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In this paper the Gromov-Witten invariants on a class of noncom- 
pact symplectic manifolds are defined by combining Ruan-Tian's 
method with that of McDuff-Salamon. The main point of the ar- 
guments is to introduce a method dealing with the transversality 
problems in the case of noncompact manifolds. Moreover, the tech- 
niques are also used to study the topological rigidity of Hamiltonian 
loops with compact support on a class of noncompact symplectic 
manifolds. 

1. Introduction. 

Since Gromov introduced his celebrated pseudoholomorphic theory on sym- 
plectic manifolds in 80's ([Gr]), many important questions in symplectic ge- 
ometry and related fields have been solved. In particular, Witten [Wl, W2] 
pointed out that Gromov's study of the moduli space of holomorphic curves 
could be used in principle to describe correlation functions in the topological 
quantum field theory. The moduli spaces of holomorphic spheres were used 
by Ruan to define certain symplectic invariants of semi-positive symplectic 
manifolds ([Rl]). In the semi-positive closed symplectic manifolds the more 
general Gromov-Witten invariants of any genus, including so called mixed 
invariants, were constructed in [RT1] and later [RT2] and thus they gave 
the first rigorous mathematics theory of quantum cohomology. This forms 
a solid mathematical basis for the topological sigma model. In addition, 
they also applied these invariants to the Mirror Symmetry Conjecture, the 
Enumerative Geometry and Symplectic topology. It should be noted that 
in this case their mixed invariants are of integral values. 

On the other hand the Gromov-Witten invariants were studied axiomat- 
ically in [KM]. More recently, the Gromov-Witten invariants for any projec- 
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tive manifolds (cf. [LT1]) and any closed symplectic manifolds were defined 

(cf. [FO], [LT2], [R3], [Sie]). 
It has been expected that the Gromov-Witten invariants should also 

be defined for noncompact symplectic manifolds and families of symplectic 
manifolds (cf. [Kl, p. 364]). In fact, the latter was carried out in [L], [R3]. 
Roughly saying, if p : Y —> M is an oriented fiber bundle such that the fiber 
X and the base M are smooth, compact, oriented manifolds (which implies 
that Y is also such a manifold), and a; is a closed 2-form on Y such that 
UJ restricts to a symplectic form over each fiber, then Y can be viewed as 
a family of symplectic manifolds and the Gromov-Witten invariants over Y 
are defined in [R3]. However, for noncompact symplectic manifolds (V, LU) 

how the Gromov-invariants over them should be defined, we so far do not 
see it in the literatures. Generally speaking, the key points in many ap- 
plications of the Gromov's pseudo-holomorphic curve theory are the com- 
pactness problems. On the closed symplectic manifolds one have obtained 
very good results (cf. [Gr], [RT1], [PW], [Ye]). For the general noncom- 
pact symplectic manifolds (even without boundary) these problems become 
very complicated. In this paper we define the Gromov-Witten invariants 
on a class of special noncompact symplectic manifolds—semi-positive geo- 
metrically bounded one. Precisely speaking, we generalize the main results 
in [RT1] to this class of symplectic manifolds. The notion of geometrically 
bounded (abb. g. bounded) symplectic manifolds was first appeared in 
[Gr]. This kind of manifolds has many nice properties so that many results 
on closed symplectic manifolds can be extended on them in some reasonable 

ways (see §2). 
However, since V is noncompact, for every integer m > 1 the Banach 

manifolds J™ consisting of all Cm-smooth cj-tame almost complex struc- 
tures on (V,(JJ) and the group Diffm(V) of all Cm-diffeomorphisms on V are 
not separable, and thus neither are some correspondent moduli spaces sepa- 
rable. Hence it is difficult using Sard-Smale theorem in many transversality 
arguments. One may wish to use its generalization version due to Quinn 
to replace it. But this requires the Predholm map considered to be proper 
or cr-proper. Under our case it can not be satisfied. On the other hand, 
for a given J G J™(M,u) the space Cm(Tj) of all Cm-sections does not 
gives rise to a local model for the space J™(y,uj) via Y H* Jexp(-JY). 
To see this point, note that J E J™{y,u) only means a;(f, J(p)£) > 0 for 
every p £ V and f G TPV \ {0} and from ||Y||c™ < 8 it does not fol- 
low that ||YWQO < V which is an arbitrary given positive number smaller 
than 5. Thus even if for every p G V and £ G TPV \ {0} we can obtain 
u;(£, J(p)exp(-J(p)Y(p))£) > 0 as \Y(p)\ sufficiently small, but due to the 
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noncompactness of V one can not derive that for a given smooth nowhere 
null vector field £ on V, w(C(p), Jr(p)exp(- J(p)Y(p))C(p)) is more than zero 
at all points p G V whether ||^||cm is small. In order to overcome these 
difficulties we construct suitable separable Banach manifolds to replace the 
Banach manifolds chosen naturally in the case of compact manifolds. In §2 
and §4 these techniques are all used. The method may probably applied to 
generalize other results on compact manifolds in symplectic geometry and 
Seiberg-Witten invariants theory to noncompact manifolds. 

In our case replacing H*(V,Z) by H*(V,Z) the homology we can show 
that there is an quantum ring structure on it. In contrast to the case of closed 
symplectic manifolds it seem to be very hard to use the recent techniques 
developed by [FO], [LT1, LT2], [R3], [Sie] to define the Gromov-Witten 
invariants on all noncompact compact g. bounded symplectic manifolds 
because of the technical difficulties. 

Inspired by Seidel's work [Sel] the quantum homology is also used to 
study topological rigidity of Hamiltonian loops by F.Lalonde, D. McDuff 
and L. Polterovich in [LMP]. Precisely speaking, they proved that if CJI 

and UJ2 are two symplectic forms satisfying certain monotonicity assump- 
tions on a closed manifold M then every loop (j) = {(f)t}o<t<i in the group 
Ham(M, CJI) D Symp(M, UJ2) can be homotoped in Symp(M, u^) to a loop in 
Ham(M, 002). Combing their ideas with our techniques together we general- 
ize their results to the case of the Hamiltonian loops with compact support 
on a class of noncompact g.bounded symplectic manifolds in Corollary 6.2. 
Moreover, as a consequence the corresponding result on compact symplectic 
manifolds with contact type boundary is also obtained in Corollary 6.3. The 
main points of the arguments are to construct a kind of suitable closed two- 
forms on the Hamiltonian fibre bundle over S'2 with noncompact g.bounded 
symplectic manifolds as a fibre to replace the unique coupling class whose 
top power vanishes so that the composition rule may be obtained. 

The arrangements of this paper are as follows. In §2 we give some ba- 
sic definitions and lemmas in geometrically bounded symplectic manifolds, 
and specially a new technique on transversality arguments. In §3 we gen- 
eralized the results of transversality and compactness to our case. Since 
the arguments are similar we only give the necessary improvements. The 
Gromov-Witten invariants are defined in §4. As a consequence we also de- 
fine the Gromov-Witten invariants of compact symplectic manifolds with 
contact type boundary in §5. In §6 the study of the topological rigidity of 
Hamiltonian loops with compact support on noncompact g.bounded sym- 
plectic manifolds with the weaker semi-positivity assumptions is given. In 
final Appendix a theorem which characterizes the Hamiltonian symplecto- 
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morphisms on a compact symplectic manifold with contact type boundary 
in terms of the flux homomorphism is provided. 
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2. Definitions and Lemmas. 

In this section we give some necessary technical lemmas. Notice first that 
the following conclusions in Riemannian geometry are some easy exercises. 

Lemma 2.1. Let (M,g) be a Riemannian manifold with injectivity radius 
i(M,g) > 0. Then it is complete and for any compact subsets K in M and 
arbitrary e > 07 

Ke = ip£M:dg(piK)<e} 

is compact. Here dg denote the distance induced by g. 

Lemma 2.2. For the product Riemannian manifold (M,g) = (Mi,gi) x 
(M2,5'2) ^ have 

(i) i(M,g) = min{i(Mi,pi),i(M2,52)}; 

(ii) V(mi, 777,2) G M, u = (^1,^2); and v — (^1,^2) € TmM it holds that 

Kg(um) = ±(Kgi(nmi) + K^n^, 

where   nm    =    span{ix,^}, nmi     =    spaii{ui,vi}   and   nm2     = 

span {^2,^2}- 

Next let us recall the following definition (cf. [ALP], [Gr], [Sik]). 

Definition 2.3. Let (V,u)) be a symplectic manifold without boundary. 
Call it geometrically bounded if there exists an almost complex structure 
J and a complete Riemannian metric g on V such that the following prop- 
erties are satisfied: 
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1° J is uniformly tamed by CJ, that is, there exist strictly positive constants 

ao and f3o such that 

uj(X,JX)>ao\\X\\2g    and    \UJ(X,Y)\ < MX\\g\\Y\\g 

for all X, Y E TF. 

2° The sectional curvature i^ < Co (a positive constant) and the injectivity 

radius i(V^g) > 0. 

Remark 2.4. By Lemma 2.1 we know that the requirement of the com- 
pleteness for g in Definition 2.3 is not necessary since this is actually con- 
tained in the condition 2°. 

Clearly the closed symplectic manifolds are g. bounded, a product of two 
g. bounded symplectic manifolds is also such manifold. One can easily prove 
that every symplectic covering manifold of a g. bounded symplectic manifold 
and every symplectic manifold without boundary which is isomorphic at 
infinity to the symplectization of a closed contact manifold are g. bounded. 
In [Lu2] we have proved that the cotangent bundles with respect to any 
twisted symplectic structures on it are g. bounded. In addition, one also 
should notice that any geometrically bounded symplectic manifolds are the 
tame almost complex manifolds in the sense of J.C. Sikorav (see [Sik]). 

Given a closed Riemann surface E with the complex structure j and 
J G J'T(V, CJ) we denote by Horaj(TS, TV) the space of the smooth sections 
of the bundle of anti-J-linear homomorphisms from TE to TV over E x V. 
Its element v is called the inhomogeneous term. Recall that a smooth map 
/ : E —>- V is called (J, z/)-map if for any z E E, 

djf(z) = df(z) + J(f(z)) o df(z) o j(z) = u(z, /(*)). 

In the following we only consider the inhomogeneous term u satisfying 

(!) Sup(;,)p)EExy||^(2:,p)||£(T2SjTpy)  < +00 

where the norm in i2(rzE,TpV) is with respect to g and the Riemannian 
metric on E induced from j and some area form. Notice that any two area 
forms on E are proportional. The above condition is independent of the 
concrete choice of the compatible area forms. 

Lemma 2.5. Let (V,u),g, J) be as above Definition 2.3, and a an area form 
on E compatible with j,r = a o (id x j).   Then for N > 0 sufficiently large 
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(S x V, Q, T(Bg, J) is also a g.bounded symplectic manifold. Here OJ = NT X OJ 

and J(z,p) : ^^(S x V) -»• T^p)^ x V) is given by 

(XUX2) H- (j(z)X1,J(p)u(z,p)(X1) + J(p)X2). 

The proof of this lemma is an easy exercise.   In fact, one can choose 
(ai,/3i) to replace (ao, A))- Here ai = ao/2, /3i = 2^0 + ao + r4^/aory and 

ao , r4^0
4 

Sup^jeExvllz/^,^)!!/:^^^^) < r < +00,        TV > — + 2 • 2        2a, 

Proposition 2.6. Under assumptions of .Lemma 2.5, i/iif C V zs a compact 
subset and u : E —)► V a smooth (J^)-map representing A G H2(V,rL) and 
intersecting with K, then 

Im(/)cifpo, 

where po = po(«o,/5o, ^^(V,^), j, J, Z/,^L, a). 

Proof. Write W = ExVandix:E->VF,z^ (^,n(z)). Then u is J- 
holomorphic and its image can intersect with K := E x iiT if and only if the 
image of u is intersecting with K. Combing this with the taming property 
we can estimate its area with respect to the metric r © g as follows: 

u cu AreaT0^(u(E))    <    — / 

=    —      U*UJ + — 

1 /   ,\   N f =    —(UJ,A) + — /  0 
Oil OLl Jz 

Now, by Lemma 2.5 we have 

E 
N   f 

a 

(2) ^(X1,X2),JX(X1,X2))    >   ^||(Xi,Xa)fte„ 

(3) ^((^.^.(yx.ra))!    <   /51||(X1,X2)||Te5||(yi,y2)||reg 

for every (z,p) G W and X = (Xi,X2),y = (Ti,^) G r^^W. Here 
||(Xi,X2)||?eff = WXtWl + \\X2\\2g. Moreover, by lemma 2.2 the sectional 
curvature and injectivity radius of (S x V, r © g) satisfy 

(4) KrQg < ^(1 + Co) 
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and 

(5) i(S x V,T ®g) = min{i(S,r),i(y,5)}, 

respectively. Next, according to the comments below Definition 4.1.1 in 
[Sik], in our case we may take Ci = I/TT, C2 = fii/ai, OL)X = ti/Pi and 
ro = min(i(W, r 0 g)12

/K/^/T+~Co) such that the following monotonicity 
holds: 

For a compact Riemannian surface S with boundary and J- 
holomorphic map f : S —> W, if f(S) C B{x,r) C W, 
f(dS) C dB and x G f(S) for some r < ro, then 

(6) Areas(/(5)) > ^r2. 

