point 
m G M, where Bm C 0 is the Lie algebra of the stabilizer subgroup of G 
at ra, the coset space ty/tyrn is identified with the tangent space Tm7lf via 
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the differential of the action g G G h-> gm G M at the neutral element e, 
and (gm) C g* consisting of linear functional of Q that annihilate 0m is 
identified with the cotangent space T^M. Since the correspondence m H* im 

is G-equivariant [Dr2], imo for any specific mo G M determines the other im. 
Interesting results have been obtained recently on this topic. For example, 
Karolinsky classified all Lagrangian subalgebras of the double Lie algebra 
si (n, C) = su (n) cxi su (n)* [Ka], and Evens and Lu studied the geometry of 
the variety of all Lagrangian subalgebras of si (n, C) [ELu]. In the following, 
we identify explicitly the Lagrangian subalgebra associated with the SU (n)- 
covariant nonstandard Poisson (CPri~1,Tc) at the point [(1,0, ..,0)], and we 

denote by {xJ',X!_j j U {Ek}"      C su(n)* the basis dual to the 

basis {x+^X-j}^   .<nV{i(eii-ekk)}^2Csu(n). 

Proposition 4. The Lagrangian subalgebra tj^o,..^)] associated with the 
SU (n)-covariant nonstandard Poisson homogeneous space (CPn_1,Tc) at 
the point [(1,0, ..,0)] G CPn_1 zs the linear span ofu(n — l) x {0} and ^fte 

vectors (±2 (c - 1) X^-, X^ J with 1 < j < n in su (n) ixi su (n)*. 

Proo/. The stabilizer subgroup of G = SU (n) at m = [(1,0,..., 0)] G CP71"1 

is U(n — 1), and the differential 77 at e G 577 (n) of the action map 
p G SU(n) \-> p[(l,0,...,0)] G CP71"1 sends e to [(1,0,..., 0)] and iden- 
tifies su(n)/u(n- 1) with r[(ljoj...io)]CPn-1. Since rc ([(1,0,... ,0)]) is the 
projection of 7r(7c (e) under 77, the Lagrangian subalgebra ij^o,...,*))] associated 
with (CP71"1, rc) at the point [(1,0,..., 0)] equals 

|(a;,0 Gsu(n) x u(n- l)"1 : x ^^JTT^ (e) (mod u(n- 1))| 

= {($ JTT^ (e) ,£) : ^ G u(n - 1)^} +u(n - 1) x {0} , 

which    is    the    linear    span    of   u (n — 1)   x   {0}    and    the    vectors 

(X^ JTT^ (e),X]ij   with   1   <   j   <   n  in su{n)   1x1   5u(n)*   because 

j X+
J, Xj \      is a basis of u (n - I)"1. Prom the proof of the above theorem, 
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we have 

TT^ (e) = Rac (TT {a-1)) = Ad^-i (r) - r 

= 2(1-C)    ^    ^A^ + 2V^l^)X1
+

nAi(eil-e„n) 
l<*<j<n 

+ 2(C-l)r + 2^a^)  E   W A JTil - ^ A Xr) 
l<z<n 

=2(c-i)[ j2 *;■**£•+ E ^
A
^ 

\l<j<n l<i<n 

+ 2yc(l-c)X+ A t (en - enn) 

l<i<n 

and hence 

X^" j irae (e) = ±2 (c - 1) X^. (mod u (n - 1)). 

Thus the Lagrangian subalgebra ir(ijo,..,o)] is the linear span of u (n — 1) x {0} 

and the vectors f ±2 (c — 1) Xf-^X^ J with 1 < j < n in su (n) txi su (n)*. 

D 

3. Standard Poisson sphere in CPn. 

In this section, we show that the nonstandard Poisson (CPn_1,rc) contains 
a copy of the standard Poisson S2n_3 generalizing the result of [LuWe2] for 
n= 1. 

We first remark that X^X^^X^X^ G 5u(n - 1) but i (en - enn) £ 
su (n — 1), so ad5U(n_1) (Ad^-i (r)) ^ su (n — 1) A su (n) and hence 7rac does 
not induce a Poisson structure on §2n_1 = SU (n) /S?/ (n — 1). On the other 
hand, as a generalization of Lu and Weinstein's result on covariant Poisson 
spheres §2 = CP1 [LuWe2], we can show that (CPn-1,rc) contains a copy 
of the standard Poisson sphere (§2n~3,p(n-1)). Here it is understood that 
p(1) = 0 on S1 by definition. 

