Covariant Poisson Structures on Complex Projective Spaces

ALBERT JEU-LIANG SHEU¹

In this paper, we describe a one-parameter family of nonstandard SU(n+1)-covariant (also known as SU(n+1)-homogeneous) Poisson structures τ_c on the projective space $\mathbb{C}P^n$ that represents the classical counterpart of the quantum family $C(\mathbb{C}P_{q,c}^n)$, and show that the standard Poisson \mathbb{S}^{2n-1} is indeed embedded in each of these nonstandard Poisson $\mathbb{C}P^n$. We explicitly describe the Lagrangian subalgebra associated with such a Poisson homogeneous space. We also give an elementary proof of the statement that (non-zero) SU(n)-invaraint contravariant alternating 2-tensors on \mathbb{S}^{2n-1} with $n \neq 3$ (or $\mathbb{C}P^n$) are unique, up to a constant factor.

Introduction.

One of the most intriguing aspects of the theory of quantum groups and quantum spaces [Dr1, RTF, So, Wo1, Wo2, Po, Ri, VaSo] is the close interplay between the geometric structure of the underlying Poisson Lie group (or Poisson space) [We2, LuWe1] and the algebraic structure on the corresponding quantum group (or quantum space). For example, Soibelman's classification [So] of all irreducible *-representations of the quantum algebra $C(G_q)$ for compact Poisson simple Lie groups G gives a one-to-one correspondence between irreducible *-representations of $C(G_q)$ and the symplectic leaves [We2] on G. This leads to a groupoid C*-algebraic [Re] approach to study the structure of the algebra $C(G_q)$ [Sh2] which shows that the decomposition of SU(n) (or \mathbb{S}^{2n+1}) by symplectic leaves of various dimensions corresponds to a compatible decomposition of $C(SU(n)_q)$ (or $C(\mathbb{S}_q^{2n+1})$) by its (closed) ideals in the spirit of noncommutative geometry.

Given a Poisson Lie group G with Poisson structure π , we call a Poisson structure τ on a homogeneous space M of G a (G,π) -covariant [LuWe2] (also known as (G,π) -homogeneous [Dr2]) Poisson structure on M if the

¹Partially supported by NSF Grant DMS-9623008.

G-action map $G \times M \to M$ is a Poisson map with respect to the product Poisson structure $\pi \oplus \tau$ on $G \times M$ and the Poisson structure τ on M. It is well known that the standard multiplicative Poisson structure on SU(n+1) induces a standard covariant Poisson structure on the homogeneous spaces $\mathbb{S}^{2n+1} = SU(n+1)/SU(n)$ and $\mathbb{C}P^n = SU(n+1)/U(n)$ determined by the Poisson Lie subgroups SU(n) and U(n), respectively. On the other hand, Lu and Weinstein [LuWe2] described explicitly all SU(2)-covariant Poisson structures on $\mathbb{S}^2 = \mathbb{C}P^1$ including a one-parameter family of nonstandard SU(2)-covariant Poisson structures on \mathbb{S}^2 , and showed that each nonstandard covariant Poisson sphere \mathbb{S}^2_c contains a copy of the trivial Poisson 1-sphere \mathbb{S}^1 (consisting of a circle family of 0-dimensional symplectic leaves) and exactly two 2-dimensional symplectic leaves. This geometric structure is reflected faithfully in the algebraic structure of the algebra $C(\mathbb{S}^2_{ac})$ of the nonstandard quantum spheres \mathbb{S}^2_{ac} [Sh1].

Dijkhuizen and Noumi studied in great detail [DiNo] a one-parameter family of nonstandard quantum projective spaces $\mathbb{C}P^n_{q,c}$ with quantum algebras $C\left(\mathbb{C}P_{q,c}^n\right)$. In [Sh3], the structure of $C\left(\mathbb{C}P_{q,c}^n\right)$ is studied and analyzed as a groupoid C*-algebra, and an algebraic decomposition of $C\left(\mathbb{C}P_{q,c}^n\right)$ by a closed ideal indicates that the underlying nonstandard projective space Poisson $\mathbb{C}P^n$ should contain an embedded copy of the standard Poisson \mathbb{S}^{2n-1} . Using the result of [KhRaRu], one can classify all SU(n+1)-covariant Poisson structures on $\mathbb{C}P^n$ into a one-parameter family. In this paper, we describe the part of this one-parameter family of Poisson structures on $\mathbb{C}P^n$ that represents the classical counterpart of the quantum family $C\left(\mathbb{C}P_{q,c}^n\right)$, and show that the standard Poisson \mathbb{S}^{2n-1} is indeed embedded in each of these nonstandard Poisson $\mathbb{C}P^n$. Furthermore we find explicitly the Lagrangian subalgebras [Dr2] associated with these nonstandard SU(n+1)-covariant Poisson structures on $\mathbb{C}P^n$. We also give an elementary proof of the fact that (non-zero) SU(n)-invariant (contravariant alternating) 2-tensors on \mathbb{S}^{2n-1} with $n \neq 3$ (or on $\mathbb{C}P^n$) are unique, up to a constant factor. We remark that in [KhRaRu], Khoroshkin, Radul, and Rubtsov obtained interesting results about covariant Poisson structures on coadjoint orbits, including $\mathbb{C}P^n$. Our approach, motivated by Dijkhuizen and Noumi's work [DiNo], is different from theirs and the embedding of the standard Poisson \mathbb{S}^{2n-1} in the nonstandard Poisson $\mathbb{C}P^n$ is new.

We would like to thank the referee for very helpful suggestions and comments.

1. Poisson structure on Lie groups.

In this section, we discuss some basic properties of affine Poisson structures in the form needed later. We recall that an affine Poisson structure on a Lie group G is given by a Poisson 2-tensor $\pi \in \Gamma(\wedge^2 TG)$, such that

$$\pi\left(gh\right) = L_{q}\left(\pi\left(h\right)\right) + R_{h}\left(\pi\left(g\right)\right) - L_{q}R_{h}\left(\pi\left(e\right)\right)$$

for any $g, h \in G$ [We3], or equivalently,

$$\pi_{l}\left(g\right):=\pi\left(g\right)-L_{g}\left(\pi\left(e\right)\right)$$

for $g \in G$ defines a multiplicative Poisson 2-tensor on G [Lu, DaSo], where L_g and R_g are the left and the right actions by $g \in G$, respectively, and e is the identity element of G. For an affine Poisson 2-tensor π on a Lie group G, the left action of the Poisson-Lie group (G, π_l) on the Poisson manifold (G, π) by left translation is a Poisson action, i.e., the multiplication map $G \times G \to G$ is a Poisson map, where $G \times G$ and G are endowed with the Poisson structures $\pi_l \times \pi$ and π , respectively. In another word, π on G (as a homogeneous space of G) is a (left) (G, π_l) -covariant Poisson structure.

