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We endow the group of invertible Fourier integral operators on an 
open manifold with the structure of an ILH Lie group by endowing 
the invertible pseudodifferential operators and the contact trans- 
formations on an open manifold of bounded geometry with an ILH 
Lie group structure. 

1. Introduction. 

For finite dimensional Hamiltonian systems, the embedding as a coadjoint 
orbit is a very well known and convenient method for integration, at least for 
the construction of integrals. The same is valid in the infinite dimensional 
case. But, as in the finite dimensional case, the main problem is to find 
appropriate Lie groups such that the Hamiltonian system can be embedded 
as a coadjoint orbit. There are not many such candidates. For example, 
consideration of completed diffeomorphism groups leads to the following 
complications. First, they have a good Hilbert manifold structure but left 
multiplication and forming the inverse are only continuous operations, i.e., 
they don't have a Lie group structure. Secondly, considering the tangent 
space at the identity as a candidate for a Lie algebra causes additional diffi- 
culties. Namely, forming the Lie bracket decreases the Sobolev order, i.e., it 
is not a closed operation. One way out of this difficulty has been indicated by 
Omori [17], forming the inverse limit of such groups and algebras, labeled by 
the Sobolev index. In the compact case, this is an old and very well known 
story. In the open case, there arise tremendous difficulties which have been 
essentially overcome e.g., in [10], [15]. There are not many other candidates 
for infinite-dimensional Lie groups. Another very important class are the 
invertible pseudodifferential operators \I/DOs and Fourier integral operators 
FIOs on a manifold where invertibility means invertibility within this class. 
In the compact case; this has been established in [1], [2] and have been 
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applied by Adler in [4] and Adams, Ratiu and Schmid [3] to the complete 
integrability of the KdV equation. Adler followed a suggestion of J. Moser 
and constructed an infinite sequence of integrals, tacitly assuming the Lie 
group structure of invertible FIOs on S1. In the open case, there has not yet 
been any approach until today and we present here the complete solution of 
the topological side of the problem. The details are rather long and compli- 
cated. Hence we sketch here the main ideas and constructions and connect 
them with surrounding problems. The paper is organized as follows. In Sec- 
tion 2 we recall the for us main important facts concerning Sobolev spaces 
on open manifolds and completed diffeomorphism groups. Section 3 is de- 
voted to open contact manifolds with bounded contact form 6 associated to 
a metric g of bounded geometry satisfying the spectral assumption 

infa-e(Ai|(kerAl)x) >0. 

Here Ai means the Laplace operator on 1-forms and ae denotes the essential 
spectrum. We prove that the identity component V^1 of the completed 
group of contact transformations is a Hilbert manifold and a topological 
group, / € VQ^

1
 if and only if f*0 = a • 0 and / is a Sobolev diffeo- 

morphism. If additionally the metric g has bounded geometry of infinite 
order then V^ = lim£>£0 is an ILH Lie group. Here an ILH Lie group is 

roughly speaking the inverse limit limGr where Gr is a topological group 

and Hilbert manifold modeled over a Sobolev space of index r. The ex- 
act definition will be given in section 3. Moreover, we introduce the group 

^5to 0^ restricteci contact transformations, / G X^to if and only if f*0 = 9 
and / is a Sobolev diffeomorphism belonging to the identity component. In 
Section 4 we apply these constructions to the restricted cotangent bundle 
T*M\0 and the cosphere bundle S(T*M). Then the canonical 1-form 9 on 
S(T*M) is a contact form associated to the Sasaki metric 55. Vr

e'^
1(S) is 

well defined, and we define V^^M \ 0) by homogeneous of degree one 
extension. At the end we give several isomorphic descriptions of the tan- 
gent space TidV^^M \ 0). Section 5 is devoted to the general notions 
and theorems concerning uniform \I/DO's and FIO's on open manifolds of 
bounded geometry. We restrict to FIO's whose homogeneous canonical re- 
lation is the graph r(/), / G Vr

e+
l(S) and write UF«(f) for this set. Denote 

UF^r + 1) =     U    UF^(f) cmdUF^ir + l) =UF(!(r + l)/UF-k-1(r + l). 

f&ti1 

Similarly we have spaces UFq>k(oo) based on V^0(T*M \ 0). Denote by ()* 
the group of invertible elements. Then we construct a local section a of the 
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exact sequence 

(E S) I —-> {U^k), -i* (UF^k)* -% V^ —± e. 

Here j is the inclusion and TT the map (F with canonical relation r(/)) —>- /. 
This section is given by (5.60). Using certain Sobolev uniform structures, 
we obtain in section 6 Hilbert Lie groups (Z^0'fc's)*. Then {U^k)* = 

lim(ZY^r0'/c's)* has the structure of an ILH Lie group. Hence the outer terms 

in (ES) have such a structure. We use these, the local section a and several 
group theoretic constructions to establish in section 7 an ILH Lie group 
structure for (UF0>k)*. 

The ILH Lie algebras are quite different from those in the compact case. 
The main result of the paper is theorem 7.12. A remarkable feature of 

many geometric analytic investigations on open manifolds is the fact that 
we get interesting, meaningful results if we assume two conditions: bounded 
geometry and the spectral condition inf <7e(Ai|/ker A^-O > 0. Our space 

(UF0>k)* is now the right group to embed infinite dimensional Hamiltonian 
systems and to construct an infinite sequence of integrals, e.g., for the KdV 
equation on the real line. 

In a forthcoming paper, we extend the construction performed here to 
the group of all invertible Fourier integral operators and establish a Kostant- 
Symes theorem for the open case. 

2. Bounded Geometry and Sobolev Diffeomorphism Groups. 

We give a short summary of the basic facts. For details and proofs we refer 
to [9], [10], [12]. Let (Mn,g) be an open Riemannian manifold. Consider 
the following conditions (I) and (B^). 

(J) rinj(M,g) = inf rinj(x) > 0, 

(Bk) |V*i?| < d,    0<i<k, 

where r;nj denotes the injectivity radius and R the curvature. We say 
(Mn,g) has bounded geometry up to order k if it satisfies (/) and (Bk). 

Lemma 2.1.  The condition (I) implies completeness. 

Let 0 < k < oo and Mn be open. Then there always exists a metric 
g satisfying (/) and (Bk), i. e. there is no topological obstruction against 
metrics of bounded geometry of any order. 
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Let T™ be the bundle of u-fold covariant and v-iold contravariant tensors 
and define 

^(T^) = j* e C-OC) | \t\g,p,r   := 

= (/ElVi<l^^x(5)jP<oo}. 

Let ?F'r(T^,g)  be the completion of flr(T^g) with respect to  |  |^,p,r) 

fi ^{T^g) the completion of C™ (T?) with respect to |  \giPjr and QP'r(T^g) 
the space of all distributional tensor fields t with |t|^,p,r < oo- Then we have 

hp>r(T?,g) C rF'r(T;,P) C W>r(T?,g). 

Lemma 2.2. //^ satisfies (7), (S^), t/^en 

fi ^(^,5) = T?'r(T^g) = W>r(TZ,9),   0<r<k + 2. 

Define 

b'm\t\g ■■= Esupiviii^' 

^(T^.p)    :=    {ieC00^")  |  6'Hi|,<oo}, 

b'mn(T^,g)   the  completion  of b
mn(T^,g)   with  respect  to  6'm|  |s   and 

6'rn fi  (T^,c?) the completion of C~(7^) with respect to 6'm|  |9.    Then 
b'mn(T^g) - {« | i is a Cm tensor field and b>m\t\g < oo}. 

If (E, h, V) —)• (Mn, p) is a Riemannian vector bundle over (Mn, g) with 
metric connection V then we make the analogous definitions, e. g. for 
s G C?>(E) 

;<•■■= (jJ2\vis\-dvo1^) 
=o 

and obtain analogous spaces 

hP'r(E,g,h,V),    Wfag^V),    W>r{E,g,h,V), 
b'mn(E,g,h,V),    b'mn(E,g,h,V). 
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For   (E,h,V)   there   is   an   analogous   condition   (Bk(E,V))   as   for 
(Bk(M,g)), 

(Bk(E,V)) V'R^l^Ci,    0<i<k, 

where RE denotes the curvature of (E, V).   The lemma 2.2 remains true 
correspondingly, 

(2.1) n^(E,g,h:V)=^r{E,g,h1V) = n^r(E,g,h,V),   0<r<k + 2. 

if (Mn,g) satisfies (/) and (Bk). 

Proposition 2.3. Let (E,h,V) -» (Mn,g) be a Riemannian vector bundle 
satisfying (/), (Bk(M

n,g)) and (Bk(E,V)). 

a. Assume k > r,k > l,r - ^ > s - ^,r > s,q > p > 1.    Then the 
inclusion 

np>r(E)^nq>s(E) 

is continuous. 

b. // k > 0, r > - + s, then the inclusion 

np>r(E) <-+ b>sn(E) 

is continuous. 

We refer to [12] for the proof. □ 

A key role for everything below plays the module structure theorem for 
Sobolev spaces. 

Theorem 2.4. Let (i^,/^,V;) —)► (Mn,g) be vector bundles with (J); 

(Bk(M
n,g)), (Bk(Ei,Vi)), i = 1,2. Assume 0 < r < ri,r2 < k. If r = 0 

assume 
P L       Pi 

r - - < r2 - — 

p — *- pi     '       Z P2 
I < J_  +  J_ 
P — pi     '    P2 

>    or 

(2.2) 0 <    ra-^   >   or   { 
1 <    i 
P —        PI 

0 < *-% 
r - n 

I 
< 
< 

7-s 
P P2 

> . 
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(2.3) 
// r > 0 assume i < ^- + ^- and J P   —   Pl P2 

P ^        Pi p      -        L       Pl 
r_!l<r2-JL \>or)r_ri<n_ 

P      ^        2       P2 11 P      -        z       P2 

p        —       ' 1 Pl^25 P2j I, P i P1,Z P2 

>. 

Then the tensor product of sections defines a continuous bilinear map 

QPuri (^ V!) X nP2>r2(E2, V2) -^ ^'r(El ® #2, Vi ® V2). 

We refer to [12] for the proof. □ 

Consider now (Mn, g), (Nn\ h) open, satisfying (I),(Bk) and / G 
C^iM.N). Then the differential df = /* is a section of T*M ® /*TJV, 
where f*TN is endowed with the induced connection f*Vh. The connections 
V^ and f*Vh induce connections V in all tensor bundles Tj^M) ® /*T^iV. 
Therefore Vmd/ is well defined. Assume m < k. We denote by C00'rn(M, TV) 
the set of all / G C^M, TV) satisfying 

m—1 
b>m\df\:=Yt8U1?\V

idf\x<oo. 

Let y £ n(f*TN) := C00(f*TN). Then yx can be written as (Y/^z), 
and we define a map fy'.M-^Nby 

/y(x) := (expy)(x) := expY^ := exp/(a.) Y/^). 

Then the map fy defines an element of C(:X)(M,N). Moreover we have 

m 
Proposition 2.5. Assume m < k and 6'm|Y| =  J2 SUP \^iY\x < SN < 

i=0xeM 
rinjiN), feC^iM^N).  Then 

fY = expYeC00>m(M,N). 

We refer to [10] for the proof. The main point is that one shows that 
\Vu(dex.pY — d(id))\ makes sense and that 

(2.4)     |v^(dexpy-d(^))|<pA,(|v
id/uvjy|), ;<M, J<M + I, 

where the PM are certain universal polynomials in the indicated variables 
without constant terms and each term has at least one |VJ'Y|,0 < j < y>+ 1 
as a factor. LI 
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Now we consider manifolds of maps in the Lp-category. Assume that 
(Mn,g),(Nn ,h) are open, of bounded geometry up to order k,r < m < 
k, 1 < p < oo,r > | + 1. Consider / e C00'm(M,iV). According to 2.3, for 

Q,p'r(f*TN)    «-)■   b'sn(f*TN) 
b's\Y\    <    D-\Y\Pir, 

1 

where \Y \Pjr = (f £ | V* Y \pdvol\ * and V = /* \7h . Set for S > 0,5 • D < 

SN < rinj(N)/2,1 < p < oo 

V5 := |(/,fl) G C^^iM.N)2     there exists Y G S%(f*TN) such that 

3 = fr = expy and |y|Pjr < (5|. 

Theorem 2.6.   Under the conditions above V := {1^}o<5<rin(Ar)/2£) ^ a 

6a«5i5 for a metrizable uniform structure Ap,r(C00,m(M,N)). 

We refer to [12] for the rather complicated proof. □ 

Let mfF'r (M, AT) be the completion of C00'm(M, N) with respect to this 
uniform structure. Prom now on we assume r = m and denote QP^ (M, iV) := 
rQP>r(M,N). 

Theorem 2.7. Let (Mn, g), (Nn\ h) be open and of bounded geometry of 
order k, I <p < oQ,k>r > ^+ 1. Then each component of fP'r(M, N) is 

a C +1~r -Banach manifold, and for p = 2 it is a Hilbert manifold. 

We refer to [12] for the proof. □ 

Let (Mn,g) be as above. A choice of an orthonormal basis in each TXM 
implies that |A|min(d/), the minimum of the absolute value of the eigenvalues 
of the Jacobian of /, is well defined. Set 

Vp>r := j/ G £P'r(M,iV)     / is injective, surjective and |A|min(d/) > o}. 

Theorem 2.8. Vp>r is open in Qp,r(M,N). In particular, each component 
is a Ck+1~r -Banach manifold, and forp = 2 it is a Hilbert manifold. 
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Theorem 2.9. Assume (Mn,g),k,p,r as above. 

a. Assume f,h€ Vp>r, h £ comp (idM) C Vp>r .   Then ho f e Vp>r and 
ho f e comp(/). 

b. Assume f G comp (^M) C Vp'r.  Then f~l G comp (idu) C Vp^. 

c. V^r := comp (idM) is a metrizable topological group. 

