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Gromov-Witten invariants and rigidity of
Hamiltonian loops with compact support on
noncompact symplectic manifolds

GuaNGgcun Lut

In this paper the Gromov-Witten invariants on a class of noncom-
pact symplectic manifolds are defined by combining Ruan-Tian’s
method with that of McDuff-Salamon. The main point of the ar-
guments is to introduce a method dealing with the transversality
problems in the case of noncompact manifolds. Moreover, the tech-
niques are also used to study the topological rigidity of Hamiltonian
loops with compact support on a class of noncompact symplectic
manifolds.

1. Introduction.

Since Gromov introduced his celebrated pseudo-holomorphic theory on sym-
plectic manifolds in 80’s ([Gr]), many important questions in symplectic ge-
ometry and related fields have been solved. In particular, Witten [W1, W2]
pointed out that Gromov’s study of the moduli space of holomorphic curves
could be used in principle to describe correlation functions in the topological
quantum field theory. The moduli spaces of holomorphic spheres were used
by Ruan to define certain symplectic invariants of semi-positive symplectic
manifolds ([R1]). In the semi-positive closed symplectic manifolds the more
general Gromov-Witten invariants of any genus, including so called mixed
invariants, were constructed in [RT1] and later [RT2] and thus they gave
the first rigorous mathematics theory of quantum cohomology. This forms
a solid mathematical basis for the topological sigma model. In addition,
they also applied these invariants to the Mirror Symmetry Conjecture, the
Enumerative Geometry and Symplectic topology. It should be noted that
in this case their mixed invariants are of integral values.

On the other hand the Gromov-Witten invariants were studied axiomat-
ically in [KM]. More recently, the Gromov-Witten invariants for any projec-
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tive manifolds (cf. [LT1]) and any closed symplectic manifolds were defined
(cf. [FO], [LT2], [R3], [Sie]).

It has been expected that the Gromov-Witten invariants should also
be defined for noncompact symplectic manifolds and families of symplectic
manifolds(cf. [K1, p. 364]). In fact, the latter was carried out in [L], [R3].
Roughly saying, if p : Y — M is an oriented fiber bundle such that the fiber
X and the base M are smooth, compact, oriented manifolds (which implies
that Y is also such a manifold), and w is a closed 2-form on Y such that
w restricts to a symplectic form over each fiber, then Y can be viewed as
a family of symplectic manifolds and the Gromov-Witten invariants over Y’
are defined in [R3]. However, for noncompact symplectic manifolds (V,w)
how the Gromov-invariants over them should be defined, we so far do not
see it in the literatures. Generally speaking, the key points in many ap-
plications of the Gromov’s pseudo-holomorphic curve theory are the com-
pactness problems. On the closed symplectic manifolds one have obtained
very good results (cf. [Gr], [RT1], [PW], [Ye]). For the general noncom-
pact symplectic manifolds (even without boundary) these problems become
very complicated. In this paper we define the Gromov-Witten invariants
on a class of special noncompact symplectic manifolds—semi-positive geo-
metrically bounded one. Precisely speaking, we generalize the main results
in [RT1] to this class of symplectic manifolds. The notion of geometrically
bounded (abb. g. bounded) symplectic manifolds was first appeared in
[Gr]. This kind of manifolds has many nice properties so that many results
on closed symplectic manifolds can be extended on them in some reasonable
ways (see §2).

However, since V is noncompact, for every integer m > 1 the Banach
manifolds J™ consisting of all C™-smooth w-tame almost complex struc-
tures on (V,w) and the group Diff™(V') of all C™-diffeomorphisms on V' are
not separable, and thus neither are some correspondent moduli spaces sepa-
rable. Hence it is difficult using Sard-Smale theorem in many transversality
arguments. One may wish to use its generalization version due to Quinn
to replace it. But this requires the Fredholm map considered to be proper
or o-proper. Under our case it can not be satisfied. On the other hand,
for a given J € J™(M,w) the space C™(T;) of all C™-sections does not
gives rise to a local model for the space J™(V,w) via Y +— Jexp(—JY).
To see this point, note that J € J™(V,w) only means w(&, J(p)§) > 0 for
every p € V and £ € T,V \ {0} and from ||Y|cm < ¢ it does not fol-
low that ||Y||co < n which is an arbitrary given positive number smaller
than 6. Thus even if for every p € V and ¢ € T,V \ {0} we can obtain
w(é, J(p)exp(—J (p)Y (p))€) > 0 as |Y(p)| sufficiently small, but due to the
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noncompactness of V' one can not derive that for a given smooth nowhere
null vector field ¢ on V', w(¢(p), J(p)exp(—J (p)Y (p)){(p)) is more than zero
at all points p € V whether ||Y||cm is small. In order to overcome these
difficulties we construct suitable separable Banach manifolds to replace the
Banach manifolds chosen naturally in the case of compact manifolds. In §2
and §4 these techniques are all used. The method may probably applied to
generalize other results on compact manifolds in symplectic geometry and
Seiberg-Witten invariants theory to noncompact manifolds.

In our case replacing H*(V,Z) by H.(V,Z) the homology we can show
that there is an quantum ring structure on it. In contrast to the case of closed
symplectic manifolds it seem to be very hard to use the recent techniques
developed by [FO], [LT1, LT2], [R3], [Sie] to define the Gromov-Witten
invariants on all noncompact compact g. bounded symplectic manifolds
because of the technical difficulties.

Inspired by Seidel’s work [Sel] the quantum homology is also used to
study topological rigidity of Hamiltonian loops by F.Lalonde, D. McDuff
and L. Polterovich in [LMP]. Precisely speaking, they proved that if w;
and wy are two symplectic forms satisfying certain monotonicity assump-
tions on a closed manifold M then every loop ¢ = {¢:}o<¢<1 in the group
Ham(M, w;) N Symp(M,ws) can be homotoped in Symp(M,w2) to a loop in
Ham(M,ws). Combing their ideas with our techniques together we general-
ize their results to the case of the Hamiltonian loops with compact support
on a class of noncompact g.bounded symplectic manifolds in Corollary 6.2.
Moreover, as a consequence the corresponding result on compact symplectic
manifolds with contact type boundary is also obtained in Corollary 6.3. The
main points of the arguments are to construct a kind of suitable closed two-
forms on the Hamiltonian fibre bundle over S? with noncompact g.bounded
symplectic manifolds as a fibre to replace the unique coupling class whose
top power vanishes so that the composition rule may be obtained.

The arrangements of this paper are as follows. In §2 we give some ba-
sic definitions and lemmas in geometrically bounded symplectic manifolds,
and specially a new technique on transversality arguments. In §3 we gen-
eralized the results of transversality and compactness to our case. Since
the arguments are similar we only give the necessary improvements. The
Gromov-Witten invariants are defined in §4. As a consequence we also de-
fine the Gromov-Witten invariants of compact symplectic manifolds with
contact type boundary in §5. In §6 the study of the topological rigidity of
Hamiltonian loops with compact support on noncompact g.bounded sym-
plectic manifolds with the weaker semi-positivity assumptions is given. In
final Appendix a theorem which characterizes the Hamiltonian symplecto-
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morphisms on a compact symplectic manifold with contact type boundary
in terms of the flux homomorphism is provided.
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2. Definitions and Lemmas.

In this section we give some necessary technical lemmas. Notice first that
the following conclusions in Riemannian geometry are some easy exercises.

Lemma 2.1. Let (M, g) be a Riemannian manifold with injectivity radius
i(M,g) > 0. Then it is complete and for any compact subsets K in M and
arbitrary € > 0,

K.={pe M :d4(p,K) <¢}

is compact. Here dg denote the distance induced by g.

Lemma 2.2. For the product Riemannian manifold (M,g) = (Mi, g1) X
(Myz,g2) we have

(i) i(M,g) = min{i(My, 91),(M2, g2)};
(ii) V(mi1,m2) € M, u = (u1,u2), and v = (vi,v2) € Trn M it holds that

1
Kg(Hm) = 1 (Kgl (I, ) + Kg, (Hmz))7
where II,, = span{u,v}, II,,, = span{ui,v1} and I, =

span {ug,v2}.

Next let us recall the following definition (cf. [ALP], [Gr], [Sik]).

Definition 2.3. Let (V,w) be a symplectic manifold without boundary.
Call it geometrically bounded if there exists an almost complex structure
J and a complete Riemannian metric g on V such that the following prop-
erties are satisfied:
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1° J is uniformly tamed by w, that is, there exist strictly positive constants
ag and [y such that

w(X,JX) 2 a0l X|l; and |w(X,Y)] < Boll X[4lIY llg
for all X,Y € TV.

2° The sectional curvature Ky < Co(a positive constant) and the injectivity
radius i(V, g) > 0.

Remark 2.4. By Lemma 2.1 we know that the requirement of the com-
pleteness for ¢g in Definition 2.3 is not necessary since this is actually con-
tained in the condition 2°.

Clearly the closed symplectic manifolds are g. bounded, a product of two
g. bounded symplectic manifolds is also such manifold. One can easily prove
that every symplectic covering manifold of a g. bounded symplectic manifold
and every symplectic manifold without boundary which is isomorphic at
infinity to the symplectization of a closed contact manifold are g. bounded.
In [Lu2] we have proved that the cotangent bundles with respect to any
twisted symplectic structures on it are g. bounded. In addition, one also
should notice that any geometrically bounded symplectic manifolds are the
tame almost complex manifolds in the sense of J.C. Sikorav (see [Sik]).

Given a closed Riemann surface ¥ with the complex structure j and
J € J-(V,w) we denote by Hom j(T'S, TV) the space of the smooth sections
of the bundle of anti-J-linear homomorphisms from 7% to TV over & x V.
Its element v is called the inhomogeneous term. Recall that a smooth map
f:% — Viscalled (J,v)-map if for any z € X,

0sf(2) = df (2) + J(f(2)) o df (2) 0 j(2) = v(2, f(2)).

In the following we only consider the inhomogeneous term v satisfying

(1) Sup(. pyesxv V(2 0)ll ez mv) < +oo

where the norm in £(T,%,T,V) is with respect to g and the Riemannian
metric on ¥ induced from j and some area form. Notice that any two area
forms on ¥ are proportional. The above condition is independent of the
concrete choice of the compatible area forms.

Lemma 2.5. Let (V,w,g,J) be as above Definition 2.3, and o an area form
on ¥ compatible with j,7 = o o (id x 7). Then for N > 0 sufficiently large
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(ExV,0,7®g,J) is also a g.bounded symplectic manifold. Here & = N7 xw
and J(2,p) : T(op)(E X V) = T, (2 x V) is given by

(X1, X2) = (§(2) X1, J(p)v (2, p)(X1) + T (p) X2).

The proof of this lemma is an easy exercise. In fact, one can choose
(a1, B1) to replace (ag, By). Here a1 = ag/2, f1 = 20 + g + 465 /agn and

o F4,34
Sup(; pyesxv V(P e snv) ST < 400, N > 5 T 2a20-
. 0

Proposition 2.6. Under assumptions of Lemma 2.5, if K C V is a compact
subset and v : ¥ — V a smooth (J,v)-map representing A € Ho(V,Z) and
intersecting with K, then

Im(f) C K,

where PO = pO(ao;IBOa CO)Z(V; g))ja J, VaA)U)‘

Proof. Write W = £ x V and @ : & — W,z — (z,u(z)). Then @ is J-
holomorphic and its image can intersect with K =% x K if and only if the
image of u is intersecting with K. Combing this with the taming property
we can estimate its area with respect to the metric 7 @ g as follows:

1
Area,gq(a(X)) < — [ @0
a1 Jy
. N

= —[uw+— [ o0
ay Jy» ay Jy
1 N

= —(wA)+— [ o
i a1 Js

Now, by Lemma 2.5 we have

(2) B, Xe), AKX, X2) 2 DK, Xo) R
(3  12((G,X2), (Y2 < Bull(Xn, Xo)lrag (Y, Y2) g

for every (z,p) € W and X = (X1,X2),Y = (Y1,Y2) € T(,,W. Here

(X1, X2)|12¢, = IIX1l2 + [|X2ll3. Moreover, by lemma 2.2 the sectional

curvature and injectivity radius of (X x V| T @ g) satisfy

1
) Krag < 5(1+ Co)
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and
(5) (X xV,7®g) =min{i(X,7),:4(V,9)},

respectively. Next, according to the comments below Definition 4.1.1 in
[Sik], in our case we may take C; = 1/7, C2 = B1/a1, w, = @/B1 and
ro = min(i(W, T @ g),27/+/1 + Cp) such that the following monotonicity
holds:

For a compact Riemannian surface S with boundary and J-
holomorphic map f : S — W, if f(S) € B(z,r) C W,
f(0S) C OB and x € f(S) for some r < rg, then

ixes

=46

From these and the proof of Proposition 4.41 in [Sik] it follows that

r2.

