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The Large Scale Geometry of Nilpotent Lie Groups 

SCOTT D. PAULS 

In this paper, we prove results concerning the large scale geometry 
of connected, simply connected nonabelian nilpotent Lie groups 
equipped with left invariant Riemannian metrics. Precisely, we 
prove that there do not exist quasi-isometric embeddings of such a 
nilpotent Lie group into either a CATQ metric space or an Alexan- 
drov metric space with curvature bounded below. The main tech- 
nical aspect of this work is the proof of a limited metric differen- 
tiability of Lipschitz maps between connected graded nilpotent Lie 
groups equipped with left invariant Carnot-Caratheodory metrics 
and complete metric spaces. 

1. Introduction. 

In this paper we investigate the large scale geometry of connected nilpotent 
Lie groups equipped with left invariant Riemannian metrics by studying 
their quasi-isometric embeddings into various metric spaces. Let (N,g) be a 
connected nilpotent Lie group with a left invariant Riemannian metric and 
d be the induced distance function on TV. If (X,dx) is a complete metric 
space, then / : N —> X is an (L, C)-quasi-isometric embedding if, for all 
x,yeN, 

^dfay) -C< dx(f(x)J(y)) < Ld(x,y) + C. 

After studying certain invariants of these maps, we prove two main applica- 
tions: 

Theorem A. There do not exist quasi-isometric embeddings of a connected 
nonabelian nilpotent Lie group equipped with a left invariant Riemannian 
metric into a CATQ metric space. 

Theorem B. There do not exist quasi-isometric embeddings of a connected 
nonabelian nilpotent Lie group equipped with a left invariant Riemannian 
metric into a CBBQ metric space. 
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CATK (resp. CBBK) metric spaces are spaces of curvature bounded 
above (resp. below) by K is the sense of Topanogov triangle comparison. 
Thus, a CATQ metric space is a generalized space of nonpositive curvature 
while a CBBQ metric space is a generalized space of nonnegative curva- 
ture. These include simply connected Riemannian manifolds of nonposi- 
tive and nonnegative curvature respectively. In the literature, CATQ spaces 
are also called Hadamard spaces and CBB^ spaces are called Alexandrov 
spaces (with curvature bounded below). We retain the earlier notion for sim- 
plicity and consistency. We will discuss these in detail later in the paper. 
In [Wol64], Wolf showed that a connected nonabelian nilpotent Lie group 
equipped with a left invariant Riemannian metric must contain 2-planes of 
both positive and negative curvatures. Theorems A and B can be viewed as 
a large scale analogue of this theorem of J. Wolf. 

While the large scale characteristics of such nilpotent Lie groups may be 
interesting in their own right, we shall see that such investigations reduce to 
problems which are motivated by the now standard arguments used in the 
proof of Mostow's rigidity theorem and its many extensions (see [Mos73], 
[Bal85], [BS87], [Pan89], [Ham91] as well as many others). In the proofs 
of these results, one attempts to show that two candidate spaces (e.g. two 
compact constant negative curvature spaces with isomorphic fundamental 
groups) are isometric by exhibiting an equivariant quasi-isometry between 
their universal covers and showing that the existence of such a quasi-isometry 
must imply the existence of a true equivariant isometry. A common element 
in many such proofs is to reduce to an examination of the ideal boundaries 
of the two spaces in question. The quasi-isometries between the two spaces 
induce quasiconformal maps on the boundaries which then become the fo- 
cus of the study. In the cases of the papers mentioned above, the tangent 
cones at points on the ideal boundaries are isometric to connected simply 
connected graded nilpotent Lie group equipped with left invariant Carnot- 
Caratheodory metrics. Thus, a local analysis of the ideal boundaries involves 
an examination of the geometry of graded nilpotent Lie groups with left in- 
variant Carnot-Caratheodory metrics. This provides a natural motivation 
for considering the geometry of such spaces and, in particular, of study- 
ing the quasi-conformal maps between them. It is a natural generalization 
to instead consider the quasi-conformal embeddings of such spaces. Un- 
fortunately, the study of such embeddings seems quite intractable but does 
provide motivation for various lines of study - for example the study of biLip- 
schitz embeddings of such spaces. As we shall see, the proofs of theorems A 
and B rest on a local analysis of biLipschitz embeddings of graded nilpotent 
Lie groups with left invariant Carnot-Caratheodory metrics into complete 
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metric spaces which are locally CATK or CBBK. For metric spaces which are 
locally CATK, i.e. for each point there is a closed ball about that point which 
is itself CATn, we use the notation CBA^ (for "curvature bounded above"). 
Note that, for a lower curvature bound, these distinctions are not necessary. 
In particular, we prove an intermediate theorem from which theorems A and 
B follow: 

Theorem C. Let G be a connected simply connected graded nonabelian 
nilpotent Lie group equipped with a left invariant Carnot-Caratheodory met- 
ric and U C G be an open set. Then U does not admit a biLipschitz embed- 
ding into any CBAn metric space or into any CBB^ metric space. 

Remark. Consider the special case of theorem C when the metric space 
target is a Riemannian manifold, M, of either nonpositive or nonnegative 
curvature. Note first that the Hausdorff dimension of M coincides with the 
topological dimension of M, while the Hausdorff dimension of G is strictly 
larger than its topological dimension. Since both dimensions are biLips- 
chitz invariants, this proves theorem C in this case. This points out that 
the strength of the theorem lies in the case when the metric space is not 
smooth. In particular, there are examples of metric spaces with the specified 
curvature conditions which have the same type of disparity between their 
Hausdorff and topological dimension, for which the above argument does 
not apply. 

To prove the main theorems from this intermediate theorem, we study 
some biLipschitz embedded invariants of graded nilpotent Lie groups with 
left invariant Carnot-Caratheodory metrics and use them to build local ob- 
structions to quasi-isometric embeddings of nonabelian nilpotent Lie groups 
with left invariant Riemannian metrics into various metric spaces. Next we 
give a brief outline of the argument and the paper and show how Theorems 
A and B follow from Theorem C. 

Let AT be a connected simply connected nilpotent Lie group with a left 
invariant Riemannian metric g and let d be the induced distance function 
on N. If / : iV —> X is some (L, C)-quasi-isometric embedding of TV into a 
complete metric space X, we first consider asymptotic cones of A" and X and 
a map between them, denoted F, derived from / and the coning procedure. 
The asymptotic cone of a metric space (X, dx) is a limit metric space of the 
pointed dilated spaces {X^Xi^Xidx) for some sequence A; —> 0. Since such 
spaces do not necessarily converge in the Gromov-Hausdorff topology, we 
use Gromov's ultrafilter construction, choosing a nonprincipal ultrafilter u 
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(see section 5 for a definition) to form the asymptotic cone (C^X, d^-). For 
precise details of the construction, we refer the reader to either [Gro93] or 
[KL96]. For our purposes, there are a few keys pieces of information. First, if 
(N, g) is a nilpotent Lie group with a left invariant Riemannian metric, then 
Pansu ([Pan89]) proved that the asymptotic cone is unique and isometric to 
(A/", <icc), a graded nilpotent Lie group equipped with a left invariant Carnot- 
Caratheodory metric (see section 3 for definitions). Second, an asymptotic 
cone of a CATQ space is also CATQ and an asymptotic cone to a CBBQ space 
is also CBBQ. These facts (and references to their proofs) are reviewed 
in section 6. Third, the quasi-isometric embedding / gives rise to an L- 
biLipschitz map F between the cones {N,dcc) and (C^X, <f£). This fact is 
a simple consequence of the definition of asymptotic cones and can be found, 
for example, in section 2 of [KL96]. The construction of this map depends 
on the choice of ultrafilter. Thus, to prove theorems A and B, we must 
prove instead theorem C. The paper is devoted to proving this intermediate 
theorem. 

