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A counterexample to unique continuation in 
dimension two 

NlCULAE MANDACHE 

We construct a non-zero solution u G CQ
0

 (C) of the equation du = 
Vu for a certain V which belongs to Lp for any p < 2. The same' 
is done in arbitrary dimension d > 2 for the Laplace equation with 
a first order term Av + W • Vv = 0 and for the Dirac equation 
Vw -f Ww = 0, with W G Lp for any p < 2. The construction 
is based on a Weierstrass product in the unit ball. Although its 
poles accumulate at the boundary, it is flat at the boundary if we 
remove small disjoint discs around the poles. 

1. Introduction. 

Let fi C Mn be a connected open set. We say that an equation 
P(x, d/dx)u = 0 has the unique continuation property in O if any solu- 
tion u which vanishes in a non-empty open subset vanishes identically. We 
are interested in the equation 

(1.1) du = Vu   inC-M2, 

where d is the Cauchy-Riemann operator, d = \{d/dxi +18/8x2) and V G 
L1

1
oc(C). We will also consider here the Laplace equation with a first order 

term: 

(1.2) Au + W-V^O, 

and the Dirac equation: 

(1.3) Vw + Ww = Q, 

with the (zero mass) Dirac operator V = Y2i=i oad/dxi. The OLI are matrices 
of order m satisfying a* = — oti and the Clifford commutation relations: 
OLiOLj + ajOLi = —2Sjk. rn can be chosen 2^/2]. 

There is extensive literature on unique continuation and strong unique 
continuation properties (in the later, one supposes the solution to vanish 
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to infinite order at a point instead of vanishing on an open set), see [6]. 
Although the problem of strong unique continuation has been almost settled, 
it is a long standing problem whether equations (1.1), (1.2) and (1.3) have 
the unique continuation property when the coefficients are Ljoc. We give here 
a negative answer, constructing solution with compact support for (1.1),(1.2) 
and (1.3) with coefficients in Lp for any p < 2. This is optimal in dimension 
2. The best positive result belongs to Wolff [5]: in dimension d, if W £ Ld 

then (1.2) and (1.3) have the unique continuation property. 
While this paper was awaiting publication, a new way of constructing 

counterexamples to unique continuation was found by Kenig and Nadi- 
rashvili [2]. Their result was improved and extended from dimension two to 
arbitrary dimension by Koch and Tataru [3]. 

We fix the function F(t) = t2 ln~3(t + 2) on [0, oo). It has the property 
that F(at) < a2F(t) for a > 1 and F(t)/F(t) is bounded, F being the 
greatest convex function with F(t) < F(t) for any t > 0. Therefore the set 

LF(Rd) = | / : / measurable on Rd, / F(|/|) dx < oo i 

coincides with the Orlicz space associated with F on (Mr,dx) (see e.g., [1]). 
It is a Banach space such that Lp C Lfoc for p < 2. 

Theorem 1.1. There are u,V which satisfy (1.1) such that u G C^{€), 
supp-u = 5(0,1) and V E LF(C). There are a real-valued [both v and W 
are real valued\ v G CQ^C) and W G LF(C) satisfying (1.2), such that 
suppv = 3(0,1). 

Corollary 1.2. For any d>2, there are non-zero smooth solutions v real- 
valued and w, for the equations (1.3) and (1.2) respectively, with compact 
support in W1 and such that the coefficients W belong to LF{ 

Notations. C, C,Cn will stand for absolute positive constants, not nec- 
essarily the same in different formulae. The constants which will be car- 
ried from a formula to another will be numbered Ci,C2,... . We write 
f{x) ~ g{x) in M if there are absolute constants 0 < c < C such that 
cf{x) < g(x) < Cf(x) for all x G M. 

We use the variable z = xi + ix2, identifying C with E2. If (3 G N2 is a 
multi-index, & = (d/dx1)^(d/dx2)/32 and |/3| = Pi+(32. B(a,r) is the ball 

of center a and radius r and i?(a, r) is its interior. If x is a real number, we 
denote by [x] the greatest integer in (—oo,x]. 
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2. Proofs. 

We start by constructing a meromorphic function in the unit disk 5(0,1) 
as a Weierstrass product. It vanishes to infinite order at the boundary, in a 
sense which is made precise by Lemma 2.1 below: 

oo 

(2-i) /M=n—;—7?- 
-21-(rf7j) 

Let us denote the poles of / by 

k — 1 
zkii = —— exp(27r2Z/£;2),   for k > 2, 0 < I < k2. 

