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In this paper we study curves with constant geodesic curvature 
in rotationally symmetric complete surfaces. Under monotonicity 
conditions on the Gauss curvature we classify the closed embed- 
ded ones in planes, cylinders, spheres and projective planes. We 
also distinguish the stable ones, i.e., the second order minima of 
perimeter while keeping constant the area enclosed. We prove ex- 
istence and nonexistence of isoperimetric domains, and we show 
the isoperimetric domains when they exist. 

Introduction. 

In a Riemannian surface M of area .A(M), the isoperimetric profile of M is 
the function which assigns, to each positive value A ^ A{M)) the infimum of 
the perimeter of sets enclosing area A. If this value is attained by some set 
fi, then $1 is called an isoperimetric domain. To compute the isoperimetric 
profile of a given surface and to classify the isoperimetric domains when they 
exist are interesting and difficult global problems in Riemannian Geometry. 

The classical approach to these problems is by means of isoperimetric 
inequalities, which are nothing but relations between the area of a set and its 
perimeter. The classical isoperimetric inequalities for surfaces of constant 
curvature allow us to find the isoperimetric domains in such surfaces, which 
are geodesic discs ([22], [18], [14]). Osserman's survey ([18]) covers the 
subject since the beginning with an exhaustive list of references. The one 
by Howards, Hutchings and Morgan ([14]) describes recent progress. 

Until recently the isoperimetric profile was only known for the complete 
simply connected surfaces with constant Gauss curvature. In 1996 Ben- 
jamini and Cao ([3]) solved the isoperimetric problem in some rotationally 
symmetric planes by using the geodesic curvature flow on surfaces previously 
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studied by Grayson ([11]). Prom their results one can obtain a new isoperi- 
metric inequality that has been explicitly stated and proved by P. Pansu 
for discs ([20]) and by Topping ([23]) and Howards, Hutchings and Morgan 
([15]) for domains of general topological type. For planes of revolution with 
decreasing curvature and total positive curvature less than or equal to 27r 
the isoperimetric domains are geodesic discs centered at the point of max- 
imum curvature ([3]). For planes of revolution with decreasing curvature, 
projective planes with decreasing curvature, annuli with decreasing curva- 
ture and an end of finite area and some spheres the isoperimetric domains 
have been classified by Howards, Hutchings and Morgan ([15]). 

In this paper we study curves with constant geodesic curvature in some 
rotationally symmetric surfaces by using methods of the Calculus of Vari- 
ations. Our approach is different from the ones described above. Similar 
techniques to ours were employed by E. Schmidt ([22], [18, p. 1200]). Since 
an isoperimetric domain on a Riemannian surface has regular boundary, 
which is a closed smooth embedded curve with constant geodesic curvature 
([2]), we can apply our results to find such optimal domains. Standard re- 
sults in Geometric Measure Theory plus geometric arguments are used to 
prove existence and nonexistence of isoperimetric domains. We classify the 
closed embedded curves with constant geodesic curvature, we determine the 
stable ones, and we solve the isoperimetric problem in the following surfaces 

(i) planes of revolution with decreasing curvature or increasing curvature; 

(ii) spheres of revolution with an equatorial symmetry whose Gauss cur- 
vature is an increasing or decreasing function of the distance from the 
equator, 

(iii) projective planes with decreasing or increasing curvature as a function 
of the distance from a given point, and 

(iv) annuli with decreasing curvature such that the end with the largest 
curvature has finite area. 

In planes with decreasing curvature, spheres with curvature increasing 
from the equator and in annuli with decreasing curvature the isoperimetric 
domains are bounded by circles of revolution. In a plane of revolution with 
strictly increasing curvature there are no stable closed embedded curves 
with constant geodesic curvature. Hence isoperimetric domains do not exist 
on such surfaces. The case of a sphere with curvature increasing from the 
equator is specially interesting since one has to construct first the boundaries 
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of isoperimetric domains (they are not bounded by circles of revolution). It 
turns out that, in this case, isoperimetric domains are discs in a smooth 
family which collapses to a point in the equator when the area goes to 
zero. The isoperimetric domains in projective planes are obtained from the 
classification of constant geodesic curvature curves in the covering spheres. 
Annuli with monotone curvature (without the finite area assumption for the 
end with the largest curvature) cannot be studied with the methods of this 
paper. 

The initial motivation for this work was a paper by S. Montiel ([17]) 
treating hypersurfaces with constant mean curvature in manifolds Mn, n ^ 
3, foliated by totally umbilical hypersurfaces. The results in [17], extensions 
of the classical Theorems by Liebmann and Alexandrov for constant mean 
curvature surfaces in M3, do not extend to curves in surfaces. In fact there 
are strong differences between the cases n = 2 and n ^ 3. Liebmann's 
Theorem, as proved in [17], is local in nature (only the geometry of the 
ambient manifold about the hypersurface is involved) and it is valid for 
manifolds with singularities. For surfaces, such theorem is of a global nature, 
and it is no longer true if the surface has a singularity. 

We have organized this paper in several sections. In the preliminaries one 
we state general results that will be used along the paper. In the following 
sections we consider the different types of surfaces: planes in the second one, 
spheres in the third section, projective planes in the fourth one and annuli 
in the last one. 

By means of the techniques used in this paper also tori, Klein bottles 
and symmetric annuli (of catenoid type) can be studied. Since additional 
difficulties arise in these cases we shall treat them in a forthcoming paper 

([21]). 
Finally we made some advice about terminology. A function / : M -> M 

will be called decreasing (resp. increasing) if f(x) ^ f(y) (resp. f(x) ^ 
f(y)) whenever x < y. If the inequality is strict the function will be called 
strictly decreasing (resp. strictly increasing). A monotone function is one 
which is either increasing or decreasing. A rotationally symmetric surface 
will mean a surface endowed with a one-parameter group of isometries. The 
poles of a rotationally symmetric surface are the points which are fixed by all 
the isometries of the compact one-parameter group. Computing the index 
of the Killing field at the poles it can be easily checked that all these surfaces 
have nonnegative Euler characteristic. The reader is referred to [17] for more 
results and references on rotationally symmetric surfaces. 

The author wishes to thank Prank Morgan for many interesting discus- 
sions and for suggesting some improvements in the paper. 
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1. Preliminaries. 

Consider the product S1 x /, where S1 is the unit circle and / C R is an 
interval, endowed with the Riemannian metric 

(1.1) ds2 = dt2 + f(t)2d62 

for 9 £ S1 and t G /. This Riemannian surface is a warped product. 
Over this surface we define the vector field X = f (t) dt, which is confor- 

mal ([17]). Let D be the Riemannian connection associated to the metric 
ds2. Prom (1.1) it can be easily proved that DUX — ff(t) u for any tangent 
vector u to M, where primes denote derivatives with respect to t. It follows 

(1.2) divX = 2/'(i), 

where div is the divergence of the vector field X. 
The Gauss curvature of the metric depends only on t and it is given by 

Kit) = -m 

The geodesic curvature of the circle S1 x {£}, computed with respect to the 
normal — c?£, is given by 

m   m, 
The length of the closed curve S1 x {t} is given by 

L(t) = 2irf{t). 

A fundamental observation, to be used later, is that the function of t 

{f?-ff" = {2K)-*I?{K + h\ 

has, up to a positive function, the same derivative with respect to t that the 
Gauss curvature K{t). Hence K(t) and L2(K + h2){t) are simultaneously 
increasing or decreasing and they have the same critical points. 

Consider a curve 7(5) = (0(s),£(s)) parameterized by arc-length s. The 
tangent vector to 7 will be denoted by d^/ds. Assume that the surface is 
oriented by dtAdO and let a be the oriented angle /(<?*, dj/ds). Then dj/ds 
is given by 

dj      (d6  dt\      sincr _ 0 
do + cosadt. 

ds      \ds'dsj      f{t) 
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We consider the unit normal vector field N to 7 given by 

cosa . 
N = ——de-smadt. 

Prom (1.1) we easily see 

dj        (do   ,   /'(*)    . 
Dd^Ts = {Ts+j(tjsinar- 

So we conclude 

Proposition 1.1. //7(5) = (6(s),t(s)) is a curve parameterized by arc- 
length s with geodesic curvature h, computed with respect to the normal 
cosa/f(t)de — sinadt, then 6(s), t(s), a(s) satisfy the following system of 
ordinary differential equations 

dt 
— = COS (7, 
as 

, . dQ      sin cr 

—- — h —r-r sm a, nonumber 
ds f(t) 

Moreover, if h is constant then, for c in the closure of the domain of defini- 
tion of f, the function 

(**) msma-hj /(O^. 

is constant over any solution of (*). 

Proof It only remains to check that (**) is constant over solutions of (*), 
which is immediate differentiating with respect to s. D 

The function (**) is usually called a first integral of (*) in the terminol- 
ogy of the Calculus of Variations. First integrals are usually obtained from 
Noether's Theorem ([9]). For h = 0 the expression /(t)sincr = constant is 
nothing but Clairaut relation for geodesies in surfaces of revolution. 

We shall usually speak of a solution 7 = (0, t) to (*) since the angle a is 
determined by 9 and t. We define the energy E of a parameterized curve 7, 
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solution to (*) with h constant, to be the constant value given by (**) over 

7- 
Prom the uniqueness of solutions to (*) with respect to the initial con- 

ditions we easily obtain 

Proposition 1.2. Let 7 = (0,t) be a solution to (*) with constant geodesic 
curvature h.  Then 

(i) // (dt/ds)(so) = 0 then 7 is symmetric with respect to the geodesic 

6 = 0(so)' More precisely t(so—s) = t(so+s), 9(so—s) = 26o—9(so+s), 
and a(so — s) = TT — a (so + s). 

(i) The curve 7 can be translated along the 6-axis. More precisely, 9(s)+a, 
t(s)j a(s) is a solution to (*) for any real a. 

The behavior of solutions to (*) with h constant is described in next 
Proposition 

Proposition 1.3. Let 7 = (9,t) be a solution to (*) with h constant such 

that t(so) is a strict maximum of the t-coordinate and sincr(.so) = 1- Assume 
that t(si), for si > SQ, is a critical point of the t-coordinate and that there 
are no more critical points oft in the interval (SQ,SI).  Then we have 

(i) If sin a (si) = 1 then 7 is a graph over 9 which is periodic in 9. The 
curve 7 yields a closed embedded curve if and only if the 9-distance 
between two consecutive maxima or minima of the t-coordinate equals 
27r/k, for some k G N. 

(ii) If sin a (si) — —1 then there is a point of vertical tangent vector for 
some s £ (SQISI). The curve 7 yields a closed embedded curve only if 
9(so) = 9(s1). 

