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Let / : (M,p) —>> (M'\p') be a formal (holomorphic) nondegener- 
ate map, i.e., with formal holomorphic Jacobian Jf not identically 
vanishing, between two germs of real analytic generic submanifolds 
in Cn, n > 2, p' = f(p). Assuming the target manifold to be real 
algebraic, and the source manifold to be minimal at p in the sense 
of Tumanov, we prove the convergence of the so-called reflection 
mapping associated to /. From this, we deduce the convergence 
of such mappings from minimal real analytic generic submanifolds 
into real algebraic holomorphically nondegenerate ones, as well as 
related results on partial convergence of such maps. For the proofs, 
we establish a principle of analyticity for formal CR power series. 
This principle can be used to reobtain the convergence of formal 
mappings of real analytic CR manifolds under a standard nonde- 
generacy condition. 

1. Introduction. 

A formal (holomorphic) mapping / : (Cn,p) -> {Cn\pf), (p,pf) G Cn x Cn\ 
n,n' > 1, is a vector (/i,...,/n') where each fj E C[[z — p]] is a formal 
holomorphic power series in z — p, and f(p) — pf. In the case n — n', a 
formal mapping / is called nondegenerate if its formal holomorphic Jacobian 
Jf does not vanish identically as a formal power series in z—p. An important 
class of nondegenerate formal maps / consists of those which are invertible, 
namely those for which Jf(p) ^ 0. We call such maps formal equivalences or 
formal invertible maps. If M, M' are two smooth real real analytic generic 
submanifolds in Cn and Cn respectively (through p,pf respectively) and 
of real codimension c and d respectively, we say that a formal mapping 
/ : (Cn,p) -> (Cn\p') sends M into Mf if 

pU{z), f(z)) = a(z, z) • p(z, z), 

where p — (pi,... , pc) and p' = (p^,..., p^,) are local real analytic defining 
functions for M,M' respectively and a(z,z) is a d x c matrix with entries 
in C[[z — p, z — p]]. It is easy to see that such a definition is independent of 
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the choice of defining functions for M and Mf. If / is formal mapping as 
above sending M into M', we may also say that / is a formal CR mapping 
from M into M'. This is motivated by the fact that, if, in addition, / is 
convergent near p, then / is a real analytic CR mapping from M into M7. 

A natural question which arises is to give necessary and sufficient con- 
ditions so that any formal equivalence between real analytic generic sub- 
manifolds must be convergent. Chern and Moser [9] gave the first results 
in this direction by proving the convergence of formal equivalences between 
Levi nondegenerate real analytic hyper surf aces. Later, Moser and Webster 
[22] showed the analyticity of formal invertible mappings between certain 
real analytic surfaces of dimension two in C2, but which are not CR. Other 
related work was done by Webster [27] and Gong [15]. (We also refer the 
reader to the bibliography given in [6] for further information.) More re- 
cently, Baouendi, Ebenfelt and Rothschild proved the convergence of formal 
equivalences between minimal finitely nondegenerate real analytic generic 
submanifolds [4, 5], as well as between minimal essentially finite ones1 [6] 
(other situations are also treated in [5, 6]). The conditions of finite nonde- 
generacy and essential finiteness are closely related to the notion of holo- 
morphic nondegeneracy introduced by Stanton [24]. Let us recall that a 
connected real analytic generic submanifold is holomorphically nondegen- 
erate if, near any point p £ M, there is no non-trivial holomorphic vector 
field, with holomorphic coefficients, tangent to M near p. Such submanifolds 
have the property to be generically essentially-finite in the sense that, for 
any such manifold M, there always exist a proper real analytic subvariety 
S C M (which may be empty) such that any point p G M \ S is essentially 
finite. Moreover, it was observed in [4] that the condition of holomorphic 
nondegeneracy is necessary for the convergence of formal equivalences be- 
tween real analytic generic submanifolds. Thus, to complete the previous 
results, one has to treat the case of the non-essentially finite points of such 
holomorphically nondegenerate submanifolds. 

In the one-codimensional case, these non-essentially finite points were 
recently treated in [21] where, in particular, it was shown that any formal 
CR equivalence between minimal holomorphically nondegenerate real ana- 
lytic hypersurfaces must be convergent. The goal of this paper is to study 
the higher-codimensional case. Assuming the target manifold to be real al- 
gebraic i.e., contained in a real algebraic subvariety of the same dimension, 
we establish a result which gives a description of the analyticity properties 
of formal CR nondegenerate maps from minimal real analytic generic sub- 

^ee §3 for precise definitions. 
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manifolds of Cn into real algebraic ones (Theorem 2.1 below). As in [20, 21], 
we prove that, given a formal map / : (M,p) -> {M',$') with Jf ^ 0, if M 
is minimal at p, then the so-called associated reflection mapping (cf. [17]) 
must be convergent. As we shall see (cf. §8), such a result can be seen 
as a result of partial convergence for formal CR nondegenerate maps. This 
allows one also to deduce the convergence of such maps from real analytic 
minimal generic submanifolds onto real algebraic holomorphically nondegen- 
erate ones (Theorem 2.2 below). We should point out that our arguments 
give also a quite simple proof of such a fact (see Proposition 7.2). In fact, 
the algebraicity of the target manifold allows us to use certain tools from 
basic field theory that we introduced in our previous works [19, 20]. 

2. Statement of main results. 

Let (Mf,pf) C Cn be a germ at p' of a real algebraic generic submanifold of 
CR dimension N and of real codimension c, TV + c — n. This means that 
there exists //(C>C) — (PUCJOJ • • • >Pc(C>C)) c rea^ polynomials such that 
near p' 

M' = {Ce(C",p'):p'(C,C) = o}) 

with 8Pi A ... A dp'c ^ 0, on M'. We shall assume, without loss of generality, 
that p' is the origin. Then, for any point u close to 0, one defines its 
associated Segre variety to be the n — c dimensional complex submanifold 

(2.1) QL = {Ce(Cn,0):p,(C,a;) = 0}. 

Moreover, since M' is generic, renumbering the coordinates if necessary, and 
after applying the implicit function theorem, one can assume that any Segre 
variety can be described as a graph of the form 

QL = {C € (CO): C = *'M)h   C = (CO e c^ x cc, 

$' = ($/
1,...,$[,) denoting a convergent power series mapping near 0 G 

Cn+iv, with ^'(O) = 0. Our main result is the following. 

Theorem 2.1. Let f : (M, 0) —> (M',0) be a formal nondegenerate CR 
map between two germs at 0 of real analytic generic submanifolds in Cn of 
the same CR dimension. Assume that M is minimal at 0 E M and that M' 
is real algebraic.  Then, the formal holomorphic map 

cn xcN 3 (z,e) h-> $'(/(*),#) e cc 

is convergent. 
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Such a result was established in [21] in the one-codimensional case (for 
unbranched mappings) without assuming that the target manifold M' is 
real algebraic. As in [21], Theorem 2.1 allows us to derive the following 

convergence result. 

Theorem 2.2. Let f : (M,0) -> (M',0) be a formal nondegenerate CR 
map between two germs at 0 of real analytic generic submanifolds in Cn of 
the same CR dimension. Assume that M is minimal atO^M and that M' 
is real algebraic and holomorphically nondegenerate. Then f is convergent. 

As mentioned in the introduction, Theorem 2.2, for unbranched maps, 
follows from [21] in the hypersurface case, but in the higher codimensional 
case the result is new and was not previously known even in the case where 
M and Mf are both algebraic. Another application of Theorem 2.1 is given 
in §8 and deals with partial convergence of formal CR nondegenerate maps. 
For this, we refer the reader to Theorem 8.1 and Corollary 8.3. 

Our approach for proving Theorem 2.1 is essentially based on two steps. 
The first step is a formulation of the reflection principle via the jet method 
and follows [20]. The general idea is to show that, under the assumptions of 
Theorem 2.1, the composition of any component of the Segre variety map of 
Mf (as defined in §4) with the map / satisfy certain polynomial equations 
restricted on M, and, more precisely, is algebraic over a certain field of 
formal power series. The second step consists in proving that a formal CR 
power series (i.e., a formal holomorphic power series) which satisfies such a 
polynomial identity, is necessarily convergent (Theorem 5.1). This is based 
on the theory of Segre sets by Baouendi, Ebenfelt and Rothschild [3], and 
on some of their techniques of propagation. One should, however, point out 
several differences with the methods of [3, 6] (see especially Proposition 5.5). 

The paper is organized as follows. §3 contains some background material 
for the reader's convenience. In §4, we use some ideas from [20] to prove our 
reflection identities. §5 is devoted to the proof of a principle of analyticity for 
formal CR functions. Such a result (Theorem 5.1) seems to us interesting in 
itself. In §6, we prove the main results of the paper. In §7, we formulate some 
remarks concerning Theorem 2.2 which show that, under the assumptions of 
that Theorem, the convergence of formal nondegenerate maps can be derived 
in a quite simple manner. In §8, we apply Theorem 2.1 to the study of partial 
convergence for formal CR maps. Finally, in §9, we apply the principle 
proved in §5 to establish the convergence of formal mappings between real 
analytic CR manifolds under a standard nondegeneracy condition. 
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3. Preliminaries, notations and definitions. 

