
COMMUNICATIONS IN 

ANALYSIS AND GEOMETRY 

Volume 10, Number 1, 11-22, 2002 

Stable minimal surfaces of finite total curvature 

CLAUDIO AREZZO
1
, MARIO J. MICALLEF AND GIAN PIETRO PIROLA

2 

1. Introduction. 

It is well known that holomorphic submanifolds of Kahler manifolds mini- 
mize volume in their homology class. As pointed out in [1], the converse can 
be expected to hold only when the ambient manifold satisfies some extra 
conditions, usually in the form of a non negativity assumption on the cur- 
vature. The special situation of area minimizing surfaces in the Euclidean 
space En of dimension n is particularly worth studying because of its connec- 
tions with the Bernstein Theorem (see, for example, [8]) and, possibly, with 
regularity theory. This is the problem mentioned in Yau's Open Problems 
list (see [14]), and it is the one we want to study in this paper. 

We start by recalling two of the main theorems in [8]: 

1. a stable minimal isometric immersion of a complete oriented parabolic 
surface into E4 is holomorphic w.r.t. some orthogonal complex struc- 
ture, 

2. a stable isometric minimal immersion of a complete oriented surface 
of finite total curvature and genus zero into E2n is holomorphic w.r.t. 
some orthogonal complex structure on E2n. 

By a well known result of Osserman ([12]), every complete oriented min- 
imal surface E* of finite total curvature is conformally equivalent to a closed 
Riemann surface E punctured at finitely many points and hence parabolic. 
The result in (1) therefore applies to oriented stable minimal surfaces of 
finite total curvature and of arbitrary genus in E4. 
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Arezzo-Micallef ([1]) have recently produced many examples of stable 
closed minimal surfaces of genus g > 4 in flat tori of (real) dimension 2g 
and, for g > 5+2fe+Vi+24fc? into tori of dimension 2(g - k) with fc = 1, 2, 3. 

Inspired by their work we have tried to adapt this strategy to the case 
of complete oriented minimal surfaces of non zero genus and of finite total 
curvature in Euclidean space. 

In particular we prove: 

Theorem 1. Given any closed Riemann surface S of genus 2 and a Weier- 
strass point p G S, and any n > 11, there exists a stable conformal minimal 
embedding ofT,\{p} into E2n, of finite total curvature K equal to — 27r(n+5); 

which is not holomorphic w.r.t. any complex structure compatible with the 
euclidean metric. 

As in [1], the strategy of the construction is to consider a holomorphic 
embedding (which is, by Wirtinger's Inequality, a stable minimal immer- 
sion) and to deform it, destroying holomorphicity but preserving all other 
riemannian properties. The main technical difficulty in making this pro- 
gram to work is to get control on the space of Jacobi fields of a holomorpihc 
curve seen as a minimal surface. In particular, a necessary condition for our 
strategy to construct families of stable minimal surfaces is that the starting 
holomorphic curve has only translational bounded Jacobi fields. 

In Theorem 2 we prove that the existence of such affine curves is equiva- 
lent to the fact that, having set W the space of exact meromorphic 1-forms 
on S \ {p} with a pole of order at most m at p, the cup-product map 

4>: W ® H0(K) -» H0(K2 ® [rap]) 

is surjective. 
Given two line bundles L and M over a Riemann surface and a subspace 

V C H0(L), the surjectivity of multiplicative maps of the form 

V®H0(M)^H0(L®M) 

is a very classical subject in the theory of Algebraic curves, being related, 
for example, to the projective normality of linear series (see, e.g., [3], [4] and 

[5])- 
Typically this theory deals with the case of a generic subspace V of 

H0(L) of a fixed dimension, while in our case we need W to be a fixed (and 
in fact a very special!) subspace of H0(K® [rap]). Therefore we need to use 
completely different techniques, similar to the ones used in ([10]). 
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We believe that our method can be used also in the case of surfaces of 
genus greater than 2 with more than one puncture, so as to improve the 
estimate on the dimension of the ambient Euclidean space (and maybe also 
on the total curvature). 

We observe in Section 2 that our method cannot be applied to study 
immersions in EQ for any genus since any holomorphic map into C3 has 
non translational bounded Jacobi fields corresponding to the failure of the 
surjectivity of the cup-product map mentioned above. We leave this problem 
for further investigation. 