Theorem 2.10 (a-lemma). Assume k>r>^ + lje Vp'r. Then the 

right multiplication aj : V^r —¥ Vp>r, af(h) = ho f, is of class Ck+1~r. 

Theorem 2.11 (a;-lemma). Let k + 1 - (r + s) > s, f G Pg'r+5 C V$r, 
r > - + 1. Then the left multiplication u)f : Vp,r —>- Vp,r, Wf(h) — f o h, is 
of class Cs. 

We defined for C00'm(M, N) a uniforni structure vA
p'r. Consider 

now C00'00(M,7V) = nmCfoo'm(M5
Ar)- Then we have an inclusion i : 

C00'00(M,7V) ^ C^^CMjiV) and hence a well defined uniform structure 
^oo,p,r _ ^ x i)-1^*7'. After completion we obtain once again the manifold 
ftoO'P^M, AT), where / G ft^'^M, A") if and only if for every e > 0 there 
exist an / G C00'00^, JV) and a r G Qr>r(f*TN) such that / = exp Y and 
|^|p,r ^ £- Moreover, each component of fi00^'7*(M, AT) is a Banach manifold 
and T/ft00*'7,(M, AT) = fiP'r(/*riV). As above we set 

poo,p,r = // G Q^^iM.N)     f is injective, surjective 

and  |A|min(d/)>0}. 

Theorem 2.12. Assume the conditions for defining Vp,r.  Then 

Tp0iPir — T>P>r 

^0 — ^0   ' 

We refer to [15], p. 163 for the proof. □ 

3. The Group of Contact Transformations. 

Prom now on we restrict ourselves to p = 2 and write VQ = V^r. Moreover, 
we have to consider g-forms with values in a vector bundle E,i. e. elements 
of Q,q^r(E) = n2>r(AqT*M ® E). Sections of E are simply 0-forms with 
values in E . Usual forms on M are forms with values in M x R —» M and 
we write simply ft*»2»r = fi^2»r(M). 
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In [15] we studied the group V^Q of form preserving diffeomorphisms 

/ G I^1' f*u = OJ, u a symplectic or volume form. We proved the following 

Theorem 3.1. Assume (Mn,g) with (I), (B^), UJ e 6'm^ for allm, closed 
and strongly nondegenerate, q = n or q = 2, inf cre(Ai|(ker Ai)-1-) > 0-   Let 

V™0 = lim^?0.    Then {v™Q,VZfi\r > f + l} is an ILH Lie group in 

the sense of [17], [3] and the Lie algebra ofV^Q consists of divergence free 
{q = n) or locally Hamiltonian (q = 2) vector fields X, respectively, with 
|-X" 12,7. < oo for all r. 

Here strongly nondegenerate means that  inf \UJ\X > 0. 
xeM 

A similar theorem for the group of contact transformations would be 
desirable and will be necessary for the constructions in Sections 5 and 6. As 
a result of our efforts, such a theorem can be established but it is once again 
a long, complicated story and will appear together with results on other 
diffeomorphism groups in [13]. Hence we only sketch the proof here. 

Let (M2n+1,go>#) be an oriented Riemannian contact manifold, go sat- 
isfying (/) and (Bk+2) and 9 a contact form. We assume additionally 
bM3\0\g0 < oo and inf3 \d0\x > 0. 6 is a l-form with fi := 0 A (d0)n ^ 0 
everywhere and we assume that /J, coincides with the given orientation. 9 
defines the Reeb vector field £ on M, 0(£) = 1, i^dO = 0. Denote E = kev9. 
Clearly TM = i?£ © E. A Riemannian metric g is called associated to 9 if 
there exists a (1,1) tensor field (p on M such that for any vector fields X, Y 
on M we have 

l)g(X,£) = e(X)t 

2)(p2 = -i + e®t, 
3)de(X,Y)=g(X,<pY). 

These conditions imply 

4)^,0 = 1. 
5) E ± £, 

7) de((pX,(pY) = de(X,Y), 
8) g(X, Y) = 0(X) ■ 0(Y) + d0(<pX, Y). 

Given ^o with (J) and (^4.2), 0 as above, we want to construct a metric g 
of bounded geometry associated to 9. This can be achieved as follows: 

Proposition 3.1. Assume (M2n+1,go,#) as above. Then there exists a 
metric g associated to 9 satisfying (/), (Bk) and b,k\9\g < oo . 
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Proof. We sketch the simple proof. Start with go and define h by h(X, Y) = 

go(-X + 6(X)£,-Y + 0(Y)S) + 9{X)9(Y). Then £ J^ ker 9 and 1^ = 1. Let 
(XL, ..., X2m 0 be a local orthonormal basis with respect to h and write 

((d9)ij) = (d9(XuYj)) = F-G1 

where F is orthogonal and G is symmetric and positive definite. Then, 

according to  [6],   (   n )   defines a Riemannian metric g on M and 

/ F   0 \ 
I I defines a global (1,1) tensor field cp with (p2 = -/ + 9 ® ^ and 

d0(X,Y)=g(X,ipY). 
Denote by "/" in a symbolic notation the (euclidean) differentiation. 

Then (G)' = (^^j' = ((^)^), • ^ - ((d%) • |^. Similarly for higher 

derivatives. This implies (Bk) for g. Finally the condition (/) for ^o and 
the fact that replacement of go by g implies uniformly boundedness from 
above and below and the change of local volumes yields (I) for g. Here we 
use theorem 4.7 of [7]. □ 

Prom now on we assume g with conditions (J), (Bk) and properties l)-8), 
k > r + 1, b>r+1\9\g < oo , r + 1 > ^rthl + 2. Consider the space 

F := {a G ^^(M)  | 6'r+1|a| < oo}. 

Set for S > 0 

^ 

i 
, r+l \ p 

:= < (ai,a2) G ^      |ai - a2|2,r+i 

= (/Ei(v^(ai-a2)i^^(^)]P <*! 

Lemma 3.2. B = {Vs}s>o is a basis for a metrizable uniform structure on 

the space T. 

Let TrJrX be the completion of T with respect to B. Then J'r+1 is locally 
contractible, hence locally arcwise connected, hence components coincide 
with arc components. The elements of J1 are dense in each component. 
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Proposition 3.3. Let a £ J7.  Then the component of a is given by 

comp (a) = ja' G .T^1      \a - a'^r+i < 00} = a + fi0'2'r+1(M). 

In particular each component is open and a Hilbert manifold modeled over 
ft0'V+i(M). 

Remark. For a = 0 the component comp (a) coincides with the Sobolev 
space fi0'2'r+1(M), but for nonzero a its component comp (a) equals to the 
affine space a + O0'2'r+1(M). 

Corollary 3.4. Jrr+1 has a representation as a topological sum of its com- 
ponents, 

jFr+1 = Y^ comp (aj). 
iei 

Set Fp"1 = \a G comp(l)       inf a(x) > 0>.   Then J^^1 is an open 
I I    xEM ) 

subset of comp(l), in particular Ta^
+1 = fi0'2'r+1(M),a G J%+1.  More- 

over, FQ^
1
 is a Hilbert Lie group. 

Now we define 

Vr
e+

l := {(a,/) e ^+1 x X)5+1  I a/'i? = *}, 

where >< denotes the semidirect product. 

Proposition 3.5. D^ is a closed subgroup of T^ x DQ
+
 and a topolog- 

ical group. 

Theorem 3.6. Assume (M2n+1,g,#) with.(I), (Bj-), g associated to 9, k > 
r + 1 > Sr^hi + 2, ^+1|fl| < 00 and inf <7e(Ai)|(ker Al)± > 0. Then V**1 is 

a closed Ck~r Hilbert submanifold of Tl+1 xi 2?5+1. 

The sketched proof will occupy the remaining part of this section.   As 
usual, we will show that V^   is the preimage of a point by a submersion. 

Lemma 3.7. Let a G ^+1, / G V7^1.  Then 

(3.1) af*6 - 9 G fi1'2' 

and 

(3.2) da A f*e - af*d9 - d9 G fi2'2'r. 
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Proof. The proof will be based on the Lemmas 3.8-3.10. 
Write 

(3.3) afe-9   =   a{f*6-e) + (a-l)6 

(3.4) a(f*0-0)    =    (a-l)(/*0-0) + /*0-0. 

Assume /*0 - 0 G fi1'2'7". We have (a - 1) G f20'2'r+1. The module structure 
theorem 2.4 applied to (a - l)(/*0 - 0) gives (a - l)(/*0 - 0) G ft^'and 
a(/*0 - 0) G fi1'2^. Moreover, (a - 1)0 G fi1'2^ since (a - 1) G O0'2'r+1 and 
6'r+1|0| <oo. 

Hence the proof of (3.1) reduces to the following 

Lemma 3.8. Assume f G Vr
0
+1.  Then f*0 - 0 G O1'2'7'. 

Proof. Any / G ^o+1 ':ias a representation / = expXu o • • • o expXi. We 
start with the simplest case / = expX, X G $"i0'2'r+1(TM). The main steps 
in the proof are done already in [15]. We recall them. Let / = [0,1] and 
it:M->IxM the embedding it(x) = (£, x) . We put on I x M the product 

metric (   . 
V 0    9 

Lemma 3.9. For every q > 0 there exists a linear bounded mapping 

K : 6'mfi«+1(J x M) -> 6'm^(M) 

5ixc/i tfeai dK + Kd = ij - ij. 

This is Lemma 3.1 of [15]. □ 

Lemma 3.10. Let f,h : M -± N be C1-mappings and F : I x M -> N a 
Cl-homotopy between f and h. Let 

/*, h* : b^nq(N) -> ^^^(M),     F* : ^^(iV) -> ^^(J x M) 

be bounded.  Then for $ G b^nq(N) 

(h* - /*)$ - (dK + Kd)F*§. 

This is Lemma 3.2 of [15]. □ 
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Hence we have to estimate (dK + Kd)F*6 in our case h = id, f = exp X, 
F = exptX. This is done in Theorem 3.2 of [15] and its proof, [15] pp. 154- 
158. The proof is rather involved. We conclude 

(expxye-een1^. 

Assume now / = exp Xn o • • • o exp Xi. A simple induction now yields 
f*6-6 e n1'2'*" (cf. [15] p. 160). This finishes the proof of Lemma 3.8 and 
hence of (3.1). □ 

Now we consider (3.2) which is the differential of (3.1). Prom this it is 
clear that the expression (3.2) is in fi2,2'7"-1. But can we prove more. 

(3.5) da A f*0 + af*d9 - d6 = d(a - 1) A f*0 + {a - l)f*d6 + f*d6 - d6 

and 

(3.6) d(a - 1) A f*e = d{a - 1) A (/*0 - 6) + d{a - 1) A 9, 

(3.7) (a - l)/*d0 = (a - l)(/*d0 - d6) + (a - l)d0. 

Now we use that (a - 1) G n0'2'r and f*d9 G 02'2'r (according to the 
first part of the proof) and d0 G b,rft2. Application of the module structure 
Theorem 2.4 yields the assertion. This finishes the proof of Lemma 3.7.   □ 

Define 
* : ^+1 x V^1 -+ tiL>2>r © fi2'2'r, 

(3.8) tf (a, /) := (af*9 - 9, da A f*9 + af9 - dO). 

Lemma 3.11.  The map *& is of class k — r. 

We omit the considerations and estimates, refer to [13] and discuss in 
the sequel only the special case of D^\^idy □ 

Lemma 3.12. Let A : fi0»2»r+1 © ftOA'+^TM) -> Q1^ © 02'2'r be defined 
by 

A(u, X):=(u-9 + Lx9, d(u • 9) + d{ixd9)). 

Then 
D*\{lfid)(u,X) = A(u,X). 
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Proof. Prom the facts that 6>r+1|<9| < OQ,U <E ft0'2'7^1 and X £ fi0'2'r+1(TM) 
follows immediately that u • 9,LxO G Ct1^ and d(^ • 9),d(ixd9) G fi2'2'r. 
Considering ^(l + t'U,id)\t=o, and ^\I>(l,expTX)|T=o yields the desired 
result. □ 

Define 
B : fi1'2*' e n2^r —^ ft2'2'7-1 © o3'2'7-1 

by 
5(p, a) := (dp — cr, da). 

Clearly S^ - 0. 

Lemma 3.13. Let the adjoints A*,^* be defined with respect to the L2 
scalar product of forms.  Then for D := AA* + BB*, we have 

□ (p,t7) = (Ap + p,Aa- + cr). 

We refer to Lemma 8.3.2 of [17]. □ 

Corollary 3.14. The operator^D is extendable to any Sobolev space of order 
< k and 

D : ft1'2'7" © ft2'2'7, —> fi2'2'7^"2 © n3'2'r-2 

is injective, surjective and bounded. 

Consider kerB C n1>2>r ©f22'2'r. Then * maps ^r+1 xi Vr
0
+1 into n1'2'7"© 

fi2'2'r. The following is immediately clear from the definitions. 

Lemma 3.15. im^ C ker^B . 

Proposition 3.16. Assume that inf cre(Ai|(ker Al)±) > 0. Then the opera- 
tor 

DV\iliid) = A : fi0'2'r+1 © ft0'2'r+1(TM) —^ r(o,o) kerB = ker B 

is surjective. 

Proof. Consider 

^0'2'r+1ffifi2'2'r+1(TM) -4 n1'2' © n2^r -^ n2'2'7-1©^'2'7-1. 
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This is an elliptic complex. Hence 

ft1'2'7, ffi fi2'2'r = ker □ 0 imA 0 imB* = imA © mE*, 

where the summands are Z^-orthogonal and the completion is taken with 
respect to | ^r- Moreover, it is easy to see that ker B C imA. Hence we 
are done if we can show that 

imA = imA. 