3.1. Finite nondegeneracy, essential finiteness and holomorphic 
nondegeneracy of real analytic generic submanifolds. 

Let M be a real analytic generic submanifold through p € Cn, of CR di- 
mension N and of real codimension c, N + c = n. We shall always assume 
that c, N > 1, and, for convenience, that the reference point p is the origin. 
Let p = (pi,.. . , pc) be a set of real analytic defining functions for M near 
0, i.e., 

(3.1) M = {^(Cn,0):p(^,^)-0}, 

jwith dpi A ... A dpc ^ 0, on M. The complexification Jv[ of M is the 
2n — c-dimensional complex submanifold of C2n given by 

(3.2) M = {(z,w) e (C2n,0) : pfaw) = 0}. 

We shall assume, without loss of generality, that the matrix dp/dz* is not 
singular at the origin, z = (z\z*) E O^ x Cc. In this case, we define the 
following vector fields tangent to A4, 

(3.3) Cj = — - pWj(z,w) 
dp (        " 

dw dw*' j    1'--''iV' 

which are the complexifications of the (0,1) vector fields tangent to M. Let 
us also recall that the invariant Segre varieties attached to M are defined 
by 

Qw = {ze(Cl,0):P(z,w) = 0}, 

for w close to 0. A fundamental map which arises in the mapping problems is 
the so-called Segre variety map X : w \-¥ Qw (cf. [14, 12, 13]). A real analytic 
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generic submanifold M is called finitely nondegenerate at p = 0 G M if 

SpancirV^fep) :aeI^,l<j<d} = C\ 

Here, for 1 < j < d, pj^ denotes the complex gradient of pj with respect 
to z. In this case, one can show that the Segre variety map A is actually 
one-to-one near p = 0. More generally, M is called essentially finite at 
0 G M if the Segre variety map A is finite-to-one near 0 [14, 7]. The interest 
of such conditions lies in the fact that, given a holomorphically nondegen- 
erate generic real analytic submanifold M (as defined in the introduction), 
the set of finitely nondegenerate or essentially finite points is always, at 
least, dense in M (see [3]). Furthermore, the set of points w E M such 
that X~1(QW) is positive-dimensional forms a proper (possibly empty) real 
analytic subvariety S C M, provided that the submanifold M is holomorphi- 
cally nondegenerate. This set of points is precisely the set of non-essentially 

finite points of M. 

3.2. Minimality condition in terms of Segre sets. 

Another nondegeneracy condition which will be used in this paper is the 
minimality condition introduced by Tumanov [25]. Let us recall that a real 
analytic generic submanifold M is said to be minimal at p G M (or of 
finite type in the sense of Kohn and Bloom-Graham) if there is no proper 
CR submanifold contained in M through p, and with the same Cauchy- 
Riemann dimension. In order to give a characterization of minimality for 
real analytic CR manifolds, Baouendi, Ebenfelt and Rothschild introduced 
the so-called Segre sets in [3]. These sets will play an important role in our 
proofs. They are defined as follows. Define the first Segre set Ni(p) attached 
to M at p G M to be the classical Segre variety Qp. Inductively, for k G N, 

define 

Nk+1(p)=    (J    Qq. 
qeNk(p) 

Recall that the sets Nj(p) are in general not analytic for j > 1. If M is 
given by (3.1) near p — 0, as in §3.1, by the implicit function theorem, one 
can choose coordinates z = (z1, z*) G G^ x Cc so that any Segre variety can 
be described as a graph as follows 
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$ = ($i,...,$c) being a Cc-valued holomorphic map near 0 E CNJrn, 
$(0) = 0. The reality of M also implies that 

(3.4) $(^/,$(^^*,^,)^/) = ^, (^^^^,) G C^ x Cc x C^. 

(Here and in what follows, for any formal power series g(x) E C[[x]], x = 
(xi,..., Xk), g{x) is the formal power series obtained by taking the complex 
conjugates of the coefficients of g.) The coordinates are said to be normal 
for M if, moreover, the condition $(z,0) = z* holds. It is well known (cf. 
[9, 7]) that given a real analytic generic submanifold M, one can always 
find such coordinates. With these notations (and without assuming that 
the ^-coordinates are normal for M), the Segre sets can be parametrized by 
the following mappings (vfc)fceN> called the Segre sets mappings. First set 
fo := 0 E C71. Inductively, A^-j-i, k > 0, can be parametrized by the map 

(3.5) (d2*+1)JV,0)9(ti>t2,...,«2ife+i)-> 

^2/c+l(^l, • • • ,*2fc+l) := (*l,*(^2ife(*2, • • • ^2/c+l)^l)) 

and JV2/C by 

(3.6) (&kN,0)B(t1,t2,...,t2k)^ 

V2k(tu • • • , *2fe) := (*!, *(^2/c-l(^2, • • • , t2k),t1)). 

Notice that, for any nonnegative integer 6, 

(i;6+i(ti,...,t6+i),i;6(t2,...,t6+i)) E X. 

We can now state a useful characterization of minimality which is contained 
in [2]. 

Theorem 3.1 ([2]). If M is minimal at 0, there exists do E N large enough 
such that, in any neighborhood OofOe CdoN, there exists (ij,... ,^ ) E (9; 

such that Vd0(ti,..., t^Q) = 0 and such that Vd0 is submersive at (tj, • • • , ^ ). 

4. Formal nondegenerate CR maps with values in real 
algebraic CR manifolds. 

4.1. Real algebraic CR manifolds and field extensions. 

In this section, we collect and recall some facts from [18, 19, 20] which will 
be used in the proof of Theorem 2.1. 
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As in §2, let (M',$) be a germ through p' = 0 G Cn of a real algebraic 
generic submanifold of CR dimension N and of real codimension c. Following 
the notations of that section, let p' = (pi,..., pf

c) be a set of defining real 
polynomials for Mf near 0. Thus, 

(4.1) M' = {C€(C",0):p/(C)C) = 0}, 

with <9pi A ... A dpf
c / 0, on M7. We can assume that the coordinates ( at 

the target space are chosen so that if £ — ((',(*) £ ^ x C0, the matrix 
dp1/d(* is not singular at the origin. This allows one to represent Mf as 
follows 

(4.2) M' = {Ce(e\o):C* = $'(C,C')}, 

I/ = (^^ ... j^.) being a Cc-valued holomorphic algebraic map near 0 G 
CAr+n with $'(0) = 0. (We recall here that a holomorphic function in k 
variables near 0 is called algebraic if it is algebraic over the quotient field of 
the polynomials in k indeterminates.) Write, for is = 1,..., c, the expansion 

(4.3) K{u,o)= E s/vM^. 
pen" 

Here, LU £ Cn and 9 € CN. We also write 
(4.4) 

*,
ea(u;,6>) = (^„il(a;,e))...,#

,
9a>,6l)) = (^Uw,e),...,3fl

a*>)6>)). 

With these notations, the Segre variety map A' : (Cn,0) 9 ui (->• Q'u associ- 
ated to M' can be identified with the holomorphic map 

(4.5) (C71,0)9a;^(g/3)i/H)^NN . 
l<u<c 

Here, the Segre variety QL, for u close to 0, is defined by (2.1). The fam- 
ily of holomorphic algebraic functions defined by (4.5) will be denoted C. 
For k G N*, let Fk be the quotient field of the germs at 0 G Ck of al- 
gebraic functions in Cfc. For any positive integer I G N, we define Vi to 
be the smallest field contained in TN+U and containing C and the family 
(6>,l>^ .(^,60)j=lr..)Cj|/3|</. We then define V C ^v+n to be the set 

(4.6) V = UienVi- 

One can easily check that V is also a subfield of FN+U, since, for any Z, 
P/ C P/+1.  By definition, an element b = b(uj,6) E.^jv+n belongs to V if 
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there exists a positive integer I and two holomorphic polynomials Qi and 

Q2 such that Q2 (($0/3 ,(a;^))j<c,|^|</^) ^ 0 in FN+U and such that 

We need to state the following proposition, established in [20] (Proposition 
1) in the hypersurface case, but which follows with the same proof in the 
higher codimensional case. 

Proposition 4.1. Let M' be a real algebraic generic submanifold of CR 
dimension N through the origin in Cn. Assume that Ml is given near 0 by 
(4.2). Let C be the family of algebraic holomorphic functions (in n variables) 
defined by (4.5) and V be the field of algebraic holomorphic functions (in 
N + n variables) defined by (4.6). Then the following holds. The family C 

is contained in the algebraic closure of V, and hence, the algebraic closure 
of C is contained in the algebraic closure ofV. 

Remark 1. An inspection of the proof of Proposition 1 from [20] shows 
that there exists IQ, which depends only on M' such that C is contained 
in the algebraic closure of Vi0. Moreover, if Mf is holomorphically non- 
degenerate, IQ is nothing else than the so-called Levi-type of M' (see [3]). 
Indeed, we define IQ as follows. Consider, for any positive integer Z, the 

map ^ : (C^O) 3 (u>,0) ^ (^(^ii(w^))i<cl|i9|<0 and denote by r, 
the generic rank of such a map. Finally, put r(Mf) — max/GN 77. Then, 
Zo = inf{Z E N : r/ = r^M')}. When Mf is holomorphically nondegenerate, 
then it is well-known (cf [3]) that, in that case, the integer r(Mf) equals 
N + n and, by definition, IQ is the Levi-type of M'. 

We recall also the following criterion of holomorphic nondegeneracy from 
[18, 19]. 

Theorem 4.2. Let M' be a real algebraic generic submanifold through the 
origin in Cn. Assume also that M' is given near 0 by (4.2). Let C be the 
family of algebraic holomorphic functions {in n variables) defined by (4.5) 
and V be the field of algebraic holomorphic functions {in N + n variables) 
defined by (4.6).  Then, the following conditions are equivalent: 

(i) M' is holomorphically nondegenerate (at 0); 
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(ii)   The algebraic closure of the field V is FN+U] 

(m)   The algebraic closure of the field generated by C is !Fn. 