A typical example of an affine Poisson structure on a Poisson-Lie group G with multiplicative Poisson 2-tensor π is provided by a right translation π_{σ} of π by an element $\sigma \in G$, i.e.,

$$\pi_{\sigma}\left(g\right):=R_{\sigma}\left(\pi\left(g\sigma^{-1}\right)\right)$$

for $g \in G$. Since the right translation by σ on G is a diffeomorphism on G, the 'push-forward' π_{σ} of π by R_{σ} is clearly a Poisson 2-tensor on G. Furthermore,

$$(\pi_{\sigma})_{l}(g) = R_{\sigma}(\pi(g\sigma^{-1})) - L_{g}(R_{\sigma}(\pi(\sigma^{-1})))$$

$$= R_{\sigma}(L_{g}(\pi(\sigma^{-1})) + R_{\sigma^{-1}}(\pi(g))) - L_{g}(R_{\sigma}(\pi(\sigma^{-1})))$$

$$= R_{\sigma}L_{g}(\pi(\sigma^{-1})) + \pi(g) - R_{\sigma}L_{g}(\pi(\sigma^{-1})) = \pi(g)$$

which is a multiplicative Poisson 2-tensor on G. So π_{σ} on G (as a homogeneous space of G) is a (left) (G,π) -covariant Poisson structure, for any $\sigma \in G$. Note that

$$\pi_{\sigma} = \pi + (X_{\sigma})^{l}$$

where $X_{\sigma} := \pi_{\sigma}(e) = R_{\sigma}(\pi(\sigma^{-1})) \in \mathfrak{g} \wedge \mathfrak{g}$ and $X^{l}(g) := L_{g}(X)$ is the left-invariant 2-tensor generated by $X \in \mathfrak{g} \wedge \mathfrak{g}$, since $(\pi_{\sigma})_{l} = \pi$.

When a closed subgroup H of a Lie group G is coisotropic [We1] with respect to a Poisson structure ρ on G, i.e.,

$$\rho\left(gh\right) - R_{h}\left(\rho\left(g\right)\right) \in L_{gh}\left(\mathfrak{h} \wedge \mathfrak{g}\right)$$

for all $g \in G$ and $h \in H$, it is easy to see that the Poisson bracket $\{f_1, f_2\} := (df_1 \wedge df_2)(\rho)$ of $f_1, f_2 \in C^{\infty}(G/H) \subset C^{\infty}(G)$ is still in $C^{\infty}(G/H)$ and hence induces a Poisson structure on G/H, or equivalently, a Poisson 2-tensor $\tilde{\rho}$ on the homogeneous space G/H is well defined by

$$\tilde{\rho}\left(\left[gH\right]\right):=\left[\rho\left(g\right)\right]\in L_{g}\left(\wedge^{2}\left(\mathfrak{g}/\mathfrak{h}\right)\right)=\wedge^{2}T_{\left[gH\right]}\left(G/H\right).$$

Given a Poisson-Lie group (G, π) and $\sigma \in G$, if a closed subgroup H of G is coisotropic with respect to π , then H is coisotropic with respect to the affine Poisson structure π_{σ} on G if and only if

$$(X_{\sigma})^{l}(gh) - R_{h}((X_{\sigma})^{l}(g)) \in L_{gh}(\mathfrak{h} \wedge \mathfrak{g}),$$

since $\pi_{\sigma} = \pi + (X_{\sigma})^{l}$ and $\pi(gh) - R_{h}(\pi(g)) \in L_{gh}(\mathfrak{h} \wedge \mathfrak{g})$. Now

$$(X_{\sigma})^{l}(gh) - R_{h}((X_{\sigma})^{l}(g)) = L_{gh}(X_{\sigma}) - R_{h}(L_{g}(X_{\sigma}))$$

$$= L_{g}(L_{h}X_{\sigma} - R_{h}X_{\sigma})$$

$$= L_{g}L_{h}(X_{\sigma} - L_{h-1}R_{h}X_{\sigma})$$

$$= L_{gh}(\operatorname{id} - \operatorname{Ad}_{h^{-1}})(X_{\sigma}).$$

So $(X_{\sigma})^{l}(gh) - R_{h}((X_{\sigma})^{l}(g)) \in L_{gh}(\mathfrak{h} \wedge \mathfrak{g})$ for all $(g,h) \in G \times H$ if and only if

$$(\mathrm{id} - \mathrm{Ad}_{h^{-1}})(X_{\sigma}) \in \mathfrak{h} \wedge \mathfrak{g}$$

for all $h \in H$, or equivalently,

$$\mathrm{ad}_{\mathfrak{h}}\left(X_{\sigma}\right)\subset\mathfrak{h}\wedge\mathfrak{g}.$$

Thus we get the following result.

Proposition 1. Given a Poisson-Lie group (G, π) and a closed subgroup H of G that is coisotropic with respect to π , the subgroup H is coisotropic with respect to π_{σ} for $\sigma \in G$, if and only if $\mathrm{ad}_{\mathfrak{h}}(X_{\sigma}) \subset \mathfrak{h} \wedge \mathfrak{g}$, where $X_{\sigma} := R_{\sigma}(\pi(\sigma^{-1})) \in \mathfrak{g} \wedge \mathfrak{g}$.

In case the multiplicative Poisson structure π on G is given by an r-matrix $r \in \mathfrak{g} \wedge \mathfrak{g}$ (satisfying the modified Yang-Baxter equation), i.e.,

$$\pi\left(g\right) = L_{g}r - R_{g}r,$$

we have

$$X_{\sigma} = R_{\sigma} \left(\pi \left(\sigma^{-1} \right) \right) = R_{\sigma} \left(L_{\sigma^{-1}} r - R_{\sigma^{-1}} r \right) = \operatorname{Ad}_{\sigma^{-1}} \left(r \right) - r.$$

A closed subgroup H being coisotropic with respect to π is equivalent to

$$\mathrm{ad}_{\mathfrak{h}}\left(r\right)\subset\mathfrak{h}\wedge\mathfrak{g},$$

since

$$\pi (gh) - R_h (\pi (g)) = L_{gh}r - R_{gh}r - R_h (L_g r - R_g r)$$

$$= L_{gh}r - R_{gh}r - L_g R_h r + R_h R_g r = L_{gh}r - L_g R_h r$$

$$= L_{gh} (r - L_{h^{-1}} R_h r) = L_{gh} (\text{id} - \text{Ad}_{h^{-1}}) (r)$$

and L_{gh} (id $-\operatorname{Ad}_{h^{-1}}$) $(r) \in L_{gh}$ ($\mathfrak{h} \wedge \mathfrak{g}$) for all $(g,h) \in G \times H$ if and only if

$$(\mathrm{id}-\mathrm{Ad}_{h^{-1}})\,(r)\in\mathfrak{h}\wedge\mathfrak{g}$$

for all $h \in H$.

Corollary 2. Given a Poisson-Lie group (G, π) with π defined by an r-matrix $r \in \mathfrak{g} \wedge \mathfrak{g}$, a π -coisotropic closed subgroup H of G is coisotropic with respect to π_{σ} for $\sigma \in G$, if and only if $\mathrm{ad}_{\mathfrak{h}}(\mathrm{Ad}_{\sigma^{-1}}(r)) \subset \mathfrak{h} \wedge \mathfrak{g}$.

2. Non-standard Poisson $\mathbb{C}P^n$.

In this section, we construct via affine Poisson structures on SU(n) some SU(n)-covariant Poisson structures on $\mathbb{C}P^{n-1}$ that represent the classical counterpart of the nonstandard quantum projective spaces $\mathbb{C}P_{q,c}^n$ [DiNo].

Recall that the standard Poisson SU(n) is defined (up to a constant multiple) by the Poisson 2-tensor $\pi(u) = \pi^{(n)}(u) := L_u r - R_u r$ determined by the r-matrix

$$r := \sum_{1 \le i < j \le n} X_{ij}^+ \wedge X_{ij}^-$$

where $X_{ij}^+ = e_{ij} - e_{ji}$, $X_{ij}^- = i (e_{ij} + e_{ji})$, and e_{ij} are the matrix units.