Prom these and the proof of Proposition 4.41 in [Sik] it follows that 

Im(tZ) C U(K,C6Area,(Im(u))), 

where K = S x K and CQ = 4CiC2/ro = ^Pi/nairQ. Using the argument 
below Lemma 2.5 and an easy computation we can get 

CQ= 4a^o + 2a4 + 2^0
4r4 

7ra4min(i(S,r))2(y,p),27r/Vl + Cro)' 

Notice that 
2                 2N   f 

Area(t6(E)) < —(ou.A) H / a, 

and we can choose 

^^ "p4 /o4 

(7) r = Sup(Z)P)6Sxy||^(z,p)||{riS),    and    JV = y + -^-. 

Therefore we can find a positive number 

(8) p = p(ao, jSo, Co, *(V; p), j, J, v, A, a) 

such that 

(9) Im(u) C Kp. 

Projecting on V we can complete the proof of Proposition 2.6. □ 
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As pointed out in Introduction, generally speaking, on the noncompact 
manifold V for a given J E J'^l(V, CJ) and an arbitrary small positive number 
S > 0 there may exist a Cm-smooth section Y of the bundle Tj —> V such 
that ||y||cm < ^j but Jexp(—JY) fi J'^

1
(V,UJ). But for some noncompact 

symplectic manifolds we can prove: 

Lemma 2.7. For a given JQ G J'™(V) LJ), if there exist positive numbers OLQ, 

PQ and an Riemann metric go on V such that 

(10)    uj(Z,JoO>a0m
2

go,     \v(Z,ri)\ < MZWgoMgo,     iov all ^V e TV; 

then there exists a positive number SQ such that 

«£(•*)) = {Joexp(-Joy) I ||r||Cm < do, Y e cm(TJo)} c j?(y,u>) 

for each integer m > 1. Here || • ||cm is defined in terms of the covariant 
derivatives with respect to the Riemannian metric go. Furthermore, So > 0 
can be chosen so small that every J £ U™(Jo) satisfies: cc;(£, J£) > ^-H^H^o 
for all ieTV. 

Proof. First note that the condition (10) imply that 

(ii) ?lklU < IML < ^UU 

for all £ € TV. Specially, we have that ao/A) < ll^o(p)||go — Po/ao for all 
p€V. 

Next, for any J = Joexp(- Joy) e li^(Jo) and p G V, £ e TpV we have 

u&JipK)    =   u(Z,Jo(p)exp{-Jo(p)Y(p))) 

=   wU, MP)0 + w(^, Jo(p)[exp(-Jo(p)y(p)) - m 
=   ufo MP)0 + "(Z, [exp(Jo(p)^(p)) - I]^o(p)e) 
> otoUWl -^ollCIUII[exp(Jo(p)r(p)) -i}Mpm90 

>   aolKllJo - ?llell^l|exp(Jo(p)y(p)) - IL. 
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On the other hand, by (11) and the definition of exp 

\Mp)Y(p)\\kgo ||exp(Jo(p)y(p))-/|U    <   E \go 

k\ 
k=l 

\k=0 ' / 

< ll^o(p)||,oll^(p)ll,oexp(||Job)||,0||y(p)||,o) 

< —do • exp    —do    . 
ao \ao    ) 

Thus we get 

U;(£,J(P)0> 
/3g*o       (fa* ——exp    —do ao 
ao Vao ll^llao- 

Hence we can choose a positive number 5o < ^(§^)3 so small that ao — 

^exp(g^o) > ao/2. Lemma 2.7 is proved. □ 

Now every Uip(Jo) is a Banach manifold, but it is not separable or even 
has not a countable base. In order to be able to apply Sard-Smale theorem in 
the transversality arguments below we introduce the space of the following 
type, which is one of our key techniques in this paper. 

Take a proper Morse function h on V and two sequences of regular values 
of it, a = {a^} and b = {&;} satisfying: 

iRmxevh(x) := ai < a2 <bi < as <b2 < (14 < • - - 

< dk < bk-i < ak+i < • • • ; 

and denote Qi := {a; < h < &j}, i = 1,..., we have 

oo 

(12) V=[JQi,    Q;nQ;+2 = 0,    Int(Qi)nlnt(Qi+1)^<ll,i = l,.... 

Moreover, every Qi is a smooth compact submanifold with smooth boundary 
and has the same dimension as V. Following [F] we may choose a sequence 

of sufficiently rapidly decreasing positive numbers eM = {s^ }^L1 such that 
the space C^^TJQIQ.) of those smooth sections X E C^TJJQ.) for which 

oo 

(13) ||X||sW=£e«||X||cfc(Qi)<oo, 
k=l 
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is separable and dense in L1
(TJ0|Q.). In addition we always require that all 

(i) e\J equal to 1. Let 

(14) C^CTg) := {X G C^iTj,) | suppX C Qt, \\X\\e{i) < oo}. 

This is a separable Banach space with respect to norm || • \\ ^). We denote 

(15) £e(Jo,h,a,,b) 

by the space of all sequences X = (Xi, X2,...) with Xi G C^ (T^) and 

00 

as) 11x11. = £ iMU < 00. 

Then (£e(Jo,/i,a,b), || • ||e) is a separable Banach space. Let B(£s(Jo, 
h, a, b)]8) be a closed ball in this Banach space of radius S. Then, for suf- 
ficiently small 6 e (0,*o/2) that ||X||e < S implies that || T,Zixi\\ci < ^ 
and thus from Lemma 2.7 it follow that J := Joexp(- Jo(Z)£i xi)) belongs 
to Jr(y,uj) which is the space of all smooth cj-tame almost complex struc- 
tures, and (V,a;, J,5o) is still g. bounded. Later, we fix such a 5 and for 
convenience denote by 

S : B(£,(Jo,M,b);5) -> Jr(y5a;), X .-> Joexp [-Jo ( ^X,) ) . 

and also by 

(17) W(y(Jo,/&,a,b,e) 

the image of B(>Ce(Jo, /i, a, b); J) under S. This set is not necessary connected 
mJT(V,u)). 

Having the space many regularity results on compact symplectic man- 
ifolds can be generalized to noncompact geometrically bounded symplec- 
tic manifolds. In fact, the above construction can be suitably modified so 
that the result of the moduli spaces in [Mel] may be generalized to any 
noncompact symplectic manifolds without boundary, that is, the following 
proposition holds. 

Proposition 2.8. Given A e -02(V") and a closed Riemann surface E of 
genus g with the complex structure j, and Jo as above, then there is a subset 
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Breg(££(Jo, /i,a, b); 8) of the second category in B(££(Jo, /i,a, b); 5) such that 
for every X G BTeg(££(Jo, h, a, b); 6) the space 

M,(X,A,E(X)) 

of all simple E(X)-holomorphic maps from E to V and representing A is 

a smooth manifold of dimension (1 — ^)dimM + 2ci(A) and with a natural 

orientation. Moreover, for any two X and Y in BTeg(££(Jo, h, a, b); 6) it may 
be proved that .M5(£, A, H(X)) and Ais(Tl^A^E(Y)) are oriented cobordant. 

For every integer m > 1 we denote by Homj0(TY,,TV) the space of 
the Cm-smooth sections of the bundle of anti-Jo-linear homomorphisms 
from TE to TV over E x V. Consider the Banach vector bundle H171 over 
B(>Ce(Jo, /i, a,b); 6) whose fibre at a point X is Hom^ry^JTYl^TV). It is easy 
to know that this is a separable Cm Banach vector bundle. We call the el- 
ements of the bundle as inhomogeneous terms. Fix a large integer mo > 0 
such that the conditions of the Sard-Smale theorem are satisfied. For every 
integer m > TTIQ one may, as in [RT1], prove that there exists a subset H™ 
of the second category in TV71 such that for every (X, is) G H™* the space 

(18) M^(i:,E(X),u) 

of all (E(X),z/)-map from E to V representing A is a Cm-smooth mani- 
fold of dimension (1 — g)dimM + 2ci(A) and with a natural orientation. 
Moreover, for any two pairs (X, u) and (Y, /x) in 7^g it may be proved that 
.M^(E, H(X), v) and .A4^(E, S(Y), fi) are Cm oriented cobordant. Specially, 
it should be noted that 

(19) K^D^Cf1^.., 

which implies that for any (X, is) G H^g and (X'} is
f) G W,™^ with m' > m> 

mo the spaces Al^(E,S(X),i/) and >l^,(E,S(X/),^/) are also Cm oriented 
cobordant. 

Let G(y) be the set of all Riemann metrics on V whose injectivity 
radius are more than zero and sectional curvatures have upper bounds. 
We also denote by GJT{V,UJ) the set of all J G JT(V,UJ) which satisfy: 

"& JO > ao||£||2 ^d K^)! < /SolKUKHs for some fixed g G 0(7), 
constants ao,/5o > 0 and all £,77 G TV. Obviously, for every g.bounded sym- 
plectic manifold (V,a;), GJT{V,UJ) is a nonempty open subset of JT(y)u) 
with respect to C^-topology. However, we do not affirm it to be connected. 
For every connected component G(V)C of GiV) we denote GJriY^^c by 
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the subset of J G GJT(y,u) for which (V, a;, J,^) is g.bounded for some 
5 G G(y)c' Using Bevennec's construction [ALP, p. 44] it is easily proved 
that every GJT(V,u))c is connected. Similarly, for every integer m > mo we 
also denote by 

(20) Gnm{V,u) :={ (J,z/) | JG^T^a;)  and i/ satifying(l)   } 

and corresponding component GW^iV,cc;)c, where i/ G Horrij (TV,TM). 
Then the later is still connected. 

3. Transversality and Compactness. 

In this section we shall follow the methods in [RT1], [McSal] to make argu- 
ments. Because the techniques are same basically we only give the necessary 
improvements and list the main results. 

First of all, we start with the following notion. A pair (S;z) of a con- 
nected Hausdorff topological space E and k different points z = {^i,..., z^} 
on it is called the semistable curve with k marked points ([FO]) if there ex- 
ists a finite family of smooth closed Riemann surfaces {Es : s G A} and 
continuous maps Tig : E5 —> E such that: (i) each TT^ is a local homeomor- 

phism; (ii) for each p G S it holds that 1 < ^ tt71""1^) ^ 2, and all points 

which satisfy ^s U71*^1^) — 2 are isolated; (Hi) for each zi, Y^s fa-1^) — 1- 

Denote by ESing := {p G E : ^s (JTT- (p) = 2} the set of all singular points 

of E. Specially, each singular point p such that tJTr" (p) = 2 is called the 

self-intersecting point of E. Call E5 := 7rg (Es) the s-th components of E, 

and Es the smooth resolution of E5. Each Zi is called the marked point. 
The points in /7r~1(Esing) and /7r~1(z) are called the singular points and the 

marked points on Es, respectively. Let ks be the number of all singular and 
marked points on E5 and gs be the genus of E5. The genus g of (E;z) is 
defined by 

1 + Z> + tfInter(S) - «Comp(S), 
s 

where (jlnter(E) and jJComp(E) stand for the number of the intersecting 
points on E and that of the components of E respectively. 

If ks + 2gs > 3 we call the component (Es;z5) stable. When all compo- 
nents of (E; z) are stable we call (E; z) the stable curve of genus g and with 
k marked points. 