Proof The function t is strictly decreasing for s > SQ close enough to SQ. AS 

there are no critical points of t in (SQ, SI) we conclude that t is decreasing in 
this interval. Choosing c < t(si) in (**) we observe that f(i) sina is strictly 
monotone or constant as a function of t. 

In case (i) sincr(si) = 1 and so f(t)sina > 0 for all s G (so,si). This 
implies that d9/ds > 0 and so the curve is a periodic graph over 9. It is 
then closed and embedded trivially if its minimum ^-period is exactly 27r/A;, 
for k e K 

In case (ii) sin (7(51) = —1 and, since /(t)sin(T is strictly monotone as 
a function of t, there is exactly one s E (so,si) with tangent vector —dt- 
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Reflecting with respect to the extrema of t it follows easily that 7 yields an 
embedded curve only if 0(so) = 0(s=l). □ 

The curves described in the above Proposition have the same behavior 
as the ones obtained by Delaunay ([6]) as the generating curves of surfaces 
of revolution with nonzero constant mean curvature in R3. By this analogy 
the curves with constant geodesic curvature which are graphs over 9 will be 
referred to as unduloid type curves or unduloids, and the ones whose tangent 
vector is vertical somewhere as nodoid type curves or nodoids. 

These curves are depicted in Figure 1. 

Figure 1: Nodoid and unduloid type solutions to equations (*). 

The following two lemmas are key results to find the curves with constant 
geodesic curvature. The proof of the first one is just a direct computation 
using equations (*). The second one follows from the proof of Sturm's 
Separation Theorem ([13, Corollary 3.1]) and Osserman ([19]) 

Lemma 1.4.  Let 7 = (0,t) be a solution to (*) with constant geodesic cur- 
vature. Let u — cos a.  When d9/ds 7^ 0 we have 

(1.3) 
fu 
d82 + [(/y - //"]«= 0. 

Lemma 1.5. Let ui, U2 : [a, b] —> R be solutions to 

v!{ + g\u\-= 0,        u'z +g2U2 = 0, 

where primes denote the derivative with respect to the parameter in [a, 6]. 
Assume that ui, 112 > 0 at some small interval (a, a + e) on (a, 6), that 
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(1^2 — Uiui^ia) ^ 0; and that #2 ^ 9i in [«,&]. Then the first zero b1 

of U2 is less than or equal to the first zero of ui. If they coincide then 
(^^2 — uiu'^jifl) = 0 and g\ = g2 on [a, b']. 

If we assume ui, U2 > 0 on (a, 6), (u^^ — uiu^ia) ^ 0, 92 ^ 91, and the 
limit M = limt-+QUi(t)/u2(t) is finite then ui ^ MU2 on (a, 6). Moreover, 
if U2(b) = M^i(fe) i/ien (i^i^ — ^1^2)(a) — 0 and gi = ^2 on [a, b]. 

Curves with constant geodesic curvature in a Riemannian surface M 
are the critical points of length under the restriction that the area enclosed 
by the curve is constant. If the boundary of a relatively compact domain 
has several connected components and it is a critical point of length under 
the above area constraint then all the boundary components have the same 
constant geodesic curvature measured with respect to the inner normal ([2], 
[18]). We shall say that a curve C enclosing a set Q, is stable if it has con- 
stant geodesic curvature with respect to the inner normal and the second 
derivative of length for variations keeping constant the area enclosed is non- 
negative. An unstable curve is a non stable one. A curve enclosing a domain 
is two-sided since one can choose a normal vector to the curve pointing to 
the domain. Analytically a two-sided curve C is stable if and only if 

(1.4) I(u) = - f u |^ + (K + h2)u\ ds> 0, 

for all functions u : C —>> R such that Jc u ds = 0 ([2]). In the above formula 
K is the Gauss curvature of M, h is the geodesic curvature of (7, d/ds is 
the derivative with respect to arc-length on C and ds is the Riemannian 
measure on C. So d2/ds2 is the one-dimensional Laplacian. The left side of 
(1.4) is the quadratic form, often called the index form, associated to the 
self-adjoint operator 

(1.5) j(u) = ±l + (K + h2)u, 

which will be referred to as the Jacobi operator or the second variation 
operator. Associated to each connected component C" of the curve there is 
an increasing sequence of eigenvalues {A;(C")};EN- We refer to the reader 
to Chavel's book ([4]) for standard properties of eigenvalues. A Jacobi field 
u is a solution to the equation J(u) = 0. Prom (*) one can prove that 
u = f(t)cosa is a Jacobi field over any solution 7 to (*). This function is 
the normal component of the Killing field do restricted to 7. 

If a connected curve is stable then at most the first eigenvalue is negative. 
If Ci, C2 are connected curves with the same constant geodesic curvature h, 
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^i(Ci), Ai(Cr2) ^ 0, and one of them is negative then Ci U C2 is an unstable 
curve. 

The notion of stability is related to the isoperimetric problem since the 
boundary of an isoperimetric domain is a stable curve. Of course each curve 
contained in a stable one is also a stable one. 

The following result characterizes the stability of the closed curves S1 x 
{£} in the rotationally symmetric surfaces we introduced at the beginning 
of the section. 

Lemma 1.6. For t fixed, the curve S1 x {£} is stable if and only if 

(1.6)     [{f'f - ff"}(t) ^ 1, or equivalently       L2(K + h2)(t) ^ 47r2. 

Proof The curve S1 x {t} is isometric to the circle of radius f(t) and the 
function K + h2 equals —f'/f + (f If)2, which is a constant function over 
S1 x {t). The stability of the curve is then equivalent ([1]) to that the first 
nonzero eigenvalue A2 = l//2(t) of the Laplacian of the curve is greater 
than or equal to [-f'/f + (/7/)2](*)> which implies (1.6). □ 

We now write down the condition for the boundary of an annulus to be 
stable. 

Lemma 1.7. The boundary of the annulus Vt = S1 x [ti,^] is stable if and 
only if each connected component dVti = {t — t\\, dQ,2 = {t — £2} is 
separately stable and 

p.r, * + »!(«,) + * + *<„) <„. 

Moreover if f(t) — f(—t) for all t and ti — —£2 then the annulus S1 x [—£2) £2] 
is stable if and only if 

(1.8) {K + h2){t2) ^ 0. 

Proof. If dVt is stable then dVti is also stable for i = 1, 2. Take the function 

u = 
-L(t2), mi, 
L(ti),    dtt2, 
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which has mean zero when integrated over <9fi. Inserting this function in the 
index form we obtain Q(u,u) ^ 0 by stability. Inequality (1.7) then follows 
immediately. 

Suppose now that each connected component <9^, i = 1, 2, is stable and 
that inequality (1.7) holds. Let u : dtt -» R be a mean zero function. Call 
Ui, i = 1, 2, to the restriction of u to dfli. Then Ui = Ci + Vi, where c; is a 
constant and the integral of Vi over <9f^ is zero. We have 

Q(ui,Ui) = Qfaci) + Q(vi,Vi) + 2Q(ci,Vi). 

Note that Q(ci,Vi) = 0 since Q is constant and Vi has mean zero. Moreover 
Q(vi,vi) ^ 0 since Vi has mean zero and dCti is stable. Hence 

Q{U,U) = Q(ui,Ui) + Q(U2,U2) > Q(ci,Ci) + Q(C2,C2) 

- -(i^ + h2)^) c?L(ti) - (if + /i2)(t2) c^(t2). 

Since ^ has mean zero we have ciL(ti) = — C2Lfo) and we conclude 

The last inequality by (1.7) holds. So we have proved that dft is stable. 
Suppose now that f(t) = f(—t) and that ti = — ^2- Observe that 

K(t) = K(-t), that h(t)2 = h(-t)2, and that L(t) = L(-t). So in this 
case inequalities (1.7) and (1.8) are equivalent. Moreover inequality (1.8) 
and Lemma 1.6 show that each component of d£l is stable. From these 
observations the assertion on S1 x [—£2,£2] follows easily. □ 

On a complete Riemannian surface M an isoperimetric domain ft C M 
for area A is a set enclosing area A such that dft is smooth and has minimum 
length amongst the boundaries of smooth sets enclosing area A. 

In a compact surface M standard existence and regularity results from 
geometric measure theory imply that isoperimetric domains exist for any 
positive value less than or equal to the area of M, and that their boundaries 
are closed embedded stable curves. So a way to determine the isoperimetric 
domains is to classify the closed embedded curves with constant geodesic 
curvature or at least the stable ones. 

For A G (0,A(M)) we consider the function 

1(A) = mi{L(dB)]B is smooth and A(B) = A}, 

which will be called the isoperimetric profile of M ([2]). 
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The usual way of proving existence of isoperimetric domains in a Rie- 
mannian surface M for a given value 0 < A < A{M) is to take a minimizing 
sequence of domains {On}nG^ with smooth boundary enclosing area A such 
that 

lim L(0fin) = /(4). 
n—>oo 

In general there is no convergence result for such sequences. However from 
standard Geometric Measure Theory ([10]) one can prove that each set in 
a minimizing sequence {On}rie^ can be decomposed as On = fi^ U $"2£. The 
sequence $!£ converges to some set fi (which could be empty), and the 
sequence fi^ diverges. 

Lemma 1.8. Let M be a Riemannian surface, A E (0,A(M)), and let ftn 

be a minimizing sequence for area A. Then there is a (possibly empty) set 
0 C M with A(fi) ^ A with smooth boundary and a subsequence of ftn, 
which will be denoted in the same way, such that Qn can be decomposed as 
Qn = Q^ u Q^, where Q^ and ft^ are union of connected components ofQn. 
Moreover 

(i) O^ converges to Q locally as Cacciopoli sets, 

(ii) Q£ is relatively compact for each n and the sequence {£^} diverges, 

(hi) // Lc = limL(<9£^) and L^ = limL(<9f^) then Lc + Lj = L. 

(iv) dtt is smooth, has constant geodesic curvature and it is stable. 

2. Planes. 

Let M = (M
2
,G?S

2
) be a Riemannian plane, where ds2 is a complete metric 

which is symmetric with respect to the usual Euclidean rotations in R2 

around the origin. Removing the origin (the pole of the metric) from M 
we obtain a Riemannian surface iV diffeomorphic to S1 x /, where / = 
(0, oo). If 9 € S1 and t E M. then the metric ds2 restricted to N is given by 
dt2 + f(t)2 d02, for some smooth function / : / ->► R+. 

The function f(t) admits the following asymptotic expansion around 
t = 0 

m=t-^tz+o(t% 
This follows from the Taylor type formula for the length L of the geodesic 
circles at L = 0 ([7]). In the above formula KQ is the Gauss curvature at the 
pole and o(t4)/t4 is a bounded function around t = 0. Such a formula implies 
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that the derivatives up to third order of the function / extend continuously 
to t = 0 and that /(0) = 0, /'(0) = 1, /"(0) = 0 and /'"(0) = -KQ. 