It is well known that $SU\left(n-1\right)\cong\{1\}\oplus SU\left(n-1\right)$ (or $SU\left(n-1\right)\oplus\{1\}$) and

 $U(n-1) \cong \left\{ \det(u)^{-1} \oplus u : u \in U(n-1) \right\}$

are Poisson-Lie subgroups of SU(n) and hence induce the 'standard' SU(n)-covariant Poisson structures $\rho = \rho^{(n)}$ (also called Bruhat Poisson structure [LuWe1]) and $\tau = \tau^{(n-1)}$ on the sphere

$$\mathbb{S}^{2n-1} \cong SU\left(n\right)/\left[\left\{1\right\} \oplus SU\left(n-1\right)\right]$$

and the complex projective space

$$\mathbb{C}P^{n-1} \cong SU(n)/U(n-1)$$
,

respectively.

Theorem 3. The closed subgroup U(n-1) of SU(n) is coisotropic with respect to the (left) SU(n)-covariant affine Poisson structure π_{σ_c} on SU(n) defined by

$$\sigma_c := \left(\sqrt{c}e_{11} + \sqrt{1 - c}e_{n1} - \sqrt{1 - c}e_{1n} + \sqrt{c}e_{nn}\right) + \sum_{i=2}^{n-1} e_{ii} \in SU(n)$$

with $c \in [0, 1]$. Hence π_{σ_c} induces a (left) SU (n)-covariant Poisson structure τ_c on $\mathbb{C}P^{n-1} \cong SU(n)/U(n-1)$.

Proof. We set $\sigma = \sigma_c$ for simplicity. It is easy to see that if the Poisson structure τ_c induced by π_{σ_c} on $\mathbb{C}P^{n-1} \cong SU(n)/U(n-1)$ is well defined, then it is automatically (left) SU(n)-covariant since π_{σ_c} is. Now since U(n-1) is a Poisson-Lie subgroup and hence coisotropic with respect to π , we have

$$\mathrm{ad}_{\mathfrak{u}(n-1)}\left(r\right)\subset\mathfrak{u}\left(n-1\right)\wedge\mathfrak{su}\left(n\right),$$

and hence only need to show that

$$\operatorname{ad}_{\mathfrak{u}(n-1)}\left(\operatorname{Ad}_{\sigma^{-1}}\left(r\right)\right)\subset\mathfrak{u}\left(n-1\right)\wedge\mathfrak{su}\left(n\right).$$

From

$$\begin{cases} \operatorname{Ad}_{\sigma^{-1}}\left(X_{ij}^{+}\right) = X_{ij}^{+}, & \text{if } 1 < i < j < n \\ \operatorname{Ad}_{\sigma^{-1}}\left(X_{1j}^{+}\right) = \sqrt{c}X_{1j}^{+} + \sqrt{1 - c}X_{jn}^{+}, & \text{if } 1 < j < n \\ \operatorname{Ad}_{\sigma^{-1}}\left(X_{in}^{+}\right) = -\sqrt{1 - c}X_{1i}^{+} + \sqrt{c}X_{in}^{+}, & \text{if } 1 < i < n \\ \operatorname{Ad}_{\sigma^{-1}}\left(X_{1n}^{+}\right) = X_{1n}^{+}, \end{cases}$$

and

$$\begin{cases} \operatorname{Ad}_{\sigma^{-1}}\left(X_{ij}^{-}\right) = X_{ij}^{-}, & \text{if } 1 < i < j < n \\ \operatorname{Ad}_{\sigma^{-1}}\left(X_{1j}^{-}\right) = \sqrt{c}X_{1j}^{-} - \sqrt{1 - c}X_{jn}^{-}, & \text{if } 1 < j < n \\ \operatorname{Ad}_{\sigma^{-1}}\left(X_{in}^{-}\right) = \sqrt{1 - c}X_{1i}^{-} + \sqrt{c}X_{in}^{-}, & \text{if } 1 < i < n \\ \operatorname{Ad}_{\sigma^{-1}}\left(X_{1n}^{-}\right) = (2c - 1)X_{1n}^{-} \\ +2i\sqrt{c\left(1 - c\right)}\left(e_{11} - e_{nn}\right). \end{cases}$$

we get

$$\begin{split} &\operatorname{Ad}_{\sigma^{-1}}(r) \\ &= \sum_{1 \leq i < j \leq n} \operatorname{Ad}_{\sigma^{-1}}\left(X_{ij}^{+}\right) \wedge \operatorname{Ad}_{\sigma^{-1}}\left(X_{ij}^{-}\right) \\ &= \sum_{1 < i < j < n} X_{ij}^{+} \wedge X_{ij}^{-} + X_{1n}^{+} \wedge \left[(2c - 1) X_{1n}^{-} + 2\sqrt{c(1 - c)}i \left(e_{11} - e_{nn}\right) \right] \\ &+ \sum_{1 < i < n} \left(\sqrt{c} X_{1i}^{+} + \sqrt{1 - c} X_{in}^{+} \right) \wedge \left(\sqrt{c} X_{1i}^{-} - \sqrt{1 - c} X_{in}^{-} \right) \\ &+ \sum_{1 < i < n} \left(-\sqrt{1 - c} X_{1i}^{+} + \sqrt{c} X_{in}^{+} \right) \wedge \left(\sqrt{1 - c} X_{1i}^{-} + \sqrt{c} X_{in}^{-} \right) \\ &= 2 \left(1 - c \right) \sum_{1 < i < j < n} X_{ij}^{+} \wedge X_{ij}^{-} + 2\sqrt{c(1 - c)} X_{1n}^{+} \wedge i \left(e_{11} - e_{nn}\right) \\ &+ \left(2c - 1 \right) r + 2\sqrt{c(1 - c)} \sum_{1 < i < n} \left(X_{in}^{+} \wedge X_{1i}^{-} - X_{1i}^{+} \wedge X_{in}^{-} \right) \end{split}$$

which is in $(2c-1)r + (\mathfrak{u}(n-1) \wedge \mathfrak{su}(n))$, since

$$X_{ij}^{+}, X_{ij}^{-}, X_{in}^{+}, X_{in}^{-}, i (e_{11} - e_{nn}) \in \mathfrak{u} (n-1)$$

for all 1 < i < j < n. So we get

$$\begin{aligned} \operatorname{ad}_{\mathfrak{u}(n-1)}\left(\operatorname{Ad}_{\sigma^{-1}}\left(r\right)\right) \\ &\subset \left(2c-1\right)\operatorname{ad}_{\mathfrak{u}(n-1)}\left(r\right) + \operatorname{ad}_{\mathfrak{u}(n-1)}\left(\mathfrak{u}\left(n-1\right)\wedge\operatorname{\mathfrak{su}}\left(n\right)\right) \\ &\subset \operatorname{\mathfrak{u}}\left(n-1\right)\wedge\operatorname{\mathfrak{su}}\left(n\right), \end{aligned}$$

because $\mathrm{ad}_{\mathfrak{u}(n-1)}\left(r\right)\subset\mathfrak{u}\left(n-1\right)\wedge\mathfrak{su}\left(n\right)$ and

$$\mathrm{ad}_{\mathfrak{u}(n-1)}\left(\mathfrak{u}\left(n-1\right)\wedge\mathfrak{su}\left(n\right)\right)\subset\mathfrak{u}\left(n-1\right)\wedge\mathfrak{su}\left(n\right).$$

The Poisson manifold $(\mathbb{C}P^{n-1}, \tau_c)$ with $c \in (0,1)$ is referred to as a nonstandard Poisson $\mathbb{C}P^{n-1}$. Note that $\tau_1 = \tau^{(n-1)}$ the standard Poisson structure on $\mathbb{C}P^{n-1}$ since $\sigma_1 = 1 \in SU(n)$ and hence $\pi_{\sigma_1} = \pi$. On the other hand, R_{σ_0} simply swaps the first column with the *n*-th column and hence τ_0 is the standard Poisson structure on $\mathbb{C}P^{n-1} \cong SU(n) / \{u \oplus \det(u)^{-1} : u \in U(n-1)\}$ induced by π .