Acknowledgments. The first author is indebted to Rick Schoen for 
providing warm hospitality at Stanford University during the preparation of 
this paper. 

2. Deformation of holomorphic curves of finite total 
curvature to stable minimal surfaces. 

Let ip: E* —> En be a complete minimal immersion of finite total curvature. 
We know from [12] that S*is conformally equivalent to a closed Riemann 
surface S punctured at finitely many points {pi,... ,£>&}. Furthermore, if 
Gr(2,2n) C CP71-1 denotes the Grassmannian of oriented two planes in 
E271 then the Gauss map G: E* —v Gr(2,2n) extends to a holomorphic map 
G\ S —> Gr(2,2n). We can therefore pull-back via G the tautological 2- 
plane bundle 7 and its orthogonal complement 2n — 2-bundle 7-L, obtaining 
two bundles over E, r^ and V^ respectively. By definition these bundles 
have the following properties: 

1- T^ © z^" is the trivial 2n bundle over E; 

2. T^J + is the tangent bundle to ^(E*), and 

3. z70| + is the normal bundle to ^(S*). 

In the Theorem below we shall need to consider r^ as a complex line 
bundle whose fibres on E* are locally spanned by Vz where z is a local 
complex coordinate. At each p;, ij)z has a pole of order ra;, i.e., ^ = 
z~rniv{z) where v is holomorphic and v(ti) / 0. 

Let [D] be the line bundle corresponding to the divisor D. 
Then r^ = TE ® [- Y^i=i miPi\ and therefore T^~

1
 = K ® ELi m^L 

where K is the canonical bundle of E. Let 5 be a holomorphic section of 
Ei=i miPi\ with a zero of order rrti at pi {s is unique up to multiplication 
by a non zero complex number). 
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Then, for each j e {1,..., n}, d^j ®se H0^'1). 

Theorem 2. Let if): S* —>- Cn 6e a complete holomorphic immersion of 
finite total curvature. Consider the map /i* : H0(Cn ® K) —> H®(j^~l ® K) 

given by 

(01,... A) -> (W1 ® *) • 01 + • • • + (#n ® 5) • 0n), 

where s is a holomorphic section of Ei=i 7TliPi] a5 defined above, and • 

denotes the cup-product mapping between H0(K® Ei=i miPz]) an^ H0(K). 

if 

1. t/ie differentials dijj1,... jd^71 satisfy a non trivial quadratic equation 

of the form ]Cj=i(c^/;'7)2 — 0 an^ 

2. /x* 25 surjective, 

then there exists a 1-parameter family ipt' ^* -> E2n of stable minimal 
immersions such that ipo = ip, the total curvature of ipt is constantly equal 
to the total curvature of ip and, for t y£ 0, t/jt is not holomorphic w.r.t. any 
complex structure compatible with the Euclidean metric. 

Proof. Viewing C71 as (M2n, JQ) (where we denote by JQ the standard complex 
structure) we can write 

^(g) = Re ( r^V-.^V^V ••>*#") • 

Let us define 

{q) = Re ( Hi + t)^1,..., (1 + t)#r,#r+1,..., 
\Jqo 

d^iidtp1,... ,idipr 

Clearly I/JQ = I/J and by (2) and the Weierstrass Representation Theorem 
([11]) ipt is a 1-parameter family of conformal minimal immersions. 

ipt has finite total curvature /C: indeed, 

(2.1) 27r    2 - 2g - ^2mj) = 27rci(^0) = 27rdeg(G) = /C 
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which does not depend on t. Formula (2.1) is known as the Jorge-Meeks 
formula ([7]). 

The next two lemmas conclude the proof of Theorem 1: 

Lemma 2.1.  There exists to > 0 s.t. for any \t\<to,^tis stable. 

Proof. Fischer-Colbrie ([2]) and Nayatani ([9]) have proved that the Jacobi 
operator J^ on E* extends to an operator J^ on E with the same index as 
that of J^. Let us remark (even though we will not use this relation) that 
a simple potential theoretic argument shows that every smooth bounded 
Jacobi field on V;(^*) extends to a smooth section of I/^, i.e., 

ker( J^) = {bounded Jacobi fields on ^(E*)} . 