2.1. Planes with decreasing curvature. 

In the conditions stated at the beginning of this section we assume now that 
the Gauss curvature K(t) is a decreasing function oft. IfK(t) is smooth then 
Kf(t) ^ 0. This is equivalent to that the function (Z')2 — ff" is decreasing. 
If the surface is regular at t = 0 then this function approaches 1 when t goes 
to zero. Hence 

(2.1) (Z')2 -//" < 1.        for        *>0, 

and the geodesic circles centered at the pole are stable by Lemma 1.6. Note 
that (Z')2 — //" equals 1 precisely on some region of constant curvature 
around the pole. 

The geometry of M is described in next Lemma ([15, Lemma 3.2]) 

Lemma 2.1. For a surface M in the above conditions one of the following 
possibilities holds 

(i) f ^ 0 except possibly at some closed bounded or unbounded interval 
where f vanishes. 

(ii)   There is ti > 0 such that /'(£) > 0 for t < ti and ff(t) < 0 for t > ti. 

(hi)   There are ti, £2, with 0 < ti < £2, such that f(t) > 0 for t E (0,*i) U 
(£2,+00) and f{t) < 0 for t G {tiM)- 

Moreover in the first and third cases the area of M is infinite. In the second 
one the area of M is finite. If lim^+oo K{t) = KOQ < 0 and the area of M 
is infinite then the injectivity radius goes to +00 for any diverging sequence 
of points. 

Proof. Since K(t) is decreasing we have either 

(a) K(t) > 0 everywhere, or 

(b) K(t) ^ 0 and K(t) = 0 at some closed unbounded interval, or 

(c) There exists a closed bounded interval J such that K(t) > 0 for t < 
inf J, K(t) = 0 on J, and K(t) < 0 for t > sup J. 
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Figure 2: Planes with decreasing curvature. 

Note that ff(t) ^ -C, C > 0, t —>> oo, is not possible since /(£)■ > 0. As 
/'(0) = 1 and (//)/ = —fK, an elementary analysis of the possibilities gives 
(i), (ii) and (iii). 

The area in cases (i) and (iii) is infinite since fit) ^ 0 for t large enough 
and so f(t)>C for some C > 0 and t large enough. 

In case (ii) we claim that there is T > 0 such that K(t) < 0 for t > T. 
Otherwise Kit) ^ 0 for t large enough and so /' would be decreasing and 
less than or equal to some negative constant — C for t large enough, forcing 
/ to take negative values. This proves the claim. Taking T large enough 
we may assume that f'(T) < 0. As the curvature is decreasing we have 
-/"// < -M for some M > 0 in (T, +oo) and hence 

r+oo -j        p+oo 1 

JT     Mdt<MjT     /"(0^ = ]i?(/'(+°o)-/'(T)). 

If //(+oo) < 0 then / would become negative at infinity.  So /'(+oo) = 0 
and 

fT  m«<->M < +oo, 

which implies that the area of M is finite. 
Assume now that K^ < 0 and that the area of M is infinite. Let us see 

that the injectivity radius goes to +oo for any diverging sequence of points. 
Consider a region t ^ to where /" > 0 and f > 0. Let p G {t ^ to}. We 
refer the reader to Chavel's book ([5]) for definitions and properties of the 
cut locus C(p). Assume there is q G {t ^ to} where the distance d(p, C(p)) is 
achieved. By Klingenberg's Lemma ([5]) there are two minimizing geodesies 
a, (3 : [0,L] -> M parameterized by arc-length such that a(0) = /3(0) = p, 
a(L) = /3(L) = q and a'(L) = —^'(L).  The points p and q cannot lie on 
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the the same vertical geodesic 0 = 0Q since trivially the only minimizing 
geodesic joining p and q is precisely 9 = BQ. Parameterize a U (—/?) so that 
f(t) sin a = E > 0. Prom (*) 

d2t      fit)   . o 

and we conclude that aU(—ft) has only minima of the t-coordinate. Equality 
f(t)sma = E implies that sincr is a positive decreasing function of t and 
so it has only one minimum of the ^-coordinate. The point p corresponds 
to the selfintersection of a U (—/?) and the point q is the point on a U (—/?) 
where t achieves its minimum value ti ^ IQ. AS /(£) is increasing in t ^ IQ 

2L > 27r/(to). 

For pn diverging, choose tn E (to, t(pn) such that tn -> +00 and t(pn) — tn^ 
+00. Then the injectivity radius at p is larger than or equal to 

min{t(pn) - tn,7rf(tn)}, 

which goes to +00 when n —> +00. D 

Next we classify the curves in M having maxima and minima of the 
t- coordinate. 

Lemma 2.2. Consider a rotationally symmetric surface with metric ds2 — 
dt2 + f(t)2dt2 and a pole for t = 0. Let C C M be a curve with constant 
geodesic curvature h in the above surface and assume that t|^ achieves local 
maxima and minima. Then C is a nodoid, an unduloid, a geodesic circle 
around the pole, or a curve approaching the pole. In the last case the curve 
C is a graph over 6 with exactly one maximum for the t-coordinate and it 
meets the line t = 0 orthogonally. 

Proof. Parameterize C by a solution (0(s),i(s)) to (*) so that t(0) = T is a 
maximum of the ^-coordinate and sincr(O) = 1. Let E be the energy of the 
parameterized curve. 

If C is not a geodesic circle around the pole then t\c has a strict maxi- 
mum at s — 0. If the minimum of t\c is positive then C is either an unduloid 
or a nodoid by Proposition 1.3. 
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If C approaches the pole then E = 0. By the first integral (**) we have 

/(T) - h /0
T /(£) d£ = 0 and so h > 0. Moreover 

8111(7 = --fW~' 
and so sincr > 0 and C is a graph over 0. When t —> 0 the above fraction 
goes to 0 by L'Hopital rule and so C meets t — 0 orthogonally. □ 

Lemma 2.3.  Consider a rotationally symmetric surface with metric ds2 = 
dt2 + f(t)2 dt2 and a pole for t = 0. 

(i)   There are no closed embedded unduloids in regions where the function 

(f)2 - ff" < 1 but not identically 1. 

(ii)   There are no closed embedded nodoids in regions where the Gauss cur- 
vature is decreasing or increasing and not constant. 

(hi)   There are no closed embedded curves touching a pole inside regions 
where the Gauss curvature is increasing or decreasing but not constant. 

Proof. Take a curve with constant geodesic curvature and parameterize it 
so that sincr — 1 at a maximum of t\c. 

(i) If C is an unduloid, we may assume that a minimum of t\c is achieved 
at 6 = 0, and that the first maximum of t\c in the region {9 > 0} lies over 
#0 > 0. The curve C yields a closed embedded curve in M if and only if 
#0 = 7r/fc, for some k G N. The function cos<7(#) is a positive solution of 

(1.3) on (O,0o) which vanishes at 6 = 0. Since (f)2 - ff ^ 1 and ^ 1, we 
can compare it with sin#, the positive solution to uff + u = 0 in (0,7r) which 
vanishes at 6 — 0 using Lemma 1.5. We conclude that 9Q > TT. This proves 

(ii) Assume that C is a nodoid. Translate it until a point with cos a = 1 
lies over 0 = 0 and C C {9 ^ 0}. We can suppose that a — 0 at this point. 
Let 9Q and 9i > 0, be the projection over 9 of the points with a = —7r/2 
and a — 7r/2, respectively. We obtain a closed embedded curve if and only 
if 9Q = 0i. The pieces of C corresponding to the cr-intervals [—7r/2,0), 
(0,7r/2] are graphs over 0. The function coscr, restricted to each piece, gives 
two positive solutions to (1.3) over [O,0o], [O,0i], respectively. Observe that 
coscr|e=0 = 1 and that (dcosa)/d9\e=zQ = —hf. We can compare them 
using Lemma 1.5. If K(t) is decreasing and not constant then (f,)2 — ff" 
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is also and so #o < #1- If K(t) is increasing and not constant then OQ > 9i. 
This proves (ii). 

(hi) Assume now that C approaches the pole. We know that C is a graph 
over 8 with one maximum for the ^-coordinate and that C is symmetric with 
respect to this maximum. Translate C until it meets t — 0 at 9 = 0 and 
the maximum of t\c lies over 9o > 0. Then C is smooth at the pole if 
and only if 8Q = 7r/2. We compare cos a with cos#, using Lemma 1.5 and 
the hypotheses on (jf7)2 — //". If K(t) is decreasing and not constant then 
(/02 - ff" ^ ! and not identically 1 over C. It follows that OQ > 7r/2. 
If K(t) is increasing and not constant we have 9Q < 7r/2. In any case (hi) 
follows. □ 

Theorem 2.4. The only connected closed embedded curves with constant 
geodesic curvature in a rotationally symmetric plane M with decreasing cur- 
vature are the geodesic circles centered at the pole and possibly the boundaries 
of geodesic discs with constant Gauss curvature in M. 

Proof. Let C C M be a closed embedded curve with constant geodesic cur- 
vature. If C is contained inside some region with constant Gauss curvature 
around the pole then C is a geodesic circle. If C is contained in a region 
with constant Gauss curvature which does not contain the pole then C is 
of nodoid type and it bounds a disc with constant Gauss curvature. If C is 
not contained in a region with constant Gauss curvature then it must be a 
circle of revolution by Lemmae 2.2 and 2.3. □ 

Remark 2.5. All the results in this section are still true if we consider a 
metric dt2 + f(t)2d92 with 0 < /'(0) < 1, which is singular at the origin. 
However if the singularity comes from inequality /'(0) > 1 then there exist 
closed unduloids in the surface. 

Remark 2.6. The only regularity hypotheses needed for / are that / is C1 

and piecewise C2. Then the Gauss curvature K is not continuous but it is 
decreasing if and only if L2(K + h2) is decreasing. The version of Sturm's 
Comparison Theorem ([19]) that we need is satisfied with these regularity 
hypotheses. 

Next we are going to prove that isoperimetric domains do exist on M. 
This has also been shown in [15]. Our proof is a new argument and show 
existence amongst domains with any number of connected components. The 
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reader can find a related argument in the second part of Fiala's paper ([8]). 
First we state a result that we shall need in several sections of the paper. 

Lemma 2.7. Let {Da  }, {Da  }, a G (0,ao), be smooth families of discs 
such that, for all a 

(i) AiD^^AiD^^a, 

(ii) dDa * and dDa ' have constant geodesic curvature (not necessarily the 
same), and 

(iii) J wKdM^f mKdM. 

Then L(dDa ^)   ^   L(dDi ^) for all a.    If inequality (iii)  is strict then 

L(dD^)>L(dD^). 