(6) Areag(f(S5))

Im(@) C U(K, CsArea(Im(1))),

where K = ¥ x K and Cs = 4C1Cq/ro = 461 /mairg. Using the argument
below Lemma 2.5 and an easy computation we can get

40 Bo + 208 + 28514
ragmin(i(3, 7),4(V, 9), 27 /vVI+ Co)

Co =

Notice that 5 oN
Area(u(X)) < —(w, A) + —/ g,
Qg Jx

Qg

and we can choose

0 =Sl ma N =%+ T8,
Therefore we can find a positive number

(8) p = p(ao, Bo, Co,i(V, 9), 4, J,v, A, 0)

such that

(9) Im(@) C K,.

Projecting on V' we can complete the proof of Proposition 2.6. O
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As pointed out in Introduction, generally speaking, on the noncompact
manifold V for a given J € J*(V,w) and an arbitrary small positive number
é > 0 there may exist a C™-smooth section Y of the bundle T; — V such
that ||Y||cm < 6, but Jexp(—=JY) ¢ J™(V,w). But for some noncompact
symplectic manifolds we can prove:

- Lemma 2.7. For a given Jp € I (V,w), if there exist positive numbers ay,
Bo and an Riemann metric gg on V such that

(10)  w(€, Jo€) = aollélly,, 1w(&m| < BolléllglInllgo, for all €,n € TV;

then there exists a positive number &g such that
Usy (Jo) = {Joexp(=JoY) | [[YV]lom < 6o, ¥ € C™(T )} C T (Viw)

for each integer m > 1. Here || - ||cm is defined in terms of the covariant
derivatives with respect to the Riemannian metric go. Furthermore, 6o > 0
can be chosen so small that every J € U™ (Jo) satisfies: w(, JE) > S|1€]12,
forall £ € TV.

Proof. First note that the condition (10) imply that

(11) %mmsmm%s%mm

for all £ € TV. Specially, we have that ag/Bo < ||Jo(p)|lgo < Bo/co for all
peV.
Next, for any J = Joexp(—JpY) € Z/{g;(JO) and p € V, £ € T,V we have

w(& J(0)E) = w(§ Jo(p)exp(—Jo(p)Y (p)))

w(& Jo(p)§) + w(&, Jo(p)[exp(—Jo(p)Y (p)) — I]€)
w(§, Jo(p)€) + w(&, [exp(Jo(p)Y (p)) — I]Jo(p)E)
aol €112, — Boll€llgo | lexp(Jo(R)Y (0)) — I]Jo(P)éllgo

2
o612, = L2161 lexp(oe)Y () — Tllo

v

v
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On the other hand, by (11) and the definition of exp

[e.e]
190(2)Y (0)Il5
lep(Jo(PY (P) ~ Il < D
k=1 )
[ee]
170()Y (0)Il5
< (Z——k,—’% [70()Y ()l g0
k=0 )
< NJo@)llgo 1Y (P)lgo ex(ll o (P)llgo Y (P)l o)
< @50 - exp (_5350) .
(e7)] (e71]
Thus we get
Bido Bo 2
> — —_ .
(6 T 2 o0 - 20 (2280 ) | el
Hence we can choose a positive number dy < %(%)3 so small that ap —
ﬁi—'%exp(g—géo) > ap/2. Lemma 2.7 is proved. O

Now every ngg(]o) is a Banach manifold, but it is not separable or even
has not a countable base. In order to be able to apply Sard-Smale theorem in
the transversality arguments below we introduce the space of the following
type, which is one of our key techniques in this paper.

Take a proper Morse function h on V' and two sequences of regular values
of it, a = {a;} and b = {b;} satisfying:

minzevh(m) =ar<aa<b<azg<by<ag<---
<ap <bgp_1<apy1 <o

and denote Q; := {a; <h <b;},i=1,..., we have

(12) V=@ QNQi2=0, Int(Q:)NInt(Qis1)# 0, i=1,....

i=1
Moreover, every Q; is a smooth compact submanifold with smooth boundary
and has the same dimension as V. Following [F] we may choose a sequence

of sufficiently rapidly decreasing positive numbers eld) = {eg)}z"zl such that
the space C) (T, lq,) of those smooth sections X € C*(T y,|g,) for which

(13) IXIlew = > e 1 Xllor 0y < oo,
k=1
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is separable and dense in L!(Ty,|g,). In addition we always require that all

69 equal to 1. Let

(14)  OH(TH) = {X € C™(Ty,) | suppX € Qs | Xl < o0}
This is a separable Banach space with respect to norm || - [|_¢). We denote
(]‘5) ‘CE(JO)h’a a, b)

by the space of all sequences X = (X1, Xo,...) with X; € o) (Tf;{))) and

o0
(16) Xl = D I1Xiller < o0,

=1

Then (Lc(Jo,h,a,b),|| - |lc) is a separable Banach space. Let B(L.(Jo,
h,a,b);d) be a closed ball in this Banach space of radius 6. Then, for suf-
ficiently small § € (0,60/2) that ||X||. < 6 implies that || Y oo; X;flor < 26
and thus from Lemma 2.7 it follow that J := Joexp(—Jo(> o, X;)) belongs
to J-(V,w) which is the space of all smooth w-tame almost complex struc-
tures, and (V,w, J, go) is still g. bounded. Later, we fix such a ¢ and for
convenience denote by

E: B(Le(Jo, hya,b);6) = Tr(V,w), X+ Jpexp (—JO (Z XZ>> .
=1

and also by
(17) U5(J0,h,a,b,€)

the image of B(L¢(Jo, h,a,b);d) under . This set is not necessary connected
in Jr(V,w).

Having the space many regularity results on compact symplectic man-
ifolds can be generalized to noncompact geometrically bounded symplec-
tic manifolds. In fact, the above construction can be suitably modified so
that the result of the moduli spaces in [Mcl] may be generalized to any
noncompact symplectic manifolds without boundary, that is, the following
proposition holds.

Proposition 2.8. Given A € Hy(V) and a closed Riemann surface & of
genus g with the complex structure j, and Jo as above, then there is a subset
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Breg(L:(Jo, h,a,b);8) of the second category in B(Le(Jo, h,a,b);d) such that
for every X € Breg(Le(Jo, h,a,b);6) the space

M (3, A4,2(X))

of all simple E(X)-holomorphic maps from ¥ to V and representing A is
a smooth manifold of dimension (1 — g)dimM + 2¢1(A) and with a natural
orientation. Moreover, for any two X and Y in Breg(Le(Jo, h,a,b); ) it may
be proved that Ms(X, A,E(X)) and M,(2, A,E(Y)) are oriented cobordant.

For every integer m > 1 we denote by Hom; (T%,TV) the space of
the C™-smooth sections of the bundle of anti-Jy-linear homomorphisms
from TY to TV over ¥ x V. Consider the Banach vector bundle H™ over
B(L:(Jo, h, a,b); §) whose fibre at a point X is Homgx)(TZ,TV). It is easy
to know that this is a separable C™ Banach vector bundle. We call the el-
ements of the bundle as inhomogeneous terms. Fix a large integer mg > 0
such that the conditions of the Sard-Smale theorem are satisfied. For every

m

integer m > mg one may, as in [RT1], prove that there exists a subset Hrce
of the second category in H™ such that for every (X,v) € Hreg the space

(18) MG (Z,E(X),v)

of all (E(X),v)-map from ¥ to V representing A is a C™-smooth mani-
fold of dimension (1 — g)dimM + 2¢1(A) and with a natural orientation.
Moreover, for any two pairs (X,v) and (Y, 1) in Hig, it may be proved that
MZ(E,E(X),v) and M7 (2, E(Y), u) are C™ oriented cobordant. Specially,
it should be noted that

(19) Hmo D TS

which implies that for any (X,v) € H[3, and (X',2') € ’H{g’é with m' >m >
mg the spaces M3 (2, E(X),v) and M7 (Z,E(X'),v/) are also C™ oriented
cobordant.

Let G(V) be the set of all Riemann metrics on V' whose injectivity
radius are more than zero and sectional curvatures have upper bounds.
We also denote by GJ,(V,w) the set of all J € J-(V,w) which satisfy:
w(&,JE) > aoll¢] and Jw(€,n)] < folltly€ll, for some fixed g € G(V),
constants a,80 > 0 and all £, € TV. Obviously, for every g.bounded sym-
plectic manifold (V,w), GJ-(V,w) is a nonempty open subset of J.(V,w)
with respect to C''-topology. However, we do not affirm it to be connected.
For every connected component G(V). of G(V) we denote GJ-(V,w). by
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the subset of J € GJ,(V,w) for which (V,w,J,g) is g.bounded for some
g € G(V).. Using Bévennec’s construction [ALP, p. 44] it is easily proved
that every GJ ,(V,w), is connected. Similarly, for every integer m > mg we
also denote by '

(20) GH™(V,w) :={ (J,v) | J € GT,(V,w) and v satifying(l) }

and corresponding component GH™(V,w)., where v € Homj (TV,TM).
Then the later is still connected.

3. Transversality and Compactness.

In this section we shall follow the methods in [RT1], [McSal] to make argu-
ments. Because the techniques are same basically we only give the necessary
improvements and list the main results.

First of all, we start with the following notion. A pair (¥;Z) of a con-
nected Hausdorff topological space ¥ and k different points z = {21, ..., 2}
on it is called the semistable curve with k marked points ([FO]) if there ex-
ists a finite family of smooth closed Riemann surfaces {¥; : s € A} and
continuous maps mg_: X5 — X such that: (z) each 7g5_is a local homeomor-

phism; (#7) for each p € ¥ it holds that 1 < ), ﬂﬂ'il (p) < 2, and all points
which satisfy ), ﬁwgsl(p) = 2 are isolated; (4¢7) for each z;, ), tI'/rgsl (zi) =1L
Denote by Zging :={p e X: ), ﬂﬂ'g: (p) = 2} the set of all singular points
of ¥. Specially, each singular point p such that }:Iﬂ'gsl(p) = 2 is called the

self-intersecting point of ¥. Call ¥, := wis(is) the s-th components of ¥,

and f)s the smooth resolution of ¥;. Each z; is called the marked point.
The points in W%l(Esing) and wgl(z) are called the singular points and the

marked points on f)s, respectively. Let k; be the number of all singular and
marked points on &, and gs be the genus of £;. The genus g of (3;2) is
defined by
1+ ng + fInter(¥) — Comp (%),
S

where fInter(X) and §Comp(X) stand for the number of the intersecting
points on ¥ and that of the components of 3 respectively.

If ks + 295 > 3 we call the component (X;Z;) stable. When all compo-
nents of (X;z) are stable we call (¥;Z) the stable curve of genus g and with
k marked points.