For the above genus g stable curve (E; z) a continuous map / : E —> V 
is called Cl(l > 1) if each f on-   is so. The homology class of / is defined 
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by /*([£]) = Y2s(f 0 ^E )*(P5])' ^n ^rrn inhomogeneous term u over £ 
is a set {us : 5 € A} of inhomogeneous terms, where each z/s is an Cm 

inhomogeneous term of Ss and they together satisfy the match conditions. 
A map / : E —> V is called (J, ^)-perturbed holomorphic if each / o Trg 
is (J, z^-perturbed holomorphic. Denote by ^4^(2,7,^) the moduli space 
of all (J, zy)-perturbed holomorphic maps from E into V with /*([£]) = A. 
Using the method in §2 and the arguments in [McSal], [RT1, Prop. 4.13] 
it follows that for every given pair (J',^') with Cm inhomogeneous term 
z/ there exists a pair (J,^) with Cm inhomogeneous term z/ which may 
be arbitrarily close to it, such that moduli space .M^E, J, v) is a Cm- 
smooth manifold of dimension 2ci(V)(.A)+2n(l—g). In order to get suitable 
compactification of the above moduli space the following form cusp-curve 
due to Gromov was introduced in [RT1]. Given a fc-point genus g stable 
curve (S;z) as above, (E^z') is another fc-point curve obtained from it as 
follows: First at some double points of E we join chains of CP1 to separate 
the two components and then attach some trees of CP1, but require that if 
one attaches a tree of CP1 at a marked point Xi, this Xi will be replaced by a 
point different from intersection points on some component of the tree, and 
under other cases the marked points do not change. The components of E 
is called principal components and other bubble components. A continuous 
map / : £' -> (V,UJ) is called a E-cusp (J, z/)-map if for each principal 
component Es the map / o Trg is (J, ^5)-perturbed holomorphic and the 
restriction of / to a bubble component is a nonconstant J-holomorphic map. 
We define a (E, J, ^)-cusp curve as an equivalence class of cusp maps modulo 
the parametrization groups of bubbles. Its homology class is defined as 
the sum of the homology classes of all components of the any cusp map 
representatives of it. Denote by CM^E, J, u) the set of all (E, J, z/)-cusp 
curves with the total homology class A. For every element of the space one 
can obtain a reduced (E, J, i/)-cusp curve by forgetting multiplicity of the 
multiple covering maps on bubble components and collapsing each subtree 
of the bubbles whose components have the same image. Notice that this new 
cusp curve may have different total homology class from the original one. 
We denote by M^ (E, J, u) the set of all reduced (E, J, ^)-cusp curve from 
CM™ (E, J, v). For the semi-positive closed symplectic manifold (V, u) it was 
proved that C.M™(E, J, u) is the cusp curve compactification of .Mm(E, J, u) 

and .M^E, J, v) \ .Mm(£, J, z^) consists of finitely many strata and each 
stratum is also branchedly covered by a Cm-smooth manifold of codimension 
at least 2 ([RT1]). However, in our case C.M™(£, J, v) is only the closure 
of .Mm(£, J, v) due to the noncompactness of (V,LJ). In order to get desire 
results we assume that each us in is = {z/s : s E A} satisfies (1).   For any 
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compact subset K C V let C.M™(£, J, i/, if) be the subset of C.M^(E, J, i/) 
consisting of all elements whose images are intersecting with K. Then we 
have 

Proposition 3.1. Let (V,uj,g,J) be a g.bounded symplectic manifold and 
(S; z) a k-point genus g stable curve with a bounded inhomogeneous term v 

over it. Then there exists a positive number rj — rj(Aji{V:g)1Co^Q,PojI/) 
such that 

(J Im(/) C Kr,. 
feCM'Xi^.J^K) 

In fact, if Ei,..., Ep are principal components of E' which only depend 
on E, and J?i,..., Bi are bubble components of E7 then it follows from the 
proof of Lemma 4.5 in [RT1] that there is a uniform constant c such that 

Eihi) < cMAQEi])) + 1), E(fBj) < cuiMlBj])) and therefore 

p i 

^E(/Et) + Y/bjE(fBj) < c(u(A) +p). 
i=i j=i 

Here the positive integer 6i,...,6/ satisfy A = X)iLi/*(Pi]) + 

Y^j=ibjf*([Bj]). These show that one can find a positive integer IQ = 
lo((jj(A), E, V, (JJ,K) such that it bounds I uniformly. Moreover, for given 
area forms (Js on Es(s = 1,... ,p) one can find a sufficiently large N > 0 
such that all (Es x V, a)5,Ts 0 g, js) are g.bounded. Here a;5 = A^cr5 x u 
and Js are defined as in Lemma 2.5. Prom the proof of Proposition 2.6 
it follows that u;(/*([Es])) > —Nf^ as for each 5. Combing these with 

EPs=i^(M[^s])) < u(A) we get that u(f*([E8])) < UJ(A) +pNmmsJ^sas 

and w(f*([Bj])) < puj(A)+p(p—l)Nmms /s as. Now since E' is connected, 
by repeatedly using Lemma 2.5 we can finish the proof of Proposition 3.1. 
As a consequence of this proposition and Proposition 3.1 in [RT1] we have 

Corollary 3.2. For any compact subset K C V, CM™(E, J, z/, K) is com- 

pact. 

As in [RT1, §4], A^E, J» \ .A/fJ(S, J» can be stratified and their 

strata are indexed by V^ (cf. [RT1] for definition). For a compact subset 

K C V we denote by V^^K) the subset of V^ consisting of those D C 

^AS which has a E-cusp (J, z/)-map representative intersecting with K. 
Then carefully checking the proof of Lemma 4.5 in [RT1] we can prove 
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Lemma 3.3. For any compact subsets K CV, V^^K) is a finite set. But 

D^'^ may be a countable set. 

Corresponding to Theorem 4.2 in [RT1] we may use the argument 
method in §2 to get the following structure theorem. 

Theorem 3.4. Let (V,a;) be a g.bounded semi-positive symplectic manifold, 
then there is a dense subset <?'H™g(V, LJ) in Ql-Lrn{y) uo) such that for each pair 

(J)") E QT-i^lg(V, (JU), the complementary .MA(E, J, z/)\./W™(E, J, u) consists 
of at most countable many strata and each stratum is branchedly covered by 
a C171-smooth manifold of codimension at least 2. Moreover, there are only 
finitely many strata of .M^(E, J, z/) \ .M™(E, J, i/) which can intersect with 

MA (E, J, i^, K) for every compact subset K C V. 

More precisely, if for each D G V^ we denote by .M^ (Z?, J, v) the space 
of all Cm-smooth (E, J, z/)-cusp curves such that the homeomorphism type 
of its domain, homology class of each component, components which have 
the same image are specified by D. Then from Theorem 4.7 and Proposition 
4.14 in [RT1] and the arguments in §2 we can obtain 

Theorem 3.5. For every (J» in a dense subset gU™g(V,uj) of GU™(V, LJ) 

and a D in T)^1^ there exists a C171-smooth branched covering manifold 

J\f^i(D,Jyiy) of M.™{D,J,v) whose dimension is not more than 2ci(V)(A) + 
2n(l — g) — 2kiD — ZSJJ. Here kp is the number of bubble components of D 
and SD is the number of marked points which are bubbling points. More- 

over, for any two pairs (J,v) and (J7,^7) in Gl-L™g(y,w) H ^?^reg(V,a;)c 

there is a path (JT,i/r) connecting (J,v) and (J7,^7) in GT-L^lgiV^w)c such 
that UtG[o)i]A/'£l(5, JT,z/T) x {£} is a Crn-smooth cobordism. 

It should be noted that the manifolds .M™(E, J, v) and N™(D, J, u) carry 
a canonical orientation. 

Denote by BVj1^ the subset of T^/^ whose elements contain the bubble 
components. Prom Theorem 3.5 we have 

(21) AC(S, J, I/) \ MJCE, J, i/) C      (J     M%(D, J, v). 

DeBVJ> A,S 

4. Gromov-Witten Invariants. 

In this section we shall follow the method in [McSal] to define the Gromov- 
Witten invariants of Ruan-Tian's form—mixed invariants.  First of all, we 
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recall some evaluation maps. For a k-point genus g stable curve (S,z), 
z = (^i,..., Zk) and integers I > 0 consider the Cm-smooth map 

(22) e^Ml/) : M^S, J, v)xXl^VkxVl = Vk+l 

given by 

(/;yu - • •,yi) >-> (/(^i), • • •, /(^); /(yi),..., /(y0)- 

For each D G S^^'x; the similar map 

can be defined. For each D £ BVfy, let ir% : Ng(D, J, u) -»■ M^D, J, i/) 
be a branched covering defined below Definition 4.6 in [RT1]. The compo- 
sition maps e^ = e^ j s o TT^ satisfy 

(23) ';  

Pi ^ii|J>I,)([MX(S,J^)xE']\5)c      U     M^). 
5c>lX(S'J'I/)xSZ compact ^^^'^ 

These show that e^- j N is a Cm-smooth pseudo-cycle. Let us recall the 
notion of the pseudo-cycles introduced on the page 90 of [McSal]. A k- 
dimensional Cm-smooth pseudo-cycle in V is a Cm-smooth map / : M -> 
V defined on an oriented Cm-smooth fc-dimensional manifold M(possibly 
noncompact) such that the boundary 

/(M°°) =        p|        f{M-S) 
SCM compact 

of f(M) is of dimension at most k — 2, i.e., there exists a Cm-smooth man- 
ifold W of dimension at most k — 2 and a C7n-smooth map g : W —> V 
such that /(M00) C ^(W). Furthermore, if f(M) is also compact in V 
then we call / as strong pseudo-cycle. Clearly, in a compact manifold 
these two notions are equivalent. According to the definition the identity 
map V —> V is not a strong pseudo-cycle in the noncompact manifold V. 
From Remark 7.1.1 in [McSal] it easily follows that every integral homol- 
ogy class a G i^^,^) can be represented by a C00 strong pseudo-cycle 
/ : M —> V. Every strong pseudo-cycle determines a homology class, and 
bordant pseudo-cycles determine the same homology class. But in the non- 
compact manifold V a pseudo-cycle does not necessarily determine a homol- 
ogy class as the identity map from V to V.  Moreover, it is easily checked 
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that the product of two (strong) pseudo-cycles is also a (strong) pseudo- 
cycle in the product manifold. If fa : M —> Vk are (strong) pseudo-cycles, 
k = 1,2, then the map M -> Vi x V2, m \-^ (fi(rn), f2(171)) is also (strong) 
pseudo-cycle. In §5 below we will need these conclusions. Two pseudo-cycles 
e : P ->> V and / : Q -» V are called transverse if either e(P) fl f(Q) = 0 
or e(P00) H 7(Q) = 0, i(P) H /(Q00) = 0 and T^ = Imde(p) + lmdf{q) 
whenever e(p) = f(q) = x. However, it should be noted that for two trans- 
verse pseudo-cycles e and / as above, if one of them is a strong pseudo-cycle 
A(e, /) := {(p, q) E P x Q\e(p) = f(q)} is a compact manifold of dimension 
dimP + dimQ — dimV. This statement can be derived from the definition of 
transversality of pseudo-cycles directly. Specially,it is a finite set if P and Q 
are of complementary dimension. Under our case Lemma 7.1.2 in [McSal] 
are not applicable due to the noncompactness of the manifold V, which im- 
plies that Diffr(V) is not separable Banach manifold for every integer r > 0. 
We must give its suitable modification form. This can be obtained with our 
method in §2. 

Fix a large integer r > 0 and as in (12) we denote by 

(24) x' := {X e xr(V)\suWX C Qi, \\X\\c < oo}, 

where xr(V) are the space of all Cr-vector fields on V, and 

\\X\\cr = supxeV\X(x)\g + sup^ylV^z)^ + •.. + svpxeV\Vr
gX(x)\g, 

Vg is the Levi-Civita connection of metric g. Then every (%£, ||X||cr) is 
separable Banach space. Denote by 

(25) xr(V)o 

the space of all sequences X = (Xi, X2,...) with Xi E xl aild 

00 

Xllsr = Vll-XfcllC''  <00. 
fc=l 

Then it is easily proved that {xr{V)oi \\ • ||^r) is a separable Banach space. 
Note that every X G Xr(V')o determines a bounded Cr-smooth vector field, 
denoted by /or(X) = X^£i Xi. Clearly, the image of pr contains all smooth 
vector fields with compact support on V. But every Cr-smooth bounded 
vector field on complete Riemann manifolds can uniquely determine a one- 
parameter Cr-smooth diffeomorphism group. Let us denote by {Ft(p(X.)) : 
t G R} the group determined by pr(X). Define 

(26) Tr : xr(V)o ->■ Vifr(V), X M- FtipriX)). 
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It is easily checked that J77* is a Cr-smooth map. Corresponding to Lemma 
7.1.2 in [McSal] we have the following lemma. 

Lemma 4.1. // a ^-smooth pseudo-cycle e : P —> V and a Cq-smooth one 
f : Q -± V satisfy 

(27) dim P + dim Q > dim V 

then 

(i) for every sufficiently large integer r > min{p, q} there exists a set 
Xr(V, e,/) C Xr(^r)o 0f the second category such that e is transverse 
to ^(X) o / for all X G Xr(X/, e, /); these xr{Vi e> /) a^so satisfy: 

Xr(V,e,f)2xr+l(V,eJ)D..., 

which implies that for any X G Xr(V, e,/) and Y G Xs(Vieif) w^ 
s > r it holds that 

(r-(X)o/).e = (^(Y)o/).e 

provided that the equality in (27) also holds and one of f and e is a 
strong pseudo-cycle; 

(ii) if the equality in (27) holds, e and f are transverse and one of them is 
a strong pseudo-cycle, then A(e,/) is a finite set and in this case we 
denote by v(x, y) the intersection number ofe and f at (x, y) G A(e, /), 
and define 

e-/=       ^       v(x,yy, 
(x,y)eA(e,f) 

(iii) the intersection number e • / depends only on the bordism classes of 
e and f when one of them varies in the bordism class of the strong 
pseudo-cycle. 