4.2. Jets and the reflection principle. 

In this section, we assume that we are in the following setting. Let 
/ : (M,p) —> (M'jp7) be a formal CR map between two real analytic generic 
submanifolds in Cn, with the same CR dimension N and same real codi- 
mension c. We assume that / is a nondegenerate map, i.e., that its formal 
holomorphic Jacobian Jf is not identically vanishing. We also assume that 
M' is a real algebraic generic submanifold and, without loss of generality, 
that p and pf are the origin. We use the notations introduced in §3 for M, 
and those introduced in §4.1 for Mf. The goal of this section is to prove the 
following proposition. 

Proposition 4.3. Let M C Cn be a real analytic generic submanifold 
through the origin and M' C Cn be a real algebraic generic submanifold 
through the origin with the same CR dimension. Assume that M' is given 
near 0 by (4.2). Let C be the family of algebraic functions (in n variables) 
associated to M' defined by (4.5). Let % G C and f : M —>> Mf be a for- 
mal CR map between M and M' with Jf ^ 0. Then there exists IQ G N* 
(depending only on M'), a positive integer k^ (depending only on M' and 
X) and a family of convergent power series Si = <5i ((A7)|7|<z0,2, w) G 
C{(A7 — <97/(0))|7|</0,2;,^}; i = 0,..., fco, such that the formal power series 
identity 

f> {(dy(w))bl<l0,z,w) ((x°/)(*))* = o, 
i=0 

holds for (z,w) G M such that 5k0 ((d
1f(w))\1\^i0,z,w) ^ 0 in M. Here, 

M is the complexification of M as defined by (3.2). 

To prove Proposition 4.3, we will use an approach which is contained in 
[20]. We shall first state several preliminary results needed for its proof. 

Recall first that the coordinates at the target space are denoted by £• 
We write 

(4.7) f = (f',n = (fi,...jN,n 

in the ( = (£', £*) G C^ x Cc coordinates. Since / maps formally M into 
M', there exists a(z, z) a c x c matrix with coefficients in C[[^, z]] such that 



On the convergence of formal mappings 33 

the following formal vectorial identity 

(4.8) f*(z) - §'(/(*),/'(*)) = a(z,z) ■ p(z,z), 

holds. Equivalently this gives 

(4.9) /» - $'(f(z),p(w)) = a(z,w) ■ p(z,w), in C[[z,w}}. 

Define 

(4.10) D(z7w) = det {CjfKw))^.^ G C[[z,i >w\ 

Here, Cj, for j — 1,..., JV, is the vector field defined by (3.3). By applying 
the vector fields Cj, j = 1,..., A/", to (4.9) and Cramer's rule, one obtains 
the following known lemma (cf. [5, 12]). 

Lemma 4.4. Let f : (M, 0) -> (M', 0) 6e a formal CR mapping as in Propo- 
sition 4.3. With the notations introduced in (4.10) and (4.4), the following 
holds. For any multi-index a G N^, one has the following c-dimensional 
formal identity 

DW-ifrw) $'e«{f{z)J'{W)) = Va ((^/(u;))^,*!,*,*/) , 

/or (*,«;) e A*. tfere; FQ = (F^,... ,Fa
c) € (C{(A^-^/(0))|^|<H,^^})C. 

The following lemma contains two known and easy facts. 

Lemma 4.5. Let f : (M, 0) -± (M', 0) be a formal CR mapping as in Propo- 
sition 4.3. Let D be as in (4.10).  Then the following holds. 

(i)   There exists a convergent power series 

U = U(z,w, (Afi)m=1) € C{z,w, (Ap - ^/(0))|^|=1} 

such that 
D(z,w) = u(z9w,(dPf(w))w=1). 

(ii) D(z,w) £ 0 for (z,w) G M. 

Proof of Proposition 4.3. Let V be the subfield of FN+U defined by (4.6). 
We also recall that for the positive integer ZQ mentioned in Remark 1, ViQ 

is the smallest field contained in TN+U 
and containing C and the family 
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(Oi^OPjiuityi^ctflKlo)' Let X € C. Since, by Proposition 4.1, x is al- 
gebraic over V and, according to Remark 1, also over ViQi we obtain the 
existence of a positive integer ko and a family (bj(u, 0))o<j</co-i C P/0 such 
that the following identity 

(4.11) (xM^+E^.^WC^'sO 
i=o 

holds in the field FN+U- By definition, for j = 0,..., ko — 1, there exist 
holomorphic polynomials Qij, Q2,j such that 

(4-12) Q2j ((*'e0j(t»,9))j<c,W<io,o) ^ 0, 

and such that 

(4.13) bj(w,6) = 
Q2,J((^J(w^))J<C)|/3|<io,^ 

Now, one sees that (4.11), (4.12) and (4.13) imply that there exist holo- 
morphic polynomials Sj, j = 0,..., ko, such that, in some neighborhood of 
0 e C2n-C, the following identity 

feo 

(4.14) 5> {(^A^UcMKioiO) UWY = o 
*=0 

holds, with the additional non-degeneracy condition 

(4-15) sk0 {(Vea^e^Kcw^e) £ 0. 

Note that ko and the family (si)i<ko depend only on % and Mf. Putting, 
for (z,w) G At, oo = f(z) and 9 = f'iw) in (4.14), one obtains the following 
formal identity (cf. [20]) 

(4.16) X> ((^(/(^ JV)))M<c,|a|W'M) ((Xo/)(«))* = 0. 
i=0 

Prom Lemma 4.4 and Lemma 4.5 (ii), we have the following formal identity 

W/(*),/ H) m*\-i\z~w) ' m •M' 
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for any a E N^, and 1 < /i < c.  Thus, plugging this in (4.16), we obtain, 
for {z,w) G M, 
(4.17) 

z=0        \ \ V   '     7 / l</x<c,|a|</o / 

We claim that for {z,w) G A^l 

(4-18)       5fc0 I I D^\-\zM  ./(«») I # 0. 
/ l<^<c,|a|<Zo 

Indeed, we have first to notice that, by definition, the left hand side of (4.18) 
is equal to 

Sfco ((^,M(/^)'/
/
^)))I<M<C,H<ZO'/

/
(^)) • 

Denote Q(a;,0) = 5A.0 ((^(CJ,^))^^^!^,^). Assuming (4.18) false, we 
would get Q(/(2;), ff(w)) = 0, for (2,ty) G .M. Since / is nondegenerate, one 
can easily show that the rank of the formal holomorphic map Ai 3 (z, w) *-» 
(f(z))f,(w)) £ C2n~c is 2n — c. (By the rank of a formal holomorphic 
mapping g(x) = (gi(x),... ,#&(£))> we mean its rank in the quotient field 
of C[[x]].) By standard arguments about formal power series, this implies 
that Q is identically zero as a formal power series, and hence, identically 
zero as a convergent one. This contradicts (4.15) and thus proves (4.18). To 
conclude the proof of Proposition 4.3, we observe the following. Since each 
Si, 0 < i < fco, is a polynomial, one sees that multiplying (4.17) by enough 
powers of D(z, w), we have reached the desired conclusion in view of (i) and 
(ii) of Lemma 4.5. This finishes the proof of Proposition 4.3. □ 

Remark 2. By Proposition 4.1, Proposition 4.3 also holds for any algebraic 
function x belonging to the algebraic closure of the field generated by C. 

Remark 3. It is worth mentioning that, if, in Proposition 4.3, Mf is further- 
more assumed to be holomorphically nondegenerate, then one can obtain a 
more precise statement. Indeed, when Mf is holomorphically nondegenerate, 
by Theorem 4.2, the algebraic closure of the field generated by the family C 
coincides with Fn. Thus, in view of Remark 2, we can apply Proposition 4.3 
to the algebraic functions X^) — ^ for i = 1,... ,n, taken as coordinates. 
This gives the following proposition. (Recall also that by Remark 1, when 
Mf is holomorphically nondegenerate, IQ = J(M'), the Levi-type of Mf.) 
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Proposition 4.6. Let M C Cn be a real analytic generic submanifold 
through the origin and M' C Cn be a real algebraic generic submanifold 
through the origin with the same CR dimension. Let f : (M, 0) —> (M^O) 
be a formal nondegenerate CR map and assume that M' is holomorphi- 
cally nondegenerate. Then, for j = 1,... ,n; there exists a positive integer 
kj (depending only on M') and a family of convergent power series Sij = 
Shj ((Ai)h\<i(Mf)^^) € C{(A7 -difiO^frfeHMi^z^w], i = 0,..., kj, such 
that the formal identity 

Kj 

X^ {(dlf(w))h\<i(M')^^) (fj{z)y = o 

holds for (z,w) G M, with 5kjj ((^^(W^^^MI^Z.W) ^ 0 on M. 

Remark 4. In view of the works of Baouendi, Ebenfelt and Rothschild 
[3, 5, 6], Proposition 4.3 can be viewed as a generalized reflection identity. We 
shall propose in the next section an algebraic interpretation of this identity, 
which can be compared to the work of Coupet, Pinchuk and Sukhov [10]. 

5. A principle of analyticity for formal CR power series. 

Throughout this section, which is independent of §4, we shall consider one 
real analytic generic submanifold M, of CR dimension N and of real codi- 
mension c through the origin in Cn, n > 1. We shall also use the notations 
introduced for M in §3. In particular, the complexification of M is still 
denoted by M. The purpose of §5 is to prove the following principle of 
convergence for formal CR functions. Recall that by a formal CR function, 
we mean a formal holomorphic power series. 