Simons's Theorem 3.5.1 in [13] applies to J^0 showing that ker(J^0) = 

tf0(^). 
We now claim that 

i.e., along ^o there are only translational Jacobi fields: indeed, by definition, 
the sequence 

and the associated long exact sequence 

0 -»■ H^C1) 4 H0(u^) 4 H1^) 4 H^C1) -> • • • 

are exact. 
Since these sequences are exact we have immediately hPip^) > n. Geo- 

metrically this is just the fact that if0(Cn) corresponds to the translations 
in the euclidean space which, of course, induce bounded Jacobi fields on the 
surface. 

By Kodaira-Serre duality 

H1(T^) = (H0(K®T^-1)y  and  H^C1) = (H0(Cn ® K))* . 

We observe that if fi is injective then $ = 0, in which case ker(§) — 
H0^) = im(S) ~ Cn. Now fi is injective iff the dual map, /x: if0(Cn ® 
K) —> H0(K (g) T^"

-1
), surjective. But this is precisely condition (2) (see 

([1]) for details, if necessary). 
By Wirtinger's Inequality, 0 = index (J^0) = index (J^0). Moreover 17^ 

is a smooth family of bundles over the compact Riemann surface for any t 
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(this is just because the Gauss maps are smooth in t) and furthermore J^t 

is a smooth family of differential operators on the sections of the normal 
bundles. 

The same argument as in the proof of Theorem 3.2 in ([1]) shows that 
the eigenvalues of J^t depend continuously on t. Now the projections of the 
constant vectors on the normal bundle give rise to 2n independent normal 
Jacobi fields unless the surface is planar, in which case /J,* cannot be surjec- 
tive. Therefore 2n is the least possible dimension for the O-eigenspace (the 
space of Jacobi fields). This means that for | t \ small enough, O-eigensections 
cannot give rise to negative eigensections of the Jacobi operator. 

Therefore index (J^J = 0 whenever | t \ is less than some to > 0 as 
claimed. □ 

Lemma 2.2. For any t > 0, ipt is not holomorphic w.r.t. any compatible 
complex structure. 

Proof. Let us suppose that there exists a compatible complex structure J 
w.r.t. which t/'t is holomorphic. J has to be of the form O1 JQO for some 
2n x 2n orthogonal matrix O. This easily implies that the map O^t) 
is holomorphic w.r.t. Jo and therefore is given in real coodinates (up to 
translations) by 

0{^t){q) = Re  /   (ai,...,an,iaiJ...Jw*n), 

where ay are holomorphic 1-forms on E* which lie in the span of 
cfa/j1,... ,dil)n, which is impossible for t ^ 0, because the transformation 
O would have changed a non trivial quadratic relation into the trivial one. 

□ 

3. Proof of Theorem 1. 

Next result is the key step towards the proof of the existence of holomorphic 
immersions of finite total curvature with the required special properties. 
The techniques used in the proof of this result are inspired by ([10]). 

Theorem 3. Given a compact Riemann surface of genus two E; a Weier- 
strass point p G E and n>ll,letWbe the space of meromorphic 1-forms 
on E \ {p} which are exact and which have a pole of order at most n + 3 at 

P- 
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Then 

1. dim(W) - n; 

2. W is base point free; 

3. the cup-product map 

4>:W® H0(K) -> iJ0(K2 ® [(n + 3)p}) 

is surjective; 

4. the cup-product map Sym2W -> H0(K2 ® [2(n + 3)p]) /las non trivial 
kernel 

Proof. Set m = n + 3 and let us denote by 0: ff^jK" ® [mp]) ® i70(i;f) -> 
H0(K2 ® [mp]) the cup product map and by c^i,^ a basis of the space of 
holomorphic 1-forms on S (i.e., a basis of H0(K)). 

Now, let now so be a global holomorphic section of [mp] s.t. (SQ) — rap, 
i.e., 5o vanishes to order m at p. We recall (see for example [6], page 136) 
that if 

£mp .= {meromorphic functions / on E \ {p} \ (/) + mp > 0} 

then multiplication by SQ gives an identification between £mp and 
^(©([mp])). 

We shall keep this identification implicit in what follows. For example, 
given h G Cmp we shall identify dh with dh ® SQ and view d/z as an element 
ofH0(K®[(m + l)p]). 