Proof The proof can be finished as in [McSal].  We only need prove that 
the map 

(28) 9 : P X Q X xr(V)o -»• V x V : (p, q,X) ^ {e{P),F{yL)U{q))) 

is transverse to the diagonal Ay. For any (p, g,X) G 0-1(Ay) the differen- 
tial of © at it is given by 

DeCp.g.XXe.r/.Y) 

= (.DefoXfl, D{r{X)of)(q){r1)+ [Dr{X){Y)}U{q))] 
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where (£,17, Y) € TpP x TqQ x xr(^)o- Let m = e(p) = ^(X)(/(g)). For 
any given (u,v) G T(m)m)(V x V) we wish to find w € TmV and (£,ri, Y) € 
TPP x TgQ x xr(y)o such that 

(29) I>e(p)(0 = w + « 
(30) D{Fr(X)of)(q)(v)+[DF-(X)(Y)](f(q))=w + v. 

By taking £ = 0, 77 = 0 and «; = -u we need only find Y G Xr{V)o such 

that 

(31) [l>^r(X)(Y)](/(g))=«-«. 

For f(q) = [^(X)]-1^), by definition of ^(X), it is ax(l), where ax(*) 
is the unique solution of the initial value problem 

(32) dx(t) = (EXi) (ax(*)).    ax(0) = /(^- 

For s G (-1,1) and Y G Xr(V)o we denote by ax+SY(*) the unique solution 
of the initial problem 

(33) ax+sY(t) =(j^Xi + sYi) (ax+,Y(t)).    ax+SY(0) = f{q)- 
\i=l 

Then we need to find Y G xr(v)o such that 

(34) ^O;X+SY(1)|S=O = V-U. 

By localization method it is easy to find a smooth vector field Z with 
compact support on V such that for the unique solution curve family 
/3(pr(X) + sZ)(t) of pP(X) + sZ with initial value f(q) at zero it holds that 

^-l3(pr(X) + sZ)(l)\s=o = v-u. 
as 

Now using the unit decomposition technique it is easy to find a Y <E Xr(V)o 
with Z = pr(Y). Thus we prove the transversality. 

Moreover, the standard computation shows that the restriction of the 
natural projection 11 from P x Q x xr(V)o to xr(V)o to e-1(Ay) is a 
Predholm operator with index 

(35) Index (Hie-1 (Ay)) - dimP + dimQ - dimV, 
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which is only dependent on the dimension of P, Q and V. Under our 
assumption this index is less than or equal to zero. Thus we need only 
fix an integer r > 0 such that Sard-Smale theorem can be applied. The 
remainder of the arguments are the same as that in [McSal]. □ 

Now let a Appoint genus g stable curve (S,z), A G ^(V^Z) and the 
pair (J, v) satisfy the regularity requirements in §2 and §3. The integral 
homology classes {oLi}i<i<k and {(5j}i<j<i of V satisfy 

k i 

(36)  ^(2n - deg(az)) + ^(2n - deg(^) - 2) = 2c1{V){A) + 2n(l - g). 
i i 

We choose strong pseudo-cycles fi : P; :—> V and hj : Qj —> V representing 
oti and (3j(l <i < k^l < j < Z), respectively. Then 

A; Z A; / 

(37)       / :=n/* x n^-: n^ >< n^-^ ^^ 
i—l j=l i=l j=l 

is a strong pseudo-cycle representing the integral homology class Yli ai x 

YljPj ^ H*(Vk+\Z). Since the compositions f o (fi of this / with any 
0 G DifPfV^"1"*) are also Cr-strong pseudo-cycles representing the same 
class, using Lemma 4.1 we can assume that / is transverse to e?^- js and 

all e7^ j x because of the countability of BV^. By Lemma 4.1 and (36) 
we can define the mixed invariant 

(38) §{A,u,g){ai,... ,0*1/31, ■..,#) = /• e£jgjJ|l/). 

In the case that (36) does not hold we also define 

(39) ®(AMg)(<xu ...,ak\Pi,>--,0i) = O. 

As in [RT1] we can use the arguments in §2 and §3 to prove that 
3>(A,cj,£)(ai5..., ctklPii - - - J Pi) is independent of choices of (J, v) in a dense 
subset of /Hj7rm(Via;)c, marked points ^i,...,^ in S, the conformal 
structures on S, sufficiently large integers r,ra and strong pseudo-cycles 
(Pi,/i), (Qj,hj) representing a^, /3j for a given component K^m(y,a;)c of 
%Jrn{V^uj). For two different components we do not know what relation- 
ships there are between corresponding invariants. When talking about some 
property of the invariants we always mean them to be with respect to some 
fixed component without special statements.   Similarly, the corresponding 
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results to Proposition 2.4, 2.5 and 2.6, 2.7 in [RT1] can be proved. In par- 
ticular, under our assumptions one can define the invariant QfA^fi) as §7 in 
[RT1] and prove the composition law: 

(40) ^(A^fal) • • -lOLklPl, ...,#) = Q(Av,C)(<XU - • ',OLk\Pu •••>#) 

where C = (E, z) is a fc-point genus g stable curve and ai,..., a^, /3i,..., Pi 
are integral homology classes of V. 

As to the deformation invariance of these invariants with respect to the 
semi-positive deformation class of u we introduce the following notion of 
deformation equivalence. Two semi-positive symplectic form OUQ and ui on 
a (noncompact) geometrically bounded symplectic manifold V is called de- 
formedly equivalent if there exists a smooth 1-parameter family of semi- 
positive symplectic forms cut connecting UJQ and c*;i, and a family of almost 
complex structures Jt such that all (V,u;j, Jt^g) are uniformly geometrically 
bounded with respect to some metric g G £?(V), that is, there exist constants 
ao and /3o such that two inequalities in 1° of Definition 2.3 hold uniformly for 
all ut- As usual we may use the above method to prove our Gromov-Witten 
invariants are invariant under such semi-positive deformations of CJ. 

Example 4.2. For any closed manifold N and any closed 2-form Q on N 
consider the symplectic manifold (M, u) = (T*7V, cjcan + 7r*fi) then for any 
fc-point genus g stable curve (S,z), A G 1^2(V,Z), the integral homology 

classes {(^i}i<i<k and {/3j}i<j<z of V we have 

$(A,a,,2)(ai,... ,afc|/5i,..., A) = 0. 

In fact, take any Riemannian metric h on N and denote by H the in- 
duced Riemannian metric on T*N by /i. Then from proof of Proposition 
4.1 in [Lu2] it easily follows that all symplectic manifolds (T*7V, u^) are uni- 
formly geometrically bounded with respect to H. Here out — ct;can + tfi, 
t G [0,1]. Furthermore, the proof there also shows that one can take a 
smooth family of almost complex structures Jt such that every Jt is out- 
compatible and (M, c^, Jt^H) are uniformly geometrically bounded. Now 
Chern class ci(TM, Jt) is independent oft and thus they are all zero because 
ci(TM, JQ) = 0 is clear. Hence the symplectic forms OJQ = u;can and ui are 

deformedly equivalent. But it is clear that $(A,ujcan,g)(aii • • • > ak\f3i, • • • 5 A) 
always vanishes. The above deformation invariance leads to the conclusion. 

In order to define the quantum homology2 of (V^UJ) we need to assume 
2P. Seidel pointed out that in the orginal version using the Poincare duality 

on noncompact manifolds does not give rise to a product on H*(V)^ and should 
consider the quantum homology of (V, u) instead. 
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that 

(41) 1^ = Hi{V, Z)/Hi {V, Z)o is finitely generated, 

so that the Novikov ring A^ associated to the homomorphism UJ : Y^ -> E is 
well-defined. Here H$(V,Z)0 is the subgroup of classes a in Iff (V;Z) such 
that ([a;], a) = 0 and (ci(V;a;),a) = 0. As usual we denote by 

QH*(V) = H*(V)®AU„ 

where H*(V) stand for of H*(V,Z) modulo torsion. The quantum intersect 
product is given by 

AeTu 

for a e Hk{V) and /3 G H^V). Here (a *y ,5)^ G ^+z+2c1(A)-2n(^) is 
determined by 

(a *y ^)A 'Vl = $(A,Lj,o)((x,P,'y) for all 7 G i?*(F). 

This gives an ring structure on QH*(V). 

Remark 4.3. For given integral homology classes au ..., ak, pu ..., /3Z and 
their strong pseudo-cycles representatives ft : Pi -> F, ^ : Qj -> V as in 
(37) it follows from V being noncompact g.bounded that there exist the 
diffeomorphisms (f) G DifT(V) such that the images of / and <£ o / := J^ 0 o 
ft x T[j(/> 0 hj are not intersecting each other and even have the larger 

distances. But </> o / and / are representing the same homology classes, 
therefore from our results that if their Gromov-Witten invariants are not 
zero then the maps in MA^, J, V) are distributed over V in an even way. 
In the same time this seems also to show the complexity of the distributions 
of the holomorphic curves in the general noncompact symplectic manifolds. 

5. Gromov-Witten Invariants of Compact Symplectic 
Manifolds with Contact Type Boundary. 

Let (V,a;) is a 2n-dimensional compact symplectic manifold with contact 
type boundary dV. That is, there is a one-form a on dV such that da = u\dv 

and a A {da)71-1 is a volume form on dV. Such a form a is called a contact 
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form on dV. One can associate a noncompact symplectic manifold (V,a5) 
as follows: 

ii r x I ^ on F; 
y = y    I        dV x  1, +oo)?        CJ = ^ 

ayY{i} l^to)    on0yx[l,+oo). 

Here t is the second coordinate. For a^J G^7(V;a;) and a Riemannian 
metric h on V we may extend them to J and /i respectively jso thaty and 
h are constant on the dV x {t}. It is easily checked that (V,2, J,/i) is a 
g. bounded symplectic manifold. Moreover the inclusion ij V -> V induces 
clear isomorphisms u ^J^Z) -^ H*(V,Z) andi* : jy*(y,Z) -^ tf*(V,Z). 
It^is clear that i*(ci(y, J)) = ci(V,J) and i*(M) = [a;]. Consequently, 
(VjcD) is semi-positive if only and if (y,cj) is semi-positive. For a class 
a E H*(V,Z) we denote 5 by i*(a). Then for a given fc-point genus 3 
stable curve (E, z), A G ii^OO and integral homology classes {ai}i<i<fc and 
{i9j}i<j<l of V satisfying (36) we define 

(42) $(A,u,tg)(<xi, • • • ,ajfe|/3i, • • • ,/30 := *(l^^)(Si,.. • ,5fc|/?i,..., ft). 

Since both the space of all Riemannian metrics on V and J(V,u) are con- 
tractible it is easy to check that the left of (42) is independent on the choices 
of J in a dense subset of J(V, a;), marked points zi,... , zk in E and confor- 
mal structures on S. Moreover, they also satisfy the axioms that Gromov- 
Witten invariants satisfy on closed symplectic manifolds. Notice that (V,S5) 
always satisfies the assumption in (41). One may naturally define a quantum 
ring QH*(V) = H*(V) ® Ao; from (42) and the agruments above Remark 
4.3. 

6. Rigidity of the Loops in the Group of Hamiltonian 
Diffeomorphisms with Compact Support. 

The quantum homology had been used to study the topology of symplec- 
tomorphism groups and Hamiltonian symplectomorphism groups on closed 
symplectic manifolds in [Sel], [Le], [LMP]. In this section we will use the 
techniques developed in the previous sections and their ideas to study these 
groups on noncompact g. bounded symplectic manifolds. Without special 
statements our 2n-dimensional symplectic manifold (V,u) is always assumed 
to satisfy the following condition: 

(43) A e 7r2(V), 2 - n < ci(A) < 0 =* u(A) < 0. 
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Given an element (f) E 7ri(DifF(V'),2(i) and any a loop S1 —> Diff(V), t h^ (j)t 

representing it one can define an endomorphism c^ : H*(V, Q) —> iiZ"*+i(V') Q) 
by setting ^([C]) as a homology class represented by the cycle S1 x C -> 
y, (t, x) i-^ 0t(x) for a cycle C in V. The main result in [LMP] is that for 
a loop (j) in the group Ham(V, CJ) the endomorphism c^ vanishes identically 
if a 2n-dimensional closed symplectic manifold (V,£j) satisfies (43). In this 
section we generalize their result as follows: 

Theorem 6.1. // a 2n-dimensional g.bounded symplectic manifold (V,UJ) 

satisfies (41), (43) then for any loop cf) in Hamc(V,cu)^ the endomorphism 
dfj) vanishes. 

Let GS(V) be the set of the symplectic structures cu on V satisfying 
(41), (43). For any cu G GS(V) we denote by S^ : 7ri(Symp^(F,a;)) -> 
7ri(Diflf(V"),id) and H^ : 7ri(Hamo(V,cc;)) —> 7ri(DifF(Vr),id) the homomor- 
phisms induced by the group inclusions respectively. As in [LMP], as a 
consequence of Theorem 6.1 we get the following result on the rigidity of 
Hamiltonian loops. 