Theorem 5.1. Let M be a real analytic generic submanifold at 0 E Cn. Let 
h(z) be a holomorphic formal power series in C[[z]], z G Cn. Assume that: 

(i) M is minimal at 0; 

(ii) there exists a formal power series mapping X(w) = (Xi(w),..., 
Xm(w)) e (C[[w]})m, w e Cn

; X(0) = 0, and a family of conver- 
gent power series Uj(X,z,w) G C{X, z,w}, j = 0,..., Z; I G N*; such 
that the relation 

l 

(5.1) ^^(XH,z,^)(^)y-0 
3=0 
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holds as a formal power series identity for (z,w) G Ai, and such that 

(5.2) Ui(X(w),z,w) ^ 0, for (z,w) G M. 

Then h(z) is convergent. 

The proof of Theorem 5.1 will be divided in three distinct steps. 

5.1. Algebraic dependence of the jets. 

Proposition 5.2. Let M be real analytic generic submanifold through the 
origin in Cn and h(z) be a formal holomorphic power series in z = 
(zi,..., 2n)- Assume that h satisfies (ii) of Theorem 5.1. Then, for 
any multi-index /JL G N71, there exists two positive integers Z(/i); p(/x); 

a family of convergent power series Wij/(t ((A7)|7|<|At|,^,ty) G C{(A7 — 
^-^(O))^^!^!,^,^}, i = 0,... ,Z(/i), swc/i i/iai i/ie formal identity 

Z(Ai) 

/ioZd5 /or (2;,^) G M, and such that Ui^jtl ((d
7X(w))|7|<|/i|,;z,'i<;) ^ 0; /or 

(2;,^) G M. Here, X(w) is the formal power series mapping given by (ii) of 
Theorem 5.1. 

Proof Since h(z) satisfies (ii) of Theorem 5.1, there exists a formal power 
series mapping X(w) = (-Yi(w),... ,Xm(t(;)) G (C[H])m, tu G Cn, X(0) = 
0, and a family of convergent power series Uj(X,z,w) G C{-X",^,ty}, j = 
0,... ,Z, such that the formal identities (5.1) and (5.2) hold. For the proof 
of the proposition, we assume that the complexification of M is given by 
M = {(z,w) G (C2n,0) : w* = Qiz^w')}, with f as defined in §3.2. (Recall 
that w = (wf,w*) G C^ x Cc.) It will be convenient to introduce for any 
integer fe, a subring Ak C Cff^,^7]] which is defined as follows. Let 

n^ : C{(A7 -^X(0))|7|<fc)Z)U;'} -»• C[[z,w']] 

be the substitution homomorphism defined by 

(A7)|7|<fc^ (5ry-X,(^,,*(^ti;/)))|7|<fc, z^z, w'^w'. 

Ak is, by definition, the ring image n^(C{(A7 — d^Xfi))^^^)™'})- Fi- 
nally, we define Bk to be the quotient field of Ak- The reader can now easily 
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check that, to prove the proposition, it is equivalent to prove 

(*)      d^hi^z) is algebraic over the field B^ 

for any ji G W. We shall prove (*) by induction on |/x|. For |/i| = 0, (*)0 

follows from (5.1) and (5.2) and the definition of SQ- Assume that (*)/x holds 
for all |/i| = k. This means precisely that, for any /z G N71 such that |/i| = fc, 
there exist two positive integers Z(/x), p(/x), a family of convergent power 
series a^ ((A7)|7|<H,2;,^/) G C{(A7-^X(0))|7|<|M|,^^/}, 2 = 0,... ^(/x), 
such that the formal identity 

(5.3)     Y*
0

** ((firy-yK*(^w/)))l7l<lMh^w,) (^M^)r - 0 
i=0 

holds in Cff^jty7]], and such that 

(5.4) a^ ((^XCti;',*^,^)))^^^,^^) ^ 0. 

Moreover, we can choose Z(^) minimal satisfying a non-trivial relation such 
as (5.3). This implies that 

KM) 

(5.5) £>,> ((a^K,*^,^)))^^^^^) (^^W)'"1 ^ 0' 

in C^jty7]]. In what follows, for j = 1,... ,n, lj is the multiindex of W 
with 1 at the j-th digit and 0 elsewhere. Applying dZj for j = 1,... ,n to 
(5.3), we obtain 

I 

(5.6) (a^'M*))E^>((57^(^^(^^)))|7i<iMh^^) (^M^))'"1 

GA+I^O*)], 

where ^4-i[5AX^(^)] is the subring of €[[2,11/]] generated by Ak+i and 
d^hiz). By (5.5) and (5.6), we see that d^+1^h(z) is algebraic over the 
field Bk+i(d^h(z)), which is the subfield of Prac C[[3, w7]] generated by Bk+i 
and d^h(z). Since (*)/x holds, ^(z) is algebraic over Bk C Bfc+i, and thus, 
we see that d^^^z) is algebraic over Sfc+1 according to the transitivity of 
algebraicity over fields [28]. This shows that (*)I/ holds for all multiindeces 
1/ G Nn such that |z/| = fc + 1. This completes the proof of (*)M for all 
multiindeces /i G W1 and thus the proof of Proposition 5.2. □ 
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5.2. Non-trivial relations at the level of the Segre sets. 

In this section, we shall make use of the Segre sets mappings Vj, j G N, asso- 
ciated to M as defined by (3.5) and (3.6). We shall also keep the notations 
introduced in §3 for M. Our main purpose here is to establish the following 
result. 

Proposition 5.3. Under the assumptions and notations of Theorem 5.1, 
the following holds. For any multi-index fi G Nn

; and for any d G N, there 
exist two positive integers r = r(/i,d), p = p(n,d), and a family of conver- 
gent power series gitJLd = gifJid ((A7)|7|<p, z,w) G C{(A7 -<97X(0))|7|<p,2:, w}; 

i = 0,..., Tj such that the formal identity 

T 

^Qiiid ((S7^0 Vd)|7|<p,Vd+i,Vd) {d^hovd+x)3 = 0 

holds in the ring of formal power series in (d+l)N indeterminates, and such 
that gTyid{{d1X ovdj^Kp^Vd+i^Vd) ^ 0. Here, X(w) is the formal power 
series mapping given by (ii) of Theorem 5.1 and N is the CR dimension of 
M. 

Remark 5. If M is a generic real analytic submanifold through the origin in 
C77', and h(z) is a formal holomorphic power series in z G Cn satisfying (ii) of 
Theorem 5.1, then, by applying Proposition 5.2, for any multi-index /J, G Nn, 
there exist two positive integers Z(/i), P(M), a family of convergent power 
series UitfJt ((A^^^z^w) G C{(A7 - ^^(O))^^^,^,^}, i = 0,... ,Z(/i), 
such that the formal identity 

(5.7) Y1U^ ((37X(™))|7|<M,^) (Whiz))' = 0 

holds for (z^w) G M) and such that Ui^)^ ((d1X(w))\1\<\fji\,z,w) ^ 0 on 
M. If, furthermore, M is minimal at 0, then for do large enough, it follows 
from Theorem 3.1 and the definition of the Segre sets mappings given by 
(3.5) and (3.6) that, for d > do? the holomorphic map 

(CdN,0) 3 (hM, >->,td)^ (od+i(ti,t2, • • O^dte, • •.)) e M 

is generically submersive. Thus, by elementary facts about formal power 
series, this implies that for d > do, 

ui{n)^ ((dlx 0 ^)|7l<lMl' vd+l,Vd) ^ 0. 
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This means that the algebraic relations 

5^Z4,M {(WX °Vd)\<y\<\p\,vd+uvd) {d^hovdY = 0 
i=0 

will still be non-trivial for d > do. This proves Proposition 5.3 for d > do- 
However, in general, plugging z = v^+i and ^ = vj in (5.7) for d < do, could 
lead to trivial relations. Thus, one has to work a little bit more to prove 
Proposition 5.3 for d < do- 

For the proof of Proposition 5.3, we need to introduce the following 
definition, in which only the generic submanifold M is involved. 

Definition 5.1. Let M be a generic real analytic submanifold through the 
origin, of CR dimension iV, and Vfa k E N, the associated Segre sets map- 
pings as defined by (3.5) and (3.6). Let Y(w) = (Y1(w),...,Yr(w)) G 
(C[[ttf]])r be a formal power series mapping in w = (wi,...iwn). Given 
d e N and a formal power series q(z) G C[[zi,... ,zn]], we say that q satis- 
fies property V(M,Y,d) if there exists a family of convergent power series 
AjiAo.z.w) G C{(Ao - Y(0),*,w}, j = 0,...,p, p G N*, such that the 
identity 

p 

^2 Aj(Y 0 Vd,Vd+i,Vd) (Q 0 Vd+iY = 0 
i=o 

holds in the ring of formal power series in (d+l)N indeterminates and such 
that AP(Y o Vd, Vd+i,Vd) ^ 0. 

We will need the following lemma to derive Proposition 5.3. 

Lemma 5.4. Let M be a real analytic generic submanifold through the 
origin in Cn. Let Y(w) = (Yi(w),...,Yr(w)) G (C[H])r be a formal 
power series mapping in w = (wi,... ,wn). Let d G N and q(z) G C[[z]], 
z = (zi,.:.,zn). Then, ifq(z) satisfies property V{M,Y)d + 2), there exists 
an integer no (depending on Y, q and d) such that q(z) satisfies property 
V{M,{dPY\p\<^d). 