Proof Fix a and i =  1, 2, and let (p be the normal component of the 
variational field associated to the deformation dDa • Then we have 

since h(dDa ) is constant. By Gauss-Bonnet 

dL(dD®)2 

da JD£ 
-2   27r-  /      KdM] . 

Comparing the derivatives so obtained using (iii) and integrating from 0 
to a the Lemma follows. □ 

Theorem 2.8. Let M be a rotationally symmetric plane with a metric of 
curvature decreasing from the pole. Then isoperimetric domains exists on 
M and they are bounded by geodesic circles around the pole. 

Remark 2.9. For a characterization of isoperimetric domains in these sur- 
faces we refer to the reader to [15, Theorem 3.1]. It turns out that isoperi- 
metric domains are geodesic discs about the pole, annuli of revolution en- 
closing a least length circle of revolution and, in the case of finite area, the 
complements of geodesic discs around the pole. 
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Proof. By Lemma 1.8 we only have to show that there is no area loss at 
infinity. This clearly cannot happen when the area of M is finite. So we 
assume that A(M) = oo. Take A > 0 and a minimizing sequence fin = 
fi£ U O^ for area A. The sequence fi£ converges to a set fi enclosing area 
74c ^ A. The curve 90 is smooth, it has constant geodesic curvature h and 
it is stable. Let K^ be the limit of the curvature at the end of M. 

Case 2.10. K^ < 0. 

In this case K is strictly negative near infinity. As the area of M is 
infinite Lemma 2.1 shows that the injectivity radius of M goes to infinity 
when t —> oo. 

Recall that for a disc D with area A and perimeter L in a surface with 
Gauss curvature K ^ KQ the following isoperimetric inequality holds ([8], 

[12]) 
L2 ^ATTA-KQA

2
. 

If the surface is a plane and KQ < 0 then this inequality is also valid for any 
domain O. This follows since ft is a disc D C M with a finite number of 
holes removed. Clearly L(dfl) ^ L(dD) and A(D) ^ A(Q). As KQ < 0 we 
have 

(2.2)     L(dn)2 ^ L(dD)2 > 47r,4(£>) - ^(D)2 ^ 47r^(0) - KoA(n)2. 

This inequality is also valid for a domain with any number of connected 
1 /9 

components by inequality 1^^ + (^fr;)2] < X^(a; + tf)1/2, for a*, 

6i >0. 
Let Ld = limn_>00 L(<9f^) and A^ = limn_>00 A(fi^) be the limit length 

and area of the diverging sequence il^. Applying inequality (2.2) to each 
connected component of fi^, summing up and passing to the limit we have 

L2 > bxAd - K^A2. 

If Koo — —oo then A^ = 0. Otherwise, one would have L^ — +oo, which 
is not possible since L^ < +oo. In this case there is no loss of area. So let 
us assume from now on that Koo is finite. Let us see that in fact equality 
holds in the above inequality. Consider a disc DOQ in a plane M^OQ) of 
constant curvature KQQ such that A^oo) = A^. Its perimeter equals ^TrAd — 
KOQAJ. If the displayed above inequality is strict then L(dDOQ) < L^- 
Approximating DQO by geodesic discs in M centered in a diverging sequence 
of points with the same area as O^ we obtain a better minimizing sequence. 

This contradiction shows that L(dD00) = Lj 
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Let us see now that Ac^ Ad cannot be positive at the same time. Denote 
by hoQ the geodesic curvature of Doo. We claim that 

h = h oo? 

oo since otherwise we can find deformations f^, (Doo)* of fi in M and of D( 

in M(iiroo) by parallel curves such that A(Clt) + ^((Doo)t) = Ac + Ad and 
the sum of the boundary lengths of fit and of (fioo)t is less than Lc + L^ 
for some t. Approximating the domain (DQO)* by geodesic discs in M with 
the same area as fl^ (this can be done since the injectivity radius of M goes 
to infinity when we approach the end) we obtain a better solution to the 
isoperimetric problem. This contradiction shows that hoo = h. 

The same argument implies that if we make a variation of ft U DQO by 
parallels keeping the area enclosed constant then the second derivative of 
perimeter is nonnegative. Hence if we consider the function 

{— Lc,    oDco, 

Ld,      dfl, 

then the index form (1.4) applied to u should give a nonnegative value but 

I(u) = -f     (K^ + h2)^- f  (K + h2)L2
d 

JdDoo Jon 

^-f     (Kn + h^Ll- [ (Koo + h^Ll 
JdDoo Jan 

since K\d^ ^ KOQ. AS KQQ + h2 is positive for geodesic circles in M^KQQ) 

the last quantity is negative. This gives us a contradiction that shows that 
either Ad = 0 or Ac = 0. If Ad = 0 the proof is complete. If Ac — 0 then a 
geodesic disc centered at the pole is better than a disc at infinity since the 
curvature of the former is larger than the one of the last by Lemma 2.7. 

Case 2.11. K^ = 0. 

In this case the curvature of M is nonnegative, JM K ^ 27r by Cohn- 

Vossen inequality and, since /" < 0, it follows that — 1 < /0 /"(O0^ < 0> 
and so we have 0 ^ /' < 1. 

We consider the conformal field X = f(t)dt and the associated one- 
parameter group (ft of diffeomorphisms. As /' ^ 0 equation (1.2) and the 
first variation formula for the area imply that tpt increases area. Let us see 
that (pt also increases length of curves. Consider an embedded curve C C M. 
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Let v be a unit vector tangent at p E C. Let Z be a vector field around p 
that coincides with d(ps(v) for 5 small and such that [X, Z] = 0. Then 

|dVs(t;)| = (DXpZ,v) = (DZpX,v) + ([X,Z\(p),v) = />| = / > 0. 
5=0 

Integrating on s it follows that |y5(v)| ^ |v| when 5 > 0 and, using the area 
formula, we deduce that L((ps(C)) ^ L(C) when 5 > 0. 

We can assume that each set Qn in the minimizing sequence is a union 
of discs. Observe that each connected component of Qn is a disc Dm with 
a finite number of holes removed, and that there are at most a countable 
number of components. Since two different discs Dm are either disjoint 
or one of them lies inside the other, the set (Jm Dm is a union of discs. 
We claim that [jTnDm has finite area: otherwise there is a subsequence 
Dmk such that dDmk diverges. The integral version of the isoperimet- 
ric inequality shows that a diverging sequence of disjoint discs has area 
controlled by the perimeter, which is bounded by the one of Qn. So we 
may assume that Dmk C Dmk+1 for all k. But then L(dDrrik) is uniformly 
bounded below by some positive constant, and we get a contradiction since 
^A.L((9Dm/e) ^ L(dfln), which proves the claim. Hence [JrnDm has finite 
area larger than the one of On. On the other hand the perimeter of {Jm Dm 

is less than or equal to the one of fln. Applying the one-parameter group of 
diffeomorphisms {tpt} associated to the conformal field X we decrease the 
area and the perimeter of (Jm Dm to obtain a family of discs enclosing area 
A and with perimeter less than or equal to the one of fin. We denote this 
minimizing sequence in the same way and apply Lemma 1.8 to get a limit 
set ft. 

Since dtt has constant geodesic curvature, Theorem 2.4 implies that dCt 
is the union of circles of revolution and the boundaries of geodesic discs with 
constant curvature. If d£l is not connected then using a locally constant test 
function with mean zero taking into account K + h? ^ 0, we deduce that dVt 
is the union of circles of revolution with h = 0 in a flat region. As /' ^ 0, 
a geodesic disc around the pole with the same area has less perimeter. If 0 
is connected then fi can be replaced by a geodesic disc centered at the pole 
by Lemma 2.7. 

The isoperimetric inequality for disc type domains in surfaces, the diver- 
gence of the sequence {fi^} and the fact that the positive Gauss curvature 
goes uniformly to zero outside of compact subsets implies 

L2
d > 4icAd. 
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Consider now the geodesic circle C centered at the pole enclosing area A. 
Let L be the length of dC. We have 

(Lc + Ld)2 ZL2
C + L2

d> 47r(7r f2(Ac) + Ad), 

where f(A) denotes the composition f(t(A)), for t(A) the inverse function 
of the area of the geodesic circles of the radius t around the pole. We claim 
that the following inequality holds 

TT f2{Ac) + Ad > TT f2(A),        whenever A - Ac + Ad,    Ad > 0. 

Indeed this inequality becomes an equality if Aj — 0. Fixing Ac and thinking 
about the two terms in the above inequality as functions of Ad we easily 
see that the derivative of TT f2{Ac + Ad) with respect to Ad equals /' (the 
derivative of / with respect to £), which is less than one. This proves the 
strict inequality and the claim. Hence we have 

(Lc + Ld)2^L2, 

and equality implies that Ld = 0 and so Ad = 0. We conclude that strict 
inequality holds in the above displayed inequality. So if Ad > 0 the geodesic 
circle C encloses a better solution. This is clearly not possible. So Ad = 0 
and we find our reasoning. □ 

Finally we show how one can reconstruct the surface from its isoperi- 
metric profile in the convex case 

Theorem 2.12. Let I : (0,+oo) —> M be a smooth function such that 
(I2y is a nonnegative, decreasing, convex function such that I2(a) —> 0; 

(dl2/da)(a) -> 47r when a —^ 0. 
Then there is a complete plane of revolution with a smooth metric such 

that 1(a) is the isoperimetric profile of M. Moreover, the Gauss curvature 
of M is a nonnegative decreasing function. 

Proof Let F(t) be the solution to 

with initial conditions F(0) = F'(0) = 0. As F"(t) ^ 0 and F"(0) = 2ir > 0 
we have F'(t) > 0 for t > 0. Since the function dl2/da is decreasing we 
obtain F^t) ^ 2-n and so F(t) is defined for all t. We consider the function 
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Then we have F(t) = 2K /0* /(£) df. The metric of revolution dt2 + f(t)2 d62 

is complete, regular at the pole as /'(0) = F"(0)/{2-K) = 1. Moreover 

A(*)-     /(*)  -      F(t)   "    2da2- 

Since dl2/da is decreasing and convex we deduce that K{t) is nonnegative 
and decreasing. The isoperimetric domains in M are the geodesic discs 
centered at the pole. Let L(a) be the isoperimetric profile of M. We have 
a = F(t) and dL2/da = 2L/i = 2//(t) - 2F"{t) = dl2/da. As L2(0) = 
/2(0) = 0 we have L(a) = 1(a). □ 

2.2. Planes with increasing curvature. 

We assume in this section that the Gauss curvature K(t) is an increasing 
function of t. If K(t) is smooth then K'(i) ^ 0. We know that the function 
(f)2 - ff" = (27T)-

2
L

2
(K + h2)(t) is also increasing. If M is regular at the 

pole then (Z')2 — //" approaches 1 when t goes to zero and so 

(2.3) U')2-ff">^        for        *>0. 