We remark that the above nonstandard Poisson structures on $\mathbb{C}P^{n-1}$ form only a part of the one-parameter family of all SU(n)-covariant Poisson structures on $\mathbb{C}P^{n-1}$ that can be classified using the results of [KhRaRu] and [Kos2] as follows. (We thank the referee for providing this argument.) Indeed it is easy to see, as in LuWe2, that the difference of two covariant Poisson 2-tensors is an invariant alternating 2-tensor. Applying the known fact that the p-th de Rham cohomology of the Grassmannian G_n^k of k-dimensional subspaces in \mathbb{C}^n is isomorphic to the space of SU(n)-invariant p-forms on G_n^k [Kos2] to the case of k=1 and p=2, we see that the known de Rham cohomology group $H^2_{DR}\left(\mathbb{C}P^{n-1}\right)\cong\mathbb{R}$ (for $n\geq 2$) is isomorphic to the space of all SU(n)-invariant 2-forms on $\mathbb{C}P^{n-1}$. So every SU(n)invariant 2-form, or equivalently, every SU(n)-invariant 2-tensor (by duality via the standard U(1)-invariant Euclidean structure of \mathbb{C}^n) on $\mathbb{C}P^{n-1}$ is a scalar multiple of the SU(n)-invariant Fubini-Study symplectic form on the compact Kähler manifold $\mathbb{C}P^{n-1}$, or equivalently, the corresponding nondegenerate SU(n)-invariant 2-tensor $\tilde{\tau}$ on $\mathbb{C}P^{n-1}$. (In section 4, we give an elementary direct proof of this fact.) So every $SU\left(n\right)$ -covariant Poisson 2-tensor on $\mathbb{C}P^{n-1}$ belongs to the family $\tau_1 + \mathbb{R}\tilde{\tau}$. On the other hand, it is easy to see that the sum of an SU(n)-covariant 2-tensor and an SU(n)invariant 2-tensor is SU(n)-covariant. Furthermore it is known [KhRaRu] that the Schouten-Nijenhuis bracket $[[\tilde{\tau}, \tau_1]] = 0$ and hence every 2-tensor in $\tau_1 + \mathbb{R}\tilde{\tau}$ is a Poisson 2-tensor. (In fact, the covariance of τ_1 implies that the 3-tensor $[[\tilde{\tau}, \tau_1]]$ is SU(n)-invariant. However since $H^3_{DR}(\mathbb{C}P^{n-1}) = 0$, there is no non-zero SU(n)-invariant 3-tensor on $\mathbb{C}P^{n-1}$.) Thus $\tau_1 + \mathbb{R}\tilde{\tau}$ consists of all SU(n)-covariant Poisson 2-tensors on $\mathbb{C}P^{n-1}$.

In [Dr2], Drinfeld associated a Lagrangian subalgebra of the double Lie algebra $\mathfrak{d} = \mathfrak{g} \bowtie \mathfrak{g}^*$ with each G-covariant Poisson structure τ on a homogeneous space M of G. More precisely,

$$\mathfrak{i}_{m} := \left\{ (x, \xi) \in \mathfrak{g} \times (\mathfrak{g}_{m})^{\perp} : x + \mathfrak{g}_{m} = \xi \, \bot \tau (m) \right\}$$

[Dr2, ELu] is the Lagrangian subalgebra associated with (M,τ) at a point $m \in M$, where $\mathfrak{g}_m \subset \mathfrak{g}$ is the Lie algebra of the stabilizer subgroup of G at m, the coset space $\mathfrak{g}/\mathfrak{g}_m$ is identified with the tangent space T_mM via

the differential of the action $g \in G \mapsto gm \in M$ at the neutral element e, and $(\mathfrak{g}_m)^{\perp} \subset \mathfrak{g}^*$ consisting of linear functionals of \mathfrak{g} that annihilate \mathfrak{g}_m is identified with the cotangent space T_m^*M . Since the correspondence $m \mapsto \mathfrak{i}_m$ is G-equivariant [Dr2], \mathfrak{i}_{m_0} for any specific $m_0 \in M$ determines the other \mathfrak{i}_m . Interesting results have been obtained recently on this topic. For example, Karolinsky classified all Lagrangian subalgebras of the double Lie algebra $\mathfrak{sl}(n,\mathbb{C}) = \mathfrak{su}(n) \bowtie \mathfrak{su}(n)^*$ [Ka], and Evens and Lu studied the geometry of the variety of all Lagrangian subalgebras of $\mathfrak{sl}(n,\mathbb{C})$ [ELu]. In the following, we identify explicitly the Lagrangian subalgebra associated with the SU(n)-covariant nonstandard Poisson $(\mathbb{C}P^{n-1},\tau_c)$ at the point [(1,0,..,0)], and we denote by $\left\{X_+^{ij},X_-^{ij}\right\}_{1\leq i< j\leq n} \cup \left\{E^k\right\}_{k=2}^n \subset \mathfrak{su}(n)^*$ the basis dual to the basis $\left\{X_{ij}^+,X_{ij}^-\right\}_{1\leq i< j\leq n} \cup \left\{i(e_{11}-e_{kk})\right\}_{k=2}^n \subset \mathfrak{su}(n)$.

Proposition 4. The Lagrangian subalgebra $\mathfrak{i}_{[(1,0,..,0)]}$ associated with the SU(n)-covariant nonstandard Poisson homogeneous space $(\mathbb{C}P^{n-1},\tau_c)$ at the point $[(1,0,..,0)] \in \mathbb{C}P^{n-1}$ is the linear span of $\mathfrak{u}(n-1) \times \{0\}$ and the vectors $(\pm 2(c-1)X_{1j}^{\mp},X_{\pm}^{1j})$ with $1 < j \leq n$ in $\mathfrak{su}(n) \bowtie \mathfrak{su}(n)^*$.