Now it is a well known fact from elementary functional analysis that A is 
closed if and only if imAA* is closed. A longer calculation yields 

(3.9) AA* (p, a) = (dSp + p + da, d8a + dp). 

Hence imAA* is closed if and only if the operators 

(p, cr) —> d8p + p + Sa 

and 
(p, a) —> dSa + dp 

have closed image, respectively. Now a careful analysis shows that this is the 
case if imAi is closed. The latter is equivalent to inf (7c(Ai|/ker Ai)-1-) > 0. 
We refer to [13] for details. This finishes the proof of proposition 3.16.     □ 

A series of shifting arguments yield the same result at any other point 
(a,/), i.e., DSIl\(aj) is surjective. Hence ^ is a submersion and 

is closed submanifold. The proof of Proposition 3.6 is finished. □ 

Corollary 3.17. Assume (M2n+1,g,6) satisfying (7), (Boo), sup IV^^ < 
x€M 

oo for all i and inf (Te(Ai|(kei.Al)±) > 0. Set V^ := lim V^1.  Then 

{^o,^1\r + l>2-^1 + 2} 

is an ILH Lie group. 
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4. Contact Transformations of the Restricted Cotangent 
Bundle T*M \ 0. 

The most important example for us of contact manifolds of bounded geom- 
etry is the cotangent sphere bundle S = S(T*M) ^ ((T*M) \ 0)/R+. We 
consider the Sasaki metric on T*M. Let TT : T*M —>► M be the projection 
and K the connection map of the Levi-Civita connection in the cotangent 
bundle. Then the Sasaki metric is defined by 

gT*M(X, Y) = gM^.X,^Y) + gM{KX, KY),  X, Y G rr*M. 

Let gs := gT*M\s(T*M) be the restriction of the Sasaki metric to the cosphere 
bundle. 

Lemma 4.1. // (M^QM) satisfies (/), (B^+i), 0 < k < oo fixed, then 
(S(T*M),gs) satisfies (I), (Bk). 

We refer to [15], p. 165 for the proof. □ 

Let 6 be the canonical one form on T*M, i. e. for X G TZT*M, 0(X) := 
z(7r*X). Then 9S = i*6 is a contact form on S(T*M), where i : S{T*M) -> 
T*M is the inclusion. As pointed out in [5], gs and 9s are not associated but 
this is true for g's :— \gs and 9f

s := ^9s- In [5], pp. 132-135 the Reeb vector 
field £, the (1,1)' tensor field cp and the covariant derivatives are explicitly 
calculated. Denote for the sake of simplicity the new 9f

s from now on by 
9 = 9's and g^ by gs. 

Lemma 4.2. Suppose (M,g) with (/), (^+2).  Then 9 = 9S G ^^fl1, i.e., 
sup I V^l^.z < oo; 0 < i < k + 1. 

Proo/. Start with i = 0. Let ei,... ,e2n-i be an orthonormal basis in rzo5 
such that e2n-i = £- Then 

2n-l 

NL,o = E^o(^)2 = i- 
2=1 

It is well known that on a contact Riemannian manifold the integral curves 
of the Reeb vector field £ are geodesies (cf.   [5] p.   54), i.e., V^ = 0.   Fix 
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at ZQ the orthonormal basis ei,..., e2n-iie2n-i — £• According to 0(X) = 
g(€,X), 9 is the covariant form of ^ Hence [V^l = IV1^. 

2n-l 2n-2 

|v0|2 = |vei2-^|vei^|2=J]|vei-ei2. 

According to [5], p. 133-135, formulas (3)-(8), 

(4.1) iVe-Cl    <   Ci-M + C^s|,   |V^|<CiM + C72|i2w|, 
(4.2) |V^|    <   CltV\Vu-lip\ + C2,l,\V

v-1Rgs\, 

(4.3)      |v^|  < Ajv-Vl + ^IV-1^! 

which yields together with 4.1 the assertion. D 

Theorem 4.3. Suppose {Mn,g) with (I) and (Bk+i), k>r + l> ^f1 + 

2, a^infae(A1(^))|(kerA1(^))^) > 0. Then Vr
e+\S{T*M),gs) is well 

defined and a Ck~r submanifold of F^1 x V1^1. 

This follows immediately from Theorem 3.6. □ 

Corollary 4.4. Suppose (Mn,g) with (I) and (BQQ) and 

inf (7e(Ai(^))|(kerA1(^))^) > 0- 

Set V™0 := lim^J1. Then {v^V^r + 1 > ^ + 2} is an ILH Lie 
group. 

For our later applications we must rewrite 4.3 and 4.4 by rewriting 
Vr

e
Jr^(S{T*M))gs) in an isomorphic version as ( writing V^ (S) for short) 

vtfis) = {(f,(3) e v^(s) M r0
+1(s)\re = pe}, 

where (a,f) i-> (/, a-1) is the canonical isomorphism (w.r.t. a antiisomor- 
phism). The "Lie algebra" of 2>Sj1(S'(T*M)) is 

djj1^) = {(x,u) e n0'2'r+1(TS) x n0'2'r+1(s)\Lxe = u-e} 

with 

(4.4) [(X,u), (Y,v)} = ([X,Y},X(v) - Y(u)). 
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From the last equation it is clear that it isn't a Lie algebra since the bracket 
decreases the Sobolev index. It is only the tangent space at (id, 1). 

Define now a map $ from Vr
e\^{S) into the homogeneous of degree one 

C2 diffeomorphisms / of T* \ 0 satisfying f*0 = 9 (cf. 4.7 below). Given 
(/,/?) € PJJHS), we define f = *(f,l3) by 

(4.5) f{zym=
f(w\W      zeT*M\0. 

Prom / E im$ we can reproduce (/,/3) = $_1(/) by 

(4.6) f(±)=4±= /(Tfr) - /|5(R) 

^Iv1    l/»l    l/(f)l    i/is^)!' 

N/    l/WI    I/(R)I    1/15(^)1 

For our applications below we recall two lemmas from [18]. 

Lemma 4.5. Let f : T*M \ 0 -> r*M \ 0 6e a diffeomorphism.   Then the 
following conditions are equivalent 

a) f*e = 9 

b) / is symplectic (i.e., f*uj = cj,a; = — d0) and homogeneous of degree 
one. 

Lemma 4.6. 

a) Let H :T*M\0 -* R be homogeneous of degree v.  Then the Hamilto- 
nian vector field XJJ is homogeneous of degree v — 1 and 9(XH) = H. 

b) A vector field X on r*M\0 is homogeneous of degree zero if and only 
if its flow is homogeneous of degree one. 

c) Lx9 — 0 if and only if X is globally Hamiltonian, homogeneous of 
degree zero with Hamiltonian 9(X) homogeneous of degree one. 

Proof. For later use we recall the proof of c). Let Lx9 = 0, i^ the flow of X. 
Then F^9 = 9. Lemma 4.5 implies that Ft is symplectic and homogeneous 
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of degree one and hence, according to b), X is of degree zero. 0 = LxO — 
ixdO+dixO yields ixu = d0(X), i.e., X = XH with H — 9{X) homogeneous 
of degree one. The converse implication follows from a). □ 

Define now 

^+1(r*M\o) 

:={/:r*M\0 ^r*M\ 0|/ = *(/J/3),   tfrf) G VT
ef(S)) . 

Recall our assumptions, (Mn,g) with (/), (Bk+2),k > r + 1 > ^i + 2. This 
implies u G 6'r+1ft2(T*M). Additionally we have in the case of T*M that 
OJ is strongly nondegenerate, i. e.     inf    \UJ\1 > 0. 

It follows immediately from the definition (4.5) that / is a C2 diffeomor- 
phism. Thus we get a 1-1 mapping between 2?^1(5) and Vffl (T*M\0). We 

endow 2?gJ1(r*M\0) with the topology and differential structure of PgJ1^) 
such that $ becomes a diffeomorphism. Evidently, $(id, 1) = idx*M\0' OUT 

next aim is to describe properties of $, of the elements of T>Q"Q (T*M \ 0) 

3Jido{TidV
r

By(T*M\0). 

Proposition 4.7. 

a) $ ^ an isomorphism of groups. 

b) £ac/i / G I>;;J1(T*M \ 0) 5a*i5/ie5 /*^ = 5. 

c) Let (X,/i) G T^d^V^iS).  Then ^^id^(X,u) = XH where H is the 
Hamiltonian H(z) = QS{XJL_) • \z\, i.e., 

\z\ 

(4.7) H = 9s(Xo7r)/fs,  fs(z) = ^ 
\z\ 

In particular, H is homogeneous of degree one, XH is homogeneous of 
degree 0 and H = 6{XH). 

d)IfY = YHe TidD^^M \ 0) then Y projects to X = <K*Y tan- 
gentially to S and $~1(y) = ($~1)*(Y') = (TT^Y.U), where ^(ifj) = 

{R >H(Z)}'\Z\> i-6-' 
(4.8) uon = {fs,H}/fs 

Here { , } the Poisson bracket onT*M. 
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e) $* preserves the Lie brackets. 

f) Ti(iI?g+1(T*M\0) coincides with the space 

H0
en

0'2'r+1(T(T*M\0)) 

= jy | Y is a C2 vector field on T*M \ 0,   LyO = 0 

and Y\s G n0'2'r+1(J,*(T(T*M \ 0))),  i : S -»• r*M \ ol. 

g) ^fi0'2'r+1(T(r*M \ 0)) is isomorphic to the space 

Hino,2,r+2(T*M \ 0)    =    r^ ^ ig a C3 funcUon on T*M \ 0) 

h is homogeneous of degree 1 and 

i*h^h\s&^'2'r+2{S)). 

h) ftW-^+^M \ 0) is isomorphic to VP<2>r+2(S). 

Proof. For a) we refer to [18], p. 97. Let / G Vr+Q
l{T*M \ 0). Recall 

es = e\s = i*e, e on T*M \ 0 the canonical one form, TT : T*M \ 0 -»• 

S(T*M) = S the projection, *(z) = 1f[.   Then /*(9 =   ((|g^)^ = 

ff)g/s = %5/sg = e- This Proves b)- We conclude, according to 4.5.b) 

that / is symplectic and homogeneous of degree one. Claims c), d) and e) 
are again simple calculations, performed in [18], pp. 97, 98. For claim f) we 
use the fact that XH is homogeneous of degree 0 to assure that YH projects 
to IT.YH tangentially to S. Let Y = XH = $*{X,u) G ridX>5j1(r*M \ 0) = 

$xTidV1^(S). Assuming for a moment Y = XH G C2, we conclude from 
4.6.c) that LxO = 0. Hence we have only to show that Y = XH is C2 and 
Y\s G ft0'2'r+1(»*(T(T*M \ 0))). The latter would imply that y|5 G C2 

(according to the Sobolev embedding theorem), hence Y € C2 since Y is 
homogeneous of degree zero. Assuming Y\s = XH\S € O0'2,r+1(i*(T(T*M\ 
0))), we have TidV

r
0
+1(T*M \ 0) C 'H%Q.0>2'r+1(T(T*M \ 0)). Consider D. 

Let Y G U%n0>2'r+l(T(T*M \ 0)). Then, according to 4.6.c) Y = YH for 
some H and Y has degree zero homogeneity. Hence it projects to TS, 
ir*Y = X. Define u by (4.8). Assuming for a moment X G tt0'2<r+1(TS) 
and u G fi0'2'r+1(5), we see by an easy calculation $*(X,u) = Y^, i.e., D 
would be proved. Hence there remains to show 

l.Y = XHe Tid^+1(T*M\0) implies y|s € n
0'2'r+1(i*(T(T*M\0))), 
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2.   Y E ^O0'2'r+1, Y = YH then X = 7r*Y G O0'2'r+1(r5) and u E 
n0^+1(5). 

Lets begin with the first assertion y = XH = $*(X,-u). We introduce 
local coordinates in T(T*M \ 0), say (#,£, V'IJV^)? ^ coordinates im M, ^ 
in r*M \ 0, Vij^ over them in T(T*M \ 0) with projections TTI,^. Then 
according to [18], p. 99 we have 
(4.9) 

XH\s{xi0 = MX,u)\s{x,i)={x,UX)x{x,i),{X)2{x^)-<x,0-i), 

where ( )j are the components of X belonging to zmTTj. Using a uniformly lo- 
cally finite cover of S(T*M\0), (4.9) and X e ft0'2'r+1(rS),u G ^0'2'r+1(5), 
we conclude that Y\s = XH\S € 9.0^r+l(i*{T{T*M \ 0))). 

To prove 2., we assume Y = YH e ^^O0'2'?'+1(T(r*M \ 0)). By as- 
sumption y|5 G O0'2'r+1(i*(r(T*M \ 0))). Set X = 7r*Y = 7r*y|5. Denote 
by V5 the Levi-Civita connection of (S(T*M),gs). Then by choice of lo- 
cal orthonormal bases ei,..., e2n-i,&2n,e2n -L S, we see immediately for 
i < r + 1 

(4.io) |x|ss < |y|5|,   |(v5rx| < 1^(^15)1, 
which implies X G n0>2<r+1(TS). Write as in (4.9) 

(4.11) X(x,0 = (x^,(X)1(x,0,(X)2(x,0)- 

Then, locally, 

(4.12) (XH\s - X)(x, 0 = (0,0,0, -u(x, 0 ■ 0, 

which immediately implies u G fi0'2'r"l"1(S'). 
This finishes the proof of f). 
Consider g) and the map Y = XH M- H = 6{XH) given by 4.6.c. We 

must prove that H G C3 and H\s = i*H G ft0'2'7^2^). The latter will 
already imply H G C3. We immediately obtain from (4.7) that H\s G 
fiOAr+i^) since jy = ^^^ jy^ = e(XH\s), 9 G 6'r+1fi1 and XH\s G 

fio,2,r+i^T5) Herice H eC2. The main point is that H\s has even Sobolev 
order r + 2. Denote again by G?S, V5 the operators d, V on S'. We have 

(4.13) \ds(H\s)\ < \{dH)\sl \{VSj(H\s)\ < KV^Isl. 