The main technical result in the paper (theorem 4.3) is that, in an ap- 
propriate sense, such an L-biLipschitz map is differentiable in certain direc- 
tions almost everywhere. This is a generalization of a classical theorem of 
Rademacher. Our proof follows the same lines as a covering argument used 
in Kleiner's proof of the differentiability of Lipschitz maps from W1 into met- 
ric spaces (in [Kle97]), which is a special case of differentiability theory of 
section 1.9 in [KS93]. In [Kir94], Kirchheim shows the metric differentiability 
of Lipschitz maps / : W1 —> X where the targets are complete metric spaces. 
Our differentiability result is an extension of Kirchheim's work. The inter- 
ested reader should also consult [Pan89] and [MM95] for results concerning 
the differentiability of quasiconformal maps between Carnot-Caratheodory 
spaces. 

To prove Theorem C, we construct a tangent cone of F at a point of dif- 
ferentiability. Using this tangent cone, we can compare the local geometry of 
the two asymptotic cones. The local geometry of connected graded nilpotent 
Lie groups with left invariant Carnot-Caratheodory metrics is well under- 
stood and the differentiability allows us to "push forward" this structure to 
a tangent cone to the asymptotic cone of X. When this asymptotic cone 
has additional structure, this allows us to measure the compatibility of these 
two objects. In the case of Theorem C, this structure provides estimates on 
the rate of growth of the spread between two tangent cone geodesies which 
show that they spread apart sublinearly but do not remain a bounded dis- 
tance from one another. Comparing this to the spread of geodesies in the 
tangent cone to either a CATQ or CBBQ space, we derive a contradiction 
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which proves Theorem C. 

Sections 2 and 3 are reviews of the constructions mentioned above and 
discuss, respectively, nilpotent Lie groups and Carnot-Caratheodory metrics. 
Section 4 contains the proof of the limited differentiability of biLipschitz 
embeddings of connected graded nilpotent Lie groups with left invariant 
Carnot-Caratheodory metrics into complete metrics spaces. The main goal 
of this section is to prove theorem 4.3. Section 5 reviews the tangent cone 
construction and interprets theorem 4.3 as a statement about maps between 
tangent cones. Section 6 reviews the definition and some properties of CATQ 

and CBBQ spaces. In section 7 we prove Theorem C, that there do not 
exist biLipschitz embeddings of a nonabelian connected graded nilpotent 
Lie group equipped with a Carnot-Caratheodory metric into either a CBA^ 
or CBBK space. 

The author wishes to thank Bruce Kleiner for suggesting this line of 
work as well as for many helpful discussions. Thanks are also due to Chris 
Croke for helpful discussions of this work and for many hours of help with 
the preparation of this document. The author also wishes to thank the 
referee for a careful reading of this manuscript and many useful comments 
which led to several simplifications in proof and many improvements to the 
exposition. 

2. Nilpotent Lie Groups. 

In this section, we recall some basic definitions of nilpotent Lie groups and 
some associated structures. Let G be a connected Lie group and Q be its 
Lie algebra equipped with [•, •] a bracket. For the rest of this exposition, we 
assume that all Lie groups are connected and simply connected. 

Definition 1. Let Q be a Lie algebra over a field K, we define the descend- 

ing central sequence, {Ck(Q)} as follows: 

ck+l{Q) = [c\Q)M- 

We use the descending central sequence to define nilpotency: 

Definition 2. A Lie group G is called nilpotent if there exists an integer n 
such that Cn(g) = 0. The smallest such n is called the degree of nilpotency 
of G. 
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Recall that the exponential map, v »-» ev, is a diffeomorphism for simply 
connected nilpotent Lie groups. For this paper, we will use the following 
notation: if ev and ew are exponential images of the Lie algebra elements v 
and w, then th e product, evew is also the exponential image of a Lie algebra 
element which we denote v © w. In other words, evew = ev®w. 

For this work, Pansu's theorem tells us that after taking asymptotic 
cones, graded nilpotent Lie groups are our main objects of study. 

Definition 3. A nilpotent Lie group is graded if its Lie algebra comes with 
a grading. A grading for a Lie algebra g is a decomposition 

g = (BiV* 

where the subspaces V1 satisfy the condition 

[V\Vj}cVi+j 

for all i,j G Z. 

Example. The three dimensional Heisenberg group is defined by giving 
a three dimensional Lie algebra spanned by vectors X, Y, Z with the only 
nontrivial bracket relation given by [X, Y] = Z. Thus, the Lie algebra has 
a grading f) = V1 © V2 where V1 = span{X, Y} and V2 = span{Z}. 

Every graded nilpotent Lie group possesses a self-similarity. 

Definition 4. Let g G G be an element in a graded nilpotent Lie group of 
nilpotency degree fe + 1 such that g = e9i+92+-~+9k where gi G V2. For t > 0, 

consider the 1-parameter group of automorphisms, {ht}, of G given by 

ht{g) = et91+t2g*+-+tkgk. 

We may sometimes analyze this action on Lie algebra elements.   Thus we 
define dht(vi + v2 H h Vk) = ^1 + t2V2 + • —h tkVk. If we wish to consider 
h_\t\g we use the convention that h_\t\g — h^g~1. (Please note that this 
convention is not standard in the literature.) 

For general Lie groups, the Campbell-Baker-Hausdorff formula provides 
a method for computing the product of two nearby group elements. We 
state it in the special case when N is a simply connected graded nilpotent 
Lie group. For a more general version and, for that matter, a proof, see 
[Var84] Section 2.15. 
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Theorem 2.1 (Campbell-Baker-Hausdorff Formula). Let   N    be   a 

simply connected graded nilpotent Lie group of nilpotency degree k + 1, let 
n be its Lie algebra and let e : n —> N denote the exponential map at the 

identity.  Then, given X, Y E n 

x@YJytl^   y   SS..to + «)- 
1=1 1   <  J    <.   I, 

• (adX)Pl(adY)qi • • • (adX)Pn{adY^^Y 

where (adX)Y = [X, Y] and if qn = 0 then the last term in the sum is 
(adX)P1 (adY)qi • • • (adX)Pn~1X. In other words, we have the formula: 

eXeY = eX©Y = eX+Y+\[X)Y]+±[X,[X,Y}]-±[Y,[X,Y}]+-^ 

In the case that N is a graded nilpotent Lie group, we use the following 
convention. Let Ci(X,Y) be the pieces of X © Y which lie in V*. Thus, 
if X,y <E V1, Ci(X,y) - X + y, C2(X,y) - \[X,Y] and so on. Thus, 
the Campbell-Baker-Hausdorff formula yields ex®Y = e^i(xly)+.»+C7fc(xlr)B 

Using the Campbell-Baker-Hausdorff formula, we easily confirm that ht is a 
group automorphism. 