Proof. The stabilizer subgroup of G = SU(n) at $m = [(1,0,\ldots,0)] \in \mathbb{C}P^{n-1}$ is U(n-1), and the differential η at $e \in SU(n)$ of the action map $g \in SU(n) \mapsto g[(1,0,\ldots,0)] \in \mathbb{C}P^{n-1}$ sends e to $[(1,0,\ldots,0)]$ and identifies $\mathfrak{su}(n)/\mathfrak{u}(n-1)$ with $T_{[(1,0,\ldots,0)]}\mathbb{C}P^{n-1}$. Since $\tau_c([(1,0,\ldots,0)])$ is the projection of $\pi_{\sigma_c}(e)$ under η , the Lagrangian subalgebra $\mathfrak{i}_{[(1,0,\ldots,0)]}$ associated with $(\mathbb{C}P^{n-1},\tau_c)$ at the point $[(1,0,\ldots,0)]$ equals

$$\begin{split} &\left\{ \left(x,\xi\right) \in \mathfrak{su}\left(n\right) \times \mathfrak{u}\left(n-1\right)^{\perp} : x \equiv \xi \, \lrcorner \, \pi_{\sigma_{c}}\left(e\right) \, \left(\operatorname{mod} \, \mathfrak{u}\left(n-1\right)\right) \right\} \\ &= \left\{ \left(\xi \, \lrcorner \, \pi_{\sigma_{c}}\left(e\right),\xi\right) : \xi \in \mathfrak{u}\left(n-1\right)^{\perp} \right\} + \mathfrak{u}\left(n-1\right) \times \left\{0\right\}, \end{split}$$

which is the linear span of $\mathfrak{u}(n-1) \times \{0\}$ and the vectors $\left(X_{\pm}^{1j} \sqcup \pi_{\sigma_c}(e), X_{\pm}^{1j}\right)$ with $1 < j \leq n$ in $\mathfrak{su}(n) \bowtie \mathfrak{su}(n)^*$ because $\left\{X_{+}^{1j}, X_{-}^{1j}\right\}_{j=2}^n$ is a basis of $\mathfrak{u}(n-1)^{\perp}$. From the proof of the above theorem,

we have

$$\pi_{\sigma_{c}}(e) = R_{\alpha_{c}}\left(\pi\left(\sigma_{c}^{-1}\right)\right) = \operatorname{Ad}_{\sigma_{c}^{-1}}(r) - r$$

$$= 2\left(1 - c\right) \sum_{1 < i < j < n} X_{ij}^{+} \wedge X_{ij}^{-} + 2\sqrt{c\left(1 - c\right)} X_{1n}^{+} \wedge i\left(e_{11} - e_{nn}\right)$$

$$+ 2\left(c - 1\right)r + 2\sqrt{c\left(1 - c\right)} \sum_{1 < i < n} \left(X_{in}^{+} \wedge X_{1i}^{-} - X_{1i}^{+} \wedge X_{in}^{-}\right)$$

$$= 2\left(c - 1\right) \left(\sum_{1 < j \le n} X_{1j}^{+} \wedge X_{1j}^{-} + \sum_{1 < i < n} X_{in}^{+} \wedge X_{in}^{-}\right)$$

$$+ 2\sqrt{c\left(1 - c\right)} X_{1n}^{+} \wedge i\left(e_{11} - e_{nn}\right)$$

$$+ 2\sqrt{c\left(1 - c\right)} \sum_{1 < i < n} \left(X_{in}^{+} \wedge X_{1i}^{-} - X_{1i}^{+} \wedge X_{in}^{-}\right),$$

and hence

$$X_{\pm}^{1j} \, \lrcorner \, \pi_{\sigma_c} \left(e \right) \equiv \pm 2 \left(c - 1 \right) X_{1j}^{\mp} \left(\text{mod } \mathfrak{u} \left(n - 1 \right) \right).$$

Thus the Lagrangian subalgebra $\mathfrak{i}_{[(1,0,\dots,0)]}$ is the linear span of $\mathfrak{u}(n-1)\times\{0\}$ and the vectors $\left(\pm 2(c-1)X_{1j}^{\mp},X_{\pm}^{1j}\right)$ with $1< j\leq n$ in $\mathfrak{su}(n)\bowtie\mathfrak{su}(n)^*$.

3. Standard Poisson sphere in $\mathbb{C}P^n$.

In this section, we show that the nonstandard Poisson $(\mathbb{C}P^{n-1}, \tau_c)$ contains a copy of the standard Poisson \mathbb{S}^{2n-3} generalizing the result of [LuWe2] for n=1.

We first remark that $X_{ij}^+, X_{ij}^-, X_{in}^+, X_{in}^- \in \mathfrak{su}\,(n-1)$ but $i\,(e_{11}-e_{nn}) \notin \mathfrak{su}\,(n-1)$, so $\mathrm{ad}_{\mathfrak{su}(n-1)}\,(\mathrm{Ad}_{\sigma^{-1}}\,(r)) \not\subseteq \mathfrak{su}\,(n-1) \wedge \mathfrak{su}\,(n)$ and hence π_{σ_c} does not induce a Poisson structure on $\mathbb{S}^{2n-1} \cong SU\,(n)\,/SU\,(n-1)$. On the other hand, as a generalization of Lu and Weinstein's result on covariant Poisson spheres $\mathbb{S}^2 = \mathbb{C}P^1$ [LuWe2], we can show that $(\mathbb{C}P^{n-1}, \tau_c)$ contains a copy of the standard Poisson sphere $(\mathbb{S}^{2n-3}, \rho^{(n-1)})$. Here it is understood that $\rho^{(1)} = 0$ on \mathbb{S}^1 by definition.

Theorem 5. The standard Poisson sphere $(\mathbb{S}^{2n-3}, \rho^{(n-1)})$ is embedded in $(\mathbb{C}P^{n-1}, \tau_c)$ for $c \in (0,1)$ and $n \geq 2$.

Proof. Note that the quotient map $\phi: SU(n) \to \mathbb{C}P^{n-1}$ can be viewed as the composition of the quotient map

$$\phi_1: u \in SU(n) \mapsto u_1 \in \mathbb{S}^{2n-1} \cong SU(n)/SU(n-1)$$

and the quotient map

$$\phi_2: v \in \mathbb{S}^{2n-1} \mapsto [v] \in \mathbb{C}P^{n-1} \cong \mathbb{S}^{2n-1}/\mathbb{T},$$

where the circle group $\mathbb T$ acts diagonally on $\mathbb S^{2n-1}\subset \mathbb C^n$ and

$$u_1 := (u_{11}, u_{21}, \dots, u_{n1}) \in \mathbb{S}^{2n-1} \subset \mathbb{C}^n$$

is the first column of $u \in SU\left(n\right)$. It is well known that ϕ_2 is a diffeomorphism from the submanifold

$$S_+ := \{ v \in \mathbb{S}^{2n-1} : v_1 > 0 \} \subset \mathbb{S}^{2n-1}$$

onto its image $\phi_2(S_+) \subset \mathbb{C}P^{n-1}$, and

$$\phi_3: v \in S_c \mapsto \phi_3(v) := \frac{1}{\sqrt{1-c}}(v_2, \dots, v_n) \in \mathbb{S}^{2n-3}$$

is a diffeomorphism identifying

$$S_c := \{ v \in \mathbb{S}^{2n-1} : v_1 = \sqrt{c} \} \subset S_+$$

with \mathbb{S}^{2n-3} . We denote by $\psi: u \in SU(n) \mapsto u_n \in \mathbb{S}^{2n-1}$ the projection to the last column. Functions similar to ϕ_1, ϕ_2 , and ψ , for other dimensions than n, will be denoted by the same symbols for the simplicity of notation. First we assume that n > 2. For each $v \in S_c$, we can find some $u' \in SU(n)$ with the first column $u'_1 = (1, 0, \dots, 0)$ and the last column $u'_n = \sqrt{1-c^{-1}}(0, v_2, \dots, v_n)$. Note that the first row of u' has to be $(1, 0, \dots, 0)$, and hence