Note that (f)2 — f f" equals 1 precisely on some region of constant curva- 
ture around the pole. Hence the geodesic circles centered at the pole and 
contained in this region are stable and the ones in the complementary region 
are unstable by Lemma 1.6. 

Since K(t) is increasing and M is complete, there exists the limit K^ = 
limt_>+oo K(t) and it is nonpositive. So K(t) ^ 0 everywhere. As /'(0) = 1 
and f,f(t) ^ 0 we have ff(t) ^ 1 for all t and /(£) is a strictly increasing 
function. The injectivity radius goes to +oo when we approach the end as 
in Lemma 2.1. 

We shall need the following Lemma 

Lemma 2.13. Consider a rotationally symmetric surface with metric dt2 + 
f(t)2 d62. Let C be a closed embedded unduloid such that (f)2 — ff" ^ 1 
and (ff)2 — f f" is not identically 1 over C.  Then C is unstable. 

Proof. By Lemma 2.2 the ^-distance between two consecutive maxima or 
minima of t\c is less than 27r. Hence we need at least two pieces between 
adjacent maxima or minima of the ^-coordinate to obtain a closed embedded 
curve.  In this case the restriction of the Jacobi field u = f(t)cosa to the 
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curve has at least four nodal domains. Courant's Nodal Domain ([4]) then 
shows that the Jacobi operator has at least three negative eigenvalues and 
so the curve is unstable. □ 

The result characterizing the stable embedded curves in such a plane is 

Theorem 2.14. Let M be a rotationally symmetric plane with increasing 
curvature. Then there are no stable curves embedded in M, except possi- 

bly the boundaries of geodesic discs with constant curvature. If the Gauss 
curvature is strictly increasing then there are no stable embedded curves in 
M. 

Proof. By Lemma 2.2 an embedded connected curve in M must be a nodoid, 
an unduloid, a curve touching the pole or a circle of revolution. By equation 

(2.3) we have ((/,)2 — ff")(t) ^ 1 and equality holds at some geodesic disc 
of radius to around the pole with constant Gauss curvature. Of course to can 
be either 0 or +oo. Any curve with constant geodesic curvature contained 
in t ^ to is the boundary of a geodesic disc with constant Gauss curvature. 

Curves approaching the pole and touching t > to cannot exist by 
Lemma 2.2. Unduloids touching t > to are unstable by Lemma 2.13. 
Nodoids touching t > to exist if they are contained inside a region with 
constant Gauss curvature and they are the boundaries of geodesic discs with 
constant Gauss curvature by Lemma 2.2. Circles of revolution are stable if 
and only if they are contained in t ^ to by Lemma 1.6. We conclude that 
the only connected stable embedded curves are the boundaries of geodesic 
discs with constant curvature in M. Since these curves have negative first 
eigenvalue for the Jacobi operator J we conclude that a stable curve has to 
be connected. 

When the Gauss curvature is strictly increasing the only embedded 
curves with constant geodesic curvature are circles of revolution, which are 
not stable. □ 

Remark 2.15. As in the previous section, the above result follows if / is 
merely C1 and piecewise C2. It remains valid also if metric singularities of 
the type /'(0) > 1 are allowed. 

Let us see now that isoperimetric domains can never exist on M 

Theorem 2.16. Let M be a rotationally symmetric plane of increasing cur- 
vature.  Let KOQ — supMiir.   The isoperimetric domains in M are geodesic 
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discs with constant curvature KOQ . If this region is void then isoperimetric 
domains do not exist on M. 

Moreover, the isoperimetric profile of M is given by 

1(a)2 = 47ra- K^a2. 

Proof Fix A G (0,^4(M)), and let {firi}neN be a minimizing sequence for 
area A. By Lemma 1.8 we have ftn = f2£ U fij*, where Q£ is convergent 
to some domain O and O^ is divergent. Moreover dft is stable and so it 
is a geodesic circle in a region of constant curvature around the pole. We 
conclude that Q is a geodesic disc with constant Gauss curvature KQ and 
we have 

L(dn)2 = 4iTA(n) - KoA(n)2. 

On the other hand, for the divergent part of the sequence f^ we have 

L2 = 47rAd - KcoAl 

It is clear that the perimeter of a disc in M(iiroo) enclosing area A is less 
than or equal to L(dft) + L^ (equality holds only if L(dQ) = 0 or Lj = 0). If 
the region where K = K^ is non void then a geodesic disc of area A inside 
this region is an isoperimetric domain. □ 

3. Spheres. 

In this section we consider a rotationally symmetric sphere M. The Killing 
field vanishes at two points. Removing them we obtain a Riemannian man- 
ifold isometric to S1 x (0,£o) with metric ds2 = dt2 + f(t)2 d62. The point 
corresponding to t = 0 will be called the south pole, and the one correspond- 
ing to t = to the north pole. The curves S1 x {t} will be called parallels and 
the ones with ^-coordinate constant meridians. The equator is the curve 
S1 x {to/2}. We shall impose to this surface to have an equatorial symmetry 
with respect to t — to/2, that is 

/(t) = /(to-t). 

Since M is regular /(£), and their derivatives up to third order, extend 
to t = 0 and to t = to and we have /(0) = /(to) = 0, /"(0) = /"(to) = 0, 
/'(0) = 1, /'(to) = -1, /'"(O) = -Ks, /'"(to) = Kn, where Ks = Kn are 
the values of the Gauss curvature at t = 0 and t = to, respectively. 
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We remark that there are no rotationally symmetric metrics with strictly 
monotone curvature in a sphere. This follows from an old argument by 
Kazdan and Warner ([16]), integrating the derivative of (f)2 — f f" between 
0 and to, or by the arguments in [15]. 

3.1. Spheres with curvature increasing from the equator. 

In this subsection we assume that the Gauss curvature K(t) is decreasing 
for t < to/2 and so increasing for t > to/2. 

The function (f)2 — //" takes the value 1 at t = 0, t = to, it decreases 
from 0 up to to/2 and it increases from to/2 up to to- So 

(/')2-//"<l.        on       (0,*,,). 

Equality holds on regions with constant Gauss curvature around both poles. 
Lemma 1.6 and the above inequality show that any circle of revolution is 
stable. 

The geometric behavior of M follows next Lemma. See Figure 3. 

Lemma 3.1. The Gauss curvature K{t) is positive around the poles and 
either nonnegative everywhere or negative on a symmetric annulus around 
the equator. 

(i) If K(t) ^ 0 everywhere then /'(t) ^ 0 for t G (0,to/2] and /'(t) = 0 
precisely at some closed interval containing to/2. 

(ii) If K(t) changes its sign then there is ti G (0,to/2) such that ff(t) > 0 
fort G (0,ti) and f(t) < 0 for t G (ti,to/2). 

Proof. The Gauss curvature is positive somewhere by Gauss-Bonnet. It 
achieves its maxima at the poles and decreases up to the equator, so it is 
everywhere nonnegative and it vanishes around the equator or it becomes 
negative around the equator. 

Since K(t) is decreasing in (0,to/2] and K(0) > 0 we have that either 

(a) K(t) > 0 for t G (0,to/2], or 

(b) K(t) ^ 0 for t G (0,to/2] and K{t) = 0 at some closed interval in 
(0,to/2] containing to/2, or 

(c) there is a closed interval J C (0, to/2) such that K(t) > 0 for t < inf J, 
K\j = 0 and K(t) < 0 for t > sup J. 
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Figure 3: A convex sphere and a sphere with points of negative curvature. 

As.(/')' - -fK, /'(0) = 1 and /'(to/2) = 0 we obtain (ii) from (a) and 
(b) and we obtain (hi) from (c). □ 

In these spheres of revolution there exist closed embedded nodoids. This 
will be shown for convex spheres 

Lemma 3.2. Consider the surface S1 x (0, to) wz't/i the Riemannian metric 
ds2 = dt2 + f{t)2d92 such that f{t - to) = fit). Assume that /'(t) ^ 0 
for t < to/2 and that /'(t) ^ 0 for t > to/2, with f — 0 precisely at some 
interval containing to/2. 

Then there is a family of embedded nodoids {CT}, for T > to/2, which 
are symmetric with respect to t = to/2. Moreover the geodesic curvature 
h(T) is a positive strictly decreasing function ofT. 

Proof. Fix T E (to/2, to) and define 

-i 

h(T) = f(T) (fT /(Ode 
\Jto/2 j 

Consider the solution 8, t, cr, to (*) with h = h(T) > 0 and initial conditions 
0, T, 7r/2. Evaluating the first integral (**) at T and computing f(T) from 
the definition of h(T) we obtain for the energy the value 

rto/2 
ET = -h(T) /       /(Odf, 
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and from (**) 

sma = 
HT)g/2mdz 

m 
So sincr > 0 for t > to/2 and sincr = 0 at t — to/2. 

Since h(T) > 0 and sincr > 0 in t > to/2 it follows from the third 
of equations (*) that da/ds ^ h > 0 whenever the curve stays inside the 
region t > to/2. This implies that the solution hits the equator and that it 
meets it orthogonally. Reflecting with respect to the equator and again with 
respect to 6 — 0 we obtain a closed embedded curve with constant geodesic 
curvature that we shall denote by CT> The derivative of h(T) with respect 
to T equals 

\ Jto/2 J    \Jto/2 J 

which is strictly negative since ff(t) ^0. D 

Theorem 3.3. Let M be a rotationally symmetric sphere whose Gauss cur- 
vature is a decreasing function of the distance from the poles. Then the only 
connected closed embedded curves in M with constant geodesic curvature are 
parallels, meridians, nodoids symmetric with respect to the equator which are 
graphs over the equator, and the boundaries of geodesic discs with constant 
Gauss curvature. 

Moreover, the only stable ones are the parallels and the boundaries of 
geodesic discs with constant Gauss curvature. 

Proof. Let C C M be a closed embedded curve with constant geodesic 
curvature h. 

If C meets the south pole then we parameterize C by a solution of (*) 
with E — 0. If, in addition, C touches the north pole then /(to) = 0 and 
(**) shows that h = 0. Again by (**) we have sincr = 0 and C is a meridian. 

We assume from now on that C is not a meridian and hence that it does 
not touch both poles. By reflecting it with respect to the equator if necessary 
we can suppose that C stays away from the north pole. If C is contained in 
a region of constant curvature around a pole then C is the boundary of a 
geodesic disc with constant Gauss curvature. Henceforth we assume that C 
is not contained in a region of constant Gauss curvature around the poles. 

As (jf')2 - //" ^ 1 and ^ 1 Lemma 2.2 imply that C is neither an 
unduloid nor a curve approaching the pole. 
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If C is a nodoid then we conclude by Lemma 2.3 and by next Lemma 3.4 
that C is either the boundary of a geodesic disc with constant Gauss curva- 
ture or a unstable nodoid symmetric with respect to the equator. 