In subsequent sections, we will use repeatedly several properties of ht- 
We group them here as a lemma for easy reference: 

Lemma 2.2. Let N be a graded nilpotent Lie group and let ht be the auto- 
morphism described above. 

• For n G N, hthsn = htsfi. 

• For v G V1, htevhse
v = ht+se

v = e^+s>. 

• // cfL^ is the derivative of the left translation map n H->- gn, then dht o 

dLn = dLhtno dht. 

• dht(v ® w) = dht(v) ® dht(w). 

Proof The first two are simple exercises using the Campbell-Baker-Hausdorff 
formula. The last two are restatements of the fact that ht is a group auto- 
morphism in terms of dht. d 
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3. Carnot-Caratheodory metrics. 

Carnot-Caratheodory metrics arise in a variety of settings and have been 
the object of a great deal of study. In this work, we examine graded nilpo- 
tent Lie groups equipped with Carnot-Caratheodory metrics and hence the 
definitions and propositions will be tailored for this small set of spaces. For 
a more general and comprehensive introduction to the theory, the interested 
reader is encouraged to consult [Str86], [Gro96], and [BR96]. The rough idea 
of a Carnot-Caratheodory metric is to measure the distance between two 
points by taking the infimum of the length of piecewise C1 paths connecting 
the points over a restricted set of paths, those tangent to some subbundle 
of the tangent bundle. More precisely (in our setting), if N is a connected 
graded nilpotent Lie group with Lie algebra grading V1 © ... © Vfc, we define 
a left invariant subbundle of the tangent bundle, V, by letting the fiber at 
a point be the left translate of the subspace V1. In the rest of the paper, 
we will, by abuse of notation, refer to the subbundle and the fiber by V. If 
we place a norm | • | on each fiber of V, we define the Carnot-Caratheodory 
distance between x,y £ N by 

dcc(x,y) = inf<   / \jf(t)\dt 7 connects x to y and 7' C V 

If no such paths exist, we set dcc{x,y) — 00. We call a path whose tangent 
is in the subbundle V at each point a horizontal path. Note that dcc defines 
a left invariant metric on iV. In general, if | • | is merely a norm, we call 
the quadruple (TV, V, | • |, dcc) a Carnot-Caratheodory group or a sub-Finsler 
group (if we wish to emphasize that | • | is only a norm) and dcc a Carnot- 
Caratheodory or sub-Finsler metric. If | • | arises from an inner product, (•, •), 
on V, we denote the resulting space by (AT, V, (•, •), dcc) and we call it a sub- 
Riemannian group. This nomenclature and notation is somewhat different 
from the literature which often interchanges the terms Carnot-Caratheodory 
metric, sub-Riemannian metric, and singular Riemannian metric freely. In 
this exposition, any object adorned with a "cc" will be constructed to be 
with respect to dcc. For example, Bcc(x,r) is the <icc-ball of radius r with 
center x. 

It is a consequence of Chow's theorem ([Cho39] or see [Gro96] for a 
exhaustive discussion of this fact) that any two points in (AT, V, | • |,dcc) can 
be connected with a smooth horizontal path. This leaves open the question 
of geodesies in Carnot-Caratheodory spaces. We call a segment a geodesic 
if it is a local length minimizer. Again, in the literature, there are many 
different terms/meanings for geodesic paths and/or length minimizing paths 
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depending on whether the geodesies satisfy certain differential equations 
(see, for example, [LS94] and [Mon96]). For this exposition, these issues 
are not relevant and hence we will use the simplified language. In a sub- 
Riemannian group (iV, V, (•, -^dec), there is a nice class of geodesies which 
will be useful in later sections. 

Definition 5. Let (TV, V, (•, •), dcc) be a left invariant sub-Riemannian met- 
ric where N is a connected graded nilpotent Lie group and fix n G iV, v G V. 
Let V be a smooth left invariant vector field on N with V(e0) = v. Let 7 
be an integral curve of V such that 7(0) = n. We call 7 a radial geodesic 
eminating from n. If a basepoint is understood, we shall simply call 7 a 
radial geodesic. 

Note that radial geodesies are actually geodesies of dcc. Indeed, consid- 
ering the quotient N/[N,N] endowed with the left invariant metric induced 
by the cc inner product on V, the quotient map N -> N/[N, N] is 1-Lipschitz 
and takes radial "geodesies" to geodesies in the quotient and preserves their 
length. Thus, these are geodesies of dCc as well. In addition, we see that ht 
is a homothety of dcc. Since ht is an automorphism of N and dht preserves 
V and acts as a homothety on V, we see that ht is a homothety on (TV, dcc). 

In [Mit85], Mitchell describes the local structure of more general Carnot- 
Caratheodory spaces. If (A/", V, (•, '),dcc) is a sub-Riemannian group, the 
local structure is much easier to determine given the existence of a left 
invariant metric, a homothety of that metric, and the uniqueness of the 
Haar measure. The first two following results can either be thought of as 
Mitchell's results in this special case or as consequences the extra structure 
in this special case. 

Proposition 3.1. Let (N, V, (•, '),dcc) be a sub-Riemannian group. Then, 

1. For any n G N, the tangent cone at n, (CnN,dcc) exists, is unique, 
and is isometric to (N,dcc). 

2. Let Q = ^2i=i i dim V1.  Then Q is the Hausdorff dimension of (N, dcc). 

3. Let (•, •)# be a Riemannian completion of the inner product (•, •} on all 
of n such that the grading is orthogonal. Let "dvol" denote the Rie- 

mannian volume measure associated to this left invariant Riemannian 

metric. Then, if O+Q denotes the Q dimensional Hausdorff measure, 
'K^ and dvol are constant multiples of one another. 
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The last part of the previous theorem follows from the fact that Haar 
measure is unique up to scale - both the Hausdorff measure generated from 
dcc and dvol are left invariant measure on N. In addition, letting C be the 
pull back of Lebesgue measure on n by the exponential map, C is also a con- 
stant multiple of J-C® and dvol. One should note that in Mitchell's work on 
more general Carnot-Caratheodory spaces, the Hausdorff and Riemannian 
measures are only commensurable on compact sets. However, we now see 
that in our setting, the left invariance of the metric and the presence of a 
homothety allows us have a global constant for the volume and Hausdorff 
measure comparisons. First, we start with an illustrative example: 

Example. Let H3 denote the three dimensional Heisenberg group with 
a left-invariant sub-Riemannian metric. It is well known that the Haar 
measure on iJ3 is, in fact, the four dimensional Hausdorff measure with 
respect to dcc on Hs (see [Pan83]). This confirms the formula from Mitchell's 
theorem. Indeed, 

V1 = span ({X, y}), V2 = span ({£}), V3 - 0 

therefore Q = 1 >2 + 2 - 1 = 4. 