Before entering into the technical details let us observe that, since m > 3, 
by Riemann-Roch 

1. h0([mp\) =m-l; 

2. /i0(ii:2 ® [rap]) =ra + 3; 

3. if we set W to be the subspace of H0(K ® [rap]) generated by the 
meromorphic forms which are exact on E \ {p}, then dim(iy) = ra — 3: 
indeed, by definition, the following sequence (of vector spaces) 

0 -> c -+ c{rn_1)p Aw^o 

is exact. But h0([(m — l)p]) = ra - 2 and hence the claim follows. 
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We now seek a lower bound for m for which all the properties listed in 

the Theorem hold. 
By the base point free pencil trick (see, for example, [6]) 

ker(0) = {Foux ® ^2 - Fuj2 ®ui\  F G iT0((9[mp])} 

and therefore (j) is surjective, since the domain has dimension 2(ra + 1), the 
target m + 3, and the kernel m — 1. 

We can write 

ker(^) = ker(</>) fl {Fui = dhi, Fuj2 = dh2, hi G >C(m_1)p} . 

To estimate the dimension of this space let us consider the following map 

p: HWmp]) -+ H1^ \ {p},C) 0 H1^ \ M,C) 

given by p(F) = [Fwi,i^beRham- 
Observe that FUJI ® ^2 — Fcd2 0 wi is an element of ker(0) if and only if 

p(F) — 0. Moreover p surjective implies that (/> is surjective: in fact if p is 
surjective then dim ker(p) = ra-9 > dim ker(0) and therefore dim im (</>) > 
2ra-6-ra + 9 = ra + 3 = hP{K2 ® [mp]). 

In order to prove that p is surjective we need to consider PUJ(F) — 

[FcjbeRham where UJ E H0(K) is fixed. Since the genus of the surface is two, 
the zero locus of a;, Z(UJ), is a divisor of degree 2. Moreover multiplication 
by u gives an isomorphism between H0(O([mp})) and H0(K®[mp- Z(u)]). 
Therefore the surjectivity of p^ is equivalent to the surjectivity of the 
DeRham-class map ^(K ® [mp - Z(u)]) -> ff1(S \ {p}, C) which depends 
on the geometry of the divisor Z((JJ). 

We need to distinguish three cases: 

1. Z(u) = 2p\ 

2. Z(a;) = 2g, g ^ p; 

3. Z{u)) =p + q, q£p\ 

4. Z(a;) = qi + (72 ,21^ 22, « 7^ P- 

Since the method used is the same for all the three above cases, we 
explain it only in case (4): let us set !F the sheaf of holomorphic functions 
on S \ {p}, whose differential is a meromorphic form vanishing at qi and q2 
and with a pole of order at most m at p (note that T contains naturally 
tha constant sheaf C). We also denote by Q the sheaf of meromorphic forms 
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with such zeros and pole, and whose residue at p is zero. We note also that 
by the residue's theorem H0(G) = H0(K ® [mp - Z(u)]). 

We then have the following exact sequence 

0 -> C -> F -> g -> 0 

and therefore 

 > H0(K ® [mp - Z(UJ)}) -> ff^C) ^ i?1^) -* ''' • 

The surjectivity of the De-Rham class map is therefore ensured by 
the vanishing of H1^) which is clearly equivalent to the vanishing of 

^(^([(m - l)p - 2q1 - 292])). By Riemann-Roch ^(^([(ra - l)p - 2q1 - 
2^2])) = 0 whenever deg(C?([(m - l)p - 2qi - 2^])) > 2 and therefore for 
m > 7. In the same way one can prove directly that in case sufficient con- 
ditions for the surjectivity of the DeRham-class map are m > 5 in case (1) 
and m > 6 in the other cases. 

We can now go back to study the surjectivity of the map p. Let us remark 
that up to now we have not made any particular choice of basis for the space 
of holomorphic differentials. We now choose cvi such that Z(UJI) = 2p. 