Proof of Lemma 5.4. Let Y", q(z) and d be as in the Lemma. We assume that 
q(z) satisfies property V{M, Y,d + 2). By definition, there exists a family 
of convergent power series A^AQ, Z, W) G C{(Ao - 1^(0), z, w}y j = 0,... ,p, 
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p G N*, such that the formal identity 

p 

(5.8) ]r Ajty o vd+2, ^+3, vd+2) (qo vd+s)3 = 0 

holds and such that AP(Y o ^+2,^+3,^+2) ^ 0. Here, 

Vd+3 = Vd+3(*lJ*2J • • • ,^4-3) = Vd+aC*!)*7) = ^d+sC*), 

^d+2 = Vd+2(*2, • • • jtd+a) = Vd+2(t/)- 

Thus, (5.8) holds in the ring C[[ti,... ,^+3]].   ^or simplicity of notations, 
we put, for j = 0,... ,p, 

(5.9) G^t) = Aj (((y o vd+2)(t
f),vd+3(t),vd+2(t

f)) . 

Thus, (5.8) can be rewritten as 

(5.10) £ ^(t) ((g 01;^)(*))>'= 0, with 
3=0 

(5.11) 0p(t) # 0, in C[[«]]. 

Consider the set ^ defined by 

dq (t) ± 0, in C[[t']] J . < a € N^ : 3j e {1,... ,p}, such that 

Observe that by (5.11), there exists a multiindex a € N^ such that 

*l=t3 

riV 

a     v / at? 
J*l=*3 

in Cf^']]. This implies that E is not empty. Let a0 G N^ such that |a0| = 

min{|/3| : {5 G f}. Then, if we apply ^ to (5.10), it follows from Leibniz's 

formula that 
(5-12) 

alQ0||£ 0+E ^(*) ((«o ^3)(*))j =   E   ^w^-w, dtf 7 = 1 A 061*^,1,81 
1<J<P 

<|a0|      OT1 
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where, for any /3, j, flpjit) G C[[t]].   By the choice of a0, we have, for 

101 < I«0I, 

(5.13) 
9%, 

ft? (ti,f) = 0, inC[[t']], j = l,...,p. 

J tl=t3 

Thus, if we restrict equation (5.12) to ti = is, we get by (5.13) the following 
identity in the ring C[[t']] 

p 

((q o ^+3)^3, h, *3,..., td+3)y = 0. 
ti=i3 

(5-14)        J2 
3=0 

'dia0ie,- 
Stf 

Here again, for simplicity of notations, we put 

(5.15) e'(*') = dtf 
J ti=t3 

We observe that, by the choice of a0, there exists j £ {1,... ,p} such that 
e^(£') ^ 0. Denote mi = Sup{j E {1,... ,p} : G^t') ^ 0}. It follows from 
the reality condition (3.4) and the definition of the Segre sets mappings 
given by (3.5) and (3.6) that 

Vd+3(*3,*2,*3)--- »*d+l) = Vd+l(*3j--- )*d+3)- 

Thus, (5.14) reads as 
7T21 

(5.16) ^2e'j(t')((qovd+1)(ts,...,td+3)y = o, 

with, moreover, 

(5.i7) e'mi(t')^o. 

First case,   d > 1. (5.17) implies that there exists /30 G N^ such that 

■d\P0\Q' 

dti 
(5.18) 

al^0l 

the ring C[[t3,t4,... ,*d+3]] 

(5.19) 

/ 
mi 

■JT^faM, • •• ^d+3) ^0. 

- *2=t4 

Thus, applying —p- to (5.16) and after evaluation at t2 = £4, we obtain in 
0*5 

E 
j=0 L 

ai^ie;. ,' 
^(0 

< 
((90^+l)(*3,---,^+3))-7 =0. 

t2=t4 
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We shall now see that (5.19) gives the statement of the Lemma. By definition 
of the Segre sets mappings given by (3.5) and (3.6) and by the definition of 
the Qj given by (5.9), we have, for 0 < j < mi, 

QjitiJ)    =   Aj(Yovd+2(t
f),tl,^vd+2(t

,),t1))vd+2(t
f)) 

=   G1
j{(Yovd+2)(tf),vd^(t,),t1), 

where G] (Ao,tMi) € C{Ao - Y(Q),w,ti}. Using (5.15), we obtain 

e'(0 = 

((Y(t2,§(vd+l,t2)),t2,${vd+l,t2),t3). 

Here, Vd+i = vci+i(t3,t4,... ,id+3)- As a consequence, we have 

-^r-W) = G) {(&Y{t2Mvd+\M))\1\<\p\,vd+lMM), 

where G] = G] ((A1)hl<Wol,w,t2,t3) € C{(A7 - driY(0))h\<m,w,t2,t3}- 
Here again, by (3.4), (3.5) and (3.6), we have Vd+2(*4,*3.*4,*5,-••) = 
Vd(t4, *5) • • •)> and thus 

(5.20) 
dti> 

/2=*4 

= Gj {((d^Y o Vd+2)(t4, <3, *4, • • •))|7|<|/?0h vd+l(*3, *4, • • 0^4, ^s) 

= G* (((d^Y o ^)(t4, . . . ,td+3))|7|<|^0|, Vd+i(t3,t4, . . .),t4, ts) 

where Sj for jf = 0,... ,mi, is a convergent power series in its arguments. 
Consequently, from (5.19) and (5.20) we have the relation 

J2B3 {^Y'ovd)h\<m,vd+1,vd) (qovd+1y =0, in C^,... ,^+3]], 
3=0 

which is non-trivial according to (5.18) and (5.20). In conclusion, q(z) sat- 
isfies property V(M, (d^Y)\^m,d). 
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Second case, d = 0. In this case, almost the same procedure used in the 
case d > 1 can be applied. Indeed, by (5.17), we have Q^O^^s) ^ 0 and 
therefore, there exists a multi-index £0 G N^ such that 

(5.21) 
d^e 

64 r^"^2'*3) ^o. 
J t2=0 

ale01 
Thus, applying —g- to (5.16) and after evaluation at £2 = 0, we obtain in 

the ring €[[£3]] 

(5.22) 

< 

7711 

E 
j=0 of 

((go^l)(t3))j=0. 
Jt2=0 

As in the case d > 1, we have for j = 1,...,mi, 

c^e 

m ^(t2,t3) = G? ((5Try(t2l*(t;i(t3),*2))|7|<|fl0|,«l(t3),t2,t3) , 

where Gj = G? ({A^)^<^,w,h,ts) € C{(A7 - 57lr(0))|7|<|flo|,«;)t2,t3}. 
By the normality of the coordinates for M, we have for j — 0,..., mi, 

(5.23) 
d^ 

= GJ
3((^y(0))|7|<|,o|^i(£3),0,£3) 

t2=0 

We leave it to the reader to check that, similarly to the case d > 1, (5.23), 
(5.22) and (5.21) give the desired statement of the lemma for d = 0, i.e., 
that q(z) satisfies property V(M, (97y)|7|<|^0|,0). This completes the proof 
of Lemma 5.4. □ 

Proof of Proposition 5.3. Let /i € Nn. Since h(z) satisfies (ii) of The- 
orem 5.1, by Proposition 5.2, there exist two positive integers Z(/x), p(/x) 
and a family of convergent power series Z^?M ((A7)|7|<|/Z|,^,i(;) G C{(A7 — 
^^(O))^!^!^, z, w}, 2 = 0,..., Z(/i), such that the formal identity 

KM) 

(5.24) Y,U^ ((57
^(^))|7|<|MI^^) WH*))' = 0 

i=0 
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holds on M. and such that 

(5-25) UlUl)tll((^X(w))h^M,ztw) ^0 

for (z,w) £ M. Notice that to prove the proposition we have to show- 
that for any d G N, there exists p — p{li>,d) such that d^h^z) satisfies 
property V{M, (d^X^p^d). Since M is minimal at 0 G M, it follows 
from Theorem 3.1 and the definition of the Segre sets mappings given 
by (3.5) and (3.6) that there exists do G N (which can be assumed to 
be even) such that the holomorphic map C^0"1-1^  3   (ti,... jido+i)  »->> 

(^doH-i(*i>*2,...,tdo+i)J^do(*2,...,*do+i)) G M is generically submersive. 
By elementary facts about formal power series and by (5.25), this implies 
that 

W/(/X),M {(dlXo^dQ)\1\<\^Vd^i,vdo) ^ 0. 

This means that the following algebraic relation obtained from (5.24), 

J(M) 

(5.26) Y,U^ ^dlX 0«*)|7l<H^*+i^do) ((^/i) o^+O* = 0, 
ir=0 

is still non-trivial, i.e., that d^^z) satisfies property V(M) (d^X)^^^,^). 
(Observe that in Remark 5, we have shown that d^h{z) satisfies property 
V(M, (^-X')|ig|<|M|,rf) for any d > do.) Applying Lemma 5.4 to q(z) = 

d^htz) and Y — {d13x)\(3\<\^ we obtain that there exists p(/i,do — 2) G N 
such that d^h{z) satisfies property V(M, {d^X)\^p^dQ_2),do - 2). Hence, 
using inductively Lemma 5.4, we obtain that for any even number 0 < 
d < do, there exists p(/x, d) G N such that d^h{z) satisfies property 
V{M^{jd^X)\p\^p^d^d). Since by Remark 5, d^h{z) satisfies also prop- 
erty V(M, (d^X^p^^dQ + 1), we can again, in the same way, use Lemma 
5.4 to conclude that for any odd number 1 < d < do, there exists p(/i, d) G N 
such that d^h(z) satisfies property V(M, {d^X)\p\^p^d^d). This completes 
the proof of Proposition 5.3. □ 

5.3. Propagation procedure. 

We prove here the last proposition needed for the proof of Theorem 5.1. 