Consider what hr, with r > 0, does to the Riemannian volume. Denote by 
g the Riemannian metric given by the inner product (•, •)# described above. 
At the identity, the metric /i*g, written in terms of the left invariant vector 
fields X, Y and Z looks like 

V2 
0 0 

0 r2 0 
0 0 r4 

Thus, the Riemannian volume element determined by the metric g is mul- 
tiplied by r4 under h*. Thus, picking C to work for a particular value of 
ro, we can then use the dilation hr to scale the picture so that the same 
constant works for any r value larger than zero. 

This argument actually works for more general graded nilpotent 
Lie groups yielding the same comparative scaling between the Carnot- 
Caratheodory metric and the Riemannian metric. 

In the proof of the limited differentiability of biLipschitz maps, we will 
need to be able to manipulate covers of sets in graded nilpotent Lie groups 
while using the measure 'K®. In particular, we want to be able to take 
the analogue of a Vitali cover of a measurable set S and find a countable 
disjoint subcover which still covers almost all of 5 with respect to Ji®. For 
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this section, we will use the language of [Fed69] (section 2.8). Assume that 
TV is a connected graded nilpotent Lie group with a sub-Riemannian metric, 
dcc. Let Ji® be the Q dimensional Hausdorff measure associated to dcc as in 
last section. Let C be the collection of closed cc-balls in N. Then, mimicing 
the standard proof in W1 we prove the following lemma. 

Lemma 3.2. S is a Vitali cover. In other words, given a measurable set 
A covered by a fine subcollection of C, we may find a countable disjoint 
subcover, &A such that (Kcc(A. \ Uc6eAC) = 0. 

4. Differentiability of biLipschitz maps. 

Let (TV, V, (•,•}, dcc) be a graded nilpotent Lie group of nilpotency degree 
k + 1 with a sub-Riemannian metric. To set up the notation, we let F : 
(N^dcc) —> (X, dx) be an L-biLipschitz map of N into a complete metric 
space. Let d be F*dx) the metric dx pulled back through F. We want to 
show that, appropriately defined, d is differentiable in V directions at most 
points. As discussed in the introduction, to prove this, we follow the style 
of the covering argument in the appendix of [Kle97] which Kleiner used 
to prove a version of a result of Korevaar and Schoen's [KS93]. One can 
also consider this a version of Kirchheim's metric differentiability in [Kir94] 
although the argument is different. 

4.1. Definitions and Preliminary lemmas. 

In examining differentiability, we consider an analog of the directional deriva- 
tive at x in the direction of v G V by looking at difference quotients along 
the paths yhte

v for t > 0: 

d(y,yhtev) 
 where y £ Bcc(x,t) 

We consider whether such a "directional derivative" exists (i.e., the limit 
as t -> 0 exists) by examining the "lower" and "upper" limits. If U is 
some open set in TV, we define these limits as follows. Examination of 
this type of quotient is inspired by Pansu's work (see [Pan89], [Pan83]) 
where he considered similar types of quotients to investigate differentiability 
properties of maps between subRiemannian groups. 
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Definition 6. The lower derivate of d is the function p : U x n —>► M defined 
by: 

/      x      y fd(y,yhtev) 
p{x,v) =lim^0+^ y G Bcc(x,t) 

Definition 7. The upper derivate of d is the function p : J7 x n —> R defined 
by: 

y e Bcc(x,t) 
-f      v     i^        \d{y,yhte

v) 
p{x,v) = limt^0+; 

Note that both p and p are measurable functions. Properly viewed, they 
are just the liminf and limsup of measurable functions of more than one 
variable (see [Fed69] page 152). 

To understand and estimate the lower and upper derivates, we want 
to estimate the quotients for small values of t. To do this, we construct 
special boxes that aid in the estimates. For each v E V, denote by V the 
left invariant vector field on N determined by v. Choose (•,•)# to be a 
Riemannian completion of the sub-Riemannian metric on V such that the 
grading is orthogonal. 

Definition 8. Fix v E V and let V1- be the orthogonal complement of v in V 
with respect to (•,•). Let end (e,v) = {u>iH \-Wk E V1-@V2®'•'®Vk\wi E 

V^.Wi E V* for i > 1, {WJ.WJ)^ < sj,\/j}. Now, let 

End(x,v,£)=xeend(£>v\ 

End (z, v, e) forms the end of our box. 

Note that eend^£,v^ is the exponential image of a carefully constructed 
rectangle which should be thought of as a square of side length 2e. Recalling 
Theorem 3.6 in [KM96] or one of the various formulations of the "ball- 
box" estimates (see, for example [Gro96]), if v = vi + • - + v^ £ n then 

]Ci=i (viivi)R ^ Adcc(e
0,ev) where A is a constant depending only on the 

choice of (■,•)# aild the structure constants of the Lie group N. Clearly, 
the constant A is invariant under scaling by ht: if v' = dhtv and v^ are the 

components of v' in the various pieces of the grading, then J2i=i {v'^v'i)Ti = 

EtiHvu^ < Atdcc(e
0,ev) = Adccie0^**"). 

Definition 9. Define the estimate boxes by 

Box (x,v,e)=        U        (  U   zhse
v). 

z£End(x,v,£)  5G[0,1] 
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As in Kleiner's argument, one first thickens xhtev\te^^ into the estimate 
box, Box(x,f,6), and then uses smaller boxes, Box (y,£?;,££) with y close 
to a;, to cover it and help estimate the distance between the ends of the 
estimate box. To use this argument, we must ensure that the boxes we 
have constructed have metric properties (with respect to dcc) similar to the 
boxes in En, at least on the small scale. One important technical detail is to 
control the distances between points in the "far" end of the box with respect 
to corresponding distances in the "near" end. Let z = yhteeZl+Z2+~'+Zk G 
End{y,tv,te) C Box{y,tv,te) with dcc(e

0,e2:i+*2+"-+Zfc) < 1 and v € V. 
Then, 

(*)      dcc(yhte
v, zhtev) 

— dcc(e
0 e~tv

e
t£Zi+(t£)2z2+-+(te)kzketv\ 

= d    (e0   e
t£ZiH(^)2z2+2t2sc2[z1,v})+---+((te)kzk+2tkeck_1[zk.1,v}+--')\ 

= tdcc(e
0  e

£Zi+((£)2Z2+2£C2[z1,v])+---+((e)kzk+2eck_1[zk_1,v]+'--)\ 

< tC(e). 