For nonsmooth objects we have (as usual) to understand this in the 
distributional sense. We always have to do with regular distribu- 
tions.    That H\s  G  ri0'2'r+2(5) would be proved if we could show that 
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ds#|s G 01'2'r+1(S'). According to (4.13) this would be done if we 
could show ((iff)|s, (VdH)\s ... (yr+1dH)\s are square integrable on S. 
But (dH)\s = (ixHu)\s = ixH\su. Furthermore CJ G 6'r+2fi2, a; is 
strongly nondegenerate and XH\S £ fi0'2'r+1(2*(T(T*M \ 0))) just imply 
that (<iff)|s, • • •, (Vr+1GLff)|s are square integrable on M. This is Lemma 
3.6, 3.7 in [15]. We obtained that H e ^1O0'2'r+2(T*M \ 0), and from 4.6 
it follows that the map XH »->» 0{XH) *-* XQ^XH) equals to the identity. 

Now let h G HW'^^CTM \ 0). The function h defines a global 
Hamiltonian vector field X^ homogeneous of degree zero, satisfying Lxh0 — 
0. Moreover X^ is C2 and solves the equation ixhw — dh. We have to assure 
that X^ls G fi0'2'r+1(i*(T(r*M\0))). From h\s e ^0'2'r+2(5) we conclude 
that |/i|s, \dsh\ and \{ysydsh\ are square integrable on S. But for i > 1 

|(v^)|5 < Kv5)-1^)! + |(v5)*(%)|, 
since h is homogeneous of degree one. We obtain that \(dh)\s,..., |(Vr+1c?/i)|s 
are square integrable on 5, i.e., the right hand side of ixh^S — dh\s is an 
element of fi1'2'r+1(5) (with values in the conormal bundle of S). Then 
Xh G Q0'2'r+1(r(T(T*M\0))) and altogether Xh G ^n0'2'r+1(r(r*M\0)). 
According to 4.6, the map h *-+ Xh h-> 5(X^) coincides with id. This finishes 
th proof of claim g). 

Concerning claim h), the isomorphism is given by h G 7{1ri0'2'r"l"2(r*M\ 
0) ^ h\s • This map is well defined, according to g). It is injective since h is 
homogeneous of degree one. It is surjective because for u G fi0,2'7*"^,?) let hu 

be its extension homogeneous of degree one . Then hu G 7/1fi0'2'r+2(T*M\0) 
and hu\s = u. □ 

Remark.   We constructed a topological isomorphism 

(4.14) F : d^OS) —> fi0'2'r+2(5). 

This isomorphism is topological since all constructed maps in Proposition 
4.7 are norm continuous. Here we essentially use Lemma 3.6, 3.7 of [15]. The 
isomorphism (4.14) will be very important in constructing local charts on 
Vr

d+l(S). Proposition 4.7. justifies to denote PgJ1^) and UjJ^^M\0) by 
the same symbol. We can understand P^1(r*M \ 0) as a Hilbert manifold 

and a topological group with T^+^T^M \ 0) ^ ft0'2'r+2(£). 

Summarizing our results, we obtain in the case of (ffoo) the following: 

Theorem 4.8. Suppose (Mn,g) with (/), (Boo) and 

inf (7e(Ai(5fs)lkerA1(^)-L) > 0- 
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Set V™0(T*M \ 0) = ]unVr
0+
l(T*M \ 0).  Then 

P^0(T*M\0) , PJJ^^M \0) 

is an ILH Lie group. 

5. Pseudodifferential and Fourier Integral Operators on 
Open Manifolds. 

Pseudodifferential (\I/DO) and Fourier integral operators (FIO) are well de- 
fined for any manifold, open or closed. But on open manifolds the spaces 
of these operators don't have any reasonable structure. Moreover, many 
theorems for \I/DOs or FIOs on closed manifolds become wrong or don't 
make any sense in the open case, e.g., certain mapping properties between 
Sobolev spaces of functions are wrong. The situation rapidly changes if we 
restrict ourselves to bounded geometry and adapt these operators to the 
bounded geometry. This means, roughly speaking, that the family of local 
symbols together with their derivatives should be uniformly bounded. For 
FIOs we additionally restrict ourselves to comparatively smooth Lagrangian 
submanifolds A of T*M \ 0 x T*M \ 0 and phase functions also adapted to 
the bounded geometry. 

A good reference for *DO's are [16] and [20]. Further results are in 
preparation (cf. [14]). Since we restrict our applications to the case where 
the Riemannian manifold (Mn,g) satisfies the conditions of bounded geom- 
etry (/) and (Boo), we assume these conditions from now on. Moreover, we 
restrict ourselves to the scalar case, i.e., we consider only operators acting 
on functions. 

We first recall two classical lemmas which play a key role in all forth- 
coming constructions. 

Lemma 5.1. Assume (Mn,g) with (I) and (BQQ) ((BQ) is sufficient here), 
8 < ^Tp-. Then there exists a uniformly locally finite cover U — {[/;}; of M 
by geodesic S-balls. 

Lemma 5.2. Assume U = {Ui}i as above (and (B^)). Then there exists 
an associated partition of unity {^z}; such that 

(5.1) |VVt|<Cfc,    fc = 0,l,2,...,. 
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We define now U^~00(M) to be the set of all linear operators R : 
(^(M) -^ C™(M) which have the following properties. 

(5.2) 1. R has Schwartz kernel KR e C^M x M). 

(5.3) 2. There exists a constant CR s. t. JC^x^y) — 0 for d(x,y) > CR. 

(5.4) 3. VJ.V{/Cfl is bounded for all i and j. 

It follows from the conditions (/) and (BQO) that for any point m G Mn 

there exists a diffeomorphism $m 

M D Be(m) ^ B = Be(0) C Rn 

such that $m induces bounded isomorphisms 

b>kn0(B£(m)) -^ 6'fcn0(jB), 

^^(^(m)) ^> b^n0(B) 

with bounds independent of ra. After fixing an orthonormal basis in TmM, 
$m is essentially given by the exponential map. 

We now define the class of uniform symbols for our pseudodifferential 
operators as follows. Let q E R and denote by USq(B) the set of all families 

{am}meM with am G C00(5 x Rn) and 

(5.5) \d^am(x,0\<Ca,p(l + \Z\y-M, 

where Caip is independent of m. Then {am}m defines a family of operators 

am(x,Dx):C?(B)—*C00(B) 

by 

(5.6) am(x,Dx)u(x) := (27r)"n  /   / am(x^)u(y)dyd^ 

Rn J5 

where supp u C B. 

Define W*"00^) as the set of all families {i?m : C~(JB) -^ CfoC)(B)}meM 
such that i?m has Schwartz kernel )CRm G C00(B x J9) with 

(5-7) l^/C^^^I^C^, 
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where C^p is independent of m. Finally let U^q{B) be the set of all families 

{A7n : C™{B) -» C00(S)}mGM such that 

Ajn — tt-m \p) Ux ) ~f~ ■tim > 

{am}m G WS^fl), {i?m}m G W*"00^). 
Now we define the space U^q(M) of uniform pseudodifferential opera- 

tors of order q on Mn as follows: A pseudodifferential operator A on Mn 

with Schwartz kernel JCA belongs to U1^q(M) iff it satisfies the following 

conditions: 

1. There exists a constant CA > 0 s. t. 

(5.8) ]CA(x,y) = 0 for d(x,y) > CA, x,y G M. 

2. JCA is smooth outside the diagonal of M x M. 

3. For any 5 > 0 and ijj there exists a constant CSJJ > 0 s. t. 

(5.9) iViVJ/CACa:,!/)! < C^j for d(x,i/) > 6. 

4. If j4m is defined by the following commutative diagram 

C$(Be(m))    —i->    C^BeM) 

exp^ exp^ 

C^(S) Am   >        C^iB) 

then the family {An}meM belongs to U^q(B). 

Remark.   We have  Z^T^M) = f]U^q(M). 

A convenient description for the elements A G U^q(M) Is given by 

Proposition 5.3.  Assume A G Utyq(M), and e > 0 arbitrary.   Then there 

exists a representation A = Ai + A2 

a. Ai G^^-00(M) 

b. A2 e Utyq(M) 



1008 Jiirgen Eichhorn and Rudolf Schmid 

c- ^A2(xty) = 0 for d(x,y) > e 

i.e., up to smoothing operators inU^~00(M) we can always assume that the 
support of KA is arbitrary dense to the diagonal. 

We refer to [16], p. 230/231 for the proof. □ 

For our applications we additionally restrict ourselves to classical sym- 
bols and classical \I/DOs, i.e., we assume homogeneity in the ^-variable on 
Rn \ {0} and an asymptotic expansion 

oo 

(5.10) am(x,t) ~^2amiq-j(x,g) 
3=0 

such that am?g_j(a;,£) is positive homogeneous of degree q — j in £.   Here 
oo 

am(^,0 ~ Z) a>m,q-j(x,0 means 
i=o 

(5.11) |(l-x(x,0)|am(x,0-Ea-^(x^)) I    zUS«-k{B) 

for all k and x{x^ 0 is compactly supported in the ^-direction with x = 1 
in a neighborhood of B x {0}. 

Remark. Shubin [20] calls such pseudodifferential operators \I/DOs with 
poly homogeneous local symbols and writes U^q

h AM) but we omit the sub- 
script phg and write simply U^q(M). 

We recall some mapping properties and refer to [16] for the proofs. 

Proposition 5.4. Any R E ZY\I/-00(M) defines continuous maps and ex- 
tensions as follows 

R:C™(M) —*C™{M) , 
R-.C^IM) —*C™{M) , 
R:£f -^C™{M) , 
R : h^QP{M) —> h^Q?(M) . 

Proposition 5.5. A G U^q(M) defines linear continuous maps 

A : ft0,2,r _^ ^0,2^-9 

and 



Lie Groups of Fourier Integral Operators 1009 

Finally we have 

Proposition 5.6. 

a. IfR1,R2 GU^-^iM) thenRxoRz EZ^T^M). 

b. If Re U^'^iM) then R* G ^^"^(M). 

c. IfAe UW{M) then A* e U^\M) 

d. IfAeU^qi(M), B eW*«2(Af) thenAoBeU^qi+q2(M) . 

All proofs are performed locally. Using the uniform boundedness (5.5), 
one gets these results for the formulas of the symbols of the adjoint operators 
and the product (composition) of operators. □ 

Finally we recall uniform ellipticity. A G U^q(M) is called uniformly 
elliptic if there exist constants Ci,C2,it! > 0, independent of m E M, such 
that 

Ci\^<\am(x,0\<C2\^ 

for all |£| > i?, x G B,m G M. We denote this class of operators by 
ElMq(M). 

Remark. Given any real number 5, then there exists a uniformly elliptic 
operator in EU^S{M), e.g., (1 + A)f G EU^S{M). 

Theorem 5.8. Given A G EU^q{M), then there exists a parametrix, i.e., 
aPe Uy-q(M) s. t. 

(5.12) PoA = I + Ru    AoP = I + R2,    R1,R2eU^-00(M). 

The proof is performed locally by establishing explicit formulas for the 
symbol {pm}m. This is done as usual by calculation of the terms of the 
asymptotic expansion (5.10). Then one fits the local operators together by 
a partition of unity. To assure P G US£!~q(M), one essentially uses (5.1). □ 

Remark. In contrast to the case of compact manifolds, (5.12) does not 
mean the invertibility of A modulo compact operators. On open manifolds, 
the kernels /CR^/CRJ are far from being square integrable, i.e., i?i,i?2 are 
far from being compact operators. As a simple consequence, P is far from 
being Fredholm (except in very special cases). 
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Taking 5.3 into account, we define as in [1] a formal \]/DO of order q 
as an element of U^q(M)/U^-00(M). Denote by (W^M))* the set of all 
invertible elements in Z//\I/(M), 

q \ q / 

(U^(M))^ is a graded group under multiplication and non-empty as 5.8 
shows. 

Quite similarly we define uniform Fourier integral operators UFq(M, C). 
A Fourier integral operator (FIO) on M has essentially 3 ingredients 

1. a family a = {am}m of local uniform symbols as above, 

2. a conic Lagrangian submanifold (or homogeneous canonical relation) 
CcT*M\0xT*M\0, 

3. a family cp — {(pm}meM of phase functions. 

We will make this precise. Recall that we now always assume that 
(Mn,g) satisfies the conditions (I) and (Boo). A homogeneous canon- 
ical relation C is a closed submanifold (not in the sense of compact- 
ness) C C T*M \ 0 x T*M \ 0 which is conical, i.e., ((£,£), (y,??) G C 
and r > 0 imply ((a;,r^), (y^rrj) G C, and which is Lagrangian with 
respect to the canonical symplectic form u Q UJ = pluj — p^u, where 
Pj : T*M x T*M —> T*MJ = 1,2 are the projections and u = -d0. 

A very important class of examples are the graphs r(/) of contact transfor- 
mations. Let / G Vg^1(S(T*M)) and / = $(/) the corresponding homoge- 

neous diffeomorphism / : T*M \ 0 —> T*M \ 0 satisfying f*9 = 9, which is 
given by (4.5). Then r(/) = {((x,£),(y,rj))\f(x,£) = (y,7/)} is conical and 
Lagrangian according to Lemma 4.5. 