For the above genus g stable curve (3;Z) a continuous map f: X — V

is called C*(1 > 1) if each f o TS, is so. The homology class of f is defined
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by f«([Z]) = > ,(fo Wis)*([is]) An C™ inhomogeneous term v over ¥
is a set {vs : s € A} of inhomogeneous terms, where each v; is an C™
inhomogeneous term of ¥, and they together satisfy the match conditions.
A map f : ¥ — V is called (J,v)-perturbed holomorphic if each f o TS,
is (J,vs)-perturbed holomorphic. Denote by M} (X%, J,v) the moduli space
of all (J,v)-perturbed holomorphic maps from ¥ into V with f.([¥]) = A.
Using the method in §2 and the arguments in [McSal], [RT1, Prop. 4.13]
it follows that for every given pair (J',') with C™ inhomogeneous term
V' there exists a pair (J,v) with C™ inhomogeneous term v which may
be arbitrarily close to it, such that moduli space M7 (%, J,v) is a C™-
smooth manifold of dimension 2¢1(V')(A)+2n(1—g). In order to get suitable
compactification of the above moduli space the following form cusp-curve
due to Gromov was introduced in [RT1]. Given a k-point genus g stable
curve (X;Z) as above, (X';2') is another k-point curve obtained from it as
follows: First at some double points of ¥ we join chains of CP! to separate
the two components and then attach some trees of CP!, but require that if
one attaches a tree of CP! at a marked point x;, this z; will be replaced by a
point different from intersection points on some component of the tree, and
under other cases the marked points do not change. The components of 3
is called principal components and other bubble components. A continuous
map f : ¥ — (V,w) is called a X-cusp (J,v)-map if for each principal
component Y the map f o7y is (J,vs)-perturbed holomorphic and the
restriction of f to a bubble component is a nonconstant J-holomorphic map.
We define a (%, J, v)-cusp curve as an equivalence class of cusp maps modulo
the parametrization groups of bubbles. Its homology class is defined as
the sum of the homology classes of all components of the any cusp map
representatives of it. Denote by CM} (X, J,v) the set of all (¥, J, v)-cusp
curves with the total homology class A. For every element of the space one
can obtain a reduced (X, J,v)-cusp curve by forgetting multiplicity of the
multiple covering maps on bubble components and collapsing each subtree
of the bubbles whose components have the same image. Notice that this new
cusp curve may have different total homology class from the original one.
We denote by My (2, J,v) the set of all reduced (%, J,v)-cusp curve from
CM% (%, J,v). For the semi-positive closed symplectic manifold (V,w) it was
proved that CM'} (X, J,v) is the cusp curve compactification of M™ (%, J,v)
and M (Z,J,v) \ M™(Z,J,v) consists of finitely many strata and each
stratum is also branchedly covered by a C™-smooth manifold of codimension
at least 2 ([RT1]). However, in our case CM7} (%, J,v) is only the closure
of M™(%, J,v) due to the noncompactness of (V,w). In order to get desire
results we assume that each vs in v = {v; : s € A} satisfies (1). For any
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compact subset K C V let CM} (X, J, v, K) be the subset of CM (X, J,v)
consisting of all elements whose images are intersecting with K. Then we
have

Proposition 3.1. Let (V,w,g,J) be a g.bounded symplectic manifold and
(2;2) a k-point genus g stable curve with a bounded inhomogeneous term v
over it. Then there ezists a positive number n = n(A,i(V, g), Co, oo, Bo, V)
such that

U Im(f) C K.

FECMT (S,J,0,K)

In fact, if ¥4,...,%, are principal components of %’ which only depend
on X, and Bji,..., B; are bubble components of ¥’ then it follows from the
proof of Lemma 4.5 in [RT1] that there is a uniform constant c¢ such that

E(fs;) < c(w(fu([Z:])) + 1), E(fB;) < cw(f+([Bj])) and therefore
P l
> E(fs) + Y _biE(fs,) < c(w(A) +p).
=1 Jj=1

Here the positive integer by,...,b satisfy A = P LR(E]) +
Zl b; f«([Bj]). These show that one can find a positive integer lyp =
lo(w(A) %, V,w, K) such that it bounds ! uniformly. Moreover, for given
area forms 0s on f]s(s =1,...,p) one can find a sufficiently large N > 0
such that all (f)s X V,Qs,Ts @ g, js) are g.bounded. Here w; = Nog; X w
and J, are defined as in Lemma 2.5. From the proof of Proposition 2.6
it follows that w(f«([Zs])) > —N [ o5 for each s. Combing these with

P w(£.([Z) < w(A) we get that w(£.([S:]) < w(A) + pNmin, [y, o,
and w(f«([B;])) < pw(A)+p(p—1)Nmin, [5, os. Now since X' is connected,
by repeatedly using Lemma 2.5 we can finish the proof of Proposition 3.1.
As a consequence of this proposition and Proposition 3.1 in [RT1] we have

Corollary 3.2. For any compact subset K C V, CM} (2, J,v,K) is com-
pact.

As in [RT1, §4], M4 (%, J,v) \ M} (%, J,v) can be stratified and their
strata are indexed by ’Di”z (cf. [RT1] for definition). For a compact subset
K C V we denote by Di'ﬁa(K ) the subset of ’D/‘i"ﬁz consisting of those D C

Di"z which has a Y-cusp (J,v)-map representative intersecting with K.
Then carefully checking the proof of Lemma 4.5 in [RT1] we can prove
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Lemma 3.3. For any compact subsets K C V, D,{x’,uz(K ) is a finite set. But

Di’::g may be a countable set.

Corresponding to Theorem 4.2 in [RT1] we may use the argument
method in §2 to get the following structure theorem.

Theorem 3.4. Let (V,w) be a g.bounded semi-positive symplectic manifold,
then there is a dense subset GH e, (V,w) in GH™(V,w) such that for each pair
(J,v) € GHieg(V,w), the complementary MU(Z, J, ) \MB(Z, J,v) consists
of at most countable many strata and each stratum is branchedly covered by
a C™-smooth manifold of codimension at least 2. Moreover, there are only
finitely many strata of My (Z,J,v) \ M3 (S, J,v) which can intersect with
W(E, J,v, K) for every compact subset K C V.

v

More precisely, if for each D € Diz we denote by M (D, J,v) the space
of all C™-smooth (X, J,v)-cusp curves such that the homeomorphism type
of its domain, homology class of each component, components which have
the same image are specified by D. Then from Theorem 4.7 and Proposition
4.14 in [RT1] and the arguments in §2 we can obtain

Theorem 3.5. For every (J,v) in a dense subset GH e, (V,w) of GH™(V,w)
and a D in ’D;’l’,yz there exists a C™-smooth branched covering manifold
NE(D, J,v) of MB(D, J,v) whose dimension is not more than 2¢1(V)(A)+
2n(1 — g) — 2kp — 2sp. Here kp is the number of bubble components of D
and sp is the number of marked points which are bubbling points. More-
over, for any two pairs (J,v) and (J',v') in GHz(V,w) N GHreg(V,w)e
there is a path (Jr,v:) connecting (J,v) and (J',v') in GH,(V,w). such
that UycpoyNe? (D, Jr, vr) x {t} is a C™-smooth cobordism.

It should be noted that the manifolds M3(S, J,v) and N&(D, J, v) carry
a canonical orientation.

Denote by BD:Z{:/E the subset of Dif,’:‘i whose elements contain the bubble
components. From Theorem 3.5 we have

(21) MA(E, L) \MEE,Jv)c | MB(D,Jv).
DeBDY'

4. Gromov-Witten Invariants.

In this section we shall follow the method in [McSal] to define the Gromov-
Witten invariants of Ruan-Tian’s form—mixed invariants. First of all, we
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recall some evaluation maps. For a k-point genus g stable curve (%,z),

z = (z1,...,2;) and integers [ > 0 consider the C™-smooth map
(22) g0t ME(D, ) x B VE X v = VA
given by

(f;yla-"’yl) = (f(z1)>'°'>f(zk);f(y1)""’f(yl))°

For each D € BD:{{’”E the similar map
elb 1)t ME(D, J,v) x () = VT

can be defined. For each D € B'Di”"z, let 70 : NOY(D, J,v) = M®(D, J,v)
be a branched covering defined below Definition 4.6 in [RT1]. The compo-
sition maps e} = ez’l‘)’ Jp) © 7y satisfy

(23)

Brap) (MRS, J0) x B\ S) € ] Im(ep).
SCMT(E,J,v) xSt compact DEBD:{"L:E

These show that e?zlt,z, I is a C™-smooth pseudo-cycle. Let us recall the
notion of the pseudo-cycles introduced on the page 90 of [McSal]. A k-
dimensional C™-smooth pseudo-cycle in V is a C™-smooth map f : M —
V defined on an oriented C™-smooth k-dimensional manifold M (possibly
noncompact) such that the boundary

fMey= ()  FM-=3)

SCM compact

of f(M) is of dimension at most k — 2, i.e., there exists a C™-smooth man-
ifold W of dimension at most k¥ — 2 and a C™-smooth map g : W — V
such that f(M>®) C g(W). Furthermore, if f(M) is also compact in V'
then we call f as strong pseudo-cycle. Clearly, in a compact manifold
these two notions are equivalent. According to the definition the identity
map V — V is not a strong pseudo-cycle in the noncompact manifold V.
From Remark 7.1.1 in [McSal] it easily follows that every integral homol-
ogy class a € Hy(V,Z) can be represented by a C°° strong pseudo-cycle
f : M — V. Every strong pseudo-cycle determines a homology class, and
bordant pseudo-cycles determine the same homology class. But in the non-
compact manifold V' a pseudo-cycle does not necessarily determine a homol-
ogy class as the identity map from V to V. Moreover, it is easily checked
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that the product of two (strong) pseudo-cycles is also a (strong) pseudo-
cycle in the product manifold. If f; : M — Vj are (strong) pseudo-cycles,
k = 1,2, then the map M — Vi X Vo, m — (f1(m), fo(m)) is also (strong)
pseudo-cycle. In §5 below we will need these conclusions. Two pseudo-cycles
e: P — Vand f:Q — V are called transverse if either e(P) N f(Q) = 0
or e(P®)N f(Q) = 0, e(P)N f(Q*®) = 0 and T,V = Imde(p) + Imdf(q)
whenever e(p) = f(q) = z. However, it should be noted that for two trans-
verse pseudo-cycles e and f as above, if one of them is a strong pseudo-cycle
Ale, f) :={(p,q) € P x Qle(p) = f(¢)} is a compact manifold of dimension
dimP + dim@ — dimV. This statement can be derived from the definition of
transversality of pseudo-cycles directly. Specially,it is a finite set if P and @
are of complementary dimension. Under our case Lemma 7.1.2 in [McSal]
are not applicable due to the noncompactness of the manifold V', which im-
plies that Diff" (V') is not separable Banach manifold for every integer r > 0.
We must give its suitable modification form. This can be obtained with our
method in §2.
Fix a large integer r > 0 and as in (12) we denote by

(24) xXi ={X € x"(V)|supp X C Qi, || X|lcr < o0},

where x" (V') are the space of all C"-vector fields on V, and
[ Xller = supgev | X (z)lg + supzey |V X (z)lg + - -+ 4 supzey | Ve X (z)]g,

Vg is the Levi-Civita connection of metric g. Then every (x}, | X|cr) is
separable Banach space. Denote by

(25) X" (Vo

the space of all sequences X = (X1, Xo,...) with X; € x7 and

o
Xlgr = Y IXkllor < oo.
k=1

Then it is easily proved that (x"(V)o, | - |lgr) is & separable Banach space.
Note that every X € x"(V)o determines a bounded C"-smooth vector field,
denoted by p,(X) = 32, X;. Clearly, the image of p, contains all smooth
vector fields with compact support on V. But every C"-smooth bounded
vector field on complete Riemann manifolds can uniquely determine a one-
parameter C"-smooth diffeomorphism group. Let us denote by {F;(p(X)) :
t € R} the group determined by p,(X). Define

(26) FT i x"(V)o = Diff"(V), X — Fi(pr(X)).
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It is easily checked that F” is a C"-smooth map. Corresponding to Lemma
7.1.2 in [McSal] we have the following lemma.

Lemma 4.1. If a CP-smooth pseudo-cycle e : P — V and a C?-smooth one
f:Q =V satisfy
(27) dimP +dimQ@ >dimV
then
(i) for every sufficiently large integer r > min{p,q} there exists a set
X" (Vye, f) € x"(V)o of the second category such that e is transverse
to F'(X) o f for all X € x"(V,e, f); these X" (V,e, f) also satisfy:
X' (Ve ) 2x " (Vie, ) 2.,
which implies that for any X € x"(V,e,f) and Y € x*(V,e, f) with
s > r it holds that
(Fr(X)of)-e=(F(Y)ef) e
provided that the equality in (27) also holds and one of f and e is a

strong pseudo-cycle;

(ii) if the equality in (27) holds, e and f are transverse and one of them is
a strong pseudo-cycle, then A(e, f) is a finite set and in this case we
denote by v(z,y) the intersection number of e and f at (z,y) € Ale, f),
and define

ef= 3 vy

(zy)eA(e,f)

(iii) the intersection number e - f depends only on the bordism classes of
e and f when one of them varies in the bordism class of the strong
pseudo-cycle.