Here, C(e) is a constant that depends on e and goes to zero with e. This 
constant exists by the compactness of the closed unit CC-ball. The first 
equality is due to the left invariance of dcc. The second is a use of the 
Campbell-Baker-Hausdorff formula. The third follows from the fact the ht 

is a homothety of dcc. 
As in Kleiner's argument, we will prove a relation between the upper and 

lower derivates by covering boxes which thicken the radial geodesic segment 

zht^ltelo,!] with well controlled smaller boxes. To do this, we make the 
following estimates. 

Let 

B(x,v,f3,e) = {Box(y,tv,t(3) 
d{y)yhtev) 

t 
■ p(x,v) < s,y e Bcc{x,t) 

In other words, members of B are boxes of some variable height tfi such that 
the difference quotients of the endpoints of the central segment are infimal 
up to an error of e. Notice that B(x,v,f3,e) is a collection of boxes indexed 
by t. Next, we make an estimate on the difference quotient between points 
on the ends. 

Lemma 4.1. Let ui,U2 be points on opposite ends of Box(y,t^,^) G 
B(x,v,l3,s). Then, 

d(ui,U2) 
<C1{f3)+p(x,v)+e 
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where Ci(/3) is a constant depending on j3 which goes to zero with ft. 

Proof. This is just a computation: 

d(ui,U2) 

t 
< djuu^+d^yh^ + diyh^,^) (by the ^^ inequality) 

< Ld^ ^ + d{y> yhtp + ^c(^eW. ^) (by L-Lipschitz) 

< LA/3 + p(a;, v) + 6 + L(C((3)) (by choice of 23 and equation (*)). 

Let CI(I3) = L{AI3 + C(P)). D 

This end estimate provides the needed precision to make the later esti- 
mates. The "well controlled smaller boxes" mentioned above will be mem- 
bers of B. Other than the end estimates, the other technical point we need is 
a measure comparison. We wish to use the estimate boxes to prove a relation 
between p and p almost everywhere with respect to Di,®. Thus, we need to 
know the relative measure of the boxes in the CC balls. In light of the fact 
that the Hausdorff and Riemannian measures are constant multiples of one 
another (see Section 3), this is fairly straightforward. Recalling the general 
ball-box theorems for Carnot-Caratheodory spaces, it is useful to view the 
following lemma as a directional refinement of such ball-box theorems. 

Lemma 4.2. Fix (3 > 0 and v G V.  There is a number, R{(3,v), such that 
Box (y, £?;, £/3) C Bcc(y,tR{f3,v)).  Then, there exists a constant C so that 

MQ(Box(y,tv,tp))    ^c 

XQ(Bcc(y,t(R((3,v)))) 

where C depends only on dcc, f3, v and the constants relating the Hausdorff, 
Lebesgue and Riemannian measures. 

Proof. The constant R(t3,v) exists and can be estimated by equation (*). It 
is independent of y because dcc is left invariant. Since Q is the Hausdorff 
dimension of (iV,<icc) and K^htA) = tW?^), 'KQ{Bcc(y,tR(P,v))) - 
aQ(tR((3,v))Q where ag — ^{^(^(e0,1)). Thus we only need estimate 
:KG(Boz(i/,to,t/3)). 
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Let (•, '}R be a left invariant Riemannian metric on TV making the grading 
orthogonal and matching the sub-Riemannian metric's inner product on V. 
Let dvol be the volume form on N associated to (•, •)#. Let £jn be the pull 
back of the Lebesgue measure on the Lie algebra of N using the exponential 
mapping. By the discussion in section 3, there exist constants CQ and Ci so 
that, 

ftQ = Codvol, dvol - Ci£n 

Now, the construction of the boxes shows that the preimage of Box (y, tv, 1/3) 
in the Lie algebra (considered at the point y) is end (£/?, tv) x [0, tdcc(e

0, ev)]. 
Thus, since 

£n(end(t/3,to) x [0,tdcc(e
0,ev)}) = (2tp)Q-1tdcc(e

0,ev) 

we have 
J<Q(Box(y,tv,t/3)) = CoC1tQ(20f-1dcc(e

o,ev). 

Letting 
_CoCl(2P)Q'ldcc(e

0,ev) 
aQR((3,v)Q 

we have the desired result. □ 

Remark 1. Lemma 4.2 and 3.2 show that we may refine covers of the boxes 
defined above in the same way that we refine covers of closed balls. In other 
words, if A is a measurable set in iV and 23 is a cover of A by boxes which 
is fine at every point of A, then we may find a countable disjoint subcover 
2' such that ^^(A \ UB^/B) = 0- This follows from standard covering 
arguments (i.e. a countable number of iterations of the "greedy" algorithm 
used to cover at least a fixed portion of A in one iteration). Following 
Federer, we say that such a collection of boxes is a Vitali covering relation. 

4.2. Differentiability of distances Lipschitz to dcc. 

The following theorem is the main technical piece of the paper. As it deals 
with the differentiability of Lipschitz maps, it can be viewed as a measure- 
theoretic version of the Rademacher theorem. 

Theorem 4.3. Let (iV, V, (•,•),dcc) be a sub-Riemannian group of nilpo- 
tency degree k + 1. Suppose d is a distance function on U x U, U an open 
subset of N, which is L-Lipschitz to dcc.  Then, for ev,ew G N, 

A^eV ) = limt->o+ { -t  y € Bcc(x ,*)} 
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defines a family of real-valued measurable functions on N x N, indexed by 
x E U, enjoying the following properties. There is a subset U of U of full 
measure such that for every x G U, 

• For v E V, 

^ Hfe]^ _ Aaj(cOjCJL e £«(*,*)} = 0 

• Forv eV,Ax(e0,hte
v)=tAx(e

0,ev). 

• For v e V, Ax(e0,ev) = Aa!(e
v,e0) = A^e0^^). 

• For v,w, en such that-v®w G V, A^eV™) = A^eV^e™). 

Remark 2. Note that since d is L-Lipschitz to dcc and /it are homotheties 
of (icc, it is immediate that A^ is L-Lipschitz to dcc. 

We will also see that if, for some x G ZY, {CXN, d) exists, we can interpret 
this proposition as a statement about d. One should view the function A^ as 
being something like an infinitesimal sub-Finsler metric and think of the last 
three claims of the theorem as giving a limited homothety, symmetry and 
left invariance for the function A^. It would be interesting to find conditions 
under which this construction actually converged to a sub-Finsler metric. 

Remark 3. This theorem leaves open the question of complete metric dif- 
ferent iabilty in this setting and other settings. 

We prove Theorem 4.3 through several lemmas. 

Lemma 4.4. IfvEV and x an approximate continuity point (see proof for 
the definition) of p(^v) andr G M; thenp(x,Tv) < \T\P(X)V). In particular, 
for such points x, p(x,v) = p(x,v). 