Corollary 6.2. For an element (f) m7ri(Diff(V),id) if there exist UJI anduz 
in GS{V) such that (f) G In^if^) nlm(5'a;2) then it also belongs to ImfJH^)- 

For a 2n-dimensional compact smooth manifold M with nonempty 
boundary dM we denote Cont(M) by the set of all symplectic structures on 
it for which (43) holds and dM is of contact type. Diff (M, dM) denote the 
subgroup consisting of all elements F E Diff (M) whose restriction to dM is 
the identity. For a symplectic structure uo on M we denote by the subgroups 

Symp(M, <9M, u) := Diff (M, dM) n Symp(M, w), 

Ham(M,(9M,a;) := Diff(M,(9M) n Symp(M,cj). 

By [Se2] these spaces may have infinitely many connected components. No- 
tice that in Exercise 10.13 on the page 318 of [McSa2] it was pointed out 
that for a noncompact symplectic manifold (V, u) without boundary the 

flux homomorphism is still well-defined on Sympo(Vr, u) and the correspond- 
ing result to Theorem 10.12 also holds when Symp0(V, u) is replaced by 
Symp^V, a;). In fact, carefully checking the proof Theorem 10.12 in [McSa2] 
one can get the stronger conclusion that for the isotopy 

[0,l]->Symp§(V,a;), t^^t 

3P. Seidel had constructed an example with a nontrival Hamiltonian loop with 
compact support. 
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with -00 — id and Flux({'0t}) — 0 one actually make it to be isotopic with 
fixed endpoints to a Hamiltonian isotopy {fa} such that the support does not 
increase. That is, if a compact subset K C V is such that Supp^t Q K for 
all t G [0,1], then {fa} may be required to satisfy: Supp^t C K, \/t E [0,1]. 
Using this remark and Corollary 6.2 we may obtain 

Corollary 6.3. For a 2n-dimensional compact smooth manifold M with 
nonempty boundary DM and (j> £ 7ri(Diff(M, dM),id) if Cont(M) is 

nonempty then for any two oj\ and 002 in Cont(M) it holds that <j> G 

Im^iJ^J D ITO^SWI) if and only if (j) G TjaiiJS^) H ^(5^). 

In fact, let (M,a;i) and (M,^) be the symplectic expansion as made in 
§5 they obviously satisfy (41) (43). Moreover, every element of Diffo(M, dM) 

can be extended into one of Diff^M) by the identity extension. Thus 
Sympo(M, 5M,ui) and Hamo(M, <9M,UJI) may be viewed as the subgroups 

of Symp^M,^) and Ham^M,^), i = 1,2, respectively. Now the conclu- 
sion may be derived from Corollary 6.2. 

As pointed out in [LMP] their results may be generalized to arbitrary 
closed symplectic manifolds with the methods developed in [FO], [LT1, LT2], 
[R3], [Sie]. However, as done in the previous sections it seem to be very 
hard to generalize our results to arbitrary noncompact g.bounded symplectic 
manifolds with their methods. 

It is well-known that there exists a one-to-one correspondence between 
elements of TTI (Symp( V, UJ)) and isomorphism classes of symplectic fibre bun- 
dles over S2 with fibre (V,a;) (cf. [LMP], [Sel]). For a given loop </>te[o,i] 
in Symp(y, a;) the correspondent symplectic fibre bundle P^ —>- S'2 may be 
obtained as follows: let D+ and D~ be two copies of the closed disk D2 of 
radius 1 of the plane bounded by S1, one can glue the trivial fibre bundles 
D± x (V,u) by a map $ : dD* x V -> dD' x V : (27rt,x) \-+ (-27rt,fa(x)). 
According to [Sel] a symplectic fibre bundle with fibre (V,u) on S2 is a 
smooth fibre bundle TT : E —> S2 together with a smooth family O = (QbJbeS2 

of symplectic forms on its fibres satisfying locally trivial condition and the 
transition function taking its value in the group Symp(V, u). He also call 
a symplectic fibre bundle (E, £2) —t S2 as Hamiltonian if there is a closed 
two-form £1 on E such that fi|£?5 = fib for all b G S2. Later, we call such a 
closed two-form ft on the Hamiltonian fibre bundle as Hamiltonian form. 

Furthermore, from proof of Proposition 10.17 on the page 320 of [McSa2] 
one can prove that for every loop 6'1 -> Hamc(V, CJ), t \-^ fa there is a smooth 
function H^ : S1 x V -> with compact support to generate it.  Especially, 



1066 Guangcun Lu 

there is an exact sequence of groups 

0^7ri(Hamc(^cj))-^7ri(SympS(F,^))  4 Hl(V,R), 

where Flux is the flux homomorphism. Consequently, from the proof of 
Proposition 2.9 in [Sel] it follows that for a loop </> in Sympc(V, u) the 
symplectic fibre bundle P^ —> S2 is Hamiltonian if and only if the loop </> 
may be homotopic to a Hamiltonian loop in Sympc(V,a;), that is, a loop in 
Hamc(T/». 

As in [LMP] using the Wang exact sequence of pair (P^, S2): 

• • • -> i?,-i(F,Z) a4* Hq(V,Z) 4 Hq(P^Z) -+ Hq-2(V,Z) -> • • • 

the proof of Theorem 6.1 can be reduced to the following equivalent theorem. 

Theorem 6.4. Let (V^cu) be as in Theorem 6.1 and (j) a loop in Hamc(V, u). 
Then the homomorphism i : iJ*(V, Q) —>► H^(P(j),Q) is injective. 

In order to prove this theorem we need to give the detailed construction 
in Proposition 2.9 of [Sel] since the more conclusions are needed. Let D^>3 = 

{z G D+\ 1/3 < \z\ < 1} and D~/3 = {z e D'l 1/3 < \z\ < 1}. Denote by 

(r,t)± the polar coordinate in D^ with t G S1 = K/Z. In the set A := 
{(r,t)+, (r^t)- | (r,t) G D} we define an equivalence relation ~ as follows: 
the equivalence class of (r, t)+ is [r, t]+ — {(r, t)_|_, (—r + 5/3, — £)_} = [—r + 
5/3,-t]_ if 2/3 < r < 1, those of (r,i)+ and (r,t)_ are [r,t]+ and [r,t]_ 
respectively if 0 < r < 2/3. Then S2 = A/ ~ and C/± := {[r, t]± \ (r, t) G i^} 
form an open cover of S2. U+D U- = {[r, t]+ = [-r + 5/3, -<]_ | (r,t) G 
[2/3,1] x i?1}. The coordinate charts ip± : Z) —> U±, (r, t) i-> [r, t]± give an 
atlas on ^S2. The transition map is: 

cpZ1 o <p+ : D1/3 :={zeD\ 2/3 < \z\ < 1} -» ^/g, (r,t) -^ (-r + 5/3, -t). 

We also consider the formal set 

(44) {((r,t)±,x)\(r,t,x)£DxV} 

and in it we define an equivalence relation ~^ as follows: the equivalence 
class of ((r,t)+,x) is [r.t.x]}. = {((r,<)+,x)} if 0 < r < 2/3, that of 

((r,i)_,a;) is [r,t,x]l = {((r,t)_,a;)} if 0 < r < 2/3, and that of ((r,«)+,») 

is[r,t,x]t = [-r + 5/3,-t,^(x)]*:={((r,t)+,x)>((-r + 5/3,-t)_,^(a;))} 
if 2/3 < r < 1.  Then the set, denoted by P^, of all equivalence classes of 
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elements in the set of (44) is a symplectic fibre bundle with fibre (V,u). 
Two bundle charts $+ : [/+ x V -> P</>\U+, ([r,t] + ,a;) ^ [t*,t,x]^ and 
$_ : C/_ x V —> P^|/7_, ([r,t]_,x) h-> [r,t,x]_ form an bundle atlas of 
P^. The transition map is given by 

(45) $:1o$+ :U+nU- x V->U+nU- x V, ([r,t]+,x) 

^([-r + SA-t]-,^)), 

Denote by p± : C/± x V —^ V the natural projections to the second factor, 
and CJ^ := P±UJ. Define a one-form 0^ on f7+ x V as follows: 0^(([r, t] + , x)) = 
—6(r)H^(t, (j)t(x))dt. Here fl"^ : S'1 x V -> R is a smooth function generating 
0te[o,i] an(:i having compact support, 5 : [0,1] —> [0,1] is a monotone smooth 
function such that S(r) = 0 for 0 < r < 1/4 and (J(r) = r for 1/3 < r < 1. In 
this paper we always fix this 6 function. Clearly, 9$ has compact support. 
Straightforward computation shows that the closed two-forms ($^

1
)*(CJ

+
 + 

dO^) and (^I1)*^- are the same on overlap P^u+nU-- Thus they define a 

closed two-form f^ on P^ by 

(46) ^|p^+ = (^1r(^+ + ^)    and    ^i^ic/- = (SI1)*""- 

Let a compact subset if C V be such that SuppiJ^ C S1 x K. Then from 
the above definition it easily follows that 

(47)        P^\ (*+(E7+ x if)|jMtf- x ^)) = s2 x (v\ii:), 

and on the set of (47) it holds that 

(48) ,^=P2<*>> 

where p2 : S2 x V —> V is the natural projection. Moreover, one can easily 
prove that the above two-form fi^ is a Hamiltonian form on P^ and also 
satisfies: 

(49) 7r*^+1 =0    on S2 \ {[r, t]+ G 52 | 1/4 < r < l/3}r 

where TT* is the fiber integration map, and fi^ a smooth family of symplectic 
forms on the fibres of P^ -^ S2. Different from the case that V is the closed 
symplectic manifold we neither know the existence of a Hamiltonian form 
Q on P^ such that 7r*fin+1 = 0 nor the uniqueness of such forms if they 
exist. A Hamiltonian form VL on P^ is called to have CS property if there are 
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compact subsets K^ C V and K^ C P^ such that P^ \ K^ = S2 x (V \ K^) 

and on them it holds that ft = p^u. Let us denote by 

the set of all Hamiltonian forms having CS property on P^. Since for any 
two Hamiltonian fibre bundles P^ and P^ on S2 obtained from loops 0te[o,i] 
and ^€[0,1] in Ham^V, u) one can always find compact subsets K C V, 

JQ, C P^ and iiC^ C P^ such that 

(50) P^ \ ^ = P^ \ Kj, = S2 x (V \ K), 

we may say a symplectic fibre bundle isomorphism 1^ between P^ and P^ 
to have CS property if it is the identity map on the sets in (50), that is, 
1^(2,v) = (z,v) for all (2,v) E S'2 x (y\K). Clearly, such an isomorphism 
induces a natural bijection 1^* from Hty) to 7^(0) by the pull-back map. 

For every (l G %{(j)) and the standard symplectic form a on S2 it is 
easily proved that there is always a large constant c(fi, </>) > 0 such that all 
two-forms O + CTTV are symplectic forms on P^ for all c > c^. Though these 
symplectic forms are also the Hamiltonian form on P^,, but they have no CS 
property. 

Given a Hamiltonian form O on P^, in [Sel] two continuous sec- 

tions SQ and si of P^ are called F^-equivalent if ^(SQ) = ^(^i) and 
ci(rP^ert)(so) = ci(rP^ert)(5i). The key point is this definition being in- 

dependent of the choice of Q, (cf. [Sel]). 
Following [Sel] we denote by ^(P^,^) the space of smooth families 

J = (Jz)zes
2 of almost complex structures on the fibre of P^ such that Jz is 

f^z-compatible for all z. In other words, J is a smooth section of a bundle 

over S2 whose fibre at a point z G S2 is the space J^P^z^^z)- For the 

positively oriented complex structure j on S2 and J G ^(P^,^), ^7(i, J) 

denote the space of all almost complex structures J on P^ compatible with 

j and J, that is, J satisfying: DTTOJ = JODTT and J|P02 = Jz for all z e S2. 

Similarly, for every integer m > 1 we denote Jm(jj J) by the space of all Cm- 
smooth almost complex structures on P^ satisfying the above conditions. A 

smooth section s : S2 —> P^ is called (j, J)-holomorphic if ds o j = J o ds. 

For a given O G H((f)), from the above arguments it is not difficult to prove 
that all symplectic manifolds (P^, fi + CTTV) are g.bounded with respect to 

some J G J(j,3) and some Riemannian metric on P^. To see this point we 
choose a g G Q(V). Let TQ be the standard metric on S2. Notice that the 
above arguments show that one can choose a Riemannian metric G on P^ 
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such that it equals to TQ © g outside a compact subset. When g takes over a 
connected component <?(V)C of Q(V) all corresponding Riemannian metrics 
on Pff) also form a connected subset of all Riemannian metrics on P^, denoted 
by Q{P(f))c- Later we always fix a component without special statements. For 
a G G G(P<t>)c we denote Gz by the induced metric on fibre P^z then one 
can use the standard method to find J G JiP^j fi^) such that the family of 
symplectic manifolds {(P^,fi^z, Gz)}zes2 is uniformly g.bounded. That is, 
their sectional curvature has a uniform upper bound, the injectivity radius 
has a uniform positive lower bound and there exist positive constants ao 
and (3o such that 

to4>z(€>JzZ)><*om\2Gx and 

|fyz(MI < A)||£||Gjr?||G2, V* G S2, £, 77 G TP^. 