Proof. The proof can be finished as in [McSal]. We only need prove that
the map

(28) O:PxQxx(V)o—=VxV:(pqgX)— (e(p),f"(X)(f(q)))

is transverse to the diagonal Ay . For any (p, g, X) € ©71(Ay) the differen-
tial of © at it is given by

DO(p,q,X)(§,n,Y)
= (De(@)(©), DFT(X) o £)(@)(m) + [DF (X)(V)](())),
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where (€,7,Y) € ToP x T,Q x x"(V)o. Let m = e(p) = F"(X)(f(q)). For
any given (u,v) € T, m)(V x V) we wish to find w € T,V and (§,n,Y) €
TpP x T,Q x x"(V)o such that

(29) De(p)(§) = w +u
(30) D(F7(X) o f)(g9)(m) + [DFT(X)(V)](f(9) = w +v.

By taking £ = 0, n = 0 and w = —u we need only find Y € x"(V)o such
that

(31) [DF(X)V)](f(@) =v—wu

For f(q) = [F7(X)]~'(m), by definition of F"(X), it is ax(1), where ax(t)
is the unique solution of the initial value problem

(32) ax(t) = <Z Xi) (ax(t)), ax(0) = f(a)-
i=1

For s € (—1,1) and Y € X" (V) we denote by axsy(t) the unique solution
of the initial problem

(33) ax+sy(t) = (Z X+ 8Yi> (axtsy(t), ax+sv(0) = f(q)-

=1
Then we need to find Y € x"(V)o such that

d
(34) —ax+sy(1)]|s=0 =v — u.

ds
By localization method it is easy to find a smooth vector field Z with
compact support on V such that for the unique solution curve family
B(pr(X) + sZ)(t) of pr(X) + sZ with initial value f(g) at zero it holds that

2 5(0r(X) + s2) (oo = v~

Now using the unit decomposition technique it is easy to find a Yex (V)
with Z = p,(Y). Thus we prove the transversality.

Moreover, the standard computation shows that the restriction of the
natural projection II from P x @ x x"(V)o to x"(V)o to 0 (Ay) is a
Fredholm operator with index

(35) Index (I1|0~1(Ay)) = dimP + dim@ — dimV,
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which is only dependent on the dimension of P, Q and V. Under our
assumption this index is less than or equal to zero. Thus we need only
fix an integer » > 0 such that Sard-Smale theorem can be applied. The
remainder of the arguments are the same as that in [McSal]. a

Now let a k-point genus g stable curve (X,z), A € Hs(V,Z) and the
pair (J,v) satisfy the regularity requirements in §2 and §3. The integral
homology classes {a;}1<i<k and {B;}1<j<i of V satisfy

l

k
(36) > _(2n —deg(cu)) + Y _(2n — deg(B;) — 2) = 2c1(V)(A) + 2n(1 - g).
1 1

We choose strong pseudo-cycles f; : P; :— V and h; : Q; — V representing
a; and (1 < i < k,1 < j <), respectively. Then

k 1 k 1
(37) fz:HfiXth:HPiXHQj—)Vk'{_l
j=1 i=1 j=1

=1

is a strong pseudo-cycle representing the integral homology class []; os X
II;5 € H,(V*+! 7). Since the compositions f o ¢ of this f with any
¢ € Diff"(V**!) are also CT-strong pseudo-cycles representing the same
class, using Lemma 4.1 we can assume that f is transverse to e&,z’ ) and

all e}, ;) because of the countability of BD:{"”’E. By Lemma 4.1 and (36)
we can define the mixed invariant

(38) Q(A,w,g) (ala ce 7ak|/81) cee 7ﬂl) = f : e&’Z,J,y)‘

In the case that (36) does not hold we also define

(39) Q(A’w,g)(al,...,ak|,31,... ,,Bl) =0.

As in [RT1] we can use the arguments in §2 and §3 to prove that
DA wg) (@1, |B1,--.,P1) is independent of choices of (J,v) in a dense
subset of HJ™(V,w)., marked points zi,...,z; in 3, the conformal
structures on ¥, sufficiently large integers r,m and strong pseudo-cycles
(P, fi), (Qj, h;) representing oy, B; for a given component HJ™(V,w). of
HI™(V,w). For two different components we do not know what relation-
ships there are between corresponding invariants. When talking about some
property of the invariants we always mean them to be with respect to some
fixed component without special statements. Similarly, the corresponding
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results to Proposition 2.4, 2.5 and 2.6, 2.7 in [RT1] can be proved. In par-
ticular, under our assumptions one can define the invariant @4, c) as §7 in
[RT1] and prove the composition law:

(40) @(A,w,g)(al, ce ,Olk|,31, . ,ﬂl) = @(A’w’c)(al, cee ,Ozk|ﬂ1, cee ,ﬂl)

where C = (%, Z) is a k-point genus g stable curve and ag,...,ak,51,--.,08
are integral homology classes of V.

As to the deformation invariance of these invariants with respect to the
semi-positive deformation class of w we introduce the following notion of
deformation equivalence. Two semi-positive symplectic form wy and w; on
a (noncompact) geometrically bounded symplectic manifold V is called de-
formedly equivalent if there exists a smooth l-parameter family of semi-
positive symplectic forms w; connecting wy and wy, and a family of almost
complex structures J; such that all (V,w, J¢, g) are uniformly geometrically
bounded with respect to some metric g € G(V'), that is, there exist constants
ap and By such that two inequalities in 1° of Definition 2.3 hold uniformly for
all w;. As usual we may use the above method to prove our Gromov-Witten
invariants are invariant under such semi-positive deformations of w.

Example 4.2. For any closed manifold N and any closed 2-form 2 on N
consider the symplectic manifold (M,w) = (T*N,wcan + 7*Q) then for any
k-point genus g stable curve (X,z), A € Hy(V,Z), the integral homology
classes {a;}1<i<k and {B;}i1<j<; of V we have

@(A,w,g)(a].) s 7ak‘617 cee 7;Bl) =0.

In fact, take any Riemannian metric h on N and denote by H the in-
duced Riemannian metric on 7*/N by h. Then from proof of Proposition
4.1 in [Lu2] it easily follows that all symplectic manifolds (T*N,w;) are uni-
formly geometrically bounded with respect to H. Here w; = wecan + t€,
t € [0,1]. Furthermore, the proof there also shows that one can take a
smooth family of almost complex structures J; such that every J; is w;-
compatible and (M, w;, Ji, H) are uniformly geometrically bounded. Now
Chern class ¢1(T'M, J;) is independent of ¢ and thus they are all zero because
c1(TM,Jy) = 0 is clear. Hence the symplectic forms wg = wean and wy are
deformedly equivalent. But it is clear that o A,wcan,g)(o‘l’ ceyoplB, - B1)
always vanishes. The above deformation invariance leads to the conclusion.

In order to define the quantum homology? of (V,w) we need to assume

2P. Seidel pointed out that in the orginal version using the Poincaré duality
on noncompact manifolds does not give rise to a product on H*(V), and should
consider the quantum homology of (V,w) instead.
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that
(41) T, = H5(V,Z)/HS (V, Z)o is finitely generated,

so that the Novikov ring A, associated to the homomorphism w : I',, — R is
well-defined. Here Hj (V,Z)o is the subgroup of classes « in H$ (V,Z) such
that ([w], @) = 0 and (c1(V,w),a) = 0. As usual we denote by

QH.(V) = H.(V) ® Au,

where H., (V) stand for of H,(V,Z) modulo torsion. The quantum intersect
product is given by

a*y B = Z (a*y B)a®e? € QHpri_on(V)
A€T,

for a € Hy(V) and 8 € H)(V). Here (o *y B)4 € Hip 1100 (4)—2n(V) is
determined by

(axy Bavy= (4,0 (a, B,7) for all y € H, (V).

This gives an ring structure on QH, (V).

Remark 4.3. For given integral homology classes o, . . . ok, B1,--., 0 and
their strong pseudo-cycles representatives f; : P, — V, hj:Q; -V asin
(37) it follows from V being noncompact g.bounded that there exist the
diffeomorphisms ¢ € Diff"(V') such that the images of f and g%o fi= Hf ¢o
fi X Héqﬁ o h; are not intersecting each other and even have the larger
distances. But qAbo f and f are representing the same homology classes,
therefore from our results that if their Gromov-Witten invariants are not
zero then the maps in M4(X, J,v) are distributed over V in an even way.
In the same time this seems also to show the complexity of the distributions
of the holomorphic curves in the general noncompact symplectic manifolds.

5. Gromov-Witten Invariants of Compact Symplectic
Manifolds with Contact Type Boundary.

Let (V,w) is a 2n-dimensional compact symplectic manifold with contact
type boundary V. That is, there is a one-form o on 8V such that do, = w|ay
and a A (da)"~! is a volume form on &V. Such a form « is called a contact
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form on V. One can associate a noncompact symplectic manifold (17,&7)
as follows:

7 - w on V;
V=V U AV x [1,400), a}_—:{ )
avx{1} d(te) on OV x [1,+00).

Here ¢ is the second coordinate. For a J € J(V,w) and a Riemannian
metric h on V we may extend them to J and h respectively so that J and
h are constant on the 8V x {t}. It is easily checked that (V,&,J,h) is a
g. bounded symplectic manifold. Moreover the inclusion 4 : V — V induces
clear isomorphisms i, : Hy«(V,Z) — Hi (V,Z) and i* : H* (V,z) — H*(V,Z).
Tt is clear that i*(cy(V,J)) = c1(V,J) and i*([@]) = [w]. Consequently,
(V @) is semi-positive if only and if (V,w) is semi-positive. For a class
o € H.(V,Z) we denote & by i«(a). Then for a given k-point genus g
stable curve (2, 2), A € Ho(V) and integral homology classes {c; }1<i<k and
{Bi}1<j<i of V satisfying (36) we define

(42) @(A,w,g)(al, e ,aklﬂl, . ,ﬁl) = q)(g,&-],g)(al, oo ,&k|,§1, .o ,Bl).

Since both the space of all Riemannian metrics on V and J(V,w) are con-
tractible it is easy to check that the left of (42) is independent on the choices
of J in a dense subset of J(V,w), marked points 21, ..., 2 in X and confor-
mal structures on ¥. Moreover, they also satisfy the axioms that Gromov-
Witten invariants satisfy on closed symplectic manifolds. Notice that (V w)
always satisfies the assumption in (41). One may naturally define a quantum
ring QH, (V) = H.(V) ® A, from (42) and the agruments above Remark
4.3.

6. Rigidity of the Loops in the Group of Hamiltonian
Diffeomorphisms with Compact Support.

The quantum homology had been used to study the topology of symplec-
tomorphism groups and Hamiltonian symplectomorphism groups on closed
symplectic manifolds in [Sel], [Le], [LMP]. In this section we will use the
techniques developed in the previous sections and their ideas to study these
groups on noncompact g. bounded symplectic manifolds. Without special
statements our 2n-dimensional symplectic manifold (V, w) is always assumed
to satisfy the following condition:

(43) Aem(V), 2-n<c(4) <0=w(4) 0.
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Given an element ¢ € 71 (Diff(V),4d) and any a loop S* — Diff(V), t — ¢,
representing it one can define an endomorphism 0y : H.(V, Q) — H.41(V,Q)
by setting 8,([C]) as a homology class represented by the cycle S x C —
V, (t,z) — ¢i(z) for a cycle C in V. The main result in [LMP)] is that for
a loop ¢ in the group Ham(V,w) the endomorphism 9y vanishes identically
if a 2n-dimensional closed symplectic manifold (V,w) satisfies (43). In this
section we generalize their result as follows:

Theorem 6.1. If a 2n-dimensional g.bounded symplectic manifold (V,w)
satisfies (41), (43) then for any loop ¢ in Ham®(V,w)3 the endomorphism
0y vanishes.

Let GS(V) be the set of the symplectic structures w on V satisfying
(41), (43). For any w € GS(V) we denote by S, : m1(Symp§(V,w)) —
m1(Diff(V),id) and H, : m(Ham§(V,w)) — m1(Diff (V'),id) the homomor-
phisms induced by the group inclusions respectively. As in [LMP], as a
consequence of Theorem 6.1 we get the following result on the rigidity of
Hamiltonian loops.

Corollary 6.2. For an element ¢ in 71 (Diff(V),id) if there ezist w1 and wy
in GS(V') such that ¢ € Im(H,, ) NIm(S,,) then it also belongs to Im(H,,).