Theorem 5. The standard Poisson sphere (§2n_3,p(n-1)) is embedded in 
(CP71-1, TC) for c e (0,1) and n>2. 
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Proof. Note that the quotient map (j) : SU (n) —>> CPri~1 can be viewed as 

the composition of the quotient map 

01 : u G 517 (n) i-> m G S271"1 ^ 517 (n) /5I7 (n - 1) 

and the quotient map 

fo : v e S271"1 h-> [v] G CP71"1 ^ S271"1/^ 

where the circle group T acts diagonally on S2n_1 C Cn and 

ui := (wii,^2i, • • • ,^ni) G S271-1 C C71 

is the first column of ix G 517 (n). It is well known that 02 is a diffeomorphism 
from the submanifold 

5+ := {v G S271"1 : vi > 0} C S271"1 

onto its image 02 (5+) C CP71-1, and 

03 : v G 5C ^ 03 (v) :=    ^ (^2, • • •, Vn) G §2n-3 

V1 - c 

is a diffeomorphism identifying 

5C := {^ G S271"1 : V! = v^} C 5+ 

with S2n~3. We denote by I/J : u e SU (n) \-^ un e S2™-1 the projection to 
the last column. Functions similar to 0i, 02, and -0, for other dimensions 
than n, will be denoted by the same symbols for the simplicity of notation. 
First we assume that n > 2. For each v G 5C, we can find some vf G 
SU (n) with the first column u^ — (1,0,..., 0) and the last column u'n = 

Vl — c (0,^2, •. • iVn). Note that the first row of v! has to be (1,0,... ,0), 
and hence 

v! = l@u" €{l}®SU{n-l) 

for some u" G SU (n — 1) with 

{u")n_1 = y/l-C      (V2, • • • , Vn) = 03 (v) . 

Furthermore since {1} © 5J7 (n — 1) is a Poisson-Lie subgroup of SU (n), 

TT (y!) = 0 © TT^"
1
) (w,/) G {0} © A2Tu,tSU (n - 1) C A2TU,SU (n) 
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where TT^
71-1

) is the standard multiplicative Poisson structure on SU (n — 1). 
Note that 

P(n-1)(^W) = W)1i,(7r^-1)(ti//)) 

for the standard Poisson 2-tensor p^n~1^ on S2n~3. Here we take 

g2n-3 =sU(n-i)/ [SU (n - 2) 0 {1}]. 

For 
u := i?^ (w7) = uVc E 5/7 (n) , 

we have 
(f>i (u) =ui = {U

/
CTC)1 =zv e Sc, 

and in A2ri,5+, 

Wi), (7rCTc (u)) = (D0i)u (i^c (TT (^))) = Wi)u (TT K) ac) 

= VT=1(^)U' (^ (^)) G A^Sc C A2TVS+ 

because the first columns of the component matrices in the 2-tensor TT (U') = 
0 ffi TT^"

1
) ('u,/) are all zero. Note that 

rc (H) = rc (^a (v)) = rc (0 (w)) 

= W)u (^c W) = W2)^l(l4) (Wi), Kc (u))) 

is a well-defined 2-tensor at [v] G 02 (Sc) C CP71-1 and 02 is a diffeomor- 
phism on 5+. So 

TT
7
 : v <E 5C ^ (i?0i)u (TT^ (U)) e A2^ 2r 

is a well-defined Poisson 2-tensor on Sc and 02 (Sc) is a Poisson submanifold 
of (CPn-1,Tc) that is Poisson isomorphic to (S'oTr'). Under the diffeomor- 
phism 03 : Sc -> §2ri"3 identifying v E Sc with 03 (v) E S271-3, the 2-tensor 
TT' (V) is identified with 

(D<h)v (Wi)u Kc («))) = W3)w (vT^ W)tt, (^ («'))) 
= (D<h)v (VT^~c (0 © (D^u, (TT^-1) («")))) 

= (D^)„ (vT=7 (o © p^"1) (^3 («)))) 

= P(n-1)(^3W)GA2^3(„)S
2"-3. 