Finally circles of revolution are stable by Lemma 1.6. □ 

Lemma 3.4. Consider the surface S1 x (0, to) with the Riemannian metric 
ds2 = dt2 + f(t)2d62 such that /(t - to) = /(t). Assume that K(t) is 
monotone for t G (to/2,to). Let C C S1 x (0,to) be a nodoid type curve 
which is not contained inside a region with constant Gauss curvature. Then 
we have 

(i)   The curve C is embedded if and only if it is symmetric with respect to 
t = to/2. 

(ii)  If K(t) is increasing for t £ (to/2, to) and C is embedded then C is 
unstable. 

Proof. First we prove (i). Obviously if C is symmetric then it is embedded. 
Let T — max t^, S — min t\c. We parameterize C by a solution (0, t) to 
(*) with initial conditions 0, T, 7r/2. Let E be the energy and h the geodesic 
curvature. As C is a nodoid we have Eh < 0 (Eh ^ 0 implies graph over 9 
by (**)). Let us assume that E < 0 and h > 0. The other possibility E > 0, 
h < 0 is reduced to the first one by traversing the curve in the opposite 
sense. 

Since C is embedded it cannot be contained in a region where the cur- 
vature is strictly monotone by Lemma 2.3. So S < to/2 < T. Moreover 

fm-hf mdz=E,    -f(s)-hf mdz = E. 
Jo Jo 

If E = —hf*0'   /(£) dt; then C meets the equator orthogonally and it is 

symmetric with respect to t = to/2. So let us assume E ^ —flfQ
0/  /(£) dt;. 

If we reflect C with respect to t = to/2 we obtain a new curve C with 
the same geodesic curvature h that can be parameterized by a solution 9, t, 
a to (*) with initial conditions 0, to — S, 7Y/2. The energy E of this solution 
is given by 

E = f(to-s)-h 1°  mat, 
Jo 
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and an easy computation using the symmetry /(to — t) = f(t) yields 

/ rto/2 \        /_ ^0/2 \ 

rto/2 

(3.1) E>-h     mdt, 
Jo 

So replacing C by C if necessary we may assume that 

Prom (3.1) and (**) we have sin cr > 0 when t ^ to/2 and we obtain that 
C Pi {t > to/2} is a graph over 0. 

Claim.     For t G (to - T,£o/2) we have -/(t) - /I/Q /(£)*; < £ and so 
5 < to - T. 

In order to prove the claim fix t G (to — T, to/2). We have 

r»to/2 /*£ rto—t rto/2 

-m - k / m da = -/(^ -t)+h     m ^ - 2/1 /   /(o ^ 
Jo Jo Jo 

rto—t rto/2 

<-f(to-t)sma + h /       f(£)dZ-2h /       /(^^ 
Jo Jo 

rto/2 

= E-2E-2h f(€)d£<E. 
Jo 

In the first line we have used the symmetry /(to — t) = /(t), we have added 
and subtract h fQ

0~ /(£)d£ and taken into account that /0
0_ f(€)d€ = 

ft0 /(€)<% and that ^/(O^ = 2f*/2f (€)<%. In the second one we 

have used inequality sin a < 1 and equality /0
0 /(£) c?^ = 2 J0

o/ /(^) c?^. In 
the last one we have added and subtract E and applied (3.1). Inequality 
S < to — T follows trivially and proves the claim. 

Let us see that C lies below C in the region t > to/2, see Figure 4. 
If both curves meet at some point we have t = t and 

f(i)(sm<7 - sin?) = E - E. 

Evaluating at to/2 we conclude, as sin a > 0, sin a < 0, that E — E > 0. So 
sin a > sin a at any point where both curves cross. Initially t > t. Let 9o < 0 
be the smaller value where t = t. At this value both t and t are graphs over 
8, so we have (dt/d0)(0o) ^ (d£/d0)(0o), which implies cotcr(0o) ^ cot?(0o) 
and so sma(6o) ^ sin 5(00), which contradicts the above. 
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Figure 4. 

Get two points (0o>*i)> (Qoifa) m C with the same #o and ti < t2- 
Assume that K(t) is increasing in (0,io/2). If ^2 < W2 then ((/O2 - 
ff")(ti) ^ ((/O2 - ff"){h)- If £2 > V2 then the property proved in the 
previous paragraph shows that to — £2 > ti- As to — t2 < to/2 and the 
function (f)2 — //" is symmetric with respect to t = to/2 we conclude 
that ((/')2 - ff")(ti) < ((/02 - ff"){t2). Moreover there are at least two 
such points where the inequality is strict since C is not contained in a region 
with constant curvature. \£K(t) is decreasing in the interval (0, to/2) reverse 
inequalities are obtained. 

Hence we can apply the same argument as in the proof of Lemma 2.3(ii) 
to show that C cannot be closed. 

To see (ii) we consider the test function 

d2    /•'(*) 
u{s) = (/'(*) - hf(t)sma)(s) = -jL j  * /(£) #, 

which has mean zero when integrated over C. Since C is symmetric by (i) 
we see that u vanishes over the equator. At any point where sin a = ±1 we 
have dt/ds — 0 and 

d2t 7   . fit)        u 

Hence u < 0 at the maxima of t\c and u > 0 at the minima of t\c. 
A direct computation using equations (*) shows that 

(3.2) J(u) = -K/(t)f(t) cos2 a, 
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and so J(u) < 0 in the north hemisphere and J(u) > 0 in the south hemi- 
sphere. This implies that the first eigenvalue for the Dirichlet problem of 
the Jacobi operator is negative in both C fl {t ^ to/2} and C Pi {t ^ to/2}. 
We conclude that C is unstable. □ 

An analysis of the candidates using Theorem 3.3 gives the classification 
of isoperimetric domains in M. 

Theorem 3.5. Let M be a rotationally symmetric sphere with an equato- 
rial symmetry, and whose Gauss curvature is a decreasing function of the 
distance from the poles.  Then the isoperimetric domains in M are 

(i) geodesic discs centered at the poles, and possibly geodesic discs in re- 
gions of constant Gauss curvature about the poles, and their comple- 
ments, 

(ii)  annuli symmetric with respect to the equator which are contained in 

the region K + h2 ^0, and their complements, 

(Hi) nonsymmetric annuli containing the least length meridian which have 
one boundary component in K + h2 < 0 and the other one in K + h? > 
0, and their complements. 

If K > 0 then (ii) and (hi) cannot happen.   If K ^ 0 then (hi) cannot 
hold. 

Figure 5: Isoperimetric domains in spheres with curvature increasing from 
the equator. 

Proof. Let fi C M be an isoperimetric domain.   Then dVt is a curve with 
constant geodesic curvature h with respect to the inner normal. The com- 
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ponents of dft are either circles of revolution or the boundaries of constant 
curvature discs by Theorem 3.3. 

Suppose that one component of dfl is the boundary of a geodesic disc 
with constant curvature. Replacing Ct by M — ft if necessary we may assume 

■ D C ft. Note that in this case h = h(D) > 0 and that Xi(dD) < 0. Let us 
see that we can replace Q by another set bounded by circles of revolution 
and with no larger perimeter. 

If dft = dD then Ct = D. Lemma 2.7 shows that a geodesic disc D* 
centered at a pole with the same area as D satisfies L(dD*) < L(dD). 
Moreover, if L(dD*) = L(dD) then both D and D* are contained in a 
region with constant Gauss curvature around a pole. If dft is not connected 
then any other boundary component Cf must have Ai(C/) > 0 and so it must 
be a circle of revolution inside K + h2 < 0. Inside this region the geodesic 
curvature of circles of revolution is monotonic (hf(t) = —{K + h2)(t)) and 
there are exactly two circles with geodesic curvature ±/i. The geodesic 
curvature is positive with respect to the normal pointing to t = to/2. Then 
ft is the union of D with either a symmetric annulus inside K + h2 < 0 
or the union of D with a geodesic disc around a pole. In both cases we 
can replace D by a geodesic disc D* about a pole with the same area as 
that of D to obtain a new domain with perimeter less than or equal to 
L(dft). Equality holds if and only if D and D* are contained in a region 
with constant curvature around a pole. So we may assume that ft is bounded 
by circles of revolution. 

So dft = IJILi^1 x {^} w^h {U} increasing and h(ti) = —h(ti+i), for 
z = 1,..., n — 1. If h^O then Lemma 3.1 shows that there are at most four 
circles of revolution in dft. If h = 0 then we could have a large number of 
geodesies of revolution contained in a flat region, but if we have more than 
two then we can join the annuli they bound in the flat region to obtain a 
domain with least perimeter, a contradiction. 

If two components of dft are in K + h2 > 0, then each one has negative 
first eigenvalue for the Jacobi operator and so dft is unstable. Hence at 
most one component of dft is contained in K + h2 > 0. This implies that 
if K > 0 then there is at most one boundary component. Moreover if there 
are four circles in dft then two of them are inside K + h2 > 0, as the region 
where ff>0 (resp. /' < 0) around the south (resp. north) pole is a subset 
of K + h2 > 0. So dft can have at most three boundary components. 

If dft is connected then ft is a geodesic disc around a pole or complement. 
When dft has two components then ft is an annulus or complement. If 

the annulus is symmetric with respect to the equator then it is contained 
in the region K + h2 ^ 0 by the stability condition (1.8). If the annulus is 
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nonsymmetric then one component must lie in K + h2 > 0 (if both compo- 
nents are inside K + h2 ^0 then the annulus is symmetric) and the other 
one in K + h2 < 0. 

Finally assume that dQ has three boundary components. Then h > 0 
and ft is the union of a symmetric annulus contained in the region K+h2 ^ 0 
and a geodesic disc around a pole, or its complement. There are annuli with 
the same area as ft and less perimeter than ft by [15, Theorem 3.11].       □ 

Remark 3.6. If we allow 0 < /'(0) < 1 all the results in this subsection 
holds. The metric so obtained is singular at the poles. 

Remark 3.7. Assume that / is C1 and piecewise C2. Then the second 
variation of length formula is valid at least for a variation by curves meet- 
ing the parallels where K(t) is discontinuous at a finite number of points. 
This is enough to discard the constant geodesic curvature curves which are 
symmetric with respect to the equator. 

Remark 3.8. As in [15] one can show that sometimes annuli have less 
perimeter than discs of the same area by attaching a long narrow symmetric 
hyperbolic annulus to two curvature 1 spheres in a C1 way. The metric of 
this surface is C1 and piecewise C2. 