Then each of the sets 

\z\ £ Mki = lz'. 
2k-3   2k-l\ 1 
2k-l>2k+l)> [     k>2,   0<l<k2, 

arg* G [(21 - l)7r/fc2, (21 + l)7r/k2) 

contains the corresponding pole of /. Moreover, these sets form a partition 
of the annulus {z : \z\ E [1/3,1)}. We will also need slightly bigger sets: 

{M a  [*4fc-7   4fc-l 

arg^ E [(4/ - 3)7r/2fc2, (4/ + 3)7r/2k2]   J 

We have then 

(2.2) Mfc)i + B(0,*!-2/8)    C    MM. 

(2.3) B(zkii,k-2/S)    C    MM. 

Lemma 2.1.   The infinite product (2.1) converges to a meromorphic func- 
tion in the unit open disk, and it converges to 0 elsewhere. Let 

9k,i(z) = f(z)(z-ZKi) 

be the analytic function in Mki obtained by multiplicatively removing the 
pole in this region. Then the following estimate holds: 
(2.4) 

k—1 

b*,z(*)l - k-2 ]l(l - l/jy2|z|-fc3/3+fc2/2 < eXp(-fc2/6 + 2A;)) z € MM. 
i=2 
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Proof of Lemma 2.1.   We divide the product (2.1) in three parts: the factors 
with index j < k, the factors with j > k and the factor with j = k. 

We estimate first the modulus of (1^77)    for z € Mk,i, for 2 < j < k-1. 

Since fffg < \z\ we have |ijjf < \z\, so 

>, i-iAi + i/4)y'2 ^ el/4 a8 j. ^ ^ hence; 

> Ci > 1. 

1 - Vi 

(2-5)    M-i/i, 
In the same way we obtain for \z\ < H^g: 

(2.6) 
1 - i/i 

< C2 < 1 for j > fc + 1. 

Since I ln(|l/(l-o)Ma|)| = | ln(|l-l/o|)| < C3\l/a\ for |a| > d > 1, putting 
a = (z/(l - l/j))j2, we obtain from (2.5), using again \z\ > (4fc- 7)/(4k -3) 
as z 6 Mfe,;: 

In 

i-rfc-l 1 

nfc1 (1^)i 
fc-i ,     - /, j2 

1 - 1/3 
(4fc - 7)/(4fc - 3) 

i=2 

<C3^(l-l/i)i2(l + l/(/c-7/4)y2 

i=2 

^^ V^ i(fc-7/4-j) 
^CsE6^ fc-7/4 

i=2 ' 
fc-2 

< Cse3 + C3 ^ exp(- min(i, k-7/4- j)/2) 
i=2 

OO 

< Cse3 + 2C3 Y, exP(-i/2 + 3/8) = C4- 

Since |z|fe ~ 1 for ^5 < |«| < 1, the above gives in this region: 

(2.7) 
k-1 

n- 
i=2l 

(i-Vi) 

n 
j=2 

1 - i/i 
fc-i 

|zrfe3/3+fcV2-Q(1_1/j?-2. 

j=2 
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(2.8) 

We have the following upper bound for the right hand side above: 

\z\-ew*kf[(i-i/jf 
J'=2 

,4Jb _ 7 vfe3/3+feV2 fepl 
exp^J (-1/;) 

i=2 

< 
4fc-3 

< exp    (-A;3/3 + A;2/2) 
fc-7/4 

fc-i 

i=2 

< exp(fc2/3 +'fc - fc(Jfe - l)/2 + 1) 

< exp(-fc2/6 + 2fc),    for |^| > |j^Z. 

This proves the inequality in (2.4). Since for (2.5) to hold we only need 
\z\ > HEI? 

we infer from (2.7) and (2.8) that the product (2.1) converges to 
0 if \z\ > 1. 

Now, for the factors with index greater than k in the definition of /, we 
use that | ln(l — a)| < C5|a| for |a| < C2 < 1. Via the relation (2.6) this can 
be applied for a — (. \ ,. V   and we obtain for IzI < 4^4 • 

E In 
1 

4fc+3- 

(i-Vi) 

1- 1 
fe+3/4 

1- -Vi < ^E 

uu -2 

S  ^E(»-A)   O + jir) 
00 

<   C5 E  exP^-fcfe) 
j=fe+i 

Hence the product    J^ 

k < 

(2.9) 

4fc-l 
4/c+3 

i=*+ii-(rf7j)' 

<   Cse3/2 + C5  X) exP(fc + 2 " 0) = Ce. 

^- is uniformly absolutely convergent for 

, and 

.-Ce < n 
j=fc+i 1 

(1-1/j) 

<e C6 
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This implies that the product (2.1) is convergent everywhere in 12(0,1). 
Indeed, for \z\ < ^r^ the product up to the factor k is a meromorphic 
function and the rest of the product is absolutely convergent. 