Proof. Fix SQ  > 0.    We aim to show that for small enough t > 0 and 
y G Bcc{x,t), 

( . N d(y,yhthTev) 
(+) < \T\P[X, V) + £o- 

For simplicity, we will first consider only r > 0.   The nonpositive case is 
an easy consequence of the positive case and will be discussed at the end 
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of the proof. To prove the positive case, we will consider special boxes 
which will easily estimate the central segment of Box(2/,£Tt>,£/?) (for some 
appropriate /?) and still have their endpoint quotients close to the infimum 
p. First, pick 6,(3 £ (0,oo). Since x is an approximate continuity point 
of p(-,t'), the set Z — {z \ \p(z,v) — p(x,v)\ < s} has density in Bcc(x,r) 
approaching 1 as r approaches 0. The same is true if we replace Bcc(x,r) 
with boxes Box(y,v,T/3) C Bcc(x,r). This follows from lemma 4.2, the fact 
that the boxes yield an alternate base for the topology of TV, and the scaling 
properties of both balls and boxes with respect to the homothety. 

For the rest of the proof, fix 1$ such that for t < to, y G Bcc{x,t), 

XQ(ZnBox(y,tTV,tp)) 

J{Q(Box(y,tTV,tp))     -        6' 

To get estimate (+), we fix a box BQ = Box(y,trv,t(3) with t < to and 
y G Bccfat). Let ZQ = Z D' BQ. Next, let Bz = {B G B(z,v,P,£) \ B C 
Bo, z G ZQ}.   Recalling the definition of p, we see that for zo G ZQ and 

if t is sufficiently small (i.e. t such that ^y,y
t 

te ' must be close to infimal 
and y G Bcc(zo, *)), then there are infinitely many boxes in B(zo, v,f3,E) with 
height t/3. Using Lemma 4.2, we see that Bz is a Vitali covering relation (see 
the remark after 4.2) of Zo- Thus, we may select from the cover a disjoint 

finite subcover such that <KQ([JBeBzB) > 3<Q(Bo) - 2e3<Q(Bo) which, by 
abuse of notation, we denote this by Bz as well. Consider the picture at this 
point, we have fixed a particular box and covered it with smaller boxes, all 
contained in the fixed box, such that the end estimates on the small boxes 
are approximately infimal. Next, we will extract a particular curve from the 
fixed box and approximate the difference quotient of the endpoints of its 
central segment using the cover. 

Using the exponential map as used in lemma 4.2, we realize BQ as the 
diffeomorphic image of R x [0,tr] C M71-1 x R. We can calculate 3<Q(Bo), 
up to constant multiple, by calculating the Lebesgue measure of R x [0,tr]. 
Using this diffeomorphic identification, we denote by TZz the image of the 

collection Bz in Rx [0,tr]. The fact that  j^ofg )—~ > 1 — 2e implies 

that  S£,n(ZRx\o tr})     — — 1 — ^Coe where Co is a constant depending on 

the structure constants of the Lie group and the constant relating IK^ to £n. 
Thus, using Fubini's theorem on R71-1 x R, we can conclude that there exists 

a point ro G R such that zUr xlotr]) — ^~^os. Let j(t) — yfhthrev 
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be the fiber which is diffeomorphically identified with ro x [0,tr]. Then, 

W(l) 
> 1 - 2COE 

where CQ is a (potentially) different constant depending on the same data. 
Now, we will do end estimates on the smaller boxes and sum them to get an 

estimate for -l2L*2£_*_L!i# Let e^ i = 1,2,3,..., n be the finite list of points 

along 7, listed in order following the parameter, such that each e2i~i lies in 
the end of one of the small boxes and e2i lies in the other. For e^ei+i a 
pair which are in the ends of a single box, Box (JZJ, Uv, U/S), the construction 
yields the following estimate. By Lemma 4.1, we have: 

(t) <*te>«m) <Ci(P)+£(x,v) + e. 

Now using the triangle inequality for d, the fact that the smaller boxes cover 
  n 

most of BQ shows that d(y\ y'hthre0) < Yli=i d(e>2i-i, e^i) + error. Let A = 
7 \ {JseBz-B- The error is the sum of the distances between the endpoints of 
the adjacent boxes. This error is less that the one dimensional d-Hausdorff 
measure of A, <K]^{A) because for any connected set C, 3-C^(C) > diamd(C) 
(see [Fed69] 2.10.12). Using the Lipschitz property of d, ti^A) < L3<l(A). 

Next, we estimate 3-C1(^4).   Since  j{UZ)  — ^ ~" ^CQ^, we have that 

?&M = 1 - ^1{U^)Bni) < 1 - (1" 2Cie) and using the fact that H*(A) < 

L0<1(A) and the Lipschitz property of d, error < ^K\(A) < LJi1(A) < 
2CieL<K1(-f) < 2Ci£a1tTLdcc(e

0,ev). Letting C2(e) = 2C1erLdcc(e
0,ev) we 

have: 

dtfrfhthre") 
n 
2 

< I5^d(e2t-i,e2i)] +*Cf2(e) 

< ( S** I (Ci^) +£(», v) + e) + tC2(e) (by inequality (f)). 
i=l 

Next, we note that ^^^ ' < r. To see this, note that since the curve 7(4) 
is rectifiable with respect to dec15 we can pick time indices Si and Sj+i such 

1This use of rectifiability is what prevents the same argument from proving 
differentiability in nondistributional directions. 
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y'hhe 

zi  w 

Figure 1: A schematic of the covering of the line segment by small boxes. 

that 

£<• = £ 
2 = 1- 

^     dcc{e^,ev) E dcc(y'hSie
v,yfhSi+1e

v) 

dcc(e0,ev) 

By left invariance, this equals Y^i=i \si+i ~ si\ <tT. (See Figure 1.) 
We use the estimate and this fact to investigate the desired quotient. 

d(y',y'hthTev) 
<\T\{C1(p) + p(x,v) + £) + C2(e). 

Using the Lipschitz property as in the proof of lemma 4.1, we see: 

d(y,yhthre
v) 

t 
< |T|(CI(/3) + p(x,v) + e) + die) + Citf). 

Picking /3 small enough this yields, 

d(y,yhthTev) so 
< \T\p(x,v) + — + C3(e) 

b — z 

where C3{e) depends only on e. Thus, picking e so that (^(e) < ^ allows us 

to conclude that ^,y ^ re ' < |r|p(a;, v) +£o Taking the limsup and letting 
£o tend to zero, we have the desired result for r > 0. 
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To see that the same result holds true for negative r, we make the 
following observations. First, h-rev = hre~v since v G V. Second, for 
small enough t, the density of Z in Box(y, — trv^ta) is still greater than 
1 — e. Therefore, by the symmetry of the distance d, the same argument 
goes through for e~v. Since the case of r = 0 is trivial, the lemma is valid 
for all r G R. □ 

Lemma 4.5. Retaining the assumptions of Theorem 4.3, define p(x, •) = 
p(x, •). Then, there exists a U C U of full measure such that for x G U, 

p(x,Tv) = \T\P(X,V) for allv G V. We will callU the set of metric regular 
points of d. 