Proposition 5.5. Let M be a generic real analytic submanifold through the 
origin, andvk, k G N; the associated Segre sets mappings as defined by (3.5) 
and (3.6). Let h(z) G C[[^i,..., zn]] and d G N. Let JJL G N71 and assume that 
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there exists Y^iw), a formal power series mapping in w — (tui,... ,wn)} 

such that d^h(z) satisfies property V{M,Yfxd,d + 2) as defined in Definition 
5.1. Then the following holds. If for any multiindices u G N1, dvho va+i is 
convergent, then d^h o 1^+3 is convergent. 

For the proof of Proposition 5.5, we need the following two lemmas which 
are both consequences of the Artin approximation theorem [1]. We refer the 
reader to [21] for the proof of the first one and to [6, 21] for the proof of the 
second one. 

Lemma 5.6. Let T{x,u) - (7i(x,u),... ,Tr(x,u)) G (C[[a;,u]])r, x G O*, 
uGCs, with T(0) = 0. Assume that T{x,u) satisfies an identity in the ring 
C[[x, it, y)], y G Cq, of the form 

(p(T(x,u)\x,u,y) = 0, 

where <p G C[[W,x,it,2/]] with W G C. Assume, furthermore, that for 

any multi-index f3 G Nq, the formal power series 
dyp 

-(W]x,u,y) is 

J y=x 
convergent, i.e., belongs to C{W,a;,it}. Then, for any given positive integer 
e, there exists an r-tuple of convergent power series Te{x,u) G {C{x,u})T 

such that <p(Te(x,u); x,u,y) = 0 in C[[x,u,y}} and such that Te(x,u) agrees 
up to order e (at 0) with T(x,u). 

Lemma 5.7. Any formal power series in r indeterminates, which is al- 
gebraic over the field of meromorphic functions (in r variables), must be 
convergent. 

Remark 6. We would like to mention that the use of the Artin approxima- 
tion theorem is not a novelty in the study of many mapping problems (cf 
[11, 8, 20, 6, 21] as well as many other articles). 

Proof of Proposition 5.5. Let fj, G N71 and d G N be as in the statement of 
the proposition. We assume that for any multiindex u G N71, d^h o Vd+i is 
convergent. By assumption, there exists Y^w) G (C[[w]])r, r = r(^d) G 
N*, a formal power series mapping in w = Oi,... ,wn) such that d^z) 
satisfies property V(M, Y^ d+2). By definition, this means that there exists 
a family of convergent power series Aj = ^(Ao, 2, w) G C{Ao -^(0), z, w], 
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j = 0,..., fc, k = fc(/z, d), such that the formal power series identity 
k 

(5.27) Y,AJ {(Y&ovwW^VMitlvMV)) (((d»h)ovd+3)(t)y = 0 
3=0 

holds in C[[t]], with t = (t^t') = (ti,t2,... ,^+3) and such that 

(5.28) ^((y^o v^CO^d+sCt),®^^)) ^ 0. 

We would like to apply Lemma 5.6 with y = ti, x = ^3, u — 
(t2,U,t5^..,td+s), T(x,u) = (Yfjldovd+2)(t2,...,td+3)-YIAd(0), W = Af

Q 

(A'o G Cr) and 

(5.29) ^(A/
0;t3,(t2,«4,t5,...,td+3),*i) 
A; 

= EAi K + ^(0),vd+3(t),vd+2(t
f)) (((d*h)ovM)(t)y . 

For this, one has to check that any derivative with respect to ti of tp evaluated 
at ti = £3 is in fact convergent with respect to the variables AQ and tf. 
Because of the analyticity of the functions Ai, i = 0,..., k (and of the Segre 
sets mappings), we see that we have only to consider the derivatives of [d^ho 
vd+s(t)y, for j = 0,... ,Z, evaluated at ti = £3. These derivatives involve 
analytic terms coming for the differentiation of 1^+3 (which are convergent) 
and products involving powers of derivatives of h evaluated at ti = £3. Let 
[(<97/i) o Vd+3(*)]t1=:t3 be such a derivative for some 7 e Nn. By the reality 
condition (3.4) and by (3.5) and (3.6), we have 

Ud+3(*3> *2, is, £4, . . . , td+3) = Vd+l(ts, £4, • • • , td+3)- 

Thus, [(<97/i) o Vd+3(£)]*! =i3 = ((57/i) o ^+1) (£3,... ,td+3) which is conver- 
gent by our hypothesis. As a consequence, (p satifies the assumptions of 
Lemma 5.6. Thus, by applying that Lemma, one obtains for any positive 
integer e, a convergent power series mapping Te(t,)J which agrees up to 
order e with (Y^ o Vd^)^) and such that 

k 

Y^Aj (Te(tf),vd+3(t),vd+2(tf)) (((d»h)ovd+3)(t)y = 0. 

Observe that (5.28) implies that, for e large enough, say e = eo, the following 
condition will be satisfied 

Ak(r
eQ(tf),vd+3(t),vd+2(t

f)) ^0, 

in C[[t]]. This allows one to apply Lemma 5.7 to conclude that d^h o vd+3 

is convergent. D 
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5.4. Completion of the proof of Theorem 5.1. 

Let h(z) be the formal power series of the Theorem and X(w) the associated 
formal power series mapping given by (ii). By Proposition 5.3, for any 
multi-index ^ G N71, and for any d G N, there exists two positive integers 
r = T(/Z, d), p = P(IJL, d), and a family of convergent power series g^ = 
fl^d ((A7)|7|<p,2:,w) G C{(A7 - 97

X(0))|7|<P,2;,K;}, i = 0,... ,T, such that 
the identity 

r 

Yl^jfid ((d^X o Vd)\7\<pivd+i,vd) ((d^h) o Vd+i)3 = 0 
i=o 

holds in C[[t]] where t = (ti,... ,td+i) G C^1^, and with the additional 
nondegeneracy condition ^TAi^ ((5

7X o ^)|7|<p, ^d+i, ^d) ^ 0. In view of Def- 
inition 5.1, this means that, for any multiindex /J, G W1 and for any d G N, 
d^hi^z) satisfies property V{M){d1X)\1\<p^d)'>(^)' Observe first that since 
for any v G W, duh(z) satisfie property^(M, (a7X)|7|<pM),0), it follows 
from Lemma 5.7 (and from Definition 5.1) that dvhovi is convergent for any 
multiindex v G N71. Prom this and the fact that d^h^) satisfies property 
V(M, (<97-X")|7|<p(yLi,2)> 2), it follows from Proposition 5.5 that d^hovs is con- 
vergent, for all multiindices /J, G N™. Thus, by induction, we see that Propo- 
sition 5.5 gives that for any odd number d, and for any multiindex /i G Nn, 
d^hovd is convergent. Choose do G N satisfying the statement of Theorem 
3.1. Without loss of generality, do can be assumed to be odd. By the previ- 
ous considerations, we know that hovd0 is convergent in some neighborhood 
U of 0 G CdoN. By Theorem 3.1, there exists (tj,... ,t0

d ) G U such that 
Vdo(*i> • • • J*SO) 

= 0 and such that ^0 is submersive at (q,... ,t^). Thus, 
we may apply the rank theorem to conclude that i>d0 has a right convergent 
inverse G(z) G (C{z})doN defined near 0 G Cn such that 6(0) - (£?,... ,^0) 
and such that Vd0 o Q(z) = z. This implies that h(z) is convergent. The 
proof of Theorem 5.1 is complete. 

6. Proofs of Theorem 2.1 and Theorem 2.2. 

Proof of Theorem 2.1. Recall that M' is given near 0 by (4.2) and that C 
is the family of algebraic holomorphic functions (in n variables) defined by 
(4.5) and constructed from Mf. By Proposition 4.3, for any x G C, there 
exists IQ G N*, a positive integer ko and a family of convergent power series 
Si = <Ji((A7)|7|<fo,^,^) G C{(A7 - <9V(0))|7|<,0,£,u>}, i = 0,...,fco, such 
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that the formal power series identity 

ko 

(6.1) ]>> ((^/>))|7|<*0,^) ((X <>/)(*))* = 0, 
i=0 

holds for (z,w) G M such that ^0 [(d1 f(w))^<i0) z,w) ^ 0 in M. Since 
M is minimal at 0 and x 0 f satisfies (ii) of Theorem 5.1 by (6.1), we may 
apply that theorem to conclude that xo/ is convergent. In other words, for 
any a e N^ and for any 1 < u < c, qa^ o f is convergent. To conclude the 
proof of Theorem 2.1, we have to show that this implies that the reflection 
mapping 

(6.2) Cn xCN 3 (z, 6) .-> $'(/(*), 6) e Cc 

is convergent. To see this, it suffices to observe that since M' is real algebraic, 
the map Cn x CN 3 (£,0) ^ K{u,0) £ C, 1 < v < c, is algebraic, 
and thus, an approximation argument similar to the one used in the proof 
of Proposition 1 from [20] shows that for any v G {l,...,c}, ^(a;,^) is 
algebraic over the field generated by C and the family of algebraic functions 
C and 8. Since / is nondegenerate, this implies that the formal power series 
CnxCN 3 (z, 0) ^ $Uf(z),e)is algebraic over the field generated by C, the 
family of formal power series Cf = {{qp^ o f)(z)) 0eNN  and 6. But since the 

l<u<c 
family Cf is a family of convergent power series, Lemma 5.7 implies that the 
formal power series ^(/(z), 0) is actually convergent for any u G {1,..., c}. 
This completes the proof of Theorem 2.1. □ 

Remark 7. If, in Theorem 2.1, the target manifold is given in normal co- 
ordinates i.e., if ^(o;, 0) = a;* where $' is given by (4.2), then the following 
holds. The normal components /* G Cc (as in (4.7)) of a formal nondegener- 
ate CR map / from a real analytic generic submanifold into a real algebraic 
one are necessarily convergent provided that the source manifold is minimal. 
Indeed, this follows from Theorem 2.1 by taking 0 = 0. 