For a 2n-dimensional compact smooth manifold M with nonempty
boundary OM we denote Cont(M) by the set of all symplectic structures on
it for which (43) holds and M is of contact type. Diff (M, M) denote the
subgroup consisting of all elements F' € Diff (M) whose restriction to OM is
the identity. For a symplectic structure w on M we denote by the subgroups

Symp(M,dM,w) := Diff (M, 0M) N Symp(M,w),
Ham(M,dM,w) := Diff(M,0M) N Symp(M, w).

By [Se2] these spaces may have infinitely many connected components. No-
tice that in Exercise 10.13 on the page 318 of [McSa2] it was pointed out
that for a noncompact symplectic manifold (V,w) without boundary the
flux homomorphism is still well-defined on S/y\nq);(v, w) and the correspond-
ing result to Theorem 10.12 also holds when Symp,(V,w) is replaced by
Symp§(V,w). In fact, carefully checking the proof Theorem 10.12 in [McSa2]
one can get the stronger conclusion that for the isotopy

[0,1] — Sympg(V,w), t +

3P. Seidel had constructed an example with a nontrival Hamiltonian loop with
compact support.
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with ¥ = ¢d and Flux({¢+}) = 0 one actually make it to be isotopic with
fixed endpoints to a Hamiltonian isotopy {¢;} such that the support does not
increase. That is, if a compact subset K C V is such that Suppy; C K for
all t € [0, 1], then {¢:} may be required to satisfy: Supp¢: C K, V¢ € [0, 1].
Using this remark and Corollary 6.2 we may obtain

Corollary 6.3. For a 2n-dimensional compact smooth manifold M with
nonempty boundary OM and ¢ € m(Diff(M,0M),id) if Cont(M) is
nonempty then for any two wi and we in Cont(M) it holds that ¢ €
Im(H,,) NIm(S,,) if and only if ¢ € Im(H,,) NIm(S,,).

In fact, let (M,&;) and (M,&s) be the symplectic expansion as made in
85 they obviously satisfy (41) (43). Moreover, every element of Diffo(M, OM)
can be extended into one of Diﬁg(ﬁ ) by the identity extension. Thus
Sympy(M,0M,w;) and Hamy(M,dM,w;) may be viewed as the subgroups
of Sympﬁ(]Téf ,w;) and Hamﬁ(]Téf ,Wi), 1 = 1,2, respectively. Now the conclu-
sion may be derived from Corollary 6.2.

As pointed out in [LMP] their results may be generalized to arbitrary
closed symplectic manifolds with the methods developed in [FO], [LT1, LT2],
[R3], [Sie]. However, as done in the previous sections it seem to be very
hard to generalize our results to arbitrary noncompact g.bounded symplectic
manifolds with their methods.

It is well-known that there exists a one-to-one correspondence between
elements of 71 (Symp(V,w)) and isomorphism classes of symplectic fibre bun-
dles over S? with fibre (V,w) (cf. [LMP], [Sel]). For a given loop ¢ejo1
in Symp(V,w) the correspondent symplectic fibre bundle P, — S? may be
obtained as follows: let Dt and D~ be two copies of the closed disk D? of
radius 1 of the plane bounded by S!, one can glue the trivial fibre bundles
DE x (V,w) by amap ®: DT x V — 8D~ x V : (2nt, z) = (—27t, ¢e(z)).
According to [Sel] a symplectic fibre bundle with fibre (V,w) on S? is a
smooth fibre bundle 7 : E — S? together with a smooth family Q = (Qp)pes2
of symplectic forms on its fibres satisfying locally trivial condition and the
transition function taking its value in the group Symp(V,w). He also call
a symplectic fibre bundle (E,) — S? as Hamiltonian if there is a closed
two-form € on F such that $'32|E17 = for all b € S2. Later, we call such a
closed two-form €2 on the Hamiltonian fibre bundle as Hamiltonian form.

Furthermore, from proof of Proposition 10.17 on the page 320 of [McSa2]
one can prove that for every loop S' — Ham®(V,w), t + ¢; there is a smooth
function Hy : S' x V — with compact support to generate it. Especially,
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there is an exact sequence of groups

0 = my (Ham(V, w)) — m1 (Symp§(V,w)) & HX(V,R),

where Flux is the flux homomorphism. Consequently, from the proof of
Proposition 2.9 in [Sel] it follows that for a loop ¢ in Symp®(V,w) the
symplectic fibre bundle Py — S? is Hamiltonian if and only if the loop ¢
may be homotopic to a Hamiltonian loop in Symp®(V,w), that is, a loop in
Ham®(V,w).

As in [LMP] using the Wang exact sequence of pair (P, S?):

O ix
o= Hy 1 (V,2) 5 Hy(V,Z) = Hy(Py,Z) = Hyo(V,Z) = - -
the proof of Theorem 6.1 can be reduced to the following equivalent theorem.

Theorem 6.4. Let (V,w) be as in Theorem 6.1 and ¢ a loop in Ham®(V,w).
Then the homomorphism i : Hy(V,Q) — H.(Pp,Q) is injective.

In order to prove this theorem we need to give the detailed construction
in Proposition 2.9 of [Sel] since the more conclusions are needed. Let Di"/3 =

{z € D¥|1/3 < |2| <1} and D)3 = {z € D7[1/3 < || < 1}. Denote by
(r,t)+ the polar coordinate in D¥ with ¢t € S! = R/Z. In the set A :=
{(r,t)+,(r,t)—|(r,t) € D} we define an equivalence relation ~ as follows:
the equivalence class of (r,t)4 is [r,t]+ = {(r,t)+, (-=r+5/3,—-t)_-} = [-r+
5/3,—t]— if 2/3 < r < 1, those of (r,t)+ and (r,t)— are [r,t]+ and [r,¢]-
respectively if 0 < 7 < 2/3. Then S? = A/ ~ and Uy := {[r,t]+ | (r,t) € D}
form an open cover of S2. Uy NU- = {[r,t]+ = [-r + 5/3,—t]_ | (r,t) €
[2/3,1] x S'}. The coordinate charts o1 : D — Uy, (r,t) +— [r,t]+ give an
atlas on S2%. The transition map is:

(10:1 oWy D1/3 = {Z c Dl2/3 S lZl S 1} — D1/3, (T,t) — (—T+5/3,"'t)
We also consider the formal set
(44) {((r,t)x,z)|(r,t,z) € D x V}

and in it we define an equivalence relation ~% as follows: the equivalence
class of ((r,t)+,z) is [r,t,a:]f_ = {((r,t)+,z)} f 0 < 7 < 2/3, that of
((r,t)—, z) is [r,t,z]® = {((r,t)_,z)} if 0 < r < 2/3, and that of ((r,t)4,x)

is [rt, 2]} = [~ +5/3,—t,6u(@)]2 := {((r,t)+,2), (=7 +5/3,—1)—, $x(2))}
if 2/3 < r < 1. Then the set, denoted by Py, of all equivalence classes of
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elements in the set of (44) is a symplectic fibre bundle with fibre (V,w).
Two bundle charts & : Uy x V. — Py|Ug, ([rt]4,z) — [*r,t,:r:]‘f’r and
O_ : U_xV = PlU_, ([r,t]-,z) — [r,t,z]® form an bundle atlas of
P,. The transition map is given by

(45) @ 'od, U, NU-xV = UsNU-xV, ([r,tl+,z)
= ([-r+5/3,—t]-, du())

Denote by p+ : U+ x V — V the natural projections to the second factor,
and w* := piw. Define a one-form 6, on Uy x V as follows: 04(([r,t]4,z)) =
—8(r)Hy(t, ¢(x))dt. Here Hy : S x V — R is a smooth function generating
¢1c(0,1) and having compact support, ¢ : [0, 1] — [0, 1] is a monotone smooth
function such that (r) =0for 0 <r <1/4and §(r) =rfor 1/3<r < 1. In
this paper we always fix this ¢ function. Clearly, 64 has compact support.
Straightforward computation shows that the closed two-forms (®7')*(w™ +
dfy) and (®')*w™ are the same on overlap Py|y,nv_. Thus they define a

closed two-form Q¢ on Py by

46)  Qlp,ju, = (27 (W +dby) and Qglp,p_ = (221w

Let a compact subset K C V be such that SuppHy C S1 x K. Then from
the above definition it easily follows that

(47) P\ (cr>+(U+ x K)| Jo_(U- x K)) = 2 x (V\ K),
and on the set of (47) it holds that
(48) Qg = piw,

where py : S2 x V — V is the natural projection. Moreover, one can easily
prove that the above two-form €y is a Hamiltonian form on Py and also
satisfies:

(49) QT =0 on $%\ {[r,i+ € S*|1/4 <7 < 1/3},

where 7, is the fiber integration map, and 24 a smooth family of symplectic
forms on the fibres of Py — S2. Different from the case that V is the closed
symplectic manifold we neither know the existence of a Hamiltonian form
Q on P, such that Q™! = 0 nor the uniqueness of such forms if they
exist. A Hamiltonian form € on Py is called to have CS property if there are
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compact subsets Ky C V and I?q; C Py such that P\ I?qs = S% x (V\ Ky)
and on them it holds that {2 = pjw. Let us denote by

H(¢) = H(Py)

the set of all Hamiltonian forms having CS property on Py4. Since for any
two Hamiltonian fibre bundles Py and Py, on S 2 obtained from loops biefo,)
and teoy) in HamG(V,w) one can always find compact subsets KX C V,

Ky4 C Py and Ky C Py such that
(50) Py\Ky=Py\Ky=5"x (V\K),

we may say a symplectic fibre bundle isomorphism I#¥ between Py and Py,
to have CS property if it is the identity map on the sets in (50), that is,
1%¥(2,v) = (2,v) for all (z,) € S? x (V'\ K). Clearly, such an isomorphism
induces a natural bijection I?%* from H(¢)) to H(¢) by the pull-back map.

For every ) € H(¢) and the standard symplectic form o on S? it is
easily proved that there is always a large constant c(€2, #) > 0 such that all
two-forms {2+ cr*o are symplectic forms on Py for all ¢ > c4. Though these
symplectic forms are also the Hamiltonian form on Py, but they have no CS
property. _

Given a Hamiltonian form £ on P, in [Sel] two continuous sec-
tions s and s; of Py are called I'y-equivalent if ﬁ¢(so) = ﬁqs(sl) and
c1(TPy*)(s0) = c1(T'Py**)(s1). The key point is this definition being in-
dependent of the choice of Q (cf. [Sel]).

Following [Sel] we denote by J(Pj,€y) the space of smooth families
J = (J;),cs2 of almost complex structures on the fibre of Py such that J, is
14,-compatible for all z. In other words, J is a smooth section of a bundle
over S? whose fibre at a point z € S? is the space J (Py2,$y;). For the
positively oriented complex structure j on S%2 and J € J (Ps,4), J (4,
denote the space of all almost complex structures J on P4 compatible with
j and J, that is, J satisfying: DroJ = joDm and j|P¢z = J, for all z € 2.
Similarly, for every integer m > 1 we denote T ™(4,J) by the space of all C"™-
smooth almost complex structures on Py satisfying the above conditions. A
smooth section s : S2 — P, is called (j, J)-holomorphic if ds o j = J o ds.
For a given Q € H(p), from the above arguments it is not difficult to prove
that all symplectic manifolds (P, Q+ cm*o) are g.bounded with respect to
some J € J (7,J) and some Riemannian metric on Py4. To see this point we
choose a g € G(V). Let 7o be the standard metric on S?. Notice that the
above arguments show that one can choose a Riemannian metric G on Fy
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such that it equals to 79 @ g outside a compact subset. When g takes over a
connected component G(V), of G(V) all corresponding Riemannian metrics
on Py also form a connected subset of all Riemannian metrics on Py, denoted
by G(P,).. Later we always fix a component without special statements. For
a G € G(Ps). we denote G, by the induced metric on fibre Py, then one
can use the standard method to find J € J(Py,{y) such that the family of
symplectic manifolds {(Pp., 4, G:)},cs2 is uniformly g.bounded. That is,
their sectional curvature has a uniform upper bound, the injectivity radius
has a uniform positive lower bound and there exist positive constants ap
and By such that

Qcﬁz(fa J.£) > 040||§||2Gz and
12242 (&) < Bollélla. lInlle., Vz € S% €, e TPy,

We denote by GJ(Py, ) all such J € J (Py,€y) constructed from (g
and some G € G(Pp). with the standard method. On the other hand from
Q@+ en*o)|Py, = Q4. and G|Py, = G, it follows that the almost com-
plex structure J on P, constructed from G and Q + er*o with the stan-
dard method must be in 7 (j,J) and such that (Pg, Q + cn*o, J,G) is also
g.bounded. Now fix sucha J € J(Py,24) and a J € 7(j,7), and as in §2 we
can construct a separable Banach space so that the transversity arguments

in §7 of [Sel] can be completed in our case. That is, under our assumptions,
we can find J € J(4,J) such that

(i) (P¢,ﬁ +cn*o,J, @) is g.bounded,

(ii) the space S(Py, 2y, 7, J, D) of all (7, J )-holomorphic sections of Py rep-
resenting a I',,-equivalence class D of a section of P is a smooth man-
ifold of dimension 2n + 2¢; (TPq;’ert)(D) and for chosen two different
points z1, zo € S? in advance and isomorphisms F,f D (Ppayy Qg2 ) —
(V,w), k = 1,2, the maps

EV?P . S(Py, 0,4, J,D) =V, s+ FP(s(z))
are pseudo-cycles in the sense of §7.1 of [McSal].