Uniform families a — {aTn}m6M of local symbols are already defined 
but we consider here a slight generalization of (5.5) admitting additional 
dependence of a second variable y, i.e., we require 

(5.13) \d^xd1am{x^0\ < CaA7(l + |£|)5-|a|, 

where Ca^n is independent of m. We write USq(B x B x Rn \ 0) for all such 
symbols a = {am}m. Consider <p = {^m}mGM with the following properties. 
Each (fyn : B x B x Rn \ 0 —> R is a smooth map, positive homogeneous 
of degree one with respect to £ G Rn \ 0, i.e., (^m(x,y,r^) = r • (Pm(x,y,0 
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and dx£(pm,dy£(pm are 7^ 0 on the canonical support of am .  Furthermore, 
the map 

{(#,2/, £) G   canonical support of am | d^(prn(x^y)^) = 0} 

1—> {(x,dxipm(x,y^),y,-dy(pm(x,y^)) \ (x,y,€) as above} 

is a diffeomorphism onto a conical submanifold CB C T*B \ 0 x T*B \ 0, 
where C^ corresponds to C C T*M x T*M under the exponential map. 

Such a family <p = {(Pm}meM is called a uniform family of phase func- 
tions associated to a = {am} and we write UPh(a)(BxBx W1) for the space 
of all such families. We say A is a uniform Fourier integral operator of order 
q, associated to the homogeneous canonical relation C C T*M\0 X T*M\0, 
written as A G UFq(M1 C), if it satisfies the following conditions: 

1. A is a continuous linear map A : C^(M) —> C00(M), 
2. If the family {Am}mGM is defined by the commutative diagram 

C?(Be(m))    —^->    C^Beim)) 

expri exp^ 

C~(B) Am   )        C^iB) 

then there exist a = {am}m G USq(B x B x Rn \ 0) such that 

(5.14) A^s) = (27r)-n ^ | ^^^'^^(x, y, 0«(y)<«, 

5^pp u C B, and for ^ •= (exPm)_1(^m the map 

(5.15) (a,y, 0 i—^ (x, ck^fo y, 0) y? -dyip(x,y, ^)) 

is a diffeomorphism from the zero set of dj-0 onto a submanifold of C 
Because of our applications, we restrict ourselves to the case where 

C = r(/), / G ©gJ^SCTM)), and we write simply WF«(/) for the corre- 
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spending class of uniform Fourier integral operators. We set 

(5.16) UF-™{f)    :=    fl^C/O' 

(5.17) WF9(r + l)    := |J UF^f), 

fevi+^ST'M) 

(5.18) for   -k<q-,   UFq'k(f)    :=   UFq(f)/UF-k-1(f), 

(5.19) UFq'k(r + l)    :=      (J   UFq>k(f). 

For Ai e UF^ift) and ^2 € UFq*(f2) we have 

(5.20) AioA2eWi^+9a(/io/2). 

Denote analogously to (5.18) for —k<q 

(5.21) U^q'k := U^q/U^~k-1 

andP-0 = lim^+\ 

(5.22) UFq'k{oo)    :=   limUFq'k(r + 1)   =      [J   UFq'k(f). 

(5.23) W59'fc    :=   USq/US-k-1. 

Let (Wl^'V + 1)), , (UF0'k(oo)), and (ZY*0^)* denote the groups of in- 
vertible elements otUFQ<k(r + 1), UF0'k(oo) and W^0^ respectively. It is 
clear from (5.20) that we must choose q = 0 to get invertibility inside one 
homogeneous constituent of our graded structures. 

Lemma 5.9. Assume the hypothesizes of 4.8. The following is an exact se- 
quence of groups 

(5.24) / —» (Wtf0'*)* -i* (WF0'*(oo))# ^ P^o —^ e, 

i^/iere j is ifee inclusion and 7r[A] = f , where A G UF0(f), [A] = A + 
UF-k-l(f). 

Proof. The injectivity of j, the surjectivity of TT and imj C fcerTr are clear, 
irnj = fceryr follows from (5.26). □ 

Generalizing the ideas of [1] and [2] our strategy is as follows: 
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1. We want to construct a local section of TT in (5.24). For this we need 
a chart in P^   at id — e. 

2. This yields a chart and local section in (5.24), 

3. We endow (U^'k)* with the structure of an ILH Lie group by forming 
Sobolev completions and taking the inverse limit. 

4. We endow (UF0>k(oo)* with the structure of an ILH Lie group, using 
these structures of (i/^0'^)* and V^ in (5.24), the local section of TT 

and some group theoretical theorems presented in Section 7. 

This procedure is carried out in [1], [2] for compact manifolds, but in 
the case of open manifolds the analysis is much harder. We first start with 
the construction of a local section of TT in (5.24). This means the existence 
of a neighborhood U(id) C VQ'Q

1
 and a (at least continuous) map a : U —> 

(UF0>k(r + 1))* such that TT O a = idu. For doing this we construct global 
phase functions and present an explicit formula for a. 

We call a C2 function <£:T*MxM—)-Ra global phase function for 
e = id£ X^1 iff 

1. d(p(T*M x M) is transversal to N^ := {a <E T*(T*M x M)\a(v) = 0 
for all v e /cerTr*} C T*(T*M x M), where TT : T*(T*M x M) —> 
M x M,7r(ax,y) = (x,y) 

and 

2. d(p(T*M\0xM)N7r :=[d(p(T*M\0xM)nN7T}/Af^ = r(e) C (T*M\ 
0xr*M\0,a;©a;), where Af^ is the foliation by isotropic submanifolds 
generated by the cj-orthogonal bundle (TiV^)-1 in TT*(T*M x M). 

Example. For Mn = Rn the function ip : T*Rn x Rn —> R <p^xiy) =< 
£,x — y >, is a global phase function for e. Consider 0 < 5 < rinj(M,g), 
Sis = {(£x,y) e T*M x M\d(x, y) < 5} C r*M x M. In the definition above 
it is possible to replace cp : T*M x M -> R by ^|n5 : ^s C T*M x M ->- R 
if Q^ contains the whole fibers of T*M. 

Lemma 5.10. The function (po : 0,$ -» R defined by (po(£x)y) — 

^(exp"1^)); is a global phase function for e = id £ ^'Q
1
 on 0$. 

We refer to [1], p. 541, 42 for the proof which is local in character and 
does not depend on the compactness or openness of M. □ 
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For S < rinj(M,g) we can define global symbols a(x,€) E USq(ft) on 
ft = Qs by requiring 

(5.25) |V£V£a(s,OI < 0^(1 + |e|«-a 

and assuming an asymptotic expansion of the type (5.10), (5.11). 
Let  x(x^y)  be  a bump  function  on  M x M  such that  suppx   C 

Us(diagonal) — Us(A) and x = 1 on a neighborhood of the diagonal. 

Proposition 5.11. £e£ &(£,£)  G USq(ft)  be a global classical symbol of 
order q.  Then 
(5.26) 

u(x) ^> Au(x)■:= (27r)-n    /     /  x(^,y)e^o(^'y)a(x,OI det exp^ jdj/d^ 

is a classical pseudodifferential operator of order q in the former sense, i.e., 
AeUW(m). 

Proof The fact that A is a $DO is well known and follows from the famous 
Kuranishi principle. The uniform boundedness (5.5) of the family {am}m 

follows from 5.10 and 5.25. □ 

Now we return to our first task to define a chart in Vr
e~^ . The most 

simple idea would be to endow VQ
+1

 X J7^1 with a Riemannian metric G, 
to take the induced metric GQ on the submanifold V^1 and then apply the 

Riemannian exponential map of G to a sufficiently small ball in T^^D^ . 

But this will not work since V^1 is definitely not a geodesic submanifold, 

at least for any reasonable metric on Vj^1 x J-Q^
1
. We could take the 

Riemannian exponential of Go, but we don't know it, i.e., we can't calculate 
or estimate this. Therefore we will construct a chart centered at id : T*M \ 
0 —> T*M \ 0 by another method. The framework of our approach here is 
already carried out for compact manifolds in 4.2, 4.3, 4.4 of [1], but the case 
Mn open has its own features. It requires additional estimates at oo. 

Assume (W,g) satisfies the conditions (/) and (Boo)- Let y G W, S < 
rinj and (U^y)^1,... ,yn) a normal chart.   Let v = v1-^ + h v71-^ 

be a locally defined vector field, \v\ — (1^)2 its Riemannian norm and 

\v\fl — dLiC1*1)2)^ its euclidean flat pointwise norm respectively. We want 
to compare \v\ and \v\fi.  More generally, consider a locally defined tensor 
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field t = (^...jfc)-   Denote as before by |t| its Riemannian norm and by 

1*1/2 =: (XX*}i'"^)2)^ ^s flat euclidean norm. Moreover, denote by |£|[/,r+i,/z 
the (r + 1) - Sobolev norm based on Riemannian covariant derivatives, the 
Riemannian volume element and the flat pointwise norm. 

Lemma 5.12. 

a) There exists constants ci,C2 > 0 such that for any {k,l)-tensor t 

(5.27) cilV'iU,/* < IV^U < calV^Uji 

for all x G C/j, 0 < i < r + 1,, ci, C2 independent of y, depending only 
on k,l,r. 

b) J/t G fi^+^TfWO andU = {(UxAx)}x is an uniform cover ofW 
by normal charts of radius 8 then there exists constants di, d2 > 0 such 
that 

(5.28) di 22 Itlifxr+iji < \t\r+i <d2 22 l*|c/A,r+i,//- 

Proof a) In ^(x) holds 

(5.29) fci^f ? < g^e < hdijC? 

(5.30) hS^tej < gv^j < k^tej. 

b) This follows from a) using a partition of unity that is bounded up to 
order r + 1 , the module structure theorem and the fact that the cover is 
uniformly locally finite. □ 

Now we generalize our notion of a global phase function (pn for e = 
id G V^^M \ 0) from above to other / G V^^M \ 0). Consider 
again the projection vr : T*M x M —y M, ir(ax,y) = (a;,y), the conormals 
Nn C T*(T*M x M) of this submersion and the corresponding foliation JVJ- 

of Nir. A function ip : T*M x M —> R is called a global phase function for 
a diffeomorphism / of T*M \ 0 iff: 

1. d(p(T*M x M) C T*(r*M x M) is transversal to iV,,, and 

2. r(/) = dip(T*M x M)^ := [{d<p{T*M x M)niV7r)/A/;±]/, where C := 
{(^J/,^-^) I fay,Zri) G C}. 
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For our purposes we can restrict ourselves to maps ip : f^ C T*M x 
M—>R. 

In local charts we have the following representations: 
JVTT = {{x)a,<d,$,y,rj)} 
J\/'/ = {(x,Rn,l9,0,y,r7)} = one leaf 
diP\(*x,y) = (x,a,dx<p,da(p,y,dycp), 
hence we have locally 

dip(Q)Nir   =   (dipMnNJ/AfJ- 

=    {(a;, a, d^^, da^ = 0, y, dy^) | (a, y) G f2} 

(5.31) =    {(x, y, dxip, dyip) \ da(p = 0}. 

We prescribe a (p and want to construct the corresponding /. For 
(x,y) E Us(A) C M x M denote v(x,y) = exp~1(y) G TXM and as above 
(po(aXyy) =< a,v(x,y) >. 

Lemma 5.13. £e£ /i G £l0'2,r+2(S), \h\r+2 < s, s sufficiently small and H 
be the extension homogeneous of degree one to T*M \ 0. Define <PH 

: ^ C 
T*M \ 0 x M -^ R by 

(pH(ax,y) :=(po(ax,y) + H(ax) = (a,v(x,y)) + H(x,a). 

Then there exists an f G ©^1(T*M \ 0) sitcft that cpn is a global phase 
function for T(f) i.e., dipH{(T*M \ 0) x M)^ = r(/). 

Proof. Let y G M and ei,..., en be an orthonormal base of TyM. Let 5 < 
rinj and (^(y),^1, •... ,yn) the corresponding normal chart. Then v(x,y) G 
Ta-M and a G T^M can be written uniquely as v = ^gprU H h v71^^ 
and a — aidy1 + • • • + andyn respectively. The transversality property is 
substantially a local property and has been established in [1]. We must show 
that [d(pH(n)Niry = r(/) for some / G V^^M \ 0), if \h\r+2 < e, for 
e sufficiently small. The Lagrangian submanifold in T*M \ 0 x T*M \ 0 
generated by cpn can, according to (5.31), locally be written as 

{(x,y,dxcpH,dytpH I daVH = 0}. 

We assume that (y,r]) G S(T*M) be given and we have to solve for (a:,a), 
i.e we have to solve the equations 

(5.32) dytpn = dy(a,v) = {a,dyv) = -rj 
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(5.33) 

(5.32) yields 

daipH = 0. 

/ax \ 
/   dv1 dvn   \ ""1   / x 

\-nJ \%     ..•      ^)]y    \yn) 

where 77 = ryi^y1^ H \- r]ndyn\y. The matrix (• • • )~"1 equals to ^i,"'^n|> 

i.e., we obtain 

(5.34) dy3 j dyj j, i 

(5.34) can be reformulated as follows: The map v : (x,y) H-> exp^1^) maps 
Us(A) into TM. Fixing (the unknown) x for a moment, we obtain a map 
exp-^.) : Us(x) —> TXM, its y - differential maps TyU5(x) —> Tv^y)TxM 

and (v(xt O*^)"1 = (v(a?, O"1)*^ = (e^Px)*,y : Tv^y)TxM —y TyU5, i.e., we 
can write 

(5.35) a = -77 o (expj*^ 

The equation (5.33) then becomes 

daVH = da(a,v(x,y)) + daH = 0, 

(5.36) v1rfa1 + .--vnrfan = 
dai dan        I     vv*^ 

which we have to solve for x. Equation (5.36) as an equation between locally 
defined vector fields is equivalent to v1 — —1^-1      -1,     1 < i < n, which is 

equivalent to 
(5.37) 

1 d , „  d  , fdHd, dH   d 

dy^x + "'+Vndy^x- dai dyl + ••• + 
dandyn' / '-^ 

which we have to solve for x. There are several way to solve (5.37). 
Write the right hand side of (5.37) as —(ff- , ^|x), we can assume 
c2l(!£  »   jk)\fl  = h   <  S,  (cf.(5.27)).    Consider the map F  :   [0,1] x 
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U5(y) -* V5(0TU5) , Fit.x) = exp"1^) + t(g , ^|,) and set L := {t G 
[0,1] | there exists a unique xt such that F(t, xt) = 0}. Then the following 
hold: 
1) L ^ 0, since 0 G 1/ with XQ = y. 
2) There exists a A > 0 such that [0, A[c L. This follows from the fact that 
dxF\(o,y) is invertible. 
3) L is open, which follows analogous to 2). 
4) L is closed: assume £i < £2 <•••-» £*, this implies xtu G E/i-a, there 
exists a convergent subsequence Xtu. -> x* and F(t*,x*) = 0. Therefore 
L = [0,1] and there exists a unique a; G Us(y) such that exp~1(y) = 
_/M     A| \| _! 