Thus (SCTTT') or (02 (5C) ,TC) is Poisson isomorphic to the standard Poisson 
sphere (S2n~3, p^n_1)). When n = 2, for i; E ^ with ^2 7^ \^1 — c, we cannot 



Covariant Poisson Structures 73 

find a v! G SU (2) with the first column u^ = (1,0) and the last column 

uf
2 = y/1 — c (0,^2). But for VQ = (y/C) y/1 — c), such a U'Q exists, namely, 

U'Q = I2 the 2x2 identity matrix, and the above argument essentially works. 
More precisely, it is well known that TT (UQ) = 0 since u'0 £ U (1) C SU (2), 
and hence for UQ = U'Q<JC = crc, 

(^l)„0 fare («0)) = (^l)„0 (i^c (T W)))  = WlU (0) = 0- 

So 
rc (bo]) - {Dct>2)VQ {D^)ua (7rCTc (uo)) = 0. 

On the other hand, since TC on CP1 « S2 is iSC/ (2)-covariant and U (1) C 
5C/ (2) consists of 0-dimensional leaves, the action of any 

je      0 
* = 

0 o-^ 
€17(1) 

on CP1 preserves the Poisson structure rc. In particular, rc ([two]) = 0 for 

any t € ?7(1). Since any v = (y/c, VI — ce10) G 5C is equivalent to a tvo 
with t € f/ (1) under the diagonal T-action, namely, 

v = 
e-Wy/B 

e-ie/2y/T=Zeie 

e-i0/2      0 

0       eie/2 

eiO/2^— 

Vc 
VT 

c 

e-i0/2 

0 
0 

oiO/2 vo 

in CP1, we have rc ([v]) = 0 for all v G 5C, i.e., rc = 0 on 02 (Sc) C CP1. 
Since 02 (5C) is diffeomorphic to ^c and hence to S1, we get the standard 
(trivial) Poisson (S1,/^1)) embedded in (CP1,^). D 

2n-l 4. Invariant 2-tensor on S: 

In this section, we first classify the SU (n)-invariant (contravariant alter- 
nating) 2-tensor on S271-1, and then we conclude that the canonical SU (n)- 
invariant symplectic structure on CP71-1 gives the only, up to a constant 
factor, SU (n)-invariant (contravariant alternating) 2-tensor on CP71-1. 

For each p G S271-1, we have ip G T^S271-1, and the orthogonal com- 
plement Ep := {p,ip}1~ C TpS271-1 is a complex subspace of C71 = TpC

n 

endowed with a canonical symplectic structure 0^ determined by the com- 
plex hermitian structure on C71. Indeed (da;) = Ctp on Ep for the unique 
1-form a;, the standard contact structure, on S27l_1 such that Up (ip) = 1 and 
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ujp (Ep) = {0} at each p G S271-1. The contact manifold (S271-1^) with the 
diagonal T-action on §2n_1 is the standard prequantization [Kosl, Wei] of 
the canonical SU (n)-invariant symplectic structure on CPn~1 = S2n-1/T. 

Since the vector fields p h-> p and p \-^ ip on S2n_1 are invariant under 
the U (n)-action, so is the distribution p h-» Ep of tangent subspaces. Fur- 
thermore, since the U (n)-action preserves the complex hermitian structure 
on Cn (and on Ep), the field p K> f2p of symplectic forms on S2TI_1

 is also in- 
variant under the U (n)-action. Thus the contravariant 2-tensor TT on S2n~l 

uniquely determined by the form fi on E C TSU (n) is J7 (n)-invariant. Note 
that this 2-tensor TT on §2n_1, invariant under the diagonal T-action, induces 
the cnanonical symplectic structure on CPn~1 = S2n_1/T determined by its 
complex hermitian structure. 

Given an SU (n)-invariant contravriant 2-tensors TT ^ 0 on S2n~1 with 
n > 2, we show that TT = TT after a suitable normalization if n 7^ 3 or if TT 

is U (n)-invariant. Through the standard Euclidean structure on Cn = R2n, 
we identify the SU (n)-invariant contravriant 2-tensors TT ^ 0 on S271-1 with 
SU (n)-invariant 2-forms ft / 0 on S271"1. 

First we show that the tangent vector 

ei := iei G Tefi271'1 =iR® C1'1 

at ei G S271"1 is in 

ker ftp := {^ G TpS2""1 : ftp (v, •) = 0} . 