Proof. Let no = dim V. Let Q be a countable subset of V so that e^ is dense 
in ev. Since p is measurable function, it follows that for fixed v G V, the set 

Uv = {x | x is an approximate continuity point of p(•,!>)} 

has full measure in U. Therefore, U — {x \ x G Uv for all v G Q} = n^giTy 
is a Borel set of full measure in U'. For a proof of this fact see, for example, 
Theorem 2.9.13 in [Fed69]. On this set, we have the desired properties. 
Using Lemma 4.4, we see that for v G Q and r G Q, 

p(x,Tv) < P(XJTV) < \T\P(X,V) 

1 
p[x,-v) < p{x,-v) < p{x,v) 

therefore, 

p(x,Tv) = \T\P(X,V). 

Given the monotonicity in r of p and p, this holds for all r in R and 
v G Q. Note in particular that p(x^—v) = p(x,v) and therefore we have 
symmetry of this type. To extend these properties to all of V we check 
that p(x,') is continuous. Fix v G V and consider a sequence Vi £ Q which 
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converges to v. Then, 

p(x,Vi) - p{x,v) 

_^o+|^^)|x''eBcc(x,t) 

__      r d(x^*£!!lzil^^ x' G BCC(X, t) 
< limf_>o+ \ 1 

< 
  (dix'hte^ix'hte") 
limi_>o+ I "^ "" 

x' e -Bcc(a;,t) 

< Llimt^o+^ccl6   5e ) 
,    4 rt   »o   i    -+   oo       A  similar   argument   shows   that 

which  tends  to  zero  as  i   ->•   oo-      ^ 0 g 

lim^oo^^i)-^'u)^0aSWe11- 

Lemma 4.6. S^ose xo € iV *S a metnc regUIar poini (see Lemma 4.5). 

Then, t/w,™ € n such that -v®weV then 

eo- 

Proo/ of Theorem 4.3.   Let 

A.(e«,c») = limt_o+{-i j ^ € ^X'tj J 

metric regular points of d. We now p for -» © » e V 
By lemma 4.6, we see that A (e^ ) - M ^ ^ , = 

rW ^Xltome distance function d immediately shows 
£1 A J ??- M™ ,e«) ^Proving the third part of the claun   Lemma 
that Axie ,e j - ^aAe .« ;> H *> 0     . Droving the second 
4.5 also shows that for v € V, Ax(e0, he ) - tA{e , e ) pro     g ^ 

part of the theorem. 
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5. Tangent cones. 

The differentiability result of the last section allows us to compare the local 
structures of a sub-Riemannian group and some metric space to which it is 
biLipschitz equivalent. Presuming the existence of tangent cones to image 
points of F in X, we would like construct a "derivative" mapping between 
the tangent cone at a metric regular point in N to the tangent cone at its F 

image in X. To do this, we will first review the tangent cone construction 
and apply it to this setting, interpreting the results of theorem 4.3. The 
goal of this section is to prove the following: 

Proposition 5.1. Let (A/*, V, (•, ')^dcc) be a sub-Riemannian group, (X,dx) 
be a metric space and F : iV —> X be an L-biLipschitz map between them. 
Letting d = F*dx we let Ax be the function constructed in Theorem 4.3. 
Suppose there exists an x G X in the image of the metric regular points of 
F such that a tangent cone, (CxX,dx), exists.  Then, 

• There exists an L-biLipschitz map F : (Cp-ifx\N,dcc) —> (CxX,dx) 
such that for n~1m G Cp-i^N that is in the exponential image ofV, 

dx{F{n),F{m)) = AF-i{x)(n,m). 

• F takes radial geodesies to geodesic lines. 

We begin by considering the structure of the tangent cone to (TV, dcc) at 
some point. By proposition 3.1, we know that the tangent cone at any point 
is unique and isometric to (AT, dcc). We will consider the tangent cone at e0 

for simplicity. Given a complete metric space (X, d), one usually constructs 
the tangent cone at x as the Gromov-Hausdorff limit of the sequence of 
dilated spaces (X,x,\id) for some sequence {A^} tending towards infinity 
as i —> oo. For (TV, dcc), one may construct the dilated spaces using the 
homothety. Thus one considers the convergence of (TV,/i^.dcc). Now, since 
(TV, (icc) is isometric to (N,h^dcc) via the isometry hx^ the sequence is, in 
fact, the constant sequence and thus converges in the Gromov-Hausdorff 
topology for any choice of sequence {A;}. (See [Gro81] for an explanation 
for the convergence of pointed spaces. The reader may also want to consult 
[Gro91] which provides a somewhat shorter explanation for compact spaces). 

Before continuing, we reiterate the assumptions about (X, dx)'- first, 
there exists x G Im(F) C X and the tangent cone to X at x exists, i.e. 
there exists a sequence {A;} such that (CXX, dx) = GH-limi_>00(X, z, Xidx) 
(the Gromov-Hausdorff limit of (X, x, Xidx))- To construct the map F, we 
first need to review the concept and usage of ultrafilters and ultralimits. 
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Definition 10. A nonprincipal ultrafilter is a finitely additive probability 
measure u on subsets of N such that 

• cu is zero on any finite subset of N. 

• For every subset S C N, UJ(S) is either zero or one. 

It is a consequence of the axiom of choice that nonprincipal ultrafilters 
exist (see [Dug66] Chapter 10, Theorem 7.3). We can use an ultrafilter to 
choose a distinguished "convergent" point for a sequence. As an illustrative 
example, let R be the line with its usual metric and let {xi} be a bounded 
sequence in M. Think of {xi} as the image of a map s : N —¥ M. Then there 
is a unique element x^ G X (xu = cj-lim s) such that for any neighborhood 
U of Xu, UJ(S~

1
(U)) — 1. In this way, the nonprincipal ultrafilter picks a 

limit point of the sequence. Next we point out a useful fact about ultralimits 
of sequences in R. If {a;} and {bi} are bounded sequences and a; < bi then 
a^ = a;-lim di < buj — cj-lim bi. Indeed, if b^ < a^ then we can find open 
neighborhoods Ua and Ub of a^ and b^ which separate the ultralimits. Since 
c<;(5_1(/7a)) = 1 = a;(s-1(?7fc)), if the inverse images are disjoint, this violates 
the additivity of the ultrafilter while if they intersect they must intersect in 
an infinite set by the additivity of the ultrafilter. Thus, for indices in this 
intersection, lim^ < lima^, contradicting the assumption that a^ < bi for 
all i. 

Let cu be a nonprincipal ultrafilter and define a limit metric space 
(C^X.x.d^) as follows. Let X = {{xi}\xi G (X, x, \idx), \idx(xi,x) < 
oo}. Then C^X = X/ ~ where {x^ ~ {yi} if uj-]uni-+00\idx(xi,yi) = 
0 (note that here dx{xi,yi) is a bounded map from N to R) and 

dx{{.xi}i{yiY) — wAvaii^QoXidxixiiyi)-' Note that the choice of ultrafil- 
ter forces convergence of the dilated spaces and allows us to group the many 
choices we otherwise have to make into the choice of the ultrafilter. Also 
note that our assumption that the Gromov-Hausdorff limit of (X, x, Xidx) 
exists allows us to find an isometry between CXX and C^X. For a proof of 
this fact, as well as a more general discussion of ultrafilters and ultralimits, 
see [KL96] Section 2.4.2 and, in particular, Lemma 2.4.3. 