Proof of Theorem 2.2. By the Taylor expansion (4.3) and by Theorem 2.1, 
we know that for any /3 G N^ and any 1 < z/ < c, qp^ o f is convergent. 
Equivalently, we have the convergence of % o / for any algebraic function 
X G C, where C is the family of algebraic functions defined by (4.5). Observe 
that since / is nondegenerate, Lemma 5.7 implies that for any algebraic 
holomorphic function q = q(uj) in the algebraic closure of the field gener- 
ated by the family C, q o / must also be convergent.   To conclude that / 
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is convergent when M' is holomorphically nondegenerate, it suffices to ap- 
ply Theorem 4.2 (hi) which states that this algebraic closure, in that case, 
coincides with all the field of algebraic functions !Fn. □ 

7. Remarks concerning Theorem 2.2. 

The purpose of this section is to show how the convergence result given by 
Theorem 2.2 can be derived from the arguments of §5 more simply than 
the arguments given in §6. Thus, let / : (M, 0) —¥ (M',0) be a formal 
nondegenerate CR map from a real analytic generic submanifold into a real 
algebraic one. We also assume that M1 is holomorphically nondegenerate. 
Then, by Proposition 4.6, we know that for each component fj of /, j — 
1,..., n, there exists a positive integer kj and a family of convergent power 
series 8^ = 8^ ((A7)|7|<Z(MO^^) € C{(A7 - 57/(0))|7|<^M/),z,^}, i = 
0,..., fcj, such that the formal identity 

(7.1) j^Sij ((^/»)|7|<Z(MO^^) (/;(*))' = 0 
i=0 

holds for (z,w) G M., with Skjj ((57
/(K;))|7|</(M

/
)5 

Z
,
W

) ^ 0 on Ai. Here, 
we recall that /(M') is the Levi-type of M/ as in Remark 1 and that M 
is the complexification of M as defined in §3.1. Equation (7.1) means that 
for each j — 1,... ,n, fj(z) satisfies the statement (ii) of Theorem 5.1, with 
associated formal power series mapping X(w) = (d7/^))^^/^')- Thus, if 
we apply Proposition 5.2 to h(z) = fj(z) (and to X(w) = (d1 f(w))\7\<i(M')) 
for j = 1,..., n, we obtain the following result. 

Proposition 7.1. Let M C Cn be a real analytic generic submanifold 
through the origin and M' C Cn be a real algebraic generic submanifold 
through the origin {with the same CR dimension). Let f : M —> M' 
be a formal nondegenerate CR map between M and M' and assume that 
Mf is holomorphically nondegenerate. Then, for any multi-index /J, £ Nn 

and for any j G {1,... ,n}; there exists a positive integer l(n,j), a family 
of convergent power series 8^ = 8^ ((A^I^/^O+IMI'^'^) £ C{(A7 — 
<97/(0))|7|<z(M/)+|Ath;£>u,}> i = 0,..., Z(/i, j), such that the formal identity 

KM) 

J2 6iM ((dlf(w))h\<i(M')+M>z>w) (dt"fj(z)y = 0> 

holds for (z,w) G M with fy^-)^ ((37
/(^))|7|<^(M')+|H'^'^ ^ 0 on M' 
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If furthermore M is assumed to be minimal at 0, then, in view of (7.1), we 
may apply Proposition 5.3 to h(z) = fj(z) and X(w) = {d1f{w))\1\<i^M1)^ 
for j = 1,... ,n. This gives the following proposition. 

Proposition 7.2. Let M C Cn be a real analytic generic submanifold 
through the origin and M' C Cn be a real algebraic generic submani- 
fold through the origin. Let f : M —> M' be a formal nondegenerate 
CR map between M and M' and assume that M is minimal at 0 and 
that M' is holomorphically nondegenerate. Let N be the CR dimension 
of M (and of M') and Vj, j € N, be the Segre sets mappings for M 
as defined by (3.5) and (3.6). Then, for any multi-index n G W1, for 
any d G N and for any j G {l,...,n}; there exist two positive inte- 
gers I = Z(/i,<i, j), p = p(ii,d,j), and a family of convergent power series 
€f = €t ((A7)|7|<P, z, w) G C{(A7 - cn7(0))|7|<p, z,w},v = 0,...,l, such 
that the formal identity 

i/=0 

€t (((^/)o ^)i7i<P' **, ud+i) Wfj) o vd+1y = o 

holds in the ring of formal power series in (d+ 1)N determinates and such 
that ipff (((57/) P vd)|7|<p,vd,vd+i) ^ 0. 

Prom Proposition 7.2, one sees that the convergence of the mapping / 
(under the assumptions of Theorem 2.2) follows from successive applications 
of Lemma 5.7. Indeed, for d = 0, Proposition 7.2, and Lemma 5.7 yield 
the convergence of / and of all its jets on the first Segre set. Prom this, 
Proposition 7.2 and Lemma 5.7, we obtain the convergence of / and of all 
its jets on the second Segre set, and so on. This leads to the convergence of 
/ on the do-th Segre set, where do is given by Theorem 3.1. As in the proof 
of Theorem 5.1, this implies the convergence of / under the assumptions of 
Theorem 2.2. 

8. Partial convergence of formal CR maps. 

In this section, as in [21], we indicate several results which show how Theo- 
rem 2.1 can be seen as a result of partial convergence for formal nondegen- 
erate CR maps. Before explaining what we mean by this, we have to recall 
several facts. 

Let M be a real analytic generic submanifold in Cn and p G M. Let 
K(p) be the quotient field of C{z — p}, and H(M,p) be the vector space over 
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K(p) consisting of the germs at p of (1,0) vector fields, with meromorphic 
coefficients, tangent to M (near p). The degeneracy of M at p, denoted 
rf(M,p), is defined to be the dimension of H(M,p) over K(p). It is shown 
in [8, 3] that the mapping M 9 p \-Y d(M,p) E {0,... ,n} is constant on 
any connected component of M. Consequently, if M is a connected real 
analytic generic submanifold, one can define its degeneracy d(M) to be the 
degeneracy d(MJq) at any point q G M. Observe that the germ (M,p), 
p G M, is holomorphically nondegenerate if and only if d(M) = d(M1p) = 0. 

If / is a formal nondegenerate CR map as in Theorem 2.1, / can or 
cannot be convergent. The following result, which is of more interest when 
/ is not convergent, shows however that the map / is partially convergent 
in the following sense. 

Theorem 8.1. Let f : (M, 0) —> (M',0) be a formal nondegenerate CR 
map between two germs at 0 in Cn of real analytic generic submanifolds. 
Assume that M is minimal at 0 and that M' is real algebraic. Let d(Mf) be 
the degeneracy of M'. Then there exists a holomorphic {algebraic) mapping 

{independent of f) Q{OJ) = (£/I(CJ), ..., Gn-d{M')(u)) defined near 0 G C71 of 
generic rank n — d{Mf) such that Q o / is convergent. 

Proof. We use again the notations of §2 and §4.1. As in the proof of Theorem 
2.2, by using the expansion (4.3), we obtain for v = 1,..., c, 

*U/(*)>')= EfoWK*)'"- 

Recall also that the qp^{uj) are algebraic functions. By Theorem 2.1, we 
have that for any f5 G N^ and for any v = l,...,c, qptl, o f is con- 
vergent in some neighborhood of 0 in Cn. According to [8, 3], we can 
choose qpi^(CJ), ..., g/3*>r(u>), r = n — d{M,)) of generic rank n — d{Ml) 
in a neighborhood of 0 in Cn. Then, if we define Qi{<jo) = ^^(w), for 
i = 1,... , n — ^(M7), we obtain the desired statement of the Theorem.     □ 

A suitable invariant which also measures the lack of convergence of a 
given formal (holomorphic) mapping is its so-called transcendence degree. 
We recall first how such an invariant is defined (cf. [21]). Let H : (C^, 0) -4 
(C7^, 0) be a formal holomorphic mapping, iV, Nf > 1, and V be a complex 
analytic set through the origin in G^ x C^ . Assume that V is given near the 
origin in C^^ by V = {(x,y) E CN x CN' : gi{x,y) = ... = Qq(x,y) = 0}, 
^(a;, y) G C{a;, y}, i = 1,..., q. Then, the graph of 7i is said to be formally 
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contained in V if QI(X,
/
H(X)) = ... = Qq{x^H{x)) — 0 in C[[x]]. Further- 

more, if Vu is the germ of the complex analytic set through the origin in 
C + defined as the intersection of all complex analytic sets through the 
origin in CN+N formally containing the graph of H, then the transcendence 
degree of H is defined to be the integer dime ¥% — N. This definition is 
in complete analogy with the one introduced in [10] in the C00 mapping 
problem. The following proposition from [21] shows the relevance of the 
previous concept and why this transcendence degree is related to the con- 
vergence properties of formal mappings. 