What remains to assure is that C2|(fj^ , ^)\fl < S. This can been seen 
as follows: For a covector V € T*T*M we have |V| = g(KV, KV)+g(Vh, Vh) 
where K : T*T*M —s- T*ertT*M is the connection projection. Any V € 
T*T*U5 can be written as V = A^dy1 + ■■■ + Andyn + B-^da1 + ■■■ + Bndan. 
If V = Bidy1 H h Bndyn, then it is purely vertical and gsasakiiY, V) = 
g(KV,KV) = ^(V, V). This can be calculated from the ^'(a:) and the B^s 
i.e., we can apply (5.27). Using uniform boundedness, properties of exp (cf. 
[15]) we derive from (5.27) and (5.34), (5.35) 

(5-38) i = ^\v\y < \a\x < -\v\y = g 

if we choose 6 < rinj small enough. If we assume this has been done, a lies 
in a i- neighborhood of S(T*M). By assumption H\s = h € n0'2<r+2(S), 

b \h\ < Co\h\r+2 

(5.39) b\daH\Ul (5) < 6|dff 1^ (5) < I b\dsh\ + b\h\ 

< -zC\\dsh\T+\ + CoHr+2 < ^21/1^+2, 

hence 

(5.40)        \v(x,y)\x = lexp"1^)! < C2 
/9g    _^ 
\da  '  dy 

< C2Ci\daH\y 

fi 

<C2Ci b\daH\Ul{s) < C2C1 b\dH\Ul{s) < C2CiC2\h\r^2 = Cs\h\r+2' 

Choosing \h\r+2 < ^- we obtain a unique x solving equation (5.33).   We 
get an orthonormal base at x by parallel translation of ei,... , en G TyUs 
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from y to x along the unique connecting geodesic. This yields a normal 
chard (E/^E),^

1
, ... ,xn), y G Us(x). We now insert x into (a,dxv(x1y)) + 

dxH(x, a) and obtain 

£0,2/)    =    (a,dxv(x,y)} + dxH(x,a) 

(5-41) =   -^^^^(yJ^^+^f^^- 

The coordinate free description of {a^dxv{x1y)) is given by 

(a, d^O, y))    =    -po [(expJ*y : Tv{^y)TxM -> TyU8{y)} o 

(5.42) o    [(exp^(y)*y : TxUs(x) -+ Tv{x,y)TxM}. 

If 0 7^ 77 ^ S(T*M), then a = —r]ov~^ remains , but to determine x we apply 
the procedure above with 7/ = fy/M and a' = rf o v~y whereas ^ is again 
defined by (5.41). Thus we finally get a map f'~1(y,r]) = (x(y,r)),€(y,ri)). 
This map is well defined . The determining equations and its solutions 
can be described coordinate free as shown by (5.35) and (5.42). Using the 
geodesic convexity of normal charts and the implicit function theorem, it 
is easy to derive that Z-1 is 1 — 1, onto and of class C1 together with 
its inverse. / and /_1 are C1 - diffeomorphisms of T*M \ 0. The fact 
that d(pH(T*M \ 0 x M) is a conic Lagrangian submanifold implies that 
f*e = 0, hence / G ^VQ^M \ 0). To assure that / G Pjj1^ * M \ 0) 
we have to show that the map f'1 : S{T*M) 9 r)y —> Zx/\£x\ £ S(T*M) 
belongs to V^1 (S(T*M)). To assure that this new f'1 G Vr

e
+1(S(T*M)) it 

would be sufficient that dist ((x^x/\^x\), (y,r?)) < rinjS(T*M) and that the 
corresponding vector field on S(T*M) would be of class r + 1. Hence we have 
to estimate form above dist (£/|f 1,77). For this we need an arc from £ to 77. 
First consider the parallel translation of £/|£| to the fiber S{TyM) along the 
geodesic expOwfoy)), 0 < s < 1 , 5 h+ P^/|£|, Pi£/|£| G S(T*M). This is 
a horizontal geodesic in S(T*M) covering the geodesic exp(sv). We obtain 
length {Pst/m = length {expM} = M, dist^P^m) = dist (a;, 1/) = 
|i>|. But PiC/|£| and 77 lie in the fiber S{TyM) which is an euclidean sphere. 
The distance of two points is the length of the shortest geodesic between 
them. But this distance can be estimated from above by the distance in 
T^M multiplied by a factor C4 « 1.8, i.e., dist (Pi£/|£|,77) < C^Pif/^l -77I. 
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Now 

< 

\pm-v\ = 
pm - KI) 

^M-^l 
KI 

^H--P^I +^111-^1 
lei 

ci 
+ 1^-^1 = 1 M- ICI \ + \PZ-V\< 2|^ -»7|. 

If f = Cid^lx and P^ = (^ + Afc^ly then ^ + A^ is the solution ^(|t;|) 
of the equation 

where xJ'(t) are the coordinates of the geodesic exp(-fav) , ^(0) = ^. It is 
a simple and well known fact that |Af | can be estimated as 

(5.43) |Af| < C5 • T • \v\ • |e| - Ce distfay) • |^1 

Hence 

1^ - V\y = fodxiy + A€idx\y -ri\< |6dx|y - rj] + C6 dist (x,y) • |£|. 

We insert ^da;' from (5.41) and 77 = r}idyl\y = ^-qjdx^y and obtain 

(5.44) <     -^-TIX^T-L.-I^I m - TfrL^z'     + 

dvk    dyj . dy3 l + 

^fe    dyi dyi_, , 

/' 

dxi \*ax \v 

aa.i \*ax \y 

Next we use the following uniform expansions on M: 

d(yl,...,yn) 
d(vl,...,vny 

djv1,...^11). 

a(x1,...,xn) 

i;-1(y) 

lx(y> 

/I 

/I 

/1 

Vo 

0 

1 

0 

+ 0(dist (x, y)) + o(dist (x, y)), 

+ C)(dist (a;, y)) + o(dist (a;, y)), 

+ 0(dist {x,y)) + o(dist (x, y)). 
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Taking this into account and \rj\y = 1 we can conclude that the right hand 
side of (5.44) can be estimated as 

(5.44) < CVM dist (x,y) + ^\dxH(x,a/\a\)\ 

< C7dist (x,y) + - b\dsh\ < C7 dist fay) + Cs\h\r+2' 

There remains to estimate |£| itself . 

\€\x < \fadxv)\x + \dxH(x,a)\x < C2 \fadxv)\fi + Cg\h\r+2 

< C2(M + C9\rj\dist(x,y)) + Cg\h\r+2 = C2 + Ciodist (x,y) + C$\h\r+2. 

We now reached our final estimate: 

(5.45) dist (£,77) 

< dist fay) + 2C4[C6|£|dist fay) + Crdist fay) + CsN^] 

< dist (x}y) + 2C4[CQ(C2 + Ciodist (x,y) + C,8|/i|r+2)dist (x,y)+ 

+ CVdist (x,y) + Cs\h\r+2]     , 

< Cs\h\r+2 + 2C4[CQ(C2 + CioCs\h\r+2 + C'8|/i|r+2)Cr3|^|r+2 + 

+ C7Cs\h\r+2 + C8\h\r+2} 

< Cii\h\r+2 + Ci2\h\r+2 < Cl3|^|r+2,     if   Nr+2 < 1- 

We conclude, that if 

(5.46) £l=minU^/Jl^l\     and  \h\r+2 < e1 

then there exists a unique vector field X(h) such that 

(5.47) / = expX(/i). 

To obtain / G V^^S) we must in addition show that |X(/i)|r+i < oc. This 
is a rather long and technical estimate, but the established inequalities carry 
over in a quite natural manner step by step to pointwise norms of derivatives 
(here we use repeatedly (5.27)) and finally to Sobolev norms, applying the 
module structure theorem. We omit the details here. We established that 
/ G tfVoiT'M \ 0) and f\s = expX(h) G C1^o(5). 
If we define 0 by (4.6) we obtain (f\s = expX(h) , /3) G ^^(S), i.e., the 

extended / G V^CTM \ 0). ' □ 

Now we sharpen our considerations by proving 
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Lemma 5.14. The map h \—> H \—> f given by Lemma 5.13 is a bijection 
from a neighborhood V = Ve(0) C fi0,2,r+2(5.) onto a neighborhood U = 
U(id) C Vl+l(T*M \ 0) of id G V^^M \ 0). The inverse mapping is 
given by 

(5.48) f^H = Hf,  H(ax) = -(ax,exp-\Tr(r1(ax)))). 

Proof First we recall the local topology of VQ~^
1
(S)) giving a neighborhood 

basis for id £ 2)^1(S'). As established in [10], a neighborhood basis for 

id G DQ
4

"
1
^) is given by U = {Ui(id)}i<      ,S}, where 

(5.49) Ui (id) = I expX |  \X\r+1 < - 1 ,   (expX)(z) = expxX(x). 

Then   the   corresponding   basis   in   D^1(5)   is   given   by   Ui 9{id)    — 

h^^}i<^(s)'where 

(5.50) Uie(id) =^i(id)n^+1(5). 

Remark. The Xs in (5.49) must not necessarily satisfy LxO = 0 or 
LxO = u - 6. We follow in (5.48), (5.49) the Riemannian exponential, not 
the integral curves of X with LxO — u • 6. 

Considering (5.48), we see that H is only well defined if exp~1(7r/_1(^z)) 
is well defined, i.e., if 

(5.51) dist(^,7rr1fe))<r^(M). 

Clearly, rinj(S1gs) < ririj(M,g), since horizontal geodesies project isomet- 
rically to geodesies. 

For 82 sufficiently small and |X|r4.i < £2, we have 

(5.52) dist (&, (expX)-1^)) < rinj(S) < rini(M), 

i.e., for / G U£tg(id), (5.51) is satisfied and 

^(6) = -{6,expJ1(7r/-1(ez))) 

is well defined. Moreover, the right hand side is homogeneous of degree one. 
We must still assure that H\s £ S70'2'r+2(5).  The derivatives of H\s lead 



Lie Groups of Fourier Integral Operators 1023 

to the derivatives of certain Jacobi fields. Their pointwise norms can be 
estimated by polynomials on the pointwise norms of the derivatives of X 
which are additionally square integrable. This has been performed in [10]. 
At the end we get 

(5.53) H\s e fi0'2'r+2(S). 

The gain of one Sobolev index comes from the fact exp X contains already 
one integration. Moreover given any £3 > 0, there exists £4 > 0 such that 

(5.54) |-X"|r+i < £4 implies |i?|s|r+2 < £3- 

The key for proving (5.54) are the Jacobi field constructions, their estimates 
and the module structure theorem. 

Setting £3 = si from (5.46) and choosing £5 = min{£2,£4}, we obtain 

(5.55) H = Hf is for / G U£5ie(id) well defined, 

H\s e n0^r+2(S) and \H\s\r+2<ei- 

(5.55) now permits to construct the sequence of maps 

(5.56) f^H = Hf^<pHf^ UHf 

In [1] it is proved that (5.56) equals to id. If we set e = min{£i,£5}, the 
sequence 

(5.57) H ^ <pH »—> / = UH ^ Hf 

is also well defined and equals to id according to [1]. We omit the proof that 
the constructed 1-1 mapping * : / 1—> Hf 1—> hf = Hf\s is of class Ck~r. 

We summarize our result in 

Theorem 5.15. (U = U£^{id)^,n0^r+2(S)) is a Ck-r chart at id E 

Pg^CTMXO), where 

(5.58) *(/)(<**) = -(ax,exp-1(7r(r1(acc)))) 

for all ax e T*M \ 0. 

Now we are in a position to construct a local section a : U C V^ = 

limPJJ1 —> {UF0>k(oo)). We assume the condition (Boo). For / G UnV%Q 
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and A G UF0>k(f) and a(x,£) a representative of the classical symbol of A 
we now can write in analogy to (5.26) 

(5.59) Au(x) = (27r)-n   f     f  x(x,y)ei^ax^u(y)\detex^\dyd^ 

T*MB5(x) 

where % is a bump function as in (5.26) and cpn is the global phase function 
of r(/) defined in Lemmas 5.13, 5.14.   The formula (5.59) holds modulo 

We define the local section a as follows: Let / G U fl V^Q(T*M \ 0) and 

define a(f) E (UF0>k(oo))* by 

(5.60) a(f)u(x) ~ (27r)-n  J    J  x(x,y)ei(pH{ax>y)u(y)\detexpJdyd^ 

T*MBs(x) 

where cpH(ax,y) = (po(ax,y) + H(ax), H = *(/), i. e. (pH(ax,y) = 
(a^exp-1^)} - (aa;,exp-1(7r(/-1(a:c)))). 