We denote by GJ(P(f),®>4))c all such J G J(P(f),Q(f)) constructed from ft^ 
and some G G Q{P(f))c with the standard method. On the other hand from 
(VL + c7r*cr)|P^ = tl^z and G|P^Z =■ Gz it follows that the almost com- 
plex structure J on P^ constructed from G and (l + CTTV with the stan- 
dard method must be in J{j,3) and such that (P^, fi + C7r*(j, J, G) is also 
g.bounded. Now fix such a J G J{P^ il^) and a J G J(j, J), and as in §2 we 
can construct a separable Banach space so that the transversity arguments 
in §7 of [Sel] can be completed in our case. That is, under our assumptions, 
we can find J G J{j^ J) such that 

(i)  (P^, Vt + CTTV, J, G) is g.bounded, 

(ii) the space <S(P^, ft^, j, J, i?) of all (j, J)-holomorphic sections of P^ rep- 
resenting a F^-equivalence class D of a section of P^ is a smooth man- 
ifold of dimension 2n + 2ci(TPyert)(.D) and for chosen two different 

points 21,32 G S2 in advance and isomorphisms F^ : (P^fc,fi^fc) -> 
(V,a;), fc = 1,2, the maps 

are pseudo-cycles in the sense of §7.1 of [McSal]. 

Later we will fix such a J and a c > c^ without special statements. 
For two integral homology classes a,/? G H*(V,Z) and their strong pseduo- 
cycles representatives /M : M —> V and /# : TV -> V we can, as in §4, 
show that there exist H G Diff (F x V) such that the pseduo-cycle EV^ := 
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(EVf , EV2 ) and strong pseudo-cycle Ho(fM x /JV) transversely intersect 
provided that 

(51) 2n + 2c1(TP;ert)(D) + deg(a) + deg(/3) = 4n. 

Thus we may define a kind of Gromov-Witten invariants 

(52) *(^;j)(a,i9) := EV^ • (Fo (/M x /jy)) 

if (51) holds, and zero if (51) does not hold. It is easy to prove that the 
right side of (52) is independent of the choices of J, g ,2^ and generic repre- 
sentatives. When F^ is finitely generated the rational Novikov ring of it is 
well-defined and thus quantum homology QiJ*(V) can be defined as in §4. 
In this case we use the idea from [LMP] to define the formal sum 

(53) *i,D(<x)= Y,aB®eB 

BeVu 

for a G JH*(V, Z), where as £ -^*+d+2ci(B)(^) is determined by 

(54) as -v P = $(<I,,D+B;J) (a, P) 

for every /3 € H*{V, Z) and B G IV Here 

(55) d = cl{TP;^){D) 

and D + B is understood as in Lemma 2.10 of [Sel], that is, D + B is the 
only F^-equivalence class of sections of P^ such that 

fi^JD + B) = ft^D) + u(B) and 

^(TP^XD + B) = diTPJ^HD) + ci(S). 

The following lemma shows that for every a £ H*(y,Z), ^^(a) is an 

element of QH*+d(V)' 

Lemma 6.5. // F^ is finitely generated then for any a G H*(V,Z), F^- 
equivalence class D of sections of P^ and constant C > 0 there are only 

finitely many B G F^ such that OLB ^ 0 and UJ(B) < C in (53). 

Proof Since F^ is finitely generated the rational Novikov ring of it is a count- 
able set. Moreover, as 'V /? = 0 unless deg(a) + deg(/3) + 2ci(TPTert)(D + 
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B) = 2n. Assume that there are a constant C > 0 and infinitely many 
i?; G F^ such that 

asi 7^ 0    and    uj(Bi) < C, i = 1, 2,.... 

Then there are infinitely many /3; <E H*(V,Z) such that 

(56) 
*W>JD+Bi;J)(«J A) ^ 0^ deg(^) + deg(&) + 2ci(TP;ert)(^ + BO = 2n 

for all i = 1,2,.... Recall the definition in (52) we can always find Fi G 
Diff(V x V) such that the image sets of all Fi o (/ x h) are contained in 
a fixed compact subset S of V x V\ In fact, from the proof of Lemma 4.1 
one can find X* G xr(y x V,EV,/ x fe) with HX^I^ < 1 such that EV is 
transverse to all Fi o (/ x h) with Fi := ^"(Xi), z = 1,2,....   But that 

WXiWgr < 1 implies that ||pr(X;)||ci < 2 for a11 * > 1' Thus the image sets 

of all maps Fi o (/ x /i) are contained in a fixed compact subset of V x V, 
denoted by 5. The first formula of (56) shows that there exist J-holomorphic 
section Si representing the classes D + Bi with EV^D+Bi)(si) fl 5 ^ 0. In 
particular, there exists a compact subset if of P^ such that s^S2) fl K ^ 0 
for ain = 1,2,.... Now 

(57) 0<(n + eir*<T)(si) = n(D)+u(Bi) + c [  a<n(D) + c       a + C 
Js2 Js2 

because D + Bi is the equivalence classes of sections of P^ and Js2 s*(7rV) = 
J 2(7ro5)*cr = fs2 a for every smooth section s of P^. This shows that there 

are infinitely many homology classes in P^ with nonconstant J-holomorphic 
spheres representatives whose image intersects with a fixed compact subset 
S in P^. It contradicts to Gromov compactness theorem. □ 

Consequently, (53) defines a A^-linear homomorphism ^D from 
QH*{M) to QH^diM) with d = 2cl(TP^rt){D). Moreover, if loops </>tG[o,i] 
and Xte[o,i] are homotopic in Ham^F,^) there exists a Hamiltonian fi- 
bre bundle isomorphism I^x having CS property from P^ to Px. For a 
j G J^P^^Q^) and a T^- equivalence class D of sections of P^ the isomor- 

phism I*x determines a lfx(J) and a IVequivalence class ltx(D) of sections 
of Px. It is not hard to prove that 

(58) *£D = *^)- 

As in [Sel], [LMP] we have 



1072 Guangcun Lu 

for every B £ T^ and the r^-equivalence classes D of sections of P^, and 
the following conclusion. 

Lemma 6.6. For the constant loop fo = {id} and the F^ equivalence class 
DQ of the flat section SQ = S2 x {pt} of P^ = S2 x V the map ^Q^Do is the 
identity map for any J G J{P(j)Q)^l(pQ). 

Now if a loop Xt€[o,i] 'ls homotopic to </>o in Hamo(V,a;) then there exists 

a Hamiltonian fibre bundle isomorphism l^ox having CS property from P^ 

to Px. We call IV equivalence class Ii>ox(i^o) of sections of Px as the 
trivial class. It is independent of choice of the isomorphism I^ox having 
CS property. Thus ^ T is the identity map for the trivial class T and any 

JGj(Px>fix). 
As done in [LMP] the key point of the proof of Theorem 6.4 is to prove 

the composition rule for maps ^^^D- This needs us to consider the relation 
between P^, P^ and P^. However, unlike the case of [LMP] under which 
there is the only coupling class UQ corresponding to (/>, in our case we need 
to replace it by a suitable thing. For two smooth loops </>te[o,i] and V^ep,!] in 
Hamo(V, OJ) we make the following assumptions: for a fixed sufficiently small 
e>0(f)t = idfoYt(£ [1/2+e, 1-e] and ^ = id for t £ [e, 1/2-e]. Notice that 
they have been extended to M 1-periodically. Let i?^ : S'1 x V —)• M and H^ : 
S1 x V -> R be the functions with compact supports and generating loops 

0te[o,i] and V'telO,!] resPectively. We can require them to satisfy: i?^(t, •) = 0 
for t^ [1/2 + e, 1 - e] and ^(t, •) = 0 for t £ [e, 1/2 - e]. Denote by 

T€ := {[r, t]+, [r, t]_ G 52 | 2/3 < r < 1, t E [1/2 + 6,1 - e]}, 

Te* := {M+, [r,t]_ E 52 | 2/3 < r < 1, t G [6,1/2 - e]}, 

Si := {[r,t]+, [r,t]_ GS2|0<r<l, 0<t< 1/2}, 

52 :={[r,t]+,[r,t]_ G S2 \ 0 < r < 1, 1/2 < t < 1}. 

Clearly, Te and T* are proper subsets of the open left hemisphere 3+ and 
open right hemisphere S^_ respectively. Prom the previous construction we 

may know that 

(59) P^|52Vre = (S2\T£)xF    and    P^T; = (S2 \T;) X V. 

Thus we may construct the fibre sum P^flP^ as follows: gluing P^\s2\s2 and 

P^|52\52 along 

(60) dP^y^ = {[r, t]+, [r, t]_ 6 52 11 = 0,1/2} x ^ = ^|5a\5i 
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by the map: [r,0,a;]* -> [r,0,a;]±, and [r, 1/2, x]^. -> [r, 1/2, a;]^. 
On the other hand it is easy to know that under our assumptions the 

composite loop (0*V;)tE[o,i] = ((/)t0V;t)t6[o,i] is generated by the Hamiltonian 
function H^ : Sl x V -> M given by 

** \ify(t,aO,    if l/2<t<l. 

Notice that the Hamiltonian forms Q,^ on P^ and ft^ on P^ constructed as 
before satisfies: 

(62) O^|P0|52\Te =P2to, toil>\Pii>\s2\T: =P2UJ. 

Hence under the fibre sum operation they define a closed two-form P^flP^, 
denoted by fi^jjfi^. From the above construction it is easily checked that 

P^Pip = P^*^ an(i ^^e closed two-form il^jjfi^, is exactly ^t^^ constructed 
in the previous way, that is, 

(63) fi^t)^ = ^0*'0- 

Now for given sections s of P^ and s' of P^,, by the section homotopy we 
assume that the restriction of s to S2 \ Te/2 and that of s' to S*2 \ T*/2 have 
the following versions respectively, 

(64) s(z) = (ztvo), z e S2\Te/2,    and    s\z) = (s,^), 2; G 52 \ T€*/2 

for some fixed VQ G V. Hence they fit together to give one section of the 
bundle P^jjP^,, denoted by 

(65) sjls'. 

Combing (63) with (65) we get 

(66) fi0(s) + fyO*') = ^^(sjls7) - ^(^,)- 

For such chosen sections 5 and s' it follows from (59) that 

(67) cxCTP^X*) + Cl(rP;ert)(S') = Cl(TP^)(.s|JS'). 

In fact, since ci(TPJert)(s) = ci(5*TP;ert)([S2]), by the well-known Split- 
ting Principle we only need to consider the case of complex line bundle on 
S2. The latter case may be directly proved with Theorem 2.71 in [McSa2]. 
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Notice that (66) and (67) lead to a natural map from 

(68) TviPt) x r^) -+ ^(P^), (D, D') -* D$D', 

where T^P^), ruj(P^) and F^P^^) are the sets of T^-equivalence classes 
of the sections of the bundles P^, P^ and P^ respectively. Similarly, 
since ^(P^,fi^) and J^P^^Q,^) are contractible using (59) we always choose 
J G JiPfa £1$) and J' G ^(P^, fi^) such that 

(69) JZ = J = J'w, VzeS2\ T€/2 and Vw G 52 \ re*/2, 

where J G ^(V,^) such that (V,UJ, J,g) is g.bounded for g G P(V). Then J 
and J7 fit together to give one element in JXP^^ft^), denoted by JflJ'. 
What we wish to prove is the following composition rule. 

Proposition 6.7. For any Y^-equivalence classes D of sections of P^ and 
D' of sections of P^ it holds that 

(70) ***•<> *ijD = *%w' 

Before giving its proof we make an notation: 

Remark 6.8. The above base spaces of P^ and P^ are denoted by S\ and 
S2

R respectively. Moreover, when constructing the fibre sum P^JfP^ we will 

glue ^152^52 and P^ (52^52 along boundaries dP^Is^s2 and dP^s^XS2 

by the map 
RE 

(71) 

where 

cos £ 

_cos(t + e 
-, 6, X 

5L:=|[r,t]+,[r,t]_G52 

y-* 
cose 

_cos(£ — TT) 
(t — TT, a; 

COS£ 

cost 
cose: 

cos(t + e) 

< r < 1, -e < £ < e j , 

< r < 1, TT - e <t <7r + £ 

We denote the fibre sum by P^fj^P^,. Notice that there exists the canonical 
fibre bundle isomorphism I£ from P^eP^p to P^P^. Later, when saying 

Ct^ on P^jj^P^ and ci(TP^t) we always mean them to be the pullback 

of fi^ and ci(rP(J^t) on P^ under I* without special statements. The 
sum sjjs' of sections and other related objects will be understood similarly. 
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Denote by d = diTP^D) and d' = Cl(TP-rt)(£>')• By (67) it holds 

that 

(72) c1(TPv
4>$)(D%D,) = d + d'. 