Proposition 8.2. Let % : (C^O) -> (G^O) be formal holomorphic map- 
ping.  Then the following conditions are equivalent: 

i) W, is convergent; 

ii)   The transcendence degree of % is zero. 

The following is a consequence of Theorem 8.1. 

Corollary 8.3. Let f : (M,0) -> (M',0) be a formal CR mapping between 
two germs at 0 of real analytic generic submanifolds. Assume that M is 
minimal at 0, M' is real algebraic and that f is nondegenerate, i.e., Jf ^ 0. 
Denote by Vf the transcendence degree of f. Then Vf < d(Mf), where 
d{Ml) denotes the degeneracy of M'. Equivalently, there exists a complex 
analytic set of {pure) dimension n+d(Mf) which contains formally the graph 
off- 

Proof The proof is similar to the one given in [21]. For the sake of 
completeness, we recall it. From Theorem 8.1, there exists G(LU) = 
(01 (w), • • '^n-d(M')H) G (CM)n-d(M') of generic rank n - d(M') such 
that Q o f is convergent. Put Sjiz) := (Qj o f){z) G Cfz}, for j = 
1,..., n — d(Mf). Then, the graph of / is formally contained in the complex 
analytic set 

A = {(*, OJ) e (C2n, 0) : £» = Sjiz), j = 1,...,n - d(M')}. 

Let A = Ui=1Ti be the decomposition of A into irreducible components. For 
any positive integer a, one can find, according to the Artin approximation 
theorem [1], a convergent power series mapping fa(z) G (Clz})71 defined 
in some small neighborhood [7(J of 0 in C1, which agrees with f(z) up to 
order a (at 0) and such that the graph of fa, denoted G{fCJ), is contained 
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in A. Since G(fa) is contained in A, it must be contained in an irreducible 
component of A. Thus, at least one subsequence of (/C7)crGN* is contained in 
one of such irreducible components, say Fi. We can assume without loss of 
generality that such a subsequence is (fCT)aeN* itself. We first observe that 
this implies that the graph of / is formally contained in Fi. Moreover, since 
/ is a formal nondegenerate map, for CTQ large enough, the family (/0")0.>CTo 

is also a family of holomorphic maps of generic rank n. In particular, this 
implies that the generic rank of the family of holomorphic functions 

((Gi°r0)(z))l<i<n-d(M>)> 

is n — d(M'). As a consequence, if z® is close enough to 0 in Cn and is 
chosen so that the rank of the preceding family at ZQ equals n — d(Mf), the 
implicit function theorem shows that A is an n-\-d(Mf)-dimensional complex 
submanifold near (ZQ, fao(zo)) E Fi. Since Fi is irreducible, it is pure- 
dimensional, and thus, Fi is an n+G^M') pure-dimensional complex analytic 
set containing formally the graph of /. By definition of the transcendence 

degree, this implies that Vf < d(Mf). D 

Remark 8. One should observe that Theorem 2.2 also follows from Corol- 
lary 8.3. Indeed, if, in Corollary 8.3, Mf is furthermore assumed to be 
holomorphically nondegenerate, then d^M') = 0 and thus the transcendence 
degree of / is zero. By Proposition 8.2, this implies that / is convergent. 

9. Concluding remarks. 

In this last section, we indicate how Theorem 5.1 can be applied to the study 
of the convergence of formal mappings between real analytic CR manifolds 
in complex spaces of possibly different dimensions. Our last result will be 
expressed by means of a standard nondegeneracy condition which takes its 
source in [23, 26, 12]. The situation is the following one. 

Let / : (M, 0) —>> (M', 0) be a formal CR mapping between two germs at 
0 of real analytic generic submanifolds in Cn and Cn respectively, n, nf > 2. 
(We wish to mention that all the following considerations are also valid for a 
target real analytic set, but for simplicity, we restrict our attention to generic 
manifolds.) We shall use the notations defined in §3 for M. In particular, 
the CR dimension of M is TV and its real codimension is c. Following the 
terminology of [10], we define the characteristic variety of f at 0 G Cn as 
follows. If M' is a real analytic generic submanifold through 0 as above, of 
CR dimension Nf and of real codimension c', we can assume that it is given 
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M, = {CG(Cl,,0):p/(C,C) = 0}, 

dpi A ... A d(}d ^ 0, on M'. 

Here, p' = (p^,... ,p^) is a set of local real analytic defining functions for 
Mf near 0 E Cn . Consider the vector fields Cj, j — 1,... ,iV, tangent to 
the complexification M of the source manifold M as defined by (3.3). It 
will be better to see these vector fields, for fixed z G (C^O), as a basis of 
holomorphic vector fields tangent to the Segre variety Q^, and thus, we shall 
denote them C3,     x for j = 1,..., N. For any multi-index 7 = (71,..., 7JV) G 

NN, we define Cjz^ = ^(z>1i;)J • • • £(^) • Finally, for any multi-index 

7 G N^, let S7 be the Cc  formal map defined by 

(9.1) C" x C1 x C1' B (z, w,C)^ qz,w/(C, f(w)) G Cc'. 

Observe that there exists a Cc -valued convergent power series mapping 

A/'7 = .A/'7((A/?)|/j|<|7|,2,w,C) € (ClAo.z.itf.O-KAfl))!^!^])0 such that 

(9.2) E^(ziw,C)=K ((^/»)|/3|<|7|^^,C) , mC[[«,tt;,C]]. 

The characteristic variety of / at 0 G Cn is then defined to be the germ at 
0 G Cn  of the complex analytic set 

C(/,0) = {C G (e',0) : ^(0,0,0 = 0,7 G NN}. 

This set is the infinitesimal analog of the usual determinacy set for holomor- 
phic mappings 

{CG(C"',0):/(Qo)C<^}, 

where Q^ is the Segre variety associated to M' and £ G (Cn ,0). With this 
in mind, we have the following natural result. 

Theorem 9.1. Let f : (M, 0) -> (M',0) be a formal mapping between two 
germs at 0 of real analytic generic submanifolds in Cn and Cn respectively. 
Assume that M is minimal at 0 and that the characteristic variety C(/, 0) 
is zero-dimensional.  Then f is convergent. 

Proof. Since / maps formally M to M', we have 

(9-3) p'(f(z)J(w)) = 0, 
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as a formal power series identity for (z,w) € M. Thus, if, for 7 G NN, we 
apply £7    , to (9.3), it follows from the definition of H7 given in (9.1), that 

(9.4) CjZtW) {p'(f(z), /»)) = S7(2, w, f{z)) = 0, 

for (z,w) G A^l. Observe that it follows from (9.2) and (9.4) that 

(9.5) M1 ({dPf{w))m<H,z,wJ(z)) = 0, for (z,w) G M. 

Since the characteristic variety C(/, 0) is zero-dimensional, in view of (9.2), 
the holomorphic mapping X*. (2) 

(9.6) e,d(n,fc)+2n+n' 3 ((A^),^^, ^ ti,, 0 ^ 

((A/?)^^, z, w, (^((A/?)^^!^, 2, w, 0) |7|<fc) 

is finite-to-one near JQ = ((^/(O))^^, 0,0,0) G C7^,^n'fc)+2n+n, for fc large 
enough. It then follows from [16] (p.15) (see also [18]) that, for any j = 
1,... jn7, (j is integral over the ring formed by all the convergent power 
series of the form 

{Bolk) ((Ap)\p\<k,z,w,(;) , 

B running over all the convergent power series centered at 

ji = ((^/(o))l/3|<fc, 0,0,0) G el,d(n^+2n+c,d(N>k\ 

Explicitly, for any j = 1,... ,77/, there exists a positive integer Vj and con- 
vergent power series Btj near Ji, t = 0,..., Vj — 1, such that the following 
identities hold in a neigborhood of JQ: 

(9.7) C? + E^' oT^ ((^)m<k,z,wX) Cj = 0. 
t<l/j I 

Putting C = f(z) and (Ap)m<k = (d^f(w))m<k for (z,w) G (C2-,0) in 
(9.7), we obtain that for (z,w) G (C2n, 0) and for j = 1,...,n7, the following 
formal identities hold in C[[;z,w]]: 

(9.8) (f^r + J^iBtjoI^^fMhl^z^Jiz))   (/J-(^))t = 0. 

2d(i,i) = Card{a e N* : |/3| < j}, t,i € N* 
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But in view of the definition of Tf. given in (9.6) and in view of (9.5), we 
have for j = 1,..., n', for t = 0,..., Vj - 1 and for (z, w) G M, 

(9.9) {Btti oXk) ({dPf{w))\p\<k,z,W,f{z)) 

= Bt,j(K(d
0f(w))mk,z,w,o). 

Thus, from (9.8), we obtain for j = 1,..., n', 

(9.10) (£(*))"' + J2 Btj ((^f(w))mk,z,w,Q) {fjiz))' = 0, 
t<l/j 

on M. As a consequence, we see that for each j = 1,..., n', the formal holo- 
morphic power series fj(z), j = 1,..., n', satisfies (ii) of Theorem 5.1. Since 
M is minimal at 0, from that theorem, we conclude that / is convergent. □ 

Remark 9. It should be mentioned that Theorem 9.1 above could also be 
derived from the techniques of [6]. 

We conclude by mentioning several situations where Theorem 9.1 applies. 
It contains the cases of formal invertible mappings of Levi-nondegenerate 
real analytic hypersurfaces, finite mappings of minimal essentially finite real 
analytic generic manifolds or, more generally, mappings with injective Segre 
homomorphism (in the sense of [6]) from minimal real analytic generic man- 
ifolds into real analytic essentially finite ones (the proof is contained in [6]). 
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