$$u' = 1 \oplus u'' \in \{1\} \oplus SU(n-1)$$

for some $u'' \in SU(n-1)$ with

$$(u'')_{n-1} = \sqrt{1-c}^{-1}(v_2,\ldots,v_n) = \phi_3(v).$$

Furthermore since $\{1\} \oplus SU(n-1)$ is a Poisson-Lie subgroup of SU(n),

$$\pi\left(u'\right) = 0 \oplus \pi^{(n-1)}\left(u''\right) \in \{0\} \oplus \wedge^{2} T_{u''} SU\left(n-1\right) \subset \wedge^{2} T_{u'} SU\left(n\right)$$

where $\pi^{(n-1)}$ is the standard multiplicative Poisson structure on SU (n-1). Note that

$$\rho^{(n-1)}(\phi_3(v)) = (D\psi)_{u''}(\pi^{(n-1)}(u''))$$

for the standard Poisson 2-tensor $\rho^{(n-1)}$ on \mathbb{S}^{2n-3} . Here we take

$$\mathbb{S}^{2n-3} = SU(n-1) / [SU(n-2) \oplus \{1\}].$$

For

$$u := R_{\sigma_c} (u') = u' \sigma_c \in SU(n),$$

we have

$$\phi_1\left(u\right) = u_1 = \left(u'\sigma_c\right)_1 = v \in S_c,$$

and in $\wedge^2 T_v S_+$,

$$(D\phi_1)_u (\pi_{\sigma_c}(u)) = (D\phi_1)_u (R_{\sigma_c}(\pi(u'))) = (D\phi_1)_u (\pi(u')\sigma_c)$$
$$= \sqrt{1-c} (D\psi)_{u'}(\pi(u')) \in \wedge^2 T_v S_c \subset \wedge^2 T_v S_+$$

because the first columns of the component matrices in the 2-tensor $\pi(u') = 0 \oplus \pi^{(n-1)}(u'')$ are all zero. Note that

$$\tau_{c}([v]) = \tau_{c}(\phi_{2}(v)) = \tau_{c}(\phi(u))$$

$$= (D\phi)_{u}(\pi_{\sigma_{c}}(u)) = (D\phi_{2})_{\phi_{1}(u)}((D\phi_{1})_{u}(\pi_{\sigma_{c}}(u)))$$

is a well-defined 2-tensor at $[v] \in \phi_2(S_c) \subset \mathbb{C}P^{n-1}$ and ϕ_2 is a diffeomorphism on S_+ . So

$$\pi': v \in S_c \mapsto (D\phi_1)_u (\pi_{\sigma_c}(u)) \in \wedge^2 T_v S_c$$

is a well-defined Poisson 2-tensor on S_c and $\phi_2\left(S_c\right)$ is a Poisson submanifold of $(\mathbb{C}P^{n-1}, \tau_c)$ that is Poisson isomorphic to (S_c, π') . Under the diffeomorphism $\phi_3: S_c \to \mathbb{S}^{2n-3}$ identifying $v \in S_c$ with $\phi_3\left(v\right) \in \mathbb{S}^{2n-3}$, the 2-tensor $\pi'\left(v\right)$ is identified with

$$(D\phi_{3})_{v} ((D\phi_{1})_{u} (\pi_{\sigma_{c}} (u))) = (D\phi_{3})_{v} (\sqrt{1-c} (D\psi)_{u'} (\pi (u')))$$

$$= (D\phi_{3})_{v} (\sqrt{1-c} (0 \oplus (D\psi)_{u'} (\pi^{(n-1)} (u''))))$$

$$= (D\phi_{3})_{v} (\sqrt{1-c} (0 \oplus \rho^{(n-1)} (\phi_{3} (v))))$$

$$= \rho^{(n-1)} (\phi_{3} (v)) \in \wedge^{2} T_{\phi_{2}(v)} \mathbb{S}^{2n-3}.$$

Thus (S_c, π') or $(\phi_2(S_c), \tau_c)$ is Poisson isomorphic to the standard Poisson sphere $(\mathbb{S}^{2n-3}, \rho^{(n-1)})$. When n=2, for $v \in S_c$ with $v_2 \neq \sqrt{1-c}$, we cannot

find a $u' \in SU(2)$ with the first column $u'_1 = (1,0)$ and the last column $u'_2 = \sqrt{1-c}^{-1}(0,v_2)$. But for $v_0 = (\sqrt{c},\sqrt{1-c})$, such a u'_0 exists, namely, $u'_0 = I_2$ the 2×2 identity matrix, and the above argument essentially works. More precisely, it is well known that $\pi(u'_0) = 0$ since $u'_0 \in U(1) \subset SU(2)$, and hence for $u_0 = u'_0 \sigma_c = \sigma_c$,

$$(D\phi_1)_{u_0}(\pi_{\sigma_c}(u_0)) = (D\phi_1)_{u_0}(R_{\sigma_c}(\pi(u_0))) = (D\phi_1)_{u_0}(0) = 0.$$

So

$$\tau_c([v_0]) = (D\phi_2)_{v_0} (D\phi_1)_{u_0} (\pi_{\sigma_c}(u_0)) = 0.$$

On the other hand, since τ_c on $\mathbb{C}P^1 \approx \mathbb{S}^2$ is SU (2)-covariant and U (1) $\subset SU$ (2) consists of 0-dimensional leaves, the action of any

$$t = \begin{pmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{pmatrix} \in U(1)$$

on $\mathbb{C}P^1$ preserves the Poisson structure τ_c . In particular, $\tau_c([tv_0]) = 0$ for any $t \in U(1)$. Since any $v = (\sqrt{c}, \sqrt{1-c}e^{i\theta}) \in S_c$ is equivalent to a tv_0 with $t \in U(1)$ under the diagonal T-action, namely,

$$[v] = \begin{bmatrix} \begin{pmatrix} e^{-i\theta/2}\sqrt{c} \\ e^{-i\theta/2}\sqrt{1-c}e^{i\theta} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} e^{-i\theta/2}\sqrt{c} \\ e^{i\theta/2}\sqrt{1-c} \end{pmatrix} \end{bmatrix}$$
$$= \begin{bmatrix} \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix} \begin{pmatrix} \sqrt{c} \\ \sqrt{1-c} \end{pmatrix} \end{bmatrix} = \begin{bmatrix} \begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix} v_0 \end{bmatrix}$$

in $\mathbb{C}P^1$, we have $\tau_c([v]) = 0$ for all $v \in S_c$, i.e., $\tau_c = 0$ on $\phi_2(S_c) \subset \mathbb{C}P^1$. Since $\phi_2(S_c)$ is diffeomorphic to S_c and hence to \mathbb{S}^1 , we get the standard (trivial) Poisson $(\mathbb{S}^1, \rho^{(1)})$ embedded in $(\mathbb{C}P^1, \tau_c)$.

4. Invariant 2-tensor on \mathbb{S}^{2n-1} .

In this section, we first classify the SU(n)-invariant (contravariant alternating) 2-tensor on \mathbb{S}^{2n-1} , and then we conclude that the canonical SU(n)-invariant symplectic structure on $\mathbb{C}P^{n-1}$ gives the only, up to a constant factor, SU(n)-invariant (contravariant alternating) 2-tensor on $\mathbb{C}P^{n-1}$.