The operator cr(f) is a FIO with smooth phase function ^^(/) and ampli- 
tude a = 1. Moreover, cr(f) is invertible modulo smoothing operators since 
/ is invertible and its principal symbol is a = 1, hence cr(/) G (UF0,k(oo))* 
for any k. Furthermore, 7ra(f) = /, hence a is a local section of the exact 
sequence (5.24). 

6. (Z^0^)* as ILH Lie group. 

We want to endow (Z//\I/0'*% with the structure of an ILH Lie group. Consider 
[A] G U^q (which means U^q/U^~00) with principal symbol aq which is 
globally defined and behaves well under transformations. Let Aq be the 
operator given by (5.26) with total symbol aq. Then [/I — Aq] G U^q~l. Let 
aq-i be the principal symbol of A — Aq and Aq-i given by (5.26). Then [^4 — 
Aq — Aq-i} G U^q~2. Continuing in the manner, we obtain an assignment 

(6.1) {A}€U^^(aq(x,0,aq-i(x,0,...) 

where aq-i G C00(T*M \ 0), satisfies (5.25) and is homogeneous of degree 
q — 1 in £, hence not square integrable. We consider their restriction to 
S(T*M) and denote aq-j\s again by aq-j. The map (6.1) is still a vector 
space isomorphism. Fix some k and consider the assignment 

(6.2) [A] G U^k ^ (o,,^-!,... ,a-k) 
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We introduce a uniform Sobolev topology on U^q,k. Let 5 > 0,5 > n and 
set 

V5    =    {([A], [A'}) G UW'k x UW>k \\[A}- [A']\lk>a := 

i /i2 i /i2 i /|2        r2 1 :=    |ag - aq\q+k+s + |ag_i - ag-i|g+fc+a-i + h F-fc - a_fe|5 < ^ J 

Lemma 6.1. L = {1^} is a basis for a metrizable uniform structure Aq>k's. 

We omit the very simple proof. □ 

Let U^q^s = U^^kllq^s be the completion. 

Proposition 6.2. U1^^'8 is the topological sum of its arc components, 

(6.3) W^'fc's = 5]comp([A]), 
iei 

and each component is a smooth Hilbert manifold. Here 

(6.4) compQA]) = {[A'] G U^S\\[A) - [A%>JM| < oo}. 

We omit the simple proof which is performed for spaces of connections 
or spaces of metrics e.g., in [8], [11]. □ 

In U^'k composition is well defined. 

Proposition 6.3. Composition in U^I0,k extends continuously to U^0, '5. 
More precisely, composition is a continuous map 

(6.5) comp ([A]) x comp ([£]) = comp ([A o B]). 

Proof The elements of U^k are dense in U^0^s.  Fix [A], [B], [A o B] G 
^0,fc    We have to show that for  [^/J  G comp Q^]^ [^/J  G comp ([£]) 

(6.6) [A'oB7] Ecomp([^ojB]) 

and that this map is continuous. The proof of (6.6) will also include the proof 
of continuity. Represent the operators [A], [B], [AOB] = [C], [A'], [£'], [A' o 
B7] = [C7] by the symbols 
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a = a(x, 0 = ao + a_i H f- a_k, 

b = b(x,£) = bo + b-1 + '.' + b-k, 
c = c(x, ^) = co + c_i H h c_fc) 

a' = a^x,^) = af
0 + a!.! H h a^^., etc.. 

Then 
co = ao&o,  CQ = ao&o 

n 

c_i    =   ao6-i + a-ibo + ^ ^«o%&o5 

z=l 
n 

i=l 

Then 

(6.7) 

|ao6o - «o^ol/c+5 

= |ao&o — ^o^o + ao&o — aobQ\k-\-s 

< |(ao - af
0)bo\k+s + l«o(^o - ^o)|/c+5 

< |(ao - a'0)bo\k+s + ((ag - ao)(6o - 6o)|/c+5 + lao(&o - &o)U+s 

< |ao - a^lfc+^^^lftol + Colaf, - aoU+s|&o - ^ok+s + b'k+s\ao\ • |6o - &ok+s. 

Here we applied the module structure theorem in the middle term and in 
the boundary terms (5.25) for ao,6o. Next we have to estimate 

(6.8)      |c_i - c^ilfc-i+s < |ao&-i - aofc^il/c-i+s + |o-i&o - a^i&olfc-i+s 
n 

i=i 

Each single term in (6.8) can be estimated as in (6.7). The general case can 
be proved by a simple but very extensive induction. The key inequality is 
(6.7) (applied with other indices). □ 

Proposition 6.4.  (£/\I/0,fc's)* is a Hilbert Lie group. 

Proof. According to (6.4), each component is an affine Hilbert space. Propo- 
sition 6.3 implies that U^0^s is an affine Hilbert algebra. Then (W*0'*'*)* 
is open and A \-^ A~*- is a homoemorphism.    Composition in ZV\I/0, ,5 is 
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even smooth since it is bilinear and continuous.  Hence the same holds in 
(Z^0'fc's)*. □ 

Remarks. 
1. If the underlying manifold M is compact then (Uty0,k,s)* consists of one 
component (as U^0,k's does). On open manifolds, (U^/0,k,s)^ consists of 
uncountably many components (as U^I0,k,s does). 
2. If we look in (U1^0,k,s)^ for those As which are invertible in their own 
component then this component must be comp ([/]). This can be proved by 
easy calculations and estimates. 

We established the following inverse systems 

. . .    > l(\$f0>k>s+1    y l(\$0>k>8    y  . . .    y £/\|/0,fc,ao 

and 
 y  (^*0'/C'S + 1)*  —>  (W*0'*'*)*  —> >  (ZY*0^'50)* 

with U^k = lirnU^0^8 and (UV0*)* = lim^*0^5)*. 

The tangent space T[j](<US[!0'k'3)* can be described as follows: 

T[T](m
0>k>a)* 

= ^(comp ([/]))* = Tflcomp ([/]) 

= T[ri([I\ + {[A] e U*0>k>a\\ao\2k+a + \a-i\l_1+s + • • • + \a_k\2s < oo}) 

= {[A] G U^0^s\\ao\l+s + |a_i||_1+5 + • • • + \a_k\2s < oo} 

= zero component of USP0' lS 

^^0'2'fc+s(5)e...e^0'2'5(5). 

This yields an inverse system 

 y T^iU^0^^1), —> Twim0**8)* —> • • • 

and 

limr^CW*0^)* - {[A] G^*0'fc|ao5a_i5...a_fc G fi0'2's(5) for all s}. 

We denote the latter space by LU^k := KmT^W*0'*'3)*. This is in fact 

a Lie algebra with respect to the bracket of \I>DOs. 

Hence we proved the following 
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Theorem 6.5. Assume (Mn,g) open satisfying the conditions (I) and 
(Boo). Then {(U^k)^(U^0^s)4s > n} is an ILH Lie group and 
each (Uty0,k>s)* is a smooth Hilbert Lie group. Its ILH Lie algebra is 
{LU^k.T^U^0^3)^ > n}.   Here LU^k is isomorphic, as topological 

k 

vector space, to £fi0'2'oo(5); where ft0'2'00^) = {}^S(S). 
1 s 

Corollary 6.6.  (ZY\I/0)* has the structure of a direct limit of ILH Lie groups, 

(Z^0)*=lim {U^%. 
~k 

7. An ILH Lie group structure for invertible Fourier integral 
operators. 

We consider our exact sequence (5.24), 

/ —► (U^% —> (UF0>k(oo))* —► V\ ,00 
^,0 

and perform the 4th steps of our program described after Lemma 5.9. We 
know already that (USI/0'k)* and V^ are ILH Lie groups, in particular they 
are topological groups. 

We first consider an exact sequence of abstract groups 

(7.1) 7 —► ft -^ G -£» Q^e 

We assume that H and Q are topological groups and construct a topology 
on Q such that (7.1) becomes an exact sequence of topological groups. In a 
second step we will sharpen the construction to the case of ILH Lie groups. 
The frame work of this approach is given in Adams-Ratiu-Schmid [2]. We re- 
call without proofs the facts established there and concentrate our attention 
to the new features coming from the openness of the underlying manifold 
M. 

Lemma 7.1. Let 

(7.2) 7^i7 -i» G ^ Q^e 

be an exact sequence of groups where H and Q are topological groups. Let 
U C Q be a neighborhood of the identity e G Q and a : U —> G a local 
section of TT; let V C U be a neighborhood of e G Q such that V • V~1 C U 
and assume 
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A) the map V x V x H —> H given by 

(fi,f2,h) —> a(f1)a(f2)-1ha(f1f^r1 

is continuous; 

B) for each g G G and W C U such that /n'{g)W7T(g)~1 C U , the map 

W x H —> H given by 

(f,h) —> sM./O'TM^Msr1)-1 

is continuous. 

Then G can be made into a topological group such that j, TT and a are 
continuous and TT is open. 

Remark.   If Q is connected then the condition A) is already sufficient. 

Assume now H and Q in (7.1) to be ILH Lie groups with % — limiJ5 

and Q = limQ*, s > SQ, t > to. Denote by Hs and Q* the spaces H and Q 

with the coarser topologies of 'Hs and Q*, respectively. Then W,3 and Q* are 
topological groups. 

Suppose U C Qto open (hence open in all Q*) , a : U —> Q a local 
section and V C U open in Qto such that V • V~~l C U. Denote V with the 
topology from Q1 by V1.  Assume that for each t > to there exists an s(t) 
such that 
A') The map V* x Vt x T^5^) —+ «*(*) defined by 

(A, /2, A) -> ^(/i) • ^(/2)-1^(/i/2-1)-1 

is continuous; 
B') for each g £ G and W C U with 7r(c/)Wr7r(p)_1 C U, the map W* x 
■Us(t) —y ns(t) defined by 

(f,h) ^ gha(f)g-1a(-K(g)Mg)-1r1 

is continuous. 
Then we derive from Lemma 7.1 that for each t the group Q becomes a 

topological group £/*, and we obtain an exact sequence of topological groups 

for all t > to, 

(7.3) I —> Hs{t) -A 0* -£> Q* —> e 
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Taking the inverse limit topology, we obtain (7.1) as a sequence of topological 
groups. 

We recall the right uniform structure of a topological group G. A se- 
quence (xn)n is a Cauchy sequence with respect to this structure if for any 
neighborhood V of the identity there exists an no s. t. xnx^- E V for all 
772, n > no- 

Lemma 7.2. Let X be a locally Hilbert topological group. Then X is com- 
plete in its right uniform structure. 

Corollary 7.3. W = Hs and Q1 = Q*. 

Proof. %s is dense in if5, Q1 is dense in Q1. Then apply Lemma 7.2.        □ 

Let G1 be the completion of Qt with respect to the right uniform struc- 
ture. It is not yet clear that G* is a topological group or even a group. 

Lemma 7.4. Let Uto C Qto be open and Uto n Qto = Uto. For t > to , let 
U* = f/to n Q* and Vto C Uto open with Vto n Qto = Vto and V1 = Vto n Q*, 
t > to. Assume that a : U —> Q extends to a local section a : U* —> G1 

and that 

A") The map V1 x V1 x U8® —> %*& from A') actually extends by a to a 
continuous map V1 x V1 x H8® —> H8®. 

Then G1 is a topological group. 

Next we want to endow G1 with a manifold structure. Define \I// : 
TT"

1
^) —> J7* x #*(*) by 

(7.4) */:»—> W^),^^))-1). 

We try to consider this as a bundle chart and move this around on G1 by 
right translations: Let QQ € (?*, go = ^(ffo) and define on 7r_1(f/go) 

by 

(7.5) ^0 : g .—>• (TT^), ^^(TT^)^
1
)"

1
) 

To obtain an atlas, we need the transition condition that 

(7.6) ^0 o tf"1 : (^go D 11%) X ils« —»• (U'qo D 17*©) X fT'W 
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is Ck^. According to our definitions this is the map 

(7.7) (/, h) —»■ (/, M/9o ^o M/«o 1r1)- 

Hence we add the condition 
C) For #o,5o £ G* with 7r(po) = Qo, ^(go) = qo assume that the map (7.6), 
(7.7) is C^W, where k(t) is an increasing function of t. 

Finally to construct an ILH Lie group structure for Q we need that 
multiplication Gr+k x Gr —■> Gr is Ck for k<k(r). As pointed out in [2], 
p. 30, this leads to the final condition 

D) Assume for a E Gr+k, b E Gr with a = 7r(a), ft = 7r(&) that the map 

t/r+fca x ?7r^ x H8^ —> Hs^\ 

(/i, /2, fc) ^ (T(fia-1aha(f2r1)a''1(T(fu ^^a"1)"1) 

is C*3 as long as fc < fc(r). 

Summarizing, we obtained 

Theorem 7.5. ie^ 

(7.1) / —±H—>g —>S—^e 

fee an exactf sequence of groups where % and Q have ILH Lie group structures. 
Suppose there exists a local section a : U —> Q satisfying the conditions A"), 
£'), C) and D). Then Q has an ILH Lie group structure and (7.1) becomes 
an exact sequence of ILH Lie groups. If Q is connected then the condition 

B') follows from A"). 

For the proofs of 7.1-7.5 we refer to Adams-Ratiu-Schmid [2]. 

Now we apply Theorem 7.5 to our situation where % — lim{if5|5 > SQ} 

with Hs = (Wtf0'*'5)* , 5o - n + 1 , Q = lim{Q*|t > to} with Q* = 2?*j0, 

to = n + 1 and G = (ZYF0'fc(oo))*, 

/ —> (U^k), —> (UF0'k(oo))* —* V%Q(T*M \ 0) —> e 

a:UC V%Q(T*M \ 0) —)► (WF0^(oo))* 

defined by (5.60). We have to verify the conditions above. 
As always now, we assume (Mn,g) with (/), (JBQO) and 

inf cre(Ai(S')|kerAl(5))±) > 0. 
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Proposition 7.6. Let a : U C V^Q(T*M \ 0) —> (^^0,^(00))* be defined 
by (5.60), V C U be a neighborhood of e € V^0 such thatV-V'1 € U. Then 
the condition A) is satisfied, i.e., the map 

(7.8) V x V x (W$0'fc)* —> (UV0*)*, 

(7.9) (/i,/2,A) —j- ^(/iV^)-1^^^-1)-1, 

is continuous and extends as Cr map to certain Sobolev completions, which 
will be specified below. 