Remark 3.9. Let us see that nonsymmetric annuli can be isoperimetric 
domains. Attach a hyperbolic annulus to two curvature 1 discs in a C1 way. 
This can be done so that the hyperbolic annulus has strictly less perime- 
ter than a curvature 1 disc of the same area. A sligthly larger symmetric 
annulus has still less perimeter than the disc of the same area. We deform 
the annulus by parallels keeping the area enclosed constant until we get a 
geodesic disc about the pole. The perimeter along this deformation initially 
decreases since the starting annulus is unstable. As the perimeter of the 
initial annulus is less than the one of the final disc, there is a stable annulus 
in the deformation by Lemma 1.7, which cannot be symmetric since it has 
larger area than the largest symmetric stable annulus. 

3.2. Spheres with curvature decreasing from the equator. 

We assume now that K(t) is a decreasing function of the distance from the 
equator t = to/2. The sphere M must have points with positive curvature 
by Gauss-Bonnet Theorem and so K(to/2) > 0. On the other hand K could 
be either positive at the poles (and so M is convex) or negative.   In any 
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case, f ^ 0 at the south hemisphere and it vanishes only over the equator. 
As /'(0) = 1, //(t0/2) = 0, (fy = -fK, we have /' ^ 0 and /' = 0 only 
over the equator. 

Figure 6: Spheres with curvature decreasing from the equator. 

The hypothesis on the Gauss curvature shows that 

(3.3) (f')2-ff">h        on        (0,io), 

and that equality holds at some region with constant Gauss curvature around 
the poles. 

Lemma 3.2 can be applied to these spheres of revolution to obtain a fam- 
ily of closed embedded nodoids {C^}, T G (to/2, to). Under our assumptions 
we have 

Lemma 3.10. Consider the surface S1 x (0, to) with the Riemannian metric 

ds2 = dt2 + f(t)2d62, with f(t - to) = f(t). Assume that f'(t) ^ 0 for 
t > to/2 and that ff(t) > 0 for t < to/2. 

Then the family of embedded nodoids {CT}, for T > to/2, foliates an 
open neighborhood of p = (0,to/2) minus p. Moreover the first eigenvalue of 

the Jacobi operator on CT is negative. 
If M is the sphere of revolution described above and fi is the hemisphere 

{—TX/2 ^ 9 ^ /7r/2} then the family of embedded curves CT is defined for 
T G (to/2, to) and it foliates fi — {p}. 

Proof. Let us see that the family {CT}, T > to/2, foliates a punctured 
neighborhood of p. Take Ti > T2 > to/2 and let hi = h(Ti), h2 = h(T2). 
Inequality hi < /12 holds by Lemma 3.2. We consider the solutions #;, £*, cr; 
to equations (*) with geodesic curvature hi and initial conditions (#, t, cr) = 
(0, to/2, 0) at s = 0 (i = 1, 2). These solutions are translations of the curves 
CTX and CT2 meeting tangentially at (0,t) = (0, to/2). 
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Near (0,io/2) both curves are graphs over t. Writing 8i and ai as func- 

tions of t locally 
d(sm(Ji) 

dt t=to/2 

and so smai(t) < sin(72(t) for £ > to/2 close enough to to/2 and so 9i(t) < 
02(*). Considering now the pieces of both curves where ai G (0,7r/2) and 
using 0 as parameter we have ti(0) > t2{0) for 6 > 0 small enough. 

We claim that £i(0), ^(0) do not meet whenever CTJ E (0,7r/2). Otherwise 
there is a first 0o where they coincide. Since ti > t2 in the interval (0, OQ) we 

have (dti/dO)(eo) ^ {dt2ld0)%). Prom (*) we have cot<7i(0o) ^ cota2(0o) 
and so <T\ ^ (72- On the other hand, as K{t) is decreasing in (to/2, to), 
Lemma 1.5 can be applied to coscr;, which are solutions to (1.3), to prove 
cosa-i(0o) > coscr2(0o). So cri(0o) < cr2(0o)- This contradiction shows that 
ti(0) and £2(0) never meet when en G (0,7r/2). If the maximum oft over C^ 
is achieved at 0;, z = 1, 2, then another application of Lemma 1.5 shows that 
02 < 0i. Prom this it follows that CTX and CT2 are disjoint. This and the 
smooth dependence of the solutions to (*) on the initial conditions and on 
h show that the family {Cr}, T > to/2, gives us a foliation of a punctured 
neighborhood of p. 

Let us see now that the first eigenvalue for the Jacobi operator is nega- 
tive. If we think on CT as a family of curves contracting to p, the normal 
component cp of the variational field so obtained is positive. The derivative 
of the geodesic curvature is positive with respect to this deformation and 
so J((p) > 0 ([4]). Then I((p) — — fc (pJ(<p) < 0 and, by the variational 
characterization of eigenvalues, AI(CT) < 0. 

Finally, assume that ft = {-7r/2 ^ 0 < IT/2}. Then h(T) -> 0 when 
T -* to/2 as /(T) -> 0 when T -> to/2. So the curves CT converge to dQ, 
when T -> to- This implies that the family {CT} foliates Q — {p}. D 

Definition 3.11. The foliation constructed in Lemma 3.2 will be called 
TM- It obviously depends on fi, but two foliations constructed from different 
hemispheres are certainly congruent. 

For a sphere M in these conditions we have 

Theorem 3.12. Let M be a rotationally symmetric sphere with an equato- 
rial symmetry and curvature decreasing as a function of the distance from 
the equator. Then the only stable embedded curves in M are congruent to the 
ones in the foliation TM or to the boundaries of constant curvature discs. 
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Proof. Let C be a connected embedded curve with constant geodesic curva- 
ture. Assume C is not the boundary of a constant curvature disc. Then it 
cannot be either a curve touching one pole by Lemma 2.2 nor a stable un- 
duloid by Lemma 2.13. If C is a nodoid then it is symmetric by Lemma 3.4 
and so it is congruent to a curve in FM- Meridians are in FM and circles of 
revolution are not stable by Lemma 3.3. 

We conclude that a connected embedded curve with constant geodesic 
curvature is either the boundary of a constant curvature disc or a curve 
congruent to one in the foliation FM- AS both types of curves have Ai < 0 
we conclude that an embedded closed stable curve must be connected and 
the Theorem follows. □ 

Theorem 3.13. Let M be a rotationally symmetric sphere with an equato- 
rial symmetry, and whose Gauss curvature is a decreasing function of the 
distance from the equator. Then isoperimetric domains in M are the discs 
enclosed by the curves in the foliation TM or geodesic discs inside a region 
with constant curvature around the equator, and their complements. 

Proof. Let O be an isoperimetric domain enclosing area A. If <9fi is the 
boundary of a constant curvature disc D we may assume, replacing Vt by 
M — Q if necessary, that 0 = D. 

If D is contained inside a region with constant curvature around the 
equator, then D is congruent to a disc in the foliation TM- Suppose then 
that D lies inside a region with constant curvature which does not touch 
the equator. We have A(D) < A(M)/2. Let D* be a disc bounded by a 
curve of the foliation TM with area A(D). Assume that D is contained in 
the north hemisphere. We claim that max ^l^* ^ maxt^. To show this, 
let T = max t\D and consider the curves Ch with geodesic curvature h > 0 
tangent to dD with max t\c = T. For h > h(dD) the curves Ch are inside 
D. By Lemma 3.2 there is Cft,, with h < h(D) and enclosing a disc D^, which 
gives a closed curve symmetric with respect to the equator. By Lemma 3.14 
we have A(Dfl) > A(D). So D* C Dh and the claim follows. The hypotheses 
of Lemma 2.7 are satisfied and so L(dD*) < L(dD). □ 

Lemma 3.14. Consider a rotationally symmetric metric ds2 = dt2 + 
f{t)2d02. Let 6i, tij ai, be a solution to (*) with constant geodesic cur- 
vature hi, and initial conditions (0, £, a) = (0,T,7r/2); such that T is the 
maximum value of the t-coordinate, i = 1, 2. If the Gauss curvature K(t) 
is decreasing and /i2 > h\ > 0 then ^(0) < ti(0) whenever dt2/d9 ^ 0. 
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Proof. Since /i2 > hi from (*) we have (d<T2/d0)(O) > (d<Ji/dO)(0) and so 
t2(9) < *i(^) for 0 > 0 small. Let us see that inequality £2(0) < *i(0) is 

satisfied whenever dt2/d9 ^ 0. Otherwise there is a first #0 > 0 such that 
*i(0o) = hiOo) and we have (dti/d6)(9o) ^ (dt2/d0)(0o) and so cotc7i(0o) < 
cotor2(0o). As K(t) is decreasing we have ((/,)2-//,,)(^) ^ ((//)2-///,)(*i) 
in the interval (0,0o)- Lemma 1.5 then shows that coscri(#o) > cos(T2(#o)- 
As ai G (7r/2,37r/2) we have (Ji(0o) < ^(^o)? and so cotcri(0o) > cot(J2(0o)j 
a contradiction. D 

Figure 7: Isoperimetric domains in spheres with curvature decreasing from 
the equator. 

Remark 3.15. If /'(0) > 1 the results in this subsection are still true. Also 
when / is C1 and piecewise C2 . 

Remark 3.16. P. Pansu [20, Lemma 5] has proved that isoperimetric do- 
mains with small area in a compact surface are discs close to the maxima of 
curvature. R. Ye [24] showed that punctured neighborhoods of nondegener- 
ate critical points of the Gauss curvature are foliated by closed embedded 
curves with constant geodesic curvature. 

4. Projective planes. 

In this section we consider a rotationally symmetric projective plane M 
whose Gauss curvature is a monotone function of the distance to a given 
point p £ M, the pole of M. The orientation covering S of M is a ro- 
tationally symmetric sphere with an equatorial symmetry permuting the 
preimages pi, P2 of p (the poles of S) by the covering map S —¥ M. The 
Gauss curvature is a monotone function of the distance t to a pole in S 
whenever t ^ d(pi,p2)/2.   The surface S is of the same type as the ones 
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considered in section 3. The surface M minus the pole is the quotient of the 
sphere S minus its poles by the antipodal map 7(0, t) — (9 + TT, to — t). 

4.1. Projective planes with decreasing curvature. 

We now assume that the Gauss curvature is a decreasing function of the 
distance from the pole p. In these conditions we obtain 

Theorem 4.1. Let M be a rotationally symmetric projective plane whose 
Gauss curvature is a decreasing function of the distance from the pole. Then 
the only connected stable closed embedded curves in M which are two-sided 
are the circles of revolution and the boundaries of geodesic discs with con- 
stant curvature. 

Proof. Consider a connected closed embedded curve C C M which has 
constant geodesic curvature and it is two-sided. The lifting of C to S is a 
connected curve C C S. By Theorem 3.3 we have that C is either 

(i) a meridian, or 

(ii) a parallel, or 

(iii) a closed nodoid symmetric with respect to the equator, or 

(iv) a geodesic disc enclosing a region with constant curvature. 