Thus both V^jy o ^jir> and ^JlJ^pi are the homomorphisms from 
QH*(M) to QH*+d+dl{M). For a given a G .H*(M,Z) the straightforward 
computations shows 

(73) #}> o *J)D(a) = J]   ( E aB^-B I ® ej4' 

where OLB,A-B G ^(V) is determined by 

(74) OB.A-B -v j8 = $(^.D'+A-B)(<*B,0), V/3 € iT*(F), 

and as e iI*(V) by 

(75) aB -y 7 = *(^D+B)(a.7)» V7 G H*{V). 

Notice that we also have 

(76) dimoB^-s = dimaB + 2c1(TP;ert)(D') + 2ci(A - B), 

(77) dim as = dim a + 2c1(TP;ert)(D) + 2ci(B). 

Moreover, by definition we also have 

(78) *J!J'^(«)= E6*®6'1' 
Aerw 

where a^ € H*(V) is determined by 

(79) a A -v 7 = $(^,i?8£>'+A)(7), 7 e ^(V), 

(80) dimaA = dima + 2c1(rP^t)(Dp') + 2ci(A). 

Thus we only need to prove that 

(81) dLA =   ^2   aB,A-B, VA E T^. 
Beru 

To complete the proof of Proposition 6.7 we need several lemmas. 

Lemma 6.9. For every fixed A G H*(V) the sum of right side in (81) is 

always finite. 
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Lemma 6.10. There exist the regular almost complex structures J on P^ 

and J' on P^ such that they agree on gluing domain of P^jj^P^,. 

Without special statements we shall fix J and J'. The proof of Lemma 
6.9 is given after Lemma 6.12 and Lemma 6.10 will be proved at the end of 
this section. 

Following the notations in §4. 

Lemma 6.11. Let ei : U —>► V and e^ : U—» V be two ^-smooth pseudo- 
cycles, and a : A —> V and ft : B —> V be two Cq-smooth pseudo-cycles. 
Assume that 

(83) dim U + dim A + dim B > 2 dim V, 

then for every sufficiently large integer r > mmfy^q} there exists a set 
Xr(V,ei,e2,a,l3) C Xr(V)o x Xr(1^)o of the second category such that 
e = (ei,e2) is transverse to (^r(X) o a) x (^(Y) o /3) for all (X,Y) G 
Xr(V,ei5e2,a?/0).  These xr(V,ei,e2,a,/3) also satisfy: 

which implies that for any (X,Y) G Xr(V, ei, 62, a,/?) and (X^Y') G 
Xs(F, ei, 62, a,/3) w^/i s > r it holds that 

[(^(X) o a) x (^r(Y) o /?)] • 6 = [(.^(X') o a x (^(Y')] • e 

provided that the equality in (83) holds, and one of e = (ei, 62) and a x (3 is 
the strong pseudo-cycle. 

The proof of this lemma is similar to that of Lemma 4.1. Replacing (27) 
one only consider the map 

E:U xAxBx xr(V)o x x:r(V)o ->FxFxFxy 

given by 

(u,a,b,X,Y) ^ (y(e1(u),e2(u)),{r(X)(a(a)),r-(Y)(m)))- 

It is easy to prove that it is transverse to 

Ayxy := {(u, v, u, v) | (u, v) G V x y}. 

The standard arguments may finish the proof. 
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By (i) of Lemma 4.1 one know that if 

(84) dim U + dim A > dim V 

then for every sufficiently large integer r > min{p, q} there exists a set 
Xr(Vr, ei,a) C Xr(V)o of the second category such that ei is transverse to 
.P(X) o a for all X G x^e^a). FYom Claim A.l.ll of [LeO] the space 

(85) XiiV^xe^arf) 

consisting of all X G Xr(V)o for which the intersection 

Xr(V,elle2,a,i8)n[{X}xxr(V)o] 

is a countable intersection of open dense subset in {X} x xr(V)o must be a 
countable intersection of open dense subsets in xr(^)o- Thus the intersection 

(86) xri(V,elxe2,a,l3)nxr(V,el,a) 

is also a countable intersection of open dense subsets in xr(X)o- For every 
X in this intersection there must be a Y G Xr(V)o such that (X,Y) G 
Xr(^ei x e2,a,/3). Thus this pair (X,Y) satisfies: 

(i) e = (ei, 62) is transverse to (^(X) o a) x (^(Y) o /5), 

(ii) ei is transverse to ^(X) o a 

under the assumptions (83), (84). 

Lemma 6.12. Let a : U -> V.i = 1, 2 and a : ^4 -» V and ft : B -> V 
be all Cr-smooth pseudo-cycles. Assume that e = (61,62) is transverse to 
a x (3, ei is transverse to a and (83), (84) also hold.  Then 

(87) A(C7 x A) := {(u, a) | ei(u) = a(a)} 

25 a Cr-smooth manifold of dimension dimCJ + dim A — dim V, and 

(88) 62 : A(17 x A)-^ V, (u,a) \-> e2(u) 

is also Cr-smooth pseudo-cycle which is transverse to /?. Moreover, if a and 
P are strong pseudo-cycle then it holds that 

(89) e • (a x /5) = 62 • /3. 
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Proof. Let 62(11, a) = 0(b). We wish to prove 

De2(u,a)(TiUta)A(U x A)) + DP(b)(TbB) = T^(6)y. 

Notice that 

r(U|a)A(J7 x A) = {(i?,a) G T^C/ x raA | Dei(u)(^) = £>a(a)(a)}. 

It suffice to prove that for any £ G I/?(6) V there exist u £TUU, a E TaA and 

6 ■ G r6jB such that 

(90)        Dei(u)(u) = Da(a)(a)    and   De2(u)(u) + Df3(b)(b) = £. 

But e is transverse to ax/3. Therefore, there exist (u, a, 6) G TuUxTaAxT^V 
such that 

De(u)(u) + D(a x /?)(a,6)(-a,6) = (0,0- 

Clearly, this is equivalent to (90). By similar arguments for the boundary 
parts we can prove that £2 is a Cr-smooth pseudo-cycle which is transverse 
to/3. 

Notice that 62 is also a strong pseudo-cycle if a is. Now e • (a x ft) and 
62 • /? are well-defined. To prove them being equal we notice that 

62-/?= ]P      sign((^a),&j 
ei(u)=a(a) 

Y^     sign(u,a,b), 
ei(u)=a(a) 
c2(u)=i9(6) 

e • (a x /?)   = J^ sign^M, (a, b)J 
e(u)=(axf3)(a,b) 

=        X]     sign(«,a,6). 
ei(ii)=a(a) 

Here some details on the orientation are omitted. It is not very difficult to 
give them. At least, for the mod 2 intersection number the above arguments 
is completed. The lemma is proved. □ 

Remark 6.13. Using Lemma 6.12 we may give a pseudo-cycle expression 
of aB in (75) as follows: Firstly, by Lemma 6.11 H G Diff (V x V) in (52) 
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may be chosen as the form H = (/ii,^) with hi G Diff(V), i — 1,2. Thus 
(75) becomes 

(91) as -v 7 = EV^+B) • (hx ofMxh2o fN), 

where /M : M —>• V and fN-.N^-V are the strong pseudo-cycle represen- 
tatives of a and 7 respectively, hi 6 Diff(V), i = 1,2, and 

EV*(D+B) = ^EVJ(I3+B))EVJ(Z3+B)^ . SiP^n.pjJ^ + B) ^VXV, 

s^(Ft(s(zi)),Fi(s(zt))) 

is the pseudo-cycle determined by the evaluation map. By lemma 6.12 the 
right side of (91) is equal to 

(92) Evi{D+B).(h2ofN), 

where the pseudo-cycle 

(93) EvfD+B) -. A(S(P*, fi0) j, J, D + 5), M) -»■ F 

given by 

By definition 

A(<S(P^,^,j,J,JD + B),M) 

= {(S,a)G5(P^,^,j,J,L> + B)xM | F1*(a(«f)) = /iio/M(a)}. 

Thus (93) may be considered as a pseudo-cycle representative of a^. 

Proof of Lemma 6.9. Assume that there exists A G F^ such that a^^-s 7^ 0 
for infinitely many B G IV Denote them by Si, 52, — By Remark 6.13 
one gets infinitely many pseudo-cycles 

(94) EvfD+Bi) : A(<S(P^, j, J,D + S^.M) -> V, 

A(<S(P^,0^,j,J,L> + Pi),M) 

= {(S,a) € SiP^n^j, J,D + Bi)xM\ F}(S(Z})) = h? o /M(a)} 
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for some h^ G T)iR{V). Prom Lemma 6.11 and the arguments under it one 

can assume all h\ ' to be the same hi. But the image of hi o f^ is contained 
in a compact subset of V. From the results in §2 it follows that the image 
sets of all sections s which are such that 

(95) ({5}xM)fl('(jA(5(P^^,i)J,JD + 5i),M)^0, 

are contained in a compact subset of P^. Thus the image sets of all such 
pseudo-cycles representatives of a^ given by Remark 6.13 are contained in 
a compact subset K{(j)) of V. By the assumption at the beginning 

(96) UBuA-Bi 'V ft ^ 0, for some ft G H^V) 

Now from (74) it follows that there exist sections 

s'i G <S(P^ (fy, j, J', D' + A- Bi) 

such that EVi + ~ (5i) = ^i (^(^i)) are contained in the compact 
subset K(</>). Hence the image sets of all sections $[ are contained in a 
compact subset S^) of P^. Because all s^ are (j, J^-holomorphic it holds 
that 

(^ + co<7)(^)>0, i = l,2,..., 

which implies 

(97) uj(Bi) = (^ + CQ(T)(Bi) < (fy, + cocr)(D' + A), i = 1, 2,.... 

Hence 

(98) (h^+coa^D+Bi) < (n(f)+coa)(D) + (h^+coa)(D/+A)J i = 1,2,.... 

Take (^, a^) G A(S(P^ fi^, j, J,D + Bi),M) one gets infinitely many (j, J)- 
holomorphic sections {si} which represent infinitely many different classes 
and whose image sets are contained in a fixed compact subset of a g.bounded 
symplectic manifold (P^, fi^ + cocr, J, p). With the same reason as in Lemma 
6.5 (98) leads to a contradiction. □ 

Now we have known that the sum on the right side of (81) is actually 
finite sum. To prove (81) holding let us check their pseudo-cycle represen- 
tatives given by Remark 6.13.    Using the pseudo-cycles representative of 
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as given by (93) one may get a pseudo-cycle representative of aB,A-B as 
follows: 

(99)   Evi{D'+A~B) :A(s(Pri>,Qri>,j,J',D' + A-B), 

given by 

(100) 

AiSiP^fyJ,J,D + B),M)) ^V 

(S',(S,a))^^(s'(4)). 

By definition it is easy to check that the set in (99) consists of all triples 
(s',s,a) satisfying the conditions 

s'GSiP^Q^jJ^D' + A-B)     , 

seSiP^n^jJ^D + B) 

(101) a € M 

F$(s(zt)) = hiiD+B)ofM(a) 

Ft(s'(zt)) = h^D,+A-B)oFi(S(zi))j 

for some h^ and h^ ~     in Diff(Vr). Moreover, from Lemma 6.12 
it is easily computed that the dimension of manifold in (99) is 

(102) dim a + 2cl(A) + 2c1(TPg$)(D]i^D,). 

On the other hand aA has the pseudo-cycle representative: 

(103) EV^^D'+^ . A(5(P^,fi^,j, JftJ^DftD' + AlM) -> V 

given by 

(104) 

By definition 

(105) A (siPwtowJ, W, D%D' + A),M) 

consists of all pairs (a, a) satisfying 

(TeS(P<hri),n<h4,j,J0',D$D, + A) > 

(106) a G M > 

(<T,a)*Ff+((T(4**))- 
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for some h^^ + ^ in Diff (M). Here it should be noted that the choices 

of <^^^) in (106) and h^D+B) and hf D'+A-B) in (101) have the 

"bigger" freedom. But the choices of hf^ + _ ^ are under the case that 

hf^ is chosen. Another important point is the maps in (99) and (103) 
to have precompact image sets in V. Thus they are all strong pseudo-cycles 
in the sense of §4. 