We claim that the elements of H1^ \ {p},C) 0 H1^ \ {p},C) of the 
form ([0], [7]) are in the image of p for any [7]. To see this we choose F in 
H0(O([mp])) s.t. UJIF — dH and define / = ^. By the assumption on CJI we 

know that dH G H0(K ® [(m - 2)p]) and therefore H G H0(O([(m - 3)p})). 
The above claim then reduces to asking whether varying H, fdH spans 
jy1(S \ {p},C). To be able to use the above study of the map p^ it is 
worth observing that [fdH] — —[Hdf] and therefore we are asking whether 
pdf : 0([(m - 3)p}) -> ff^S \ {p}, C) is surjective. 

As before, this depends on the zero locus of df, which is, by standard 
Riemann surface theory, given by the 5 Weierstrass points, P2, > • • ,P6 on E 
different from p. A sufficient condition for the surjectivity of the map p^f is 
then ^(©([(ra - l)p - 2p2 2p6])) = 0, which happens for m > 13. 
Since for such values of m, p^ is also surjective for any u the claim implies 
the surjectivity of the map p itself. 

We now study condition (3). Let us set M the sheaf of exact forms in 
0(K <S> [(m - l)p — <Zi — 92]). The base point free condition is well known to 
be equivalent to the vanishing of iJ1(A^) for any qi ^ q2 and both different 
from p (see, for example, [6]). Denoting by Mqi+q2 the skyscraper sheaf 
obtained by concentrating M to the divisor qi + 92, we can consider the 
short exact sequence 

0 -► 0([(m - l)p - 2q1 - 2q2}) AM-^ Mqi+q2 ^0 
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and the induced long exact one 

 > ^(©([(m - l)p - 2q1 - 2q2})) -> H^M) -> H\Mqi+q2) 

Since H1(Mqi+q2) = 0 the vanishing of Hl(M) is therefore ensured by the 
vanishing of ^(©([(m - l)p - 2gi - 292])), which has been proved above. 

The last condition to be checked to end the proof of the theorem is (3). 
We have already observed that h0(K2(g)[2mp]) = 2m+ 3. On the other hand 

dimSym2W = (m~3)
2
(m~2). Therefore (3) holds whenever m2 - 5n + 6 > 

6 + 4m, i.e. m > 9, and therefore in our range. □ 

Remark 3.1. On a Riemann surface of genus 5, h0(K) = 5, dim(W) = n 
and h0(K2 ® [(n + 3)p]) = n + Sp. Therefore condition (3) in the above 
theorem cannot hold for n = 3. On the other hand it is plausible that n = 4 
is the least dimension for Cn to contain such an affine curve with these 
properties (but necessarily of genus greater than 4). This would extend 
further the analogy between the case of compact Riemann surfaces in flat 
tori and the one of complete minimal surfaces of finite total curvature. 

We are now in a position to conclude the proof of our main result. All 
we need to show is that Theorem 3 implies the existence of holomorphic 
immersions of E \ {p} satisfying all the properties in Theorem 2. 

Let W be as in Theorem 3 and {771,... ,r?n} be any basis of W. 

The map ^0: E \ {p} -> Cn given by 

V'o MP ^ 
is a holomorphic map which is well defined because the 77/s are exact. 

V>0 is an immersion because the 77/5 do not have common zeros (condition 

3 in Theorem 3). 
Condition (2) in Theorem 2 is satisfied by Vo because of the existence of 

non trivial kernel in condition 3 in Theorem 3. 
We now claim that condition (3) in Theorem 3 implies condition (2) in 

Theorem 2: we are in fact going to show that im(/x*) = im(^). Given a 

basis {uji} of ^(K) by definition we have 

1. (pi^rij ® bkuJk) = (a.jbkrij'Uk) ® 5, and 

2. n(c{ujh ..., cl
nuJi) = (c^i 'U)l + -- + cl

nr]n • ui) ® s. 
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Therefore, putting d = a^b\ im(</>) C im(/i*). On the other hand 
{^j ' ^k} is clearly a system of generators for im(//), but each of these is 
obviously in im (0) and the claim is proved. 

We finally observe that ^o is an embedding: indeed, as in the classical 
case of maps into projective spaces ([6]), one needs to show that 0{[{n— l)p]) 
separates points, i.e. Hl(0{[(n — l)p — qi — 92])) = 0 for any qi ^ 92- By 
Riemann-Roch this holds for any n > 5. 

Since the embeddedness is an open condition this implies that also ^ 
for sufficiently small values of | t |, are embeddings. 
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