If C is a meridian or C the equator then C is not two-sided. In the other 
cases C is isometric to C. So if C is a symmetric nodoid then C is unstable. 
If C encloses a disc D with constant curvature then 1(D) fl D is empty since 
otherwise the curve C = dD is not embedded. Hence C bounds a constant 
curvature disc in M. □ 

Theorem 4.2. Let M be a rotationally symmetric projective plane with 
curvature decreasing as a function of the distance from a pole. Then the 
isoperimetric domains in M are geodesic discs centered at the poles or the 
boundaries of constant curvature discs inside a region of constant curvature 
about the pole, and their complements. 

Proof. If Q, is an isoperimetric domain then <9f2 consists on stable closed 
embedded curves which are two-sided. By Theorem 4.1 each component of 
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dft is either a circle of revolution or the boundary of a constant curvature 
disc. 

Assume that one component C of dfl is the boundary of a constant 
curvature disc D. We may assume that D C ^. If d£l is connected then 
D = Q and D is contained in a region with constant curvature around the 
pole by Lemma 2.7. If there is another connected component Cf in <9f2 then 
Ai(C/) ^ 0 and so C" is a circle of revolution inside K + h? ^ 0 with positive 
curvature with respect to the inner normal. Hence C encloses a Mobius 
band and the pole lies in the complement and we may assume that d£l is 
bounded by circles of revolution, replacing C by one of such curves. 

If dVt is the union of circles of revolution of radii 0 < ti < ... < tn then 
h(ti) = —h(ti+i) for i — 1,... ,n — 1. As h changes its sign only once we 
have only two boundary curves in dft or an arbitrary number of geodesic in 
a flat region. In the former case, an annulus bounded by just two geodesic is 
an optimal solution to the isoperimetric problem. If we have two boundary 
components then fi is the union of a geodesic disc about the pole and a 
Mobius band inside K + h2 ^ 0. This candidate can be discarded by [15, 
Lemma 3.2.C]. □ 

4.2. Projective planes with increasing curvature. 

Let us now assume that the Gauss curvature is a increasing function of the 
distance from the pole p. We know that there exists a unique foliation Ts 
in the orientation covering sphere S of M. This foliation induces another 
one in M which will be denoted by J^M- The elements of FM except the 
meridian are two-sided circles in M congruent to the ones in Ts- They are 
stable since the circles of Ts are stable (they are solution to the isoperimetric 
problem in S). 

Theorem 4.3. Let M be a rotationally symmetric projective plane with cur- 
vature increasing as a function of the distance from a pole. The only stable 
closed embedded curves which are two-sided in M are circles congruent to the 
ones in the foliation J^M or the boundaries of geodesic discs with constant 
curvature. 

Proof. Let C C M be a connected stable closed embedded curve which is 
two-sided. Consider the connected lifting C of C to S. Then C is either 
a curve congruent to one in JF5 or the boundary of a geodesic disc in S. 
Connectedness of a stable curve follows since the first eigenvalue of each 
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connected component is negative. □ 

Theorem 4.4. Let M be a rotationally symmetric projective plane with cur- 
vature increasing as a function of the distance from a pole. Then the isoperi- 
metric domains in M are the discs bounded by a curve of the foliation Tu 
or the boundaries of constant curvature discs inside the region of maximum 
curvature, and their complements. 

Proof. If ft is an isoperimetric domain then dft is a stable curve with constant 
geodesic curvature. By Theorem 4.3 we have that dft is either a curve 
congruent to one in FM or the boundary of a geodesic disc in M. If ft is a 
geodesic disc with constant Gauss curvature and it is not contained in the 
region of maximum curvature then we lift it to S and Theorem 3.13 shows 
that a disc bounded by some curve in Ts is better. Projecting to M we 
deduce that a disc bounded by some curve in FM has less perimeter than 
ft. D 

5. Cylinders. 

In this section we consider a cylinder M of revolution whose Gauss curvature 
is a decreasing function of the distance from one end, which we shall call 
the bottom end, with finite area. The surface M is diffeomorphic to S1 x M, 
and the metric ds2 equals d92 + f(t)2 dt2. The Gauss curvature K{t) is 
decreasing. The finite area condition gives 

/. 

t 
/(£)<*£<+oo    for all t, 

— OO 

and so 

(5.1) f(t)sma-hf    /(£)#, 
J —OO 

is a first integral for the system (*). 

Lemma 5.1. For the above surface M we have 

(i) K(t) < 0 for all t. 

(ii) lim^-oo f(t) = lim^-oo /'(*) = lim^-oo f"(t) = 0, and so h(t) > 0 
for all t. 
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Figure 8: A cylinder with decreasing curvature and a finite area end. 

(iii) (/O2-//"<(). 

Proof. ([15, Corollary 3.5]). Since there are no complete ends with positive 
curvature and the function K(t) is decreasing we have K(t) ^ 0.   If the 
Gauss curvature vanishes at some point to then K(t) vanishes over (—oo,io] 
and the integral of /(*) over this interval would become infinite.   So (i) 
follows. 

Let us see (ii). The finite area condition implies easily that   lim f(t) = 
t—>■—oo 

0. Note also that limt->-oo /'(£) = 0: since /'(£) is strictly increasing (/" > 
0) there exists limt-^-oo fit). If this limit is positive then there is M > 0 
such that f > M near -oo and so f{t) - f(s) = f* /'(O d£ > M(t - s). 
Letting s —> —oo we get a contradiction. If the limit is negative (or —oo) then 
f(t) would take negative values near — oo. This proves that lim^-oo /'(*) = 
0. To see that limt->_oo /"(*) — 0 we simply take into account that K(i) 
converges to a finite limit if-oo when t —>» —oo by the monotonicity condition 
on the curvature, and so f" —> —K-^f — 0 when t —> —oo. Inequality 
h(t) > 0 follows since f"(t) < 0 and /'(*) goes to 0 when t goes to —oo. 
This proves (ii). 

Finally (iii) follows since (f)2 — ff" goes to 0 when t —>- —oo, and it is 
a decreasing function. D 

For these cylinders we have 

Theorem 5.2. Consider a rotationally symmetric cylinder M with decreas- 
ing curvature and suppose that the end of maximum curvature has finite area. 
Then the only connected closed embedded curves with constant geodesic cur- 
vature are the circles of revolution and the boundaries of geodesic discs with 
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constant curvature. 

Proof. Let C be a connected closed embedded curve with constant geodesic 
curvature h in M. Then C is either an unduloid or a nodoid. Lemma 2.2 
and inequality (f)2 — ff" ^ 0 show that C cannot be an unduloid. If C is 
a nodoid then C lies inside a region with constant curvature by Lemma 2.2. 
□ 

Remark 5.3. In fact condition {f')2—ff" ^ 0, equation 1.3 and Lemma 1.5 
imply the non existence of periodic graphs over 9. 

Theorem 5.4. Let M be a rotationally symmetric cylinder with decreasing 
curvature and suppose that the end where the curvature is larger has finite 
area. Then isoperimetric domains exist on M and they are the finite area 
regions enclosed by circles of revolution. 

Figure 9: Isoperimetric domains in a cylinder with decreasing curvature and 
an end of finite area. 

Proof. Consider a minimizing sequence ftn for area A. Then ftn = £1% U fi^ 
as in Lemma 1.8. Let ft be the limit of fl£. The divergent sequence ft^ 
approximate the end with smaller curvature since the other one has finite 
area. Since KQO < 0 for this end we repeat the reasoning of Case 2.10 in 
Theorem 2.8 to conclude that A(Q) = A. Hence no area loss can happen. 

An isoperimetric domain O is bounded by circles of revolution and the 
boundaries of geodesic discs with constant curvature, with at most one of 
the former curves since their first eigenvalue is negative. Lemma 5.1 shows 
that h(t) > 0 for all t. Then dft has at most two components, one circle of 
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revolution and the boundary of one geodesic disc with constant curvature. 
If dCt has two components then Ct = B U D, where B = {t ^ £1} and D is a 
geodesic disc with constant curvature K§. Let LB = L(<9i?), LD = L(dD), 
and h > 0 the geodesic curvature of dft. Consider the function u equal to 
—LB over dD and equal to LD over dB has mean zero and the index form 
applied to u yields 

I(u) < -{Ko + h2) {L
2

DLB + L2
BLD) < 0, 

and so dD U dB is unstable. We conclude that an isoperimetric domain is 
either an annulus {t ^ ti} or a geodesic disc with constant curvature. Let 
us see that, for the same enclosed area, the annulus has least perimeter. 

Consider an annulus B — {t ^ £1} and a geodesic disc D with constant 
curvature JKQ? both enclosing area the same area. Then D cannot be con- 
tained in B and so the total curvature of B is greater than or equal to the 
one of D. Writing the derivative of the perimeters of both sets as functions 
of the area A we have 

dL\dD) 
dA 

dL2(dB) 
dA 

= 2h(dD)L(dD) = 2(2-*- f KdMj 

= 2h(dB)L(dB) = -2 [ KdM. 
JB 

As the total curvature of B is greater than or equal to the one of D we have 
dL2{dB)/dA < dL2{dD)/dA and so L(dB) < L(dD). □ 

Example 5.5. We now show by example that in a complete rotationally 
symmetric annulus with increasing curvature some circles of revolution can 
be unstable. The arguments used to prove Theorem 5.2 do not cover this 
case and indeed we believe that closed embedded unduloids exist in this 
surface. We fix to > 0 and consider the function / : M —> R given by 

f(t\ = fexP(at)>    i^o, 
|ct, t ^ to, 

which is C1 if a = t^1, c = exp(l) t^1. Over the annulus S1 x R the Gauss 
curvature of the metric dt2 + f(t)2 d92 is increasing in t and equals 

K{t) = {~a^   t<t(h 

I 0,        t > to. 
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The function 

[c ,     t > to, 

takes values larger than 1 when c > 1, and so the circles of revolution 
S1 x {ii} are unstable for ti > to. It is an open question how the isoperimetric 
domains look like in this surface. 

The bottom end (t —> —oo) of the above metric has finite area, and 
the top end (the one with the largest curvature) has infinite area. So this 
surface also shows that the hypothesis of finite area is necessary to obtain 
the bound (f)2 - ff" ^ 0 in Lemma 5.1. 

Additional examples of complete rotationally symmetric cylinders of 
monotone curvature with both ends of infinite area and with unstable circles 
of revolution are provided by the functions, 

f A cosh(at),     t ^ to, 

1 Ac sinh(6t),    t ^ to, 

where to > 0 is fixed, a, 6, c are choosen so that f(t) is C1, and A > 0 is 
constant large enough so that (f)2 — //" > 1. 
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