For the middle factor with j = k in (2.1), notice first that the logarithm 
is a quasi-isometry in the region 0 < c < \z\ < C and — 37r/4 < argz < 
37r/4. More generally, \z — zf\ ~ |lnp"l ^ov \Z\AZ,\ ^ [c^] and argp- ^ 
[-37r/4,37r/4]. Since sg = (1 - l/fc)fc2 we have: 

(2.10) 
1 1 

2 f k* In/ 
1-1/k) 

fc2U- ^w 
for  ^ G Mw. 

It remains to multiply the relations (2.7), (2.9) and (2.10) to obtain the 
first part of (2.4). □ 

Proof of Theorem 1.1.   We choose a function (j) G C00(C) such that: 

0(z) = <KM) = 
1       for |*| > 1, 
\z\2   for \z\ < 1/2. 

We require (/> to be increasing on [0, oo) and <j>(r)/r to have only one critical 
point in (0, oo) and that to be non-degenerate. For a choice of the quantities 
Sk to be performed later, under the constraint 0 < Sk < k~2/8, we define 
our function solution of equation (1.1): 

(2.11) 
OO   k2-l 

«(*)=m n n ^ 
k=2 1=0 

zk,l 

£k 

Notice first that the product is well defined, since by (2.3) the sets of points 
where each of the factors is different from 1 are disjoint. Since the poles 
Zkj of / are simple and (j)(z) = zz in a neighborhood of 0, u is smooth in 

S(0,1). For z G Mkj we have 

du(z) = 8   f(z)ct> 
zKl 

^k 
= /W^ z - zk,l 

Sk 

Sk \      Sk 

and we obtain that the equation (1.1) is satisfied with a potential 

oo   k2-l 

"-EEr 
k=2  1=0 Sk V ^ 

z - zk,i 

Sk 
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The function d(j)/(j) has modulus l^l-1 for \z\ < 1/2 and vanishes for \z\ > 1. 
Since </> does not vanish outside 0, we have that \z\d(j)(z)/(j)(z) is bounded in 
5(0,1). Then 

/oo   k2 — 1     « 

FdVDdxKlxi    <   CVV/ \z\-2ln-3(\z\-1 + 2)dx1dx2 
k=2 i=o JB(0'^ 

~ rsk 
<   CVA;227r/     -x'1 In-3 x dx 

k=2 Jo 

OO 

fc=2 

We choose 

(2.12) efe=min(/r2/8,e-fe1-7), 

and obtain that the series above is convergent, so V G LF. It remains to 
check that the solution (2.11) is smooth. 

Take gkj(z) = ^(fc"1)(2/c~1)/6^,K^)- The relation (2.4) from Lemma 2.1 
implies that \gk,i(z)\ ~ \gk,l(zk,l)\ ^r z G Mk,l- From (2.2), each 
point z G Mkj is the center of a ball of radius k~2/8 contained in 
Mk,i' Since gkj is holomorphic in M/^z, we can apply the Cauchy rep- 
resentation formula using as contour the boundary of this ball, to ob- 
tain \dagkj(z)\ < Ca(k

2W)\gkj(zkii)\ for z G Mw. Then differentiating 
9k,l{z) — ^/e,^^)^-^^-1^2^-1^6 we obtain for a suitable choice of the con- 
stants C^: 

(2.13) I^OOI < C'ah
%\%Kl{z)\   for z € Mk} . 

Let us define 

(2.i4) m = M. 

Since 0 is a symbol of order —1, all its derivatives are bounded. Then, with 

the notation of Lemma 2.1, u{z) = gk^z> 0 \*ktl) for z G Mk^i. Using 

(2.13), the definition of ek and then (2.4) we obtain for k big enough: 

\dau{z)\ < C^(max(e^1,fc3))l"le^1|5fc,K^| 

(2.15) < C>xp((l + |a|)A;1-7)C7exp(-fc2/6 + 2fc),2 e MM, 
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so all the derivatives of u tend to zero as \z\ —> 1, hence u is smooth in  C. 

For the second part of Theorem 1.1, we take v = Reix, where u is given 
by (2.11), but with one more condition on £&, which will change the choice 
(2.12) for finitely many values of k. In order to obtain a lower bound for 
|VT;| we will need the following 

Lemma 2.2. Let ho(z) = Re(f)(z), where (f> is given by (2.14). Then 
there are positive constants c; C such that any real valued function h E 

C2(j3(0,1)), with \\h — ho\\c2 < c, has exactly two critical points 21,22 and 
we have 

\Vh(z)\ > Cmin(|2 - 2i|, \z - 22I). 