For each $p \in \mathbb{S}^{2n-1}$, we have $ip \in T_p\mathbb{S}^{2n-1}$, and the orthogonal complement $E_p := \{p, ip\}^{\perp} \subset T_p\mathbb{S}^{2n-1}$ is a complex subspace of $\mathbb{C}^n = T_p\mathbb{C}^n$ endowed with a canonical symplectic structure $\tilde{\Omega}_p$ determined by the complex hermitian structure on \mathbb{C}^n . Indeed $(d\omega)_p = \tilde{\Omega}_p$ on E_p for the unique 1-form ω , the standard contact structure, on \mathbb{S}^{2n-1} such that $\omega_p(ip) = 1$ and

 $\omega_p(E_p) = \{0\}$ at each $p \in \mathbb{S}^{2n-1}$. The contact manifold $(\mathbb{S}^{2n-1}, \omega)$ with the diagonal \mathbb{T} -action on \mathbb{S}^{2n-1} is the standard prequantization [Kos1, We1] of the canonical SU(n)-invariant symplectic structure on $\mathbb{C}P^{n-1} \cong \mathbb{S}^{2n-1}/\mathbb{T}$.

Since the vector fields $p \mapsto p$ and $p \mapsto ip$ on \mathbb{S}^{2n-1} are invariant under the U(n)-action, so is the distribution $p \mapsto E_p$ of tangent subspaces. Furthermore, since the U(n)-action preserves the complex hermitian structure on \mathbb{C}^n (and on E_p), the field $p \mapsto \tilde{\Omega}_p$ of symplectic forms on \mathbb{S}^{2n-1} is also invariant under the U(n)-action. Thus the contravariant 2-tensor $\tilde{\pi}$ on \mathbb{S}^{2n-1} uniquely determined by the form $\tilde{\Omega}$ on $E \subset TSU(n)$ is U(n)-invariant. Note that this 2-tensor $\tilde{\pi}$ on \mathbb{S}^{2n-1} , invariant under the diagonal \mathbb{T} -action, induces the cnanonical symplectic structure on $\mathbb{C}P^{n-1} \cong \mathbb{S}^{2n-1}/\mathbb{T}$ determined by its complex hermitian structure.

Given an SU(n)-invariant contravriant 2-tensors $\pi \neq 0$ on \mathbb{S}^{2n-1} with $n \geq 2$, we show that $\pi = \tilde{\pi}$ after a suitable normalization if $n \neq 3$ or if π is U(n)-invariant. Through the standard Euclidean structure on $\mathbb{C}^n \cong \mathbb{R}^{2n}$, we identify the SU(n)-invariant contravriant 2-tensors $\pi \neq 0$ on \mathbb{S}^{2n-1} with SU(n)-invariant 2-forms $\Omega \neq 0$ on \mathbb{S}^{2n-1} .

First we show that the tangent vector

$$e_1' := ie_1 \in T_{e_1} \mathbb{S}^{2n-1} = i\mathbb{R} \oplus \mathbb{C}^{n-1}$$

at $e_1 \in \mathbb{S}^{2n-1}$ is in

$$\ker \Omega_{p} := \left\{ v \in T_{p} \mathbb{S}^{2n-1} : \Omega_{p} \left(v, \cdot \right) = 0 \right\}.$$

If not, then we can find an orthonormal set $\{e_i'\}_{i=2}^{n-1} \cup \{\eta_i'\}_{i=1}^n \subset 0 \oplus \mathbb{C}^{n-1}$ such that $\Omega_{e_1}\left(e_i',\eta_j'\right) = \delta_{ij}a_{ii}$ and $\Omega_{e_1}\left(e_i',e_j'\right) = \Omega_{e_1}\left(\eta_i',\eta_j'\right) = 0$ with $a_{ii} \in \mathbb{R}$ and $a_{11} \neq 0$. Now since Ω is SU(n)-invariant, we have

$$\Omega_{e_1}(e'_1, u(\eta'_1)) = \Omega_{u(e_1)}(u(e'_1), u(\eta'_1)) = \Omega_{e_1}(e'_1, \eta'_1) = a_{11}$$

for any $u \in \{1\} \oplus SU(n-1) \subset SU(n)$. This cannot be true, since by a suitable choice of u, $u(\eta'_1)$ can be any unit vector in $0 \oplus \mathbb{C}^{n-1}$, for example, η'_n . Thus $e'_1 = ie_1 \in \ker \Omega_p$.

Now with respect to the standard orthonormal \mathbb{R} -linear basis of

$$i\mathbb{R} \oplus \mathbb{R}^{n-1} \oplus \mathbb{R}^{n-1} \cong i\mathbb{R} \oplus \mathbb{C}^{n-1} = T_{e_1} \mathbb{S}^{2n-1},$$

the 2-form Ω_{e_1} can be represented by a block diagonal matrix $0 \oplus B$ where $B \in M_{2(n-1)}(\mathbb{R})$ is a skew symmetric matrix. The SU(n)-invariance of $\Omega \neq 0$ implies that $\Omega_{e_1} \neq 0$ and

$$uBu^{-1} = uBu^t = B \neq 0,$$

or uB = Bu, for any $u \in SU(n-1) \subset O_{2n-2}(\mathbb{R})$ since $1 \oplus u \in SU(n)$ and $(1 \oplus u)(e_1) = e_1$. (If Ω is U(n)-invariant, then uB = Bu for any $u \in U(n-1)$ since $1 \oplus u \in U(n)$.)

We claim that B must be conformal, i.e., ||B(v)|| = ||B|| ||v|| for all $v \in \mathbb{R}^{2n-2}$ where $||B|| := \sup_{||v||=1} ||B(v)|| > 0$. Let w be a unit vector with ||B(w)|| = ||B||. Since SU(n-1) acts on $\mathbb{S}^{2n-3} \subset \mathbb{R}^{2n-2}$ transitively, for any unit vector $v \in \mathbb{R}^{2n-2}$, we can find $u \in SU(n-1)$ with $u^{-1}(v) = w$, and hence

$$||B(v)|| = ||uBu^{-1}(v)|| = ||u(B(w))|| = ||B(w)|| = ||B||.$$

Thus B/||B|| is a skew-symmetric isometry on \mathbb{R}^{2n-2} and so $B/||B|| \in O_{2n-2}(\mathbb{R})$.

If n=2, then any skew symmetric $0 \neq B/||B|| \in O_2(\mathbb{R})$ determines the same 2-form Ω_{e_1} on $0 \oplus \mathbb{R}^2$ and hence on $i\mathbb{R} \oplus \mathbb{R}^2$, up to a constant multiple. So $\Omega = \tilde{\Omega}$ after normalized.

If $n \geq 4$, then the commutativity of $\mathbb{T}^{n-2} \subset SU(n-1)$ with B implies that B is complex linear on $\mathbb{R}^{2n-2} = \mathbb{C}^{n-1}$ and so $B/||B|| \in U(n-1)$. In fact, since for any $1 \leq j \neq k \leq n-1$, $t_{jk\theta}B = Bt_{jk\theta}$ for all $\theta \in \mathbb{R}$ implies that $B_{jj}, B_{kk} \in \mathbb{C}$ and $B_{kl} = 0$ for any $j \neq l \neq k$, where $B = (B_{jk})_{1 \leq j,k \leq n-1}$ with $B_{jk} \in M_2(\mathbb{R})$, and

$$t_{jk\theta} := e^{i\theta} e_{jj} + e^{-i\theta} e_{kk} + \sum_{\substack{1 \le l \le n-1 \\ j \ne l \ne k}} e_{ll} \in \mathbb{T}^{n-2} \subset SU(n-1).$$

It is well known that only scalar matrices in $M_{n-1}(\mathbb{C})$ commute with SU(n-1), so we get $B/||B|| \in \mathbb{T}$ with $-B/||B|| = (B/||B||)^* = (B/||B||)^{-1}$, i.e., $(B/||B||)^2 = -1$ or $B = \pm i ||B||$. Thus

$$\Omega_{e_1} = \pm ||B|| \, \tilde{\Omega}_{e_1}$$

a (real) constant multiple of the standard symplectic form. Hence we get $\pi = \tilde{\pi}$ after a suitable normalization.