Later we will fix such a J and a ¢ > cg without special statements.
For two integral homology classes «, 3 € H«(V,Z) and their strong pseduo-
cycles representatives fyy : M — V and fy : N — V we can, as in §4,
show that there exist H € Diff(V x V') such that the pseduo-cycle EVeD .=
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(EV‘fD, EV?D) and strong pseudo-cycle H o (fas X fn) transversely intersect
provided that

(51) 2n 4+ 2¢; (TPgert)(D) + deg(a) + deg(B) = 4n.
Thus we may define a kind of Gromov-Witten invariants
(52) ®(4,p,3) (0, B) =BV - (Ho (far x fn))

if (51) holds, and zero if (51) does not hold. It is easy to prove that the
right side of (52) is independent of the choices of J, g ,2, and generic repre-
sentatives. When I',, is finitely generated the rational Novikov ring of it is
well-defined and thus quantum homology QH.(V) can be defined as in §4.
In this case we use the idea from [LMP] to define the formal sum

(53) \I’g,D(a) = Z ap®ef
BeTy,

for o € Hi(V,Z), where ap € H,q419:,(p)(V) is determined by
(54) ap v B =24 piB3) ()

for every 8 € H.(V,Z) and B € T,,. Here

(55) d= (TP (D)

and D + B is understood as in Lemma 2.10 of [Sel], that is, D + B is the
only I',,-equivalence class of sections of P4 such that

Q4(D+B)=Qy(D) +w(B)  and
c1(TPy™)(D + B) = c1(TPy™)(D) + c1(B).

The following lemma shows that for every o € H.(V,Z), ¥4 p(a) is an
element of QH,14(V).

Lemma 6.5. If T, is finitely generated then for any o € H.(V,Z), T,-
equivalence class D of sections of Py and constant C > 0 there are only
finitely many B € T, such that ap # 0 and w(B) < C in (53).

Proof. Since T, is finitely generated the rational Novikov ring of it is a count-
able set. Moreover, ap -y § = 0 unless deg(a) + deg(5) + 2c1(TPq§’e't)(D +
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B) = 2n. Assume that there are a constant C > 0 and infinitely many
B; € T, such that

ap, #0 and w(B;) <C,1=12,....
Then there are infinitely many 8; € Hy(V,Z) such that

(56)
<I>(¢,D+Bi;‘])(a,ﬂi) 7é 0, deg(a) + deg(ﬁi) + 201(TP$6”)(D + Bi) =2n
for all i = 1,2,.... Recall the definition in (52) we can always find F; €

Diff(V x V) such that the image sets of all F; o (f x h) are contained in
a fixed compact subset S of V x V. In fact, from the proof of Lemma 4.1
one can find X; € x"(V x V,EV, f x h) with ||Xi||gr < 1 such that EV is
transverse to all F; o (f x h) with F; := F"(X;), ¢ = 1,2,.... But that
| Xillgr < 1 implies that ||pr(Xi)l|cr < 2 for all 4 > 1. Thus the image sets
of all maps Fj o (f x h) are contained in a fixed compact subset of V' x V,
denoted by S. The first formula of (56) shows that there exist J-holomorphic
section s; representing the classes D + B; with EVA(P+B)(5) NS # 0. In
particular, there exists a compact subset K of Py such that s (SHNK #0
foralli=1,2,.... Now

(57) og(§+cw*a)(si)=§(D)+w(3i)+c/s2a56(D)+c/320+0

because D + B; is the equivalence classes of sections of P4 and f g2 8 (r*0) =
[ 52 (mos)*oc = [ 52 0 for every smooth section s of Ps. This shows that there

are infinitely many homology classes in Py with nonconstant J-holomorphic
spheres representatives whose image intersects with a fixed compact subset
S in Py. It contradicts to Gromov compactness theorem. O

Consequently, (53) defines a A,-linear homomorphism \Il‘;,D from
QH.(M) to QH.;q(M) with d = 2¢1 (T P}**)(D). Moreover, if loops ¢;efo,1]
and Xe[o,1] are homotopic in Ham{(V,w) there exists a Hamiltonian fi-
bre bundle isomorphism I#X having CS property from Py to P,. For a
J € J(P4,9y) and a T~ equivalence class D of sections of Py the isomor-

phism I9X determines a I?X(J) and a I',-equivalence class I2X(D) of sections
of P,. It is not hard to prove that

3 _gP®
(58) Y60 =¥ 1tx(oy

As in [Sel], [LMP] we have

J J -B
Vo,p+8=Ysp @€
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for every B € T',, and the I',-equivalence classes D of sections of Py, and
the following conclusion.

Lemma 6.6. For the constant loop ¢y = {id} and the 'y, equivalence class
Dy of the flat section sy = S? x {pt} of Py, = S2 x V the map ‘IlgO,Do 1s the
identity map for any I € T (Pgy, Qg,)-

Now if a loop X¢efo,1] is homotopic to ¢o in Hamg(V,w) then there exists
a Hamiltonian fibre bundle isomorphism 190X having CS property from Py,
to P,. We call I'y- equivalence class IfOX(DO) of sections of P, as the
trivial class. It is independent of choice of the isomorphism I#°X having
CS property. Thus \If;,T is the identity map for the trivial class 7" and any
J € T(Py, Qy)-

As done in [LMP] the key point of the proof of Theorem 6.4 is to prove
the composition rule for maps ¥y p. This needs us to consider the relation
between Py, Py and Py.s. However, unlike the case of [LMP] under which
there is the only coupling class ug corresponding to ¢, in our case we need
to replace it by a suitable thing. For two smooth loops ¢sc(o 1) and ¥ic(p,1) in
Ham§(V, w) we make the following assumptions: for a fixed sufficiently small
€>0¢; =idfort ¢ [1/2+€,1—€] and ¢y = id for t ¢ [¢,1/2—¢€|. Notice that
they have been extended to R 1-periodically. Let Hyg : S IxV — R and Hy :
St x V — R be the functions with compact supports and generating loops
brefo,1) and Pieo,1) Tespectively. We can require them to satisfy: Hy(t,") =0
fort ¢ [1/2+¢€,1 —¢€] and Hy(t,-) =0 for ¢ ¢ [¢,1/2 — €]. Denote by

T. :={[r,t]4,[r,t]- € S?|2/3<r <1, te[1/2+¢€1— €},
T* :={[r,t]4,[r,t]- € §?|2/3 <7 <1, t€[e,1/2 — €]},
S% = {[r,t]4,[r,t]- € S*|0<r <1, 0<t < 1/2},
52 .= {[rt]4,[rt]l- € S*[0<r <1, 1/2<t< 1}
Clearly, T. and T} are proper subsets of the open left hemisphere 52 and

open right hemisphere S2 respectively. From the previous construction we
may know that

(59) P¢|S2\Te = (52 \Te) xV and P¢|52\T€* = (52 \Te*) x V.

Thus we may construct the fibre sum Py} Py as follows: gluing Pg| §2\82 and
Py|g2\g2 along

(60) 0P¢l52\>5_2'_ = {[7‘, t]+, [’I”, t]_ € 52 ,t = O, ]./2} xV = anﬁISQ\SE
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by the map: [T,O,x]i — [T,O,:I:]i, and [1",1/2,9:]5?E — [r, 1/2,3:]’:/(:.

On the other hand it is easy to know that under our assumptions the
composite loop (¢*1);e(0,1] = (¢1°%t)se[0,1) i generated by the Hamiltonian
function Hguy : S! x V = R given by

Hy(t,z), if0<t<1/2

(61) Hypuy(t, @) = {H¢(t, z), if1/2<t<1

Notice that the Hamiltonian forms ﬁ¢ on Py and ﬁd) on Py constructed as
before satisfies:

(62) Q4lPylsa\r, = Piw, Q| Pylsavs = phw.

Hence under the fibre sum operation they define a closed two-form PyiPy,
denoted by Q4f€2,;. From the above construction it is easily checked that

Pyfi Py = Py.y and the closed two-form §¢ﬂﬁ¢ is exactly ﬁd,*,p constructed
in the previous way, that is,

(63) iy = Qguy-

Now for given sections s of Py and s’ of Py, by the section homotopy we
assume that the restriction of s to 52\ 7, /2 and that of s’ to 52 \Te*/2 have
the following versions respectively,

(64) S(Z) = (Z,’Uo), ze S2 \Te/27 and S,(Z) = (Z,’l)o), FAS SZ\ 5*/2

for some fixed vg € V. Hence they fit together to give one section of the
bundle PyfiPy, denoted by

(65) sfis’.

Combing (63) with (65) we get

(66) Qu(5) + Qy (") = Qi (sts”) = Qg (sts").

For such chosen sections s and s’ it follows from (59) that

(67) A (TPE)(s) + et (TPE)(s') = e1 (TP (sts').

In fact, since c1(TP}*)(s) = a1 (s*TP&,’ert)([SZ]), by the well-known Split-

ting Principle we only need to consider the case of complex line bundle on
S2%. The latter case may be directly proved with Theorem 2.71 in [McSa2].
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Notice that (66) and (67) lead to a natural map from
(68) Fw(P¢) X Fw(P¢) — Fw(PqS*w)a (DaD,) — DﬂD/)

where Iy, (Py), T'yw(Py) and I'y (Ppyy) are the sets of I'y-equivalence classes
of the sections of the bundles Py, Py and Py respectively. Similarly,
since J (Py,Qy) and J(Py, ) are contractible using (59) we always choose
J € J(Py,Q4) and J' € J(Py, ) such that

(69) J.=J =J,, ¥z € 8*\ T and Vw € $* \ T,

where J € J(V,w) such that (V,w, J, g) is g.bounded for g € G(V). Then J
and J' fit together to give one element in J(Ppuy, Q¢*¢), denoted by J{J'.
What we wish to prove is the following composition rule.

Proposition 6.7. For any I'y,-equivalence classes D of sections of Py and
D' of sections of Py it holds that

J! J J§J’
(70) y,pr 0¥y p = ‘I’qsizb,DﬂD"

Before giving its proof we make an notation:
Remark 6.8. The above base spaces of Py and P, are denoted by S% and
S2 g respectively. Moreover, when constructing the fibre sum P44P;, we will

glue Py s2\s2, and Py| s2\s2,_ along boundaries 0P| s2\s2_ and OPy| 52\82,
by the map

é Y
) _cose N [_ese 1Y
cos(t +¢) cos(t — )

where

82 = {4, 1] € ° ’ Zzsi <r<l, —e<t<el,

S3, = { ot It € S° |

cose

_ <l,m—e<t< Ep.
cos(t+s)<r‘ T 7r+}

We denote the fibre sum by Pgfi. P;. Notice that there exists the canonical
fibre bundle isomorphism I. from Pyfe Py to P,#P;. Later, when saying
Q¢*1lf on Pyfle Py and ¢ (T ;{j{;) we always mean them to be the pullback

of Q¢*¢ and ¢; (TP;:{;) on Py, under I} without special statements. The
sum sfs’ of sections and other related objects will be understood similarly.
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Denote by d = ¢1(TP;**)(D) and d' = c1 (TPye*)(D"). By (67) it holds
that

(72) o (TP;:::;)(DuD') —d+d.