Having the above preparation we may prove (81) and thus finish the 
proof of Proposition 6.7. We only need to prove 

(107) PD(aA) = Yl P
D(<*B9A-B), Wl G IV 

BeTu 

That is, their Poincare dualities in H* (V) are same. But (107) is equivalent 
to 

(108) <PD(aA),7> =  E (PDiaBtA-B),!), V7 e H*(y). 
BeFu 

Therefore, one only need to prove that for every 7 E H*(V) with 

dim 7 = dim a + 2c1 (A) + 2c1(TP;$)(DtfJD') 

we may choose a pseudo-cycle representative of it T : T —> V such that it is 
transverse to the map in (104) and all maps in (99) and 

(109) T • Evf* ^'^ - E T • EV" (D,+A~B)- 
BeVu 

By definitions the left side of (109) is equal to the sum 

(110) ]P sign(r, cr, a) 

when (r, a, a) takes over the set 

(111) I (r,(<7,a)) GTx AfsiP^^wjJtiJ'iDtiD' + A),M^ 

T(r) = i^*^((7(4^)) 

The right side of (109) is equal to the sum 

(112) ^sign^s'^a), 
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where ( r, is', (5,a) J ) takes over the set 

(113) A(r,M,P^P^J,j', A A^') 

consisting of all 

(114) (^(^a))) GTx 

U  A(s(P^,^jJ,,D/ + A-B),A(S(P^n(PjJ,D + B),M)\ 

such that T(r) = F^is'^))-  Notice that two sets in (111) and (113) are 
finite. 

By Remark 6.8 we here may choose 

(115) *1-L6>2 511 =[H]-' 1=[!'0]+=[!'0]-' 
Zl   :=  L6' 2J+ =  L6'~2J- '      Z2   = L6'0J+ =  L6>0J-, 

Since the bundle P^ and P^ are trivial near Zr} and z^ respectively, one can 
use the gluing techniques developed in [RT1], [McSal] to prove that there 
exists an orientation-preserving bijection between the set in (111) and one 
in (113). This can lead to (109). Hence the proof of Proposition 6.7 is 
completed under the assumption that Lemma 6.10 holds. 

Proof of Lemma 6.10. Recall the technique used in §2 and §4. We only 
need to prove the following fact: 

Fact 6.14. For a Riemannian vector bundle TT : E —> W, denoted C®(E) 
by the Banach space of all bounded continuous sections of TT. A norm of a 
section s G C®{E) is given by 

INI := SUP \\s{x)\\g, 
xeW 

where g is a given Riemannian metric on E. Let Wo be an open submanifold 
of W. Then for every open dense subset A in C^(E) the restriction A\ WQ := 
{s\wo I s £ -4} is also an open dense subset in C^^lWo). 

In fact, if there exists an open ball B(so,S) C C®(E\Wo) \ A\Wo then 
one can find a section s e C®(E) such that 

h\wQ -soil < g*. 
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For this section s there exists a section sf G A such that 

Ws-s'W < -5. 
5 

Specially, this shows that \\S\WQ - s'lwoW < ^- Thus 5Vo ^ ^l^b, which 
leads to a contradiction. D 

Now as in [LMP] it follows from Lemma 6.6 and Proposition 6.7 that 
every \lH D is an isomorphism which leads to Theorem 6.4. 

Remark 6.15. The conclusion of Corollary 6.3 can be actually strength- 
ened to general case, that is, Diff(M,<9M) is replaced by Diff(M). We will 
outline these as follows. Let [0,1] ->► fa be a smooth loop in Symp(M,a;), 
and (MjC) a noncompact symplectic manifold associated to (M,LJ) as in 
§5. Here we need to write it in detail. Since dM is a hypersurface of contact 
type, for a contact form a on dM with da = uj\dM the standard arguments 
shows that there exists a e G (0,1) and an embedding <p : dM x [e, 1] -)> M 
of codimension zero such that 

(116) <p(ra,l) = ra    and    <p*(jj = d@ on dM x [e, 1], 

where 6 is a one-form on <9M x [e,+oo) with 6(ra,2) = za(ra) at 
a point (m,^). Then (M,S5) can be obtained by gluing (M,a;) and 
(5M x [e, +oo), de) with ^. That is, (m, z) e dM x [e, 1] and ^(ra, 2?) G M 
are identified. Notice that fa(dM) = 9M, one can always find a e G (£,1) 
such that 

U   fa o cp(dM x (e, 1]) 

is contained in Im(y>). Thus every 

ip^ofaoip-.dMx (e, 1] -> dM x (5,1] 

is an embedding of codimension zero, and it also holds that 

cp-1 ofao (p{m, 1) = ($t(m), 1),    Vra G dM, 

where <&t : 5M ->► 5M is a smooth family of diffeomorphisms. Since {if'1 o 
</>t 0 y^)*^® — ^© ^ must holds that 

(117) $Ja = a. 
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Define 

(118)     k-.M^M^^fa® 0nq€M> 
[($t(m),z)    onq = (m,z) G dM x [l,+oo). 

It is easily checked that t H> fa is a smooth loop in Symp(M,5). Moreover, 
if {fa}te[o,i] ^ generated by a smooth function H : M x R/Z —>• E then {fa} 
is generated by the smooth function 
(119) 

{if (m, t)    if (q, t) = (m, t) G M x R/Z; 

i?(m?t)    if (g,t) = ((m,^),t)G 

(^Mx [l,+oo)) xR/Z. 

Now one may construct a Hamiltonian fibre bundle Pr over S'2 with fibre 

(M,(jj). Furthermore, replacing ff with H in the previous construction 
we may get a Hamiltonian 2-form fir on Pr.   An important point is that 

(PT, OT, J, G) is also g. bounded for some J G J(j,J) and some complete 
Riemannian metric £?. Suitably modifying the above arguments one may 
obtain the following corresponding results to Theorem 6.4 and Theorem 
6.1. 

Proposition 6.16. For a loop ^G[O,I] ^n Ham(M,u;) and the extension 

loop <^e[o,i] in Ham(M,C) as above, the homomorphism i : H*(M,Q) —> 

H*(Pr,Q) is injective.   Consequently, the endomorphism dr : H*(M,Q) —> 

ir+-l-i(M,Q) vanishes. Especially, the endomorphism d^ : H^^M^Q) —t 
H*+i(M,Q) vanishes. 

Using this result and the flux homomorphism theorem given in Appendix 
which is the version of Theorem 10.12 in [McSa2] on the compact symplectic 
manifold with contact type boundary we get the following strengthened 
version of Corollary 6.3, 

Corollary 6.17. For (j) G 7ri(Diff(M),irf) and any two UJI and U2 in 
Cont(M) it holds that (j) G In^il^) fi Im(6,

W2) if and only if <f) e Im^^) fl 
Im^). 

Finally, we point out that using results in §5 one can also generalize 
Theorem 5.A in [LMP] to the present case. 
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Remark 6.18. After this paper had been finished I saw D. McDufPs beau- 
tiful paper [Mc2]. It is very possible to use our method to generalize her some 
results. Moreover, from proof of Theorem 6.4 it easily follows that Theorem 
6.4 still holds if the loop 0 belongs to Ham(V, ou) rather than Hamc(V, a;), but 
we must require that Hamiltonian function H^ : S'1 x V —> R generating (f) 
satisfies some conditions( for example, a possible choice is one that for some 
g.bounded Riemannian metric g on V it holds that Sup||c?iJ(^,x)||^ < +oo). 
These will be given in other place. 

Appendix. 

Suitably modifying the proof of Theorem 10.12 in [McSa2] one may get the 
following theorem. For convenience of the readers we shall give its proof. 

Theorem A. Let (M,LJ) be a compact symplectic manifold with contact 
type boundary.  Then a smooth path 

[0,1] ->Symp0(iW» :t^(f)t 

from (fio = id may be isotopic with fixed endpoints to a Hamiltonian path in 
Ham(M,a;) if and only i/Flux({^}) = 0. 

Proof. Firstly, notice that the flux homomorphism is still well-defined on 
Symp0(M,cj) or even on Symp0(M,O) and is indeed a homomorphism be- 
cause there exists a natural homotopy equivalence between M and M. 

Next, we only need to prove the "only if" part. Let 4>te[o,i] be a smooth 
path from (J)Q = id in Symp0(M, LU) with Flux({^}) = 0. As in Remark 6.15 
it is extended into a path from id in Symp0(M,a;), denoted by ^^[o,!]- It 
has the version as in (117), (118). Denote by 

(A.1) X^l^loft"1,    x<= h:* H"1   "ni   •*<=-£*< )°*T' 

then 

(A.2) Xt(q) = 
Xt(m) if q = m G M; 

(Xt(m),0)    if q= (m,z) e dM x [l,+oo). 

Thus 
(A.3) 

i-w() = iiXt(Jj^ ifg = m€M; 
lXtUW> - | _Q(/ti)(m)d« - zd(a(Xt)(m)    ifq= (m, z) G dM X [1, +00). 
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Moreover, it always holds that Flux({<^}) = Flux({(^}). Since Flux({^}) = 
0, there exists a function F : M —> E such that 

iz- cudt — dF. At / 

It is easy to verify that up to a constant -P|aMx[i,+oo) may be chosen as: 

F(m,z) = -       za(Xt)(rn)dt = -z /   a(Xt)(m)dt. 
Jo Jo 

Hence the Hamiltonian vector field Xp of F with respect to UJ is given by 

J0 Xtdt, and the restriction of it to (dM x [1, +oo), d@) is given by 

(m,z)h->(Ar(m,^),0):= ( /   Xt(m)dt,o) . 

This shows that the whole flow of X^ on M, denoted by 0~, exists and on 
9M x [1, +oo) has the form: (j)s~(m, z) = (x5(m), z), where xs is the flow of 
X on dM. The key point is 

(A.4) ^(M) - M   and    ^(^M x (1, +00)) = dM x (1, +00) 

for all s G R. Taking a strictly increasing smooth function 77 : [0,1/4] —>■ [0,1] 
such that 77(0) = 0, T?(1/4) = 1 and 7/'(l/4) = 0, denoted by 

"tyt) if 0 < i < 1/4, 

</>i if 1/4 < * < 3/4, (A.5) ^ := < 

Setting Zt := ^^ 0 ^t"1' ^ is a smooth family of vector fields on M and 

,^7(i-t)-io^    if 3/4<t< 1. 

Jo 
(A.6) /   Ztdt = 0. 

Jo 

From (118), (A.4), (A.5) it follows that 

(A.7) MM) = M    and   ij>t((dM x (1, +00)) = dM x (1, +00) 
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for all t € [0,1]. The straightforward computation shows that 

(V (*)*„(*) if0<«<l/4, 
Zt = < 0 if 1/4 < t < 3/4, 

[-r/(l-t)Xp    if3/4<t<l; 

'n'mx^m),*)) if0<i<l/4, 
0 if 1/4 < t < 3/4, 

k -7/(1 - iX/o1 Ai(m)dt, 0)    if 3/4 < t < 1. 
(A.8)   Zt\dMx[lt00)(m,z)= < 

Setting Yt := — J0 Z\d\ then 

(A.9)     ?t|aMx[l,oo)(^^) = < 

' (J^0 ^(m)^, 0) if 0 < t < 1/4, 

(/Q
1
 ^ (m)ds, 0) if 1/4 < t < 3/4, 

k (77(1 - t) /o Xs(rn)ds, 0)    if 3/4 < t < 1. 

Let R —>• Symp0(M,c<j), s i-)- ^f be the flow generated by 3^. Its existence is 
clear and is uniquely determined by 

^* = f'° 9s ?t
0 = ^. 

Moreover, since YQ = Yi = 0 we get 

gg = flf = id, V5 E R. 

The key point is that ^||aMx[i,+oo) h-818 t^16 form 

0i{m,z) = (ea
t(m),z) 

for all t G [0, Ij, 5 E R and (ra, z) E dM x [1, +oo). Here (9| : ^M -> DM. 
Setting (ft >= 9} 0'lPt then it is easy to verify that Flux({^}o<t<T) = 0 for 
every T E [0,1]. Thus it is an Hamiltonian path starting from id. Define 
another Hamiltonian path starting from id, [0,1] -> Hamo(M,cD), t H-> jt 

by 7t = id for 0 < t < 3/4, and 7t = ^"^^ for 3/4 < t < 1. Then 
t i-> jt o ^ is still an HamiltonianJpath starting from id. Moreover, when 5 
varies from 0 to 1 the path (7* o Of o ilJt)te[o,i\ starting from id varies from 

(7t 0 ^tjtelOji] to (7 0 ^)tG[o,i] ^^ ^xe^ endpoints. Since 7t(ra,z) = (m,2;) 

for 0 < t < 3/4, and 7t(m,s) - (x1"^1"^^)^) for 3/4 < ^ !» ^ is easily 
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checked that 

(A.10)      jt°0fo ^t\dMx[i,+oo){m, z) 

'(^(^(ro),*) if0<*<l/4, 

= < (^(*i(m))^) if l/4<t<3/4, 

SX1"^1^ 0 0* o x^1"*)"1 o *i(m),z) if 3/4 < t < 1. 

Prom these it follows that when 5 varies from 0 to 1 the path (7$ o 
0t 0 *Pt\M)te[Q,i\ varies from (7^ o ^IMJ^GIO,!] ^0 ^e Hamiltonian path 

(7*0 &\M)te[o,i] with fixed endpoints. But jt0^t\M = ^(t) for 0 < t < 1/4, 
and. 7^ o ^IM = 01 for 1/4 < t < 1. That is, £ H-» 7t o ^IM is only an 
reparametrization of the path t t-t fa. This completes the proof of Theorem 
A. □ 
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