Proof. We are done if we can prove the following fact. Let A,B £ (UF0ik)* 
near the identity. Then the symbols of A o B and A-1 depend continuously 
on the symbols and phase functions of A and B, i. e. if (p^^Hi = \I/(/i), 
(PH2,H2 = tf(/2), ¥>#,# = *(/i/2), <PH-,H- = *(/r), are global phase 
functions for ^4, i?, ^4oS, -A-1, respectively, and a, 6, c, c- are global symbols, 
A', B' operators of the same kind with (pHi, (pHi, ^PH'VH'- I 

a' e^c-) then 

(7.10) 

\H — H'\sob < -Pi(l^i - #ilsob, \H2 - -ff^lsob), 

(7.11) 
\H   - H'  Isob < ^(l-Hi - jff{|sob)j 

(7.12) 

Ic-c'lsob < ip3(|a-a/|sob,|&-&/|sob,|fl"i - ^ilsob, |#2 -if^Sob), 

(7.13)_ 
|a   -a'   |sob < ^(la-alsob) l-ffi - ^ilsob)- 

Here the Pj are polynomials without constant terms and | |sob means certain 
Sobolev norms, the Sobolev index of which remains still open for a moment. 
Cover M by a uniformly locally finite cover U = {Ui}i of normal charts. 
Then it is a well known fact that there exist constants Ci, C2 s. t. 

(7.14) Ci^Cl liobA ^ I liob <C2^2\ llob.Ui- 
i i 

(7.14) immediately implies that we are done if we can show (7.10)-(7.13) 
locally, i.e., 

(7.15) \H - H'ISM < C ■ Pidtfi - JJilsob,^, \H2 - ^Isob,^), 

(7.16) \H- - H'-\SohtUi < C ■ P2{\Hl - Jfilsob,^), 

(7.17) |c-c'|sob,t/i<
C'--p3(...). 

(7.18) |a--a'-|sob,c/i<C-P4(...)- 
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with C independent of i. This is more or less explicitly done in [2], Lemma 
4.2 and 4.3, pp. 32-35. We recall the initial step. In local coordinates we 
can write 

Au(x) = (27r)-n f j ei{-x-y^+Hl{-x^a{x,i)u{y)dyd^ 

Bu(x) = (27r)-" f f ei^~y^+H^x^b(x,Ou{y)dyd^ 

AoBu{x) = (27r)-n f f e^x-y^+H^x'^+^+H^y^a(x,v)b(y,v)u(Od^dydv 

= (27r)-n f f e^+^'^c&OHOdt 

with H! = *(fi),H2 = y(h),H = *(/i o /a). Hence 

(7.19) c(x,0 ~ (27r)-n f f ei^x'y'^a(x,r])b(y,^dyd'n 

with.ip(x,y,£,r)) = (x - y) ■ (r? - £) + Hi(x,r]) + ^(y.O - H(x,€). Locally 
we have for (7.17) to establish the continuity of the map 

(7.20) S0'k x S0>k x W x W —■» 50'fc 

(7.21) (a(a;,0,6(^0»^i»-ff2)'—>c(x,0 

and its extension to a certain Sobolev completion, 

(7.22) S0,k,s(t) x sQ,k,s(t) x yyt+r x wt+r  ^ s0,k,s(t)m 

Here 5°'^ is defined by US^/US'1"-1, USq = USq(B) = USq(B x Rn). If we 
could establish the continuity of (7.20)-(7.22), then we would have (7.17) by 
difference constructions with the gotten formulas, if these formulas permit 
such a construction. This is in fact the case. We refer to [2], p. 34-35. 
The main point is to calculate or estimate (7.19). This has been done in 
[2] by the method of stationary phase (as one would expect). Finally the 
Sobolev index in (7.17) and (7.20) is s(t) = 2(t-k- 1). The estimate (7.15) 
is trivial as we have see from the last representation for A o B. The same 
holds for (7.16) and (7.18) which follows from Lemma 4.3 in [2] after some 
calculations. □ 

Now Lemma 7.1 and Proposition 7.6 imply the following 
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Theorem 7.7. (UF0>k(oo))* is a topological group, (5.24) is an exact se- 
quence of topological groups and the local section a is continuous. 

We write in the sequel UF0,k instead oiUF0,k(oo) since we consider only 
that space. Now let Hs = (U^k)t and Q* = (V™0(T*M \ 0))' the space 
V^Q with coarser topology of D^0(T*M \ 0). Proposition 7.6 implies that 
for t > 2n and s(t) = t — 2(k + 1) > n the map 

V* x V* x (W*0^)^ -^ (lM0>k)l{t) 

is at least continuous. Hence we obtain from Proposition 7.1 that (UF0'k)* 
becomes a topological group (UF0,k)l s. t. 

I—+(lM0>k)a® -U (UF0>k)i -^ (V^T^MXO))* —*e 

is an exact sequence of topological groups for t > to = max{2n,n+2(fc + l)}. 
Let (UF0^'*)* be the completion with respect to the right uniform structure. 
We will show that this is a topological group. For this we have to show that 
the local section a extends to a local section 

or : Z? —+ (UF0>k>% 

and the map in condition Af) extends to a continuous map A") 

(.4") V* x V* x (Z^0^5^)* —> (W*0^'5^)*. 

Consider first the extension a —> a.  Let / E U1.  The cr(/) should be an 
k 

FIO of order 0 with symbol a(x,^) = Yl, a-j(x^) where (a_j — a^0)!^ G 

QQ,2,k+s(t) ^ £or a sm0oth a^0- G ZYS'--7 and phase function cp^ generated by 

H = *(/) with / G D^0 and H^ G Q0'2'^^^). The definition (5.26) still 
makes sense as oscillatory integral of a(a:,£). The H(x^) can be differenti- 
ated enough times and t > 2n will be sufficient for this. The continuity of 
the extension follows from the procedures in Proposition 7.6, i.e., we have 
the condition A") for t > 2n and s(t) > n. Hence we have established 

Theorem 7.8. Assume t > 2n and s(t) =t — 2(k-+ 1) > n.  Then 

J —► (W*0**'^)* JL> (UF
0
^% -*+ (Vt

e(T*M\0))t —+e 
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is an exact sequence of topological groups such that j and TT are continuous 
and TT is open. Moreover, (5.60) defines a continuous local section 

5- : W* C Vl0(T*M \ 0) —> (UF0^)*. 

It remains to assure the conditions C) and D). 

Lemma 7.9. Assume t > 2n, s(t) = t - 2(fc + 1)  > n.   For A), A)  £ 
(UF0,k,t)* let 7r(Ao) = fo, ^(AQ) — /Q.   Then the condition C) is satisfied, 
i.e., the map 

U1 • /o 0 W* • /o x (ZY*0'fc'sW)* —-> (Wtf0'*'^)*, 

Proof. According to Theorem 6.5, multiplication in (ZY^0'fc'5)* is smooth. 
Hence it suffices to show that 

is C*. For this it is sufficient to show that the map 

is C* for / and //A near id, where we have set A — AQ^"
1
, /A = 7r(A). But 

this follows from Proposition 7.6. □ 

Hence we have 

Theorem 7.10. Assume t > 2n, s(t) = t - 2(k + 1) > n.   T/ien (UF0^1)* 
is a Hilbert manifold of class C1 modeled by ft0'2'm(S) x (^*0'fc'5W)* 

Remarks. 
1. Charts in (UF0'k,t)* are defined by right translation of a chart at /. This 
implies automatically that right translation in (UF0jk,t)* is C*. 
2. As we have seen that (W\I/0'fc's^)* consists of uncountable many compo- 
nents. The same holds then also for j(U^)k's(^)*. 

The last condition we have to verify is D). 
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Lemma 7.11. Assume t > 2n, s(t) = t - 2(k + 1) > n. Then for A € 
(UFW+r)*, B e (UF0'k'%, fA = ir(A) JB = ir(B). Then the condition 
D) is satisfied, i.e., the map 

(/i,/2,P) —»> crihf^APa^J^A-'aihhf^fX1 

is of class Cl for I = min{r, t}. 

Proof. We have that the map in condition A') (hence B') is C* and multipli- 

cation in V^0(T*M \ 0) is Cr as a map I?*+r(T*M \ 0) x vt9fi(T*M \ 0) —^ 
P*)0(T*M\b). ' ' D 

Summarizing, we state our final main result. 

Theorem 7.12. Assume (Mn,g) is an open Riemannian manifold satisfy- 
ing the conditions (/) and (i?oo) 0f bounded geometry and the condition 

inf ae(Ai(SCrM)),0s|(kerAl).L) > 0. 

Then for any  k 6 Z+ 

1. {I>^0(T*M \ 0),Z>S|0(T*M \ 0)|r > n + 1} is an ILH Lie group. 

2. {(W*0'fc)*  , (U^0'k's)*  \s  > n + 1} is an ILH Lie group and each 
(U^f0'k,s)* is a smooth Hilbert Lie group. 

3. {(UF0'k)*, (UFQAt)*\t > max{2n,n + 2(fc + 1)}} is an ILH Lie group 
with the following properties: 

a. {UF^'1)* is a C* Hilbert manifold modeled on n0>2't+1(S(T*M))x 
(lfq,o,k,t-2(k+i)j^   Each component of {UF0^1)* is modeled by 
O0,2,t+l(S) e fi0,2,fc+t-2(fc+l)(iS!) 0 . . . e ftO,2,t-2(fc+l)(,S). 

b. The inclusion (UF0'k't+1)* ^ (UFQ<k<t+1)* is C*. 

c. The group multiplication {UFQ'% x (UF0'k)* —>• (UF0>k)* ex- 
tends to a Cl map 

(UF0'k't+r)* x {UF0'k'% —)■ (UF0'k'%, 

I = min{r, t}. 
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d. The inversion (UF0>k)* —> (UF0>k)* extends to a Cl map 

I = niin{r, t}. 

e. Right multiplication for A   G   (UF0,k,t)*   is  a C1   map RA   : 
(UF0>k>% —> (UF0^)* 

We finish with a few remarks concerning the corresponding Lie algebras 
with differ slightly from the statements in [2]. First we present the version 
of [2], 5.2 for the open case. 

Lemma 7.13.   The Lie algebra of (UF0>k>s)*  is Comp0 zT*1' '*  ,the 0- 

component of the completed space U^ of formal pseudodifferential op- 
erators of order one modulo those of order —k — 1 with pure imaginary 
principal symbol.  The Lie bracket corresponds to the commutator bracket. 

Proof. Let c(t) be a C1 curve in (UF0>k>s)* with c(0) — /. We can write 
c(t) = P(*)<7(7r(c(*))), where P(t) is a C1 curve in W*1^ such that P(0) = / 
and cr(7r(c(t))) has the local expression 

a(7r(c(t)))u(x) = (27r)-n f f ei^0^y^+H^x^u(y)dyd^ 

with <p(x,y,t) = (x-y.O, Ho(x,t) = 0, H^Ols 6 n0'2'fc+s+1(5). Differ- 
entiation at t = 0 yields c'(0) = P'(0) + A, where locally 

Au(x) = (2ir)-n f I ei^x^kH'0{x^)u{y)dydi. 

Ht(x,£) is homogeneous of degree one in £ for each t. Hence the same 
holds for H^x,^), H'Q € * • UlSlQ'2'k+s+l(T*M \ 0).   This implies A € i ■ 

 ~1 ^ s 

Compo Uty ' ' . Moreover, as we have seen in section 6 after 6.4 that P^O) G 
 \ k s 

Compo Z^\I>0'fc'5, so c^O) G Compo U^ . It is easy to see that the map 
c i—)- c^O) is surjective and that the Lie bracket is the commutator bracket. 
□ 

Hence we have 
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Theorem 7.14.   The exact sequence of ILH Lie groups 

I —» (ZY*0'^)* —> (UF0>k>% —^ Vs
e+

k(T*M \ 0) —^ e 

has as corresponding sequence of ILH Lie algebras 

(7.23)   0 —► Compo UV0'*'8 —+ Comp0 W*1,fc,a 

-^ ^1fi0'2^+A;+1(r*M \ o) —► o, 

if;/iere g = i x principal symbol. 

Remarks. 
1. As exact sequence of vector spaces (7.23) corresponds to 

k / k \ 

0 —^ ^fi0'2'i+*(S) —)►    ^fi0'2'iHh5(5)    © ft0'2'fc+B+1(5) 
2=0 \i=0 / 

2. The space A/(00(/,Boo) =   lim Mr(I,B00) splits into an uncountable 

number of components. 

X00(/,S00) = ^comp(^), 
iei 

where 

comp(p) = < g'lg* satisfies (7) and (BQQ)^ and ^ 

are quasiisometric and  \g — g1^^ 

■■= (f (\g - 9%,, + E KV^CV - v^')!^ j d^O/)J2 

< oo  for all r >. 

p', E comp(g) implies that (Sg(T*M),gs) and {Sgi{T*M),g's), are quasi- 
isometric and fl^ G comp(5f5). Moreover, all functional spaces which we 
considered and which enter into the construction of US&0'ki8, UF0>k>s, VS

SQ$ 

are invariants of comp {g) like the initial spaces U^q, UFq. We obtain that 
the ILH Lie group structure of UF0>k is an invariant of comp (g). We refer 
to [8] where we constructed the spaces Mr(I1Bk). 
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