Thus both \IIJ D © 2 5D and W ¢* DD’ are the homomorphisms from
QH.(M) to QH*+d+d/ (M) For a given a € H,(M,Z) the straightforward
computations shows

(73) \I’¢D’O\II¢D Z (Z &B,A—- B>®ea

AeTl'y, \Bely,

where ap a—p € Hy(V) is determined by

(74) ap,a-B v B =@y prap)as,B), V8 € Hi(V),
and apg € H,(V) by
(75) ap vy =®eupre (@), V7 € H(V).

Notice that we also have
(76) dimag a_p = dimag + 2c1(TP}™*)(D') + 2c1(A - B),
(77) dim ap = dima + 2¢1(TP}™)(D) + 2¢1(B).

Moreover, by definition we also have

J§J’
(78) Uik (@) = Y Gadel,
Ael'y

where &4 € H.(V) is determined by

(79) ba vy = Pgey,pipr+4)(7): 7 € H.(V),
(80) dim G4 = dim & + 2¢1(TPJey ) (DYD') + 2¢1(4).

Thus we only need to prove that

(81) Gp = Z QB,A-B, VAeTl,.
BeTl'w

To complete the proof of Proposition 6.7 we need several lemmas.

Lemma 6.9. For every fited A € H.(V) the sum of right side in (81) is
always finite.
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Lemma 6.10. There exist the reqular almost complexr structures J on Py
and J' on Py such that they agree on gluing domain of Pylic Py.

Without special statements we shall fix J and J’. The proof of Lemma
6.9 is given after Lemma 6.12 and Lemma 6.10 will be proved at the end of
this section.

Following the notations in §4.

Lemma 6.11. Lete; : U =V and eg : U = V be two CP-smooth pseudo-
cycles, and a : A — V and f : B — V be two C-smooth pseudo-cycles.
Assume that

(83) dimU +dim A 4+ dim B > 2dim V,

then for every sufficiently large integer v > min{p,q} there ezists a set
x"(V,e1,e2,a,8) C x"(V)o x X"(V)o of the second category such that
e = (e1,ea) is transverse to (F"(X) o a) x (F(Y) o B) for all (X,Y) €
X" (V,e1,e2,a,B). These x"(V,e1,e2,c, ) also satisfy:

XT(V,Cl,eg,O{,,B) 2 XT+1(V.,61,62,C¥,,3) 2 ceey

which implies that for any (X,Y) € x"(V,en,e2,,B) and (X',Y') €
x*(V,e1, e, a,B) with s > r it holds that

[(FT(X) o) x (F'(Y) 0 B)] - e = [(F(X) o x (F*(Y')] - e

provided that the equality in (83) holds, and one of e = (e1,e2) and a X [ is
the strong pseudo-cycle.

The proof of this lemma is similar to that of Lemma 4.1. Replacing (27)
one only consider the map

EUXAXBxX (V)oxx" (V)o= VXV xVxV
given by
(w,0,b,X,) = ((ex(w), e2(w), (F (X (@), F (V) (BB)) )-
It is easy to prove that it is transverse to
Avyy = {(u,v,u,v)| (u,v) € V x V}.

The standard arguments may finish the proof.
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By (i) of Lemma 4.1 one know that if
(84) dimU 4+ dim A > dim V'

then for every sufficiently large integer » > min{p, g} there exists a set
X" (V,e1,a) C x"(V)o of the second category such that e; is transverse to
F'(X)oa for all X € x"(V,e1,a). From Claim A.1.11 of [LeO] the space

(85) X’i(V’ e1r X 62,(1,,6)
consisting of all X € x"(V)o for which the intersection
X' (V,e1,e2,0,8) N[{X} x x"(V)o]

is a countable intersection of open dense subset in {X} x x*(V)o must be a
countable intersection of open dense subsets in x"(V')o. Thus the intersection

(86) X;(V,el X e2aa7ﬁ) OXT(V,el,Oé) .

is also a countable intersection of open dense subsets in x"(V)o. For every
X in this intersection there must be a Y € x"(V)o such that (X,Y) €
X" (V,e1 x ez, a, B). Thus this pair (X,Y) satisfies:

(i) e = (e1,eq) is transverse to (F"(X) o @) x (F"(Y) 0 B),
(ii) ey is transverse to F"(X) o
under the assumptions (83), (84).

Lemma 6.12. Lete; : U - Vi=12anda: A -V and f: B >V
be all CT-smooth pseudo-cycles. Assume that e = (e1,ez) is transverse to
a x B, e is transverse to oo and (83), (84) also hold. Then

(87) A(U x A) := {(u,a) |e1(u) = a(a)}
is a C"-smooth manifold of dimension dimU + dim A — dim V', and
(88) ér: AU x A) =V, (u,a) — ea(u)

18 also CT-smooth pseudo-cycle which is transverse to 3. Moreover, if & and
B are strong pseudo-cycle then it holds that

(89) e (axf)=é-p.
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Proof. Let é3(u,a) = (b). We wish to prove
Dés(u,a)(T(u,a) AU x A)) + DB(b)(TyB) = T V-
Notice that
Tw,a)A(U x A) = {(1,d) € TLU x T,A| Dey(u) (@) = Da(a)(@)}-

It suffice to prove that for any £ € Tp(,)V there exist @ € T, U, @ € T, A and
b € T, B such that

(90)  Dey(u)(@) = Do(a)(@) and Dey(u)(@) + DB(b)(b) = £.
But e is transverse to ax 8. Therefore, there exist (i, @, 5) € TLUXT,AXT,V
such that

De(u)(@) + D(a x B)(a,b)(—d,b) = (0,§).

Clearly, this is equivalent to (90). By similar arguments for the boundary
parts we can prove that é2 is a C™-smooth pseudo-cycle which is transverse
to B.

Notice that é is also a strong pseudo-cycle if  is. Now e - (a x ) and
éy - B are well-defined. To prove them being equal we notice that

éy-B = Z sign((u,a), b)

e1(u)=a(a)

ez (u)=p(b)

= Z sign(u, a, b),
e1(u)=a(a)

ez (u)=p(b)

e-(axp) = Z sign(u, (a,b))
e(u)=(axp)(a,b)
= Z sign(u, a, b).
e1(u)=a(a)

e2(u)=4(b)

Here some details on the orientation are omitted. It is not very difficult to
give them. At least, for the mod 2 intersection number the above arguments
is completed. The lemma is proved. O

Remark 6.13. Using Lemma 6.12 we may give a pseudo-cycle expression
of ap in (75) as follows: Firstly, by Lemma 6.11 H € Diff(V x V) in (52)
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may be chosen as the form H = (hy, hg) with h; € Diff(V), i = 1,2. Thus
(75) becomes

(91) ap vy =EVPPTB) (R o far x koo fn),

where fay : M — V and fy : N = V are the strong pseudo-cycle represen-
tatives of a and v respectively, h; € Diff(V), i = 1,2, and

EV¢(D+B) _ (EVT(D+B)’EV§(D+B)) . 8(Py, Q4,4,J,D+B) = V xV,

s = (FY (s(2), Ff (s(4)))

is the pseudo-cycle determined by the evaluation map. By lemma 6.12 the
right side of (91) is equal to

¢(D+B
(92) Vo) (hy o 1),
where the pseudo-cycle
(93) 55 L AS(Py, .5, 7, D + B),M) -V

given by
(s,0) — F§ (s(23))-

By definition
A(‘S(quaﬂq.'n]a j;D + B):M)
= {(5,0) € 8(P4,9,5,J,D+ B) x M | F{(s(20)) = 10 fu(a) }.

Thus (93) may be considered as a pseudo-cycle representative of apg.

Proof of Lemma 6.9. Assume that there exists A € I, such that ap 4—p # 0
for infinitely many B € T',,. Denote them by Bj, Bs,.... By Remark 6.13
one gets infinitely many pseudo-cycles

(94) EVIPTP) L A(S(Py, Q. 5, F, D + B), M) = V,
A(S(Py,Q4,4,J,D + B;), M)
~ {(5:0) € 8Py 91,7, D + B x MIFH(6(:8)) = 1 o fu(0)
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for some hgi) € Diff (V). From Lemma 6.11 and the arguments under it one

can assume all hgi) to be the same hj. But the image of hj o fjs is contained
in a compact subset of V. From the results in §2 it follows that the image
sets of all sections s which are such that

(95) ({s} X M) N (U A(S(Py,Q4,5,7,D + By, M)) £0,

are contained in a compact subset of P4;. Thus the image sets of all such
pseudo-cycles representatives of ap, given by Remark 6.13 are contained in
a compact subset K(¢) of V. By the assumption at the beginning

(96) aB;,A-B; ‘v Pi # 0, for some B; € H, (V)
Now from (74) it follows that there exist sections
sy € S(Py,Qy,j,J, D' + A— B))

such that EVf(D/JrA—Bi)(sg) = F{’b (si(2¥)) are contained in the compact
subset K(¢). Hence the image sets of all sections s, are contained in a
compact subset S(¢) of Py. Because all s} are (j, J")-holomorphic it holds
that

(Qy +coo)(s)) >0, i=1,2,...,

which implies

97)  w(B) = (Qy + c00)(Bi) < (Qy + coo)(D' + A), i=1,2,....
Hence

(98) (Qg-+coo)(D+B;) < (Qp+c00)(D)+(Qy+co0)(D'+A4), i =1,2,....

Take (s;,a:) € A(S(Py, Qg, J, J, D+ B;), M) one gets infinitely many (4, J)-
holomorphic sections {s;} which represent infinitely many different classes
and whose image sets are contained in a fixed compact subset of a g.bounded
symplectic manifold (Pgp, ﬁ¢ +coo, J ,9). With the same reason as in Lemma
6.5 (98) leads to a contradiction. O

Now we have known that the sum on the right side of (81) is actually
finite sum. To prove (81) holding let us check their pseudo-cycle represen-
tatives given by Remark 6.13. Using the pseudo-cycles representative of
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ap given by (93) one may get a pseudo-cycle representative of ap s—p as
follows:

99) BVLP AR A (S(R/,, Qy,j, J', D' + A~ B),

A(S(Py,Q4,5,J, D + B), M)) —V
given by
(100) (5, (5,0)) = FY(5'(F)):

By definition it is easy to check that the set in (99) consists of all triples
(s',s,a) satisfying the conditions
s' € S(Py,Qy,5,J', D'+ A~ B) )
s € S(Py,Q4,7,J,D + B)
(101) aeM
Ff(s(4)) = by o fur(a)
B (s'(2) = by o Ff(s(25)

for some h‘f(D-"B) and h}b(D +4=B) in Diff (V). Moreover, from Lemma 6.12
it is easily computed that the dimension of manifold in (99) is

(102) dim a4 2¢1(A) + 2¢1(TPyet) (DYD').
On the other hand &4 has the pseudo-cycle representative:

(103) EvIVEOPHA,  A(S(Ppay Uguys S, DAD' + A), M) =V

given by

(104) (0,0) = F™ (o (25)).

By definition

(105) A (S(Ppups Qpud, J4J', DID' + 4), M)
consists of all pairs (o, a) satisfying

g E S(P¢*¢, Q¢*¢,j, jﬂj/, DﬂD/ -+ A)
(106) ac€ M
FPY (o (28)) = hPP PP 6 £ (a)
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for some h<1¢>*¢(D11D ) in Diff (M). Here it should be noted that the choices
of RPVPIDHA) 4y (106) and AP and pPPAB) iy (101) have the
“bigger” freedom. But the choices of hd’(D +A B) are under the case that

h¢(D+B) is chosen. Another important point is the maps in (99) and (103)
to have precompact image sets in V. Thus they are all strong pseudo-cycles
in the sense of §4.