If not, then we can find an orthonormal set {ej}^ ^{^liLi c 0©Cn-1 such 

that ftei (e^J = SijOa and ftei (e^e^-J = ftd f^i^j) = 0 with an G E 

and an 7^ 0. Now since ft is SU (n)-invariant, we have 

ftCl (e^u (rii)) = ft^e^ (tx (ei) ,u (rji)) - ft^ (ei,r;i) = an 

for any tx G {1} © SU (n — 1) C /SfJ (n). This cannot be true, since by a 
suitable choice of u, u (rj^) can be any unit vector in 0 © Cn_1, for example, 
77^. Thus ei = iei G ker ftp. 

Now with respect to the standard orthonormal E-linear basis of 

zR © R71"1 © R71"1 ^ iR © C71-1 = Te^271"1, 

the 2-form flei can be represented by a block diagonal matrix 0 © B where 
B G M2(n_i) (R) is a skew symmetric matrix. The SU (n)-invariance of 
ft 7^ 0 implies that ftei ^ 0 and 

uBu"1 = uBu1 = B^0, 
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or uB = Bu, for any u G SU (n - 1) C 02n-2 (M) since 1 © u e 517 (n) 
and (lffiix)(ei) = ei. (If ft is /7(n)-invariant, then uB = B^ for any 
n E J7 (n - 1) since l®u eU (n).) 

We claim that B must be conformal, i.e., ||B(^)|| = ||B||||t>|| for all 
v e R2n~2 where ||S|| := supi^n^ \\B (v)\\ > 0. Let w be a unit vector with 
||BH|| = ||B||. Since 517 (n - 1) acts on S271"3 C M271"2 transitively, for 
any unit vector v G M2n~2, we can find u G SU (n - 1) with u'1 (v) = w, 
and hence 

\\B(v)\\ = ll^^1 (t;)|| = \\u(B(wm = II^HH = ||S||. 

Thus B/||B|| is a skew-symmetric isometry on ]R2n~2 and so B/||JB||  G 
02n-2(M). 

If n = 2, then any skew symmetric 0 ^ B/ \\B\\ G O2 (M) determines the 
same 2-form fiei on 0©R2 and hence on iR©R2, up to a constant multiple. 
So ft = £1 after normalized. 

If n > 4, then the commutativity of Y1'2 C SU (n - 1) with B implies 
that B is complex linear on M271-2 = C71-1 and so 5/ ||J?|| G U (n - 1). In 
fact, since for any l<j/fc<n-l, tjkgB = BtjkQ for all 0 G R implies 
that Bjj.Bkk G C and Bkl = 0 for any j / / ^ fe, where £ = (^7e)1<J)A.<7l_1 

with Bjk G M2 (R), and 

tjke := e^e^- + e'^e^ +    ]£    ezz G T1"2 C 5J7 (n - 1). 
l<Kn-l 

It is well known that only scalar matrices in Mn_i (C) commute with 
5*7 (n-1), so we get B/||B|| G T with -B/\\B\\ = (B/\\B\\)* = 
(B/\\B\\)-\ i.e., (B/ \\B\\)2 = -lovB = ±i \\B\\. Thus 

Ctei =±||B||fiCl 

a (real) constant multiple of the standard symplectic form. Hence we get 
TT = TIT after a suitable normalization. 

If ft is U (n)-invariant, then the commutativity of TT1-1 c U (n — 1) with 
B implies that B is complex linear and hence B/ \\B\\ G U (n — 1) and as 
above, Q = ± | \B\\ Q. In fact, tfk9B = Btfk9 for all 9 G R implies that S^ G C 
and Bki = 0 for any Z 7^ A;, where 

t,ke:=eieekk+    J]    ezz G T1'1 C J7 (n - 1). 
l<Kn-l 
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We observe that the quotient map (j) : S271-1 —>- CPn~l and its differential 
Dcf) : TS271"1 -> TCP71-1 are C/ (n)-equivariant since the diagonal T-action 
commutes with the U (n)-action. Furthermore, the restriction 

(Zty) \E:E-+ TCP71'1 

of Dc/) to the U (n)-equivariant subbundle E defined above is a bundle iso- 
morphism. So any SU (n)-invariant (and hence U (n)-invariant) 2-tensor 
r G r(A2TCPri~1) on CP71"1 can be 'pulled back' to an U (n)-invariant 
2-tensor 

TT = (D<t>) IE
1
 (r) G r (A2E) C r (A2TS2n"1) 

on S2n~1 which must be, up to a constant factor, equal to TT. Thus r = f := 
(D</>) (TT) which is the standard symplectic 2-tensor on CPn_1. 
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