If Ω is U(n)-invariant, then the commutativity of $\mathbb{T}^{n-1} \subset U(n-1)$ with B implies that B is complex linear and hence $B/||B|| \in U(n-1)$ and as above, $\Omega = \pm ||B|| \tilde{\Omega}$. In fact, $t'_{k\theta}B = Bt'_{k\theta}$ for all $\theta \in \mathbb{R}$ implies that $B_{kk} \in \mathbb{C}$ and $B_{kl} = 0$ for any $l \neq k$, where

$$t'_{k\theta} := e^{i\theta} e_{kk} + \sum_{\substack{1 \le l \le n-1 \\ l \ne k}} e_{ll} \in \mathbb{T}^{n-1} \subset U(n-1).$$

We observe that the quotient map $\phi: \mathbb{S}^{2n-1} \to \mathbb{C}P^{n-1}$ and its differential $D\phi: T\mathbb{S}^{2n-1} \to T\mathbb{C}P^{n-1}$ are U(n)-equivariant since the diagonal T-action commutes with the U(n)-action. Furthermore, the restriction

$$(D\phi)|_E: E \to T\mathbb{C}P^{n-1}$$

of $D\phi$ to the U(n)-equivariant subbundle E defined above is a bundle isomorphism. So any SU(n)-invariant (and hence U(n)-invariant) 2-tensor $\tau \in \Gamma\left(\wedge^2 T \mathbb{C} P^{n-1}\right)$ on $\mathbb{C} P^{n-1}$ can be 'pulled back' to an U(n)-invariant 2-tensor

$$\pi = (D\phi)|_E^{-1}(\tau) \in \Gamma\left(\wedge^2 E\right) \subset \Gamma\left(\wedge^2 T \mathbb{S}^{2n-1}\right)$$

on \mathbb{S}^{2n-1} which must be, up to a constant factor, equal to $\tilde{\pi}$. Thus $\tau = \tilde{\tau} := (D\phi)(\tilde{\pi})$ which is the standard symplectic 2-tensor on $\mathbb{C}P^{n-1}$.

References.

- [DaSo] P. Dazord and D. Sondaz, *Groupes de Poisson affines*, in 'Symplectic Geometry, Groupoids, and Integrable Systems', P. Dazord and A. Weinstein (Eds.), Springer-Verlag, 1991.
- [DiNo] M.S. Dijkhuizen and M. Noumi, A family of quantum projective spaces and related q-hypergeometric orthogonal polynomials, preprint.
- [Dr1] V.G. Drinfeld, *Quantum groups*, Proc. I.C.M. Berkeley 1986, 1, 789–820, Amer. Math. Soc., Providence, 1987.
- [Dr2] V.G. Drinfeld, On Poisson homogeneous spaces of Poisson Lie groups, Theo. Math. Phys., 95 (1993), 226–227.
- [ELu] S. Evens and J.H. Lu, On the variety of Lagrangian subalgebras, preprint, math.DG/9909005.
- [Ka] E. Karolinsky, The classification of Poisson homogeneous spaces of compact Poisson Lie groups, Mathematical Physics, Analysis, and Geometry, 3 (1996), 272–289.
- [KhRaRu] S. Khoroshkin, A. Radul and V. Rubtsov, A family of Poisson structures on hermitian symmetric spaces, Comm. Math. Phys., 152 (1993), 299–315.

- [KoVa] L.I. Korogodsky and L.L. Vaksman, Quantum G-spaces and Heisenberg algebra, in 'Quantum Groups', P.P. Kulish (Ed.), Lecture Notes in Mathematics, 1510, Springer-Verlag, Berlin, (1992), 56–66.
- [Kos1] B. Kostant, Quantization and unitary representations. I: Prequantization, in 'Lectures in Modern Analysis and Applications, III', E.T. Taam (Ed.), Lecture Notes in Mathematics, 170, Springer-Verlag, Berlin and New York, (1970), 87–208.
- [Kos2] B. Kostant, Lie algebra cohomology and generalized Schubert cells, Ann. of Math., 77 (1963), 72–144.
- [Lu] J.H. Lu, Multiplicative and affine Poisson structures on Lie groups, Ph. D. thesis, Univ. of California, Berkeley, 1990.
- [LuWe1] J.H. Lu and A. Weinstein, Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Diff. Geom., **31** (1990), 501–526.
- [LuWe2] J.H. Lu and A. Weinstein, Classification of SU(2)-covariant Poisson structures on \mathbb{S}^2 , Comm. Math. Phys., **135** (1991), 229–231.
- [Po] P. Podles, Quantum spheres, Letters Math. Phys., 14 (1987), 193–202.
- [Re] J. Renault, A Groupoid Approach to C*-algebras, Lecture Notes in Mathematics, 793, Springer-Verlag, New York, 1980.
- [RTF] N. Yu. Reshetikhin, L.A. Takhtadzhyan and L.D. Faddeev, Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1 (1990), 193–225.
- [Ri] M.A. Rieffel, Non-compact quantum groups associated with abelian subgroups, Comm. Math. Phys., 171 (1995), 181–201.
- [Sh1] A.J.L. Sheu, Quantization of the Poisson SU(2) and its Poisson homogeneous space the 2-sphere, Comm. Math. Phys., 135 (1991), 217–232.
- [Sh2] A.J.L. Sheu, Compact quantum groups and groupoid C*-algebras, J. Func. Anal., 144 (1997), 371–393.

- [Sh3]A.J.L. Sheu, Groupoid approach to quantum projective spaces, preprint.
- [So]Ya.S. Soibelman, The algebra of functions on a compact quantum group, and its representations, Algebra Analiz., 2 (1990), 190-221 (Leningrad Math. J., 2 (1991), 161–178).
- [VaSo] L.L. Vaksman and Ya.S. Soibelman, The algebra of functions on the quantum group SU(n+1), and odd-dimensional quantum spheres, Leningrad Math. J., 2 (1991), 1023–1042.
- [We1] A. Weinstein, Lectures on Symplectic Manifolds, CBMS Regional Conference Series in Mathematics, 29, Amer. Math. Soc., Providence, 1977.
- [We2]A. Weinstein, The local structure of Poisson manifolds, J. Diff. Geom., 18 (1983), 523–557.
- A. Weinstein, Affine Poisson structures, International J. Math., [We3]**1** (1990), 343–360.
- S.L. Woronowicz, Twisted SU(2) group: an example of a non-[Wo1] commutative differential calculus, Publ. RIMS., 23 (1987), 117-181.
- S.L. Woronowicz, Compact matrix pseudogroups, Comm. Math. [Wo2]Phys., **111** (1987), 613–665.

DEPARTMENT OF MATHEMATICS University of Kansas LAWRENCE, KS 66045

E-mail address: sheu@falcon.cc.ukans.edu

RECEIVED OCTOBER 11, 1999 AND REVISED FEBRUARY 24, 2000.