Proof. We have ho(z) = ^p- cos(arg2), so V/IQ has two zeroes (r^O) and 

(—r^,0), where r^ is, by the choice of (/>, the unique zero of (r~1(j)(r)y in 

(0,oo) and ^•(^~10(r))|r:=r ¥" 0. Since 0,7r are non-degenerate critical 

points of the function 8 -> cos 0, we can choose open sets Vi 3 (^,0) and 
V2 9 (—r^, 0) such that V/IQI^ is a diJBFeomorphism and the tangent mapping 
of its inverse is bounded. We still get these properties after replacing ho by 
h if \\h — /iollc2 < c2 and C2 is small enough. Taking C2 even smaller, we 
can ensure that h has exactly one critical point in each of Vi, V2; let these 
be 21,22. Then |V/i|-1|2 — Zi\ is uniformly bounded in Vi with respect to 
different choices of h. 

On the other hand, outside V = Vi U V2 the gradient |V/io| is bounded 
away from zero and so is |V/i| if \\h - hollc1 < ci w^h ci = 5 inf{|V/i(2)| : 
2 G 5(0,1) \ V}. We choose then c = min(c2, ci). D 

Notice that Lemma 2.2 remains valid if we replace (f) by a</>, with |a| = 1, 
since this is equivalent to composing HQ with a rotation. This allows us 
to apply it to h(z) = Igk^k^l^^kvi^l + £kz) which is a perturbation of 

hQ = Re {
9kA

{
Zk>lld>. From (2.13) we infer 

u \9k,l{Zk,l)\^ v / 

so making e^A;3 arbitrarily small we can make 

9k,l(zk,l + ekz)       9k,l{zk,l) 

\9k,i{zk,l)\ \9k,i{zk,l)\ ^(5(0,1)) 
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arbitrarily small. Indeed, if Skk3 < C then (2.16) implies that \gk,i(z)\ ~ 
\gk,l(zk,l)\ for z E B(zk^ek), so we can replace the denominator in (2.16) 
with \gk,i(zk,l)\- Applying Lemma 2.2 we obtain that there is a constant 
ci > 0 such that for every k and Z, if e^ < cik~s then there are two points 
.(1)   J2) zk,l>zkj e B(zk,h£k) and C > 0 such that for z G B(zkj,ek) we have: 

(2.17)        IgkA^iT1 ek \Vv(z)\ > Ce^min 
z - z{1) z
   zk,l 

£k 
5 

z - z{2) z
     zk,l 

£k 

We take ek = mm(k-2/8,c1k-
3,e-k ) and W(z) = -(Av)^. We use 

again that \gk,i(z)\ ~ \gk,i{zk,i)\ in B(zk^ek), to obtain in this ball from the 
first line of (2.15) and from (2.17): 

,W + mzS\ = ^M <   {Cko) + C(o,2))£~k\9kAz)\ 

\Vv(z)\ - C£fc-3|^(^)|min2k-4:)l "      Vk"4:/I   '   '^ 

Since v is harmonic in Mkli\B(zkihek) we obtain that W G LF: 

f F{\W\)dx1dx2    <   Cj^   J2    f 
k=2 o<J<fc2 JB 

i=i,2 
oo 

'J22k227r 
u-o Jo 

k=2 o<i<kZ jB(zk,l2^) 
i=i,2 

2ek 

F(\i JJ)|-I 
zk,i\ ) dxidx2 

< C> ^2kz27r I      -x-Hn^xdx 

< C'^2k2]jr2ek < oo. 
k=2 

D 

Proof of Corollary 1.2. The method is a standard one (see e.g., Theorem 2 
in [4]): we wrap the solution around a compact submanifold to make it 
have compact support. Here the support will be a tube around a sphere 
of dimension d - 2. We decompose Rd = R x M^"1, and use the notation 
x = (x^x') with xf = (x2,...xd) E M^"1. Let (W1(x1,X2),T^^i,^)) 
and v be the coefficient of the gradient and the solution constructed in 
Theorem 1.1. Then in dimension d > 3 we take 

v(x)    =   v(xi,\x,\-2) 

W(x)    =■   (w1(xu\xf\-2)J(w2(x1,\x
f\-2)-^)-^) 

\ ^ \x     / \X   J 
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and using polar coordinates in R^-1 it is easy to check that (1.2) is satisfied. 
For the equation (1.3), we take w(x) = VVVQ = Y^i=i div(x)aiVo, where 

VQ G Cm is a fixed non-zero vector, and Wp = ^'S J2i=i diVO>i, with the 

above v,W (in dimension 2 we use v, W provided by Theorem 1.1). □ 

Remark. It is possible to obtain the above results by the standard 
procedure going back to Plis (e.g., [4]). It consists of constructing a basic 
'brick' of the solution and then gluing infinitely many of them. However, the 
closure under multiplication of the set of solutions of the d equation allowed 
to avoid this. 
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