Having the above preparation we may prove (81) and thus finish the
proof of Proposition 6.7. We only need to prove

(107) PD(&4) = Y _ PD(apa-p), VAET,.
BeTl',

That is, their Poincare dualities in H} (V') are same. But (107) is equivalent
to

(108) (PD(&4),7) = > (PD(ap,a-B),7), ¥y € Hu(V).
Bel',

Therefore, one only need to prove that for every v € H, (V) with
dimy = dim & + 2¢1(A4) + 2¢1 (T Pyey}) (D4D")

we may choose a pseudo-cycle representative of it Y : T — V such that it is
transverse to the map in (104) and all maps in (99) and

* ! —~ '+ A—
(109) SN SRS A

By definitions the left side of (109) is equal to the sum

(110) Z sign(r, o, a)

when (7,0, a) takes over the set

(111) {(r, (0,)) € T A(S(Puys Qe , J4J', DID' + 4), M)

T(r) = Ff*‘p(o(zf*“’))}.
The right side of (109) is equal to the sum

(112) Zsign(r, ', s,a),
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where (r, (s’ , (s, a))) takes over the set

(113) AT, M, Py, Py, J,J',A,D,D')

consisting of all

(114) <r, (s',(s,a))) € Tx

U A(S(P¢, Qy,5,J', D' + A — B), A(S(Py, 4,5, J,D + B), M))
BeTlw

such that YT(r) = Fg’(s'(zg’)) Notice that two sets in (111) and (113) are
finite.
By Remark 6.8 we here may choose

¢ 5 1 5 1 ¢ 5 5
15 a4 =[83,=[8-3_ #%=[0,= [6’0]_}
(115) d=(34, =5-1, #=[50, =[50

¥

Since the bundle P, and P, are trivial near zg and z| respectively, one can
use the gluing techniques developed in [RT1], [McSal] to prove that there
exists an orientation-preserving bijection between the set in (111) and one
in (113). This can lead to (109). Hence the proof of Proposition 6.7 is
completed under the assumption that Lemma 6.10 holds.

Proof of Lemma 6.10. Recall the technique used in §2 and §4. We only
need to prove the following fact:

Fact 6.14. For a Riemannian vector bundle 7 : F — W, denoted C(F)
by the Banach space of all bounded continuous sections of 7. A norm of a
section s € CY(E) is given by

sl = sup Is(z)llg,

where g is a given Riemannian metric on £. Let Wy be an open submanifold
of W. Then for every open dense subset A in Cp (E) the restriction A|Wp :=
{s|wy | s € A} is also an open dense subset in Cp(E|Wp).

In fact, if there exists an open ball B(so,d) C CP(E|Wo) \ A|Wy then
one can find a section s € CY(E) such that

1
llslwo — soll < 55-



1084 Guangcun Lu

For this section s there exists a section s’ € A such that
1
li
s—§| < =4.
s =o'l < 2

Specially, this shows that ||s|w, — s'|wpll < 36. Thus s'|w, ¢ .A|Wo, which
leads to a contradiction. O

Now as in [LMP] it follows from Lemma 6.6 and Proposition 6.7 that
every \If‘;, p is an isomorphism which leads to Theorem 6.4.

Remark 6.15. The conclusion of Corollary 6.3 can be actually strength-
ened to general case, that is, Diff (M, M) is replaced by Diff(M). We will
outline these as follows. Let [0,1] — ¢; be a smooth loop in Symp(M,w),
and (]Téf ,@) a noncompact symplectic manifold associated to (M,w) as in
§5. Here we need to write it in detail. Since M is a hypersurface of contact
type, for a contact form o on M with da = w|gps the standard arguments
shows that there exists a € € (0,1) and an embedding ¢ : OM X [¢,1] = M
of codimension zero such that

(116) o(m,1)=m and ¢*w=dO ondM x [g,1],

where © is a one-form on OM X [g,+0c0) with O(m,z) = za(m) at
a point (m,2). Then (]\A/f ,@) can be obtained by gluing (M,w) and
(DM x [e,4+00),dO) with ¢. That is, (m,z) € OM x [¢,1] and p(m, z) € M
are identified. Notice that ¢;(0M) = OM, one can always find a € € (g,1)
such that

U 0 p@M x (¢,1])

t€[0,1]

is contained in Im(y). Thus every
o logiop:0M x (6,1] = OM x (&, 1]
is an embedding of codimension zero, and it also holds that
¢t odrop(m,1) = (&:(m),1), Vm €M,

where ®; : M — OM is a smooth family of diffeomorphisms. Since (p7lo
¢1 0 ©)*dO = dO it must holds that

(117) o= a.
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Define

-~ o~ P+(q) on g € M;
(118) ¢ : M = M, q {(@t(m),z) on g = (m,z) € OM x [1,+00).

It is easily checked that ¢ — ¢ is a smooth loop in Symp(]Téf ,w). Moreover,
if {#t}1¢[0,1) is generated by a smooth function H : M X R/Z — R then {¢;}
is generated by the smooth function
(119)
H(m,t) if (g,t) = (m,t) € M X R/Z;
H:MxR/Z =R, (q,t) = { Him,t) if (¢,t) = ((m, 2),t) €
(OM x [1,400)) x R/Z.

Now one may construct a Hamiltonian fibre bundle Pg over S? with fibre

(.7\7 ,@). Furthermore, replacing H_with H in the previous construction
we may get a Hamiltonian 2-form Qg on Pg. An important point is that

(Pg, ﬁg, J,@) is also g. bounded for some J € J (4,J) and some complete
Riemannian metric G. Suitably modifying the above arguments one may
obtain the following corresponding results to Theorem 6.4 and Theorem
6.1.

Proposition 6.16. For a loop biefo,1) in Ham(M,w) and the extension
loop ¢iepo,1) in Ham(M,w) as above, the homomorphism i : Hy(M,Q) —
H*(P&;, Q) is injective. Consequently, the endomorphism 8;5- : Ho(M,Q) —
H,1(M,Q) vanishes. Especially, the endomorphism Oy : Hy(M,Q) —
H,11(M,Q) vanishes.

Using this result and the flux homomorphism theorem given in Appendix
which is the version of Theorem 10.12 in [McSa2] on the compact symplectic
manifold with contact type boundary we get the following strengthened
version of Corollary 6.3.

Corollary 6.17. For ¢ € m(Diff(M),id) and any two wi and wy in
Cont(M) it holds that ¢ € Im(Hy,, ) NIm(S,,) if and only if ¢ € Im(Hy,) N
Im(S,,).

Finally, we point out that using results in §5 one can also generalize
Theorem 5.A in [LMP] to the present case.
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Remark 6.18. After this paper had been finished I saw D. McDuff’s beau-
tiful paper [Mc2]. It is very possible to use our method to generalize her some
results. Moreover, from proof of Theorem 6.4 it easily follows that Theorem
6.4 still holds if the loop ¢ belongs to Ham(V, w) rather than Ham®(V, w), but
we must require that Hamiltonian function Hy : S 1 x V = R generating ¢
satisfies some conditions( for example, a possible choice is one that for some
g.bounded Riemannian metric g on V' it holds that Sup||dH (¢, )|y < +00).
These will be given in other place.

Appendix.

Suitably modifying the proof of Theorem 10.12 in [McSa2] one may get the
following theorem. For convenience of the readers we shall give its proof.

Theorem A. Let (M,w) be a compact symplectic manifold with contact
type boundary. Then a smooth path

[0,1] = Sympg(M,w) : t — ¢4

from ¢g = id may be isotopic with fized endpoints to a Hamiltonian path in
Ham(M,w) if and only if Flux({¢:}) =0

Proof Firstly, notice that the flux homomorphism is still well-defined on
SympO(M w) or even on S/y\nEO(M w) and is indeed a homomorphism be-
cause there exists a natural homotopy equivalence between M and M.

Next, we only need to prove the “only if” part. Let ¢;c[o,1] be a smooth
path from ¢g = id in Symp,(M,w) with Flux({¢:}) = 0. As in Remark 6.15
it is extended into a path from id in SympO(M ,w), denoted by &;te[o,l]- It
has the version as in (117), (118). Denote by

(A1) X ( ¢t)0¢t , th (%$t>o$;1 and X; = (%@)o@;l
then

< [ Xi(m) if g=m € M;
(A.2) Xi(q) = {(Xt(m),o) if g = (m, z) € OM x [1,+00).

Thus
(A.3)
i G(g) = ix,w(m) if g=m € M,
Xt —a(X,)(m)dz — zd(a(X,)(m) if ¢ = (m,z) € IM X [1,+00).
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Moreover, it always holds that Flux({¢;}) = Flux({e;}). Since Flux( {gt}) =
0, there exists a function F' : M — R such that

1 ~
/0 ig,@dt = dF.

It is easy to verify that up to a constant ﬁ|3MX[1,+oo) may be chosen as:

1 1
Fim,z) = - /0 (&) (m)dt = — /O () (m)dt.

Hence the Hamiltonian vector field X of F with respect to w is given by
fol X,dt, and the restriction of it to (OM x [1,+c0),dO) is given by

(m, 2) > (X(m, 2),0) = ( /0 " X (m)dt, o) .

This shows that the whole flow of Xz on M , denoted by qﬁ%, exists and on
OM x [1,400) has the form: gbsﬁ(m, z) = (x*(m), z), where x° is the flow of
X on OM. The key point is

(Ad)  ¢5(M)=M and ¢%(OM x (1,+00)) = IM x (1, +00)

for all s € R. Taking a strictly increasing smooth function n : [0,1/4] — [0, 1]
such that 7(0) =0, n(1/4) =1 and 7'(1/4) = 0, denoted by

() if0<t<1/4,
(A.5) Py =1 ¢ if 1/4 <t <3/4,
¢’;§1‘t)‘1 oy if3/4<t<1.

Setting Zt = %@Zt ) z/jt_ ! it is a smooth family of vector fields on M and

1 ~
(A.6) / Zudt = 0.
0
From (118), (A.4), (A.5) it follows that

(A7) (M) =M and $((OM x (1,+00)) = OM x (1, +00)
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for all ¢ € [0,1]. The straightforward computation shows that

' () X0 if 0 <t<1/4,
Z;=10 if 1/4 <t <3/4,
-n(1-t)Xp if3/4<t<L
7' (£)(Xy()(m), 0) if0<t<1/4,
(A-8) Zilomx(1,00)(m,2) =10 if1/4 <t <3/4,

—n'(1 = t)(fy Xi(m)dt,0) if3/4<t <1

Setting Y, = — fg ZAdA, then

fo t)x (m)ds, 0) if0<t<1/4,
(A9)  Viloarx(i,e0)(m,2) = 4 ([ Xs(m)ds, 0 if 1/4 <t < 3/4,
(n 1—tf0 m)ds,0) if3/4<t<1.

Let R — SympO(M , @), S+ gf be the flow generated by Y;. Its existence is
clear and is uniquely determined by

d ~ ~ ~ ~
Eeg:noeg, 6 = id.

Moreover, since 170 = }71 =0 we get
65 =6; =id, Vs € R.
The key point is that 5;’|3MX[1,+00) has the form

gf(mv z) = (é;‘,s(m)v z)

for all t € [0,1], s € R and (m, z) € OM X [1,+00). Here 65 : OM — OM.
Setting @; := 0} o), then it is easy to verify that Flux({%;}o<i<r) = 0 for
every T € [0,1]. Thus it is an Hamiltonian path starting from id. Define
another Hamiltonian path starting from id, [0,1] — Hamo(M @), t Y
by 7¢ = id for 0 < t < 3/4, and v, = ¢1ﬁ_"(l—t) for 3/4 < ¢t < 1. Then
t — ¢ 0 @y is still an Hamiltonian path starting from id. Moreover, when s
varies from 0 to 1 the path (v o é; o Jt)te [0,1] Starting from id varies from
(vt 0 %Z’t)te[o 1] to (7 © @t)tefo,1) With fixed endpoints. Since Y(m, z) = (m, z)
for 0 < ¢ < 3/4, and y,(m, z) = (x} 710" (m), z) for 3/4 < ¢t < 1, it is easily



Gromov-Witten invariants 1089

checked that

(A.lO) Y © gts ° '{/’thaMx[l,+oo) (m7 Z)
(G:ts(LI)n(t)(m),z) if0<t<1/4,
= ¢ (6;(®1(m)), 2) if 1/4 <t < 3/4,
(x111=0) 6 5 o x11-D=1 6 &, (m),2) f3/4<t<1.

From these it follows that when s varies from 0 to 1 the path (v o
0 o 1pt|M)t€01] varies from (v o wth)tem] to the Hamiltonian path
(7¢ © @t|a)eefo,1) with fixed endpoints. But v ot = Py for 0 <t < 1/4,
and. v oqpth = ¢p for 1/4 <t < 1. Thatis, t = ¥ oqpth is only an

reparametrization of the path ¢t — ¢;. This completes the proof of Theorem
A. d
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