Using left invariance, we may assume without loss of generality that 
F^ix) = e0. We define F : (CeoN,e0,dcc) -> (C2X,x,d%) by F(n) = 
{F(hx-in)}. Note that F is L-biLipschitz if F is: 

i 

By definition, 

d^(F(n),F(m)) = u-hmi^0O^dx(F(hX7in),F(hX7irn)).. 
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Using the biLipschitz property, 

u-limi-too— dcc(n,m) < uj-limi^^XidxiF^^in),F(hx-im)) 
I j i i 

< uAmii-tooLdccfam). 

Upon taking ultralimits, we have: 

jdcc{n,m) < dx(F(n)9F(m)) < Ldcc(n,m). 

As mentioned above, Lemma 2.4.3 in [KL96] shows that (CXX, dx) 
is isometric to (C^d^) and therefore we may view JP as an L- 
biLipschitz map between (CeoN,dcc) and (CxXjdx)- In addition, by 

construction, dx(F(n),F(m))  = ct;-limz_>00Ai(ix(-P1(^~in)^('lA~im))  = 

d(h _in,/i     im) 
limi-^oo i—j—i-  which by Theorem 4.3 applied to F*dx converges 
to A(C(n, m) when n~1m is in the exponential image of V. Thus we have 
proved the first part of Proposition 5.1. For the second part, consider a 
radial geodesic, htev in N where v G V. Using the definition of F, let 
7(t) = F(htev). We claim j(t) minimizes between any two time indices 
ti < £2. Assume for now that ti > 0. Indeed, 

3X(7(ti),7(t2)) = ^(FC^O.F^e")) 

= A^ht.e^ht^) = Ax(e
0,(/ltle

,')-1(/^t3e
,')) 

= Ax{e0,htle-
Vht2e

v) = Ax{e0,ht2-tle
v) 

= \t2-t1\Ax(e0,ev). 

Here we used the left invariance of A^ and Lemma 2.2. For ti < 0, we 
simply recall our convention regarding htn for negative values of t. When 
ti,t2 > 0 we observe that 

3x(7(-ti),7(t2)) = rx(F(h-tle
v), F(ht2e

v)) 
- Ax(htle-

V,ht2e
v) = Axie0,^-")-1^)) 

= Ax(e
0,htle

vht2e
v) = Ax(e

0, ht2+tle
v) 

= \t2 + t1\Ax(e
0,ev). 

Thus, 7(t) minimizes between any two time indices. In addition, by left 
invariance, all radial geodesies are taken to geodesies under the map F. 

The reader may wonder why such trouble is taken to use an ultrafilter 
construction to produce convergence. In fact, if X is a separable and locally 
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compact metric space, then one can use more standard (e.g., Arzela-Ascoli 
type) arguments to produce uniform convergence on compact sets. However, 
since asymptotic cones are not always locally compact, we use the ultrafilter 
construction to resolve convergence issues. 

6. Generalized notions of curvature. 

6.1. Curvature bounded above. 

Again, we follow the notation and definitions of [KL96]. To determine cur- 
vature bounds of metric spaces, we will need to compare to model spaces. 
For K, G M, let (M^d^) be the two dimensional constant curvature K model 
space (i.e., M2,^, or H^). Denote by diam(ft) the diameter of the model 
space M2. Let (X, d) be a complete metric space. Given a triangle, A, in X 
with minimizing geodesic sides Si, 52, 53, we call the triangle A^ C M2 with 
the same side lengths as A a comparison triangle for A. 

Definition 11. (X, d) is a CATK, space if 

• For every pair of points x,y G X with d(x,y) < diam(ft), there is a 
geodesic segment joining x to y. 

• Let A be geodesic triangle in X with sides si, 52, 53 of lengths h^hih 
such that li + I2 + h < 2diam(tt). For any two points x,y G A, 
dfajy) < dKi(xKi,yhi) where xK and yK are the corresponding points on 
AK. 

Another way of saying the second condition in the definition is that the 
triangles in X are thinner than their counterparts in M%. As mentioned 
in the introduction, we sometimes will consider metric spaces which have 
this triangle property locally. Hence, we say a metric space, X, is a CBAK 

metric space if for each point x G X, there exists an r such that the closure 
of the ball of radius r about x is a CATK metric space in its own right. 
In the next several lemmas, we outline the properties of CATK spaces that 
will be of use below. A nicely self-contained discussion of these facts can be 
found in [Bal95]. 

Theorem 6.1 (Hadamard-Cartan Theorem for CATQ  spaces). Let 

X be a simply connected complete CATQ metric space. Then, for any two 
points x,y G X, there exists a unique geodesic connecting x to y. 
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Lemma 6.2. Let (X,d) be a CATQ space and suppose 71 (t) and 72OO are 

unit speed geodesic rays in X. Then the function d(7i(t), 72^)) either grows 
linearly in t or is bounded. 

Proof. The key fact is that in a CATQ space, the distance function is 
convex (for a proof, see [Bal95] Proposition 5.4). If the function f(t) = 
d(7i(£), 72 (£)) is linear or bounded, we are done. Assuming that the func- 
tion is not linear but is unbounded, we can find an increasing sequence {^} 
such that f"(ti) > 0 for all i. One can now easily show that f(t) must grow at 
least linearly in this case. But, f(t) is bounded above by 2t + d(7i(0),72(0)) 
simply by measuring along the two geodesies. Thus, /(£) grows linearly or 
is bounded. □ 

For the sake of completeness, we quote some results concerning the two 
coning operations we use in this argument. 

Lemma 6.3. Let (X, d) be a CAT^ space. 

1. For all x G X, CXX exists and is a CATQ space. 

2. If K = 0 and cu is a nonprincipal ultrafilter, then C^X is a CATQ 

space. 

Proof For 1) This is proved in [Nik95], 2) see [KL96] or [Bal95]. 

Also note that the lemma implies that the tangent cone to a CBA^ space 
is also a CATQ space. 

6.2. Curvature bounded below. 

Curvature bounded below for metric spaces is defined in much the same 
way as for CATK spaces. A standard resource for this material is [BGP92]. 
The definition and first uses of these spaces were due to A. D. Alexandrov 
and are often referred to as "Alexandrov spaces". Using the notation of the 
previous section, we make the following definitions. 

Definition 12. Let (X, d) be a complete metric space. Then, (X^d) is a 
CBBK space if 

• (X, d) is a locally compact geodesic space. 
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• Let A be geodesic triangle in X with sides si, $2, s3 of lengths Zi, Z25 Z3 
such that Zi + Z2 + Z3 < 2diam(^). For any two points x,y G A, 
d(x,y) > dK(xK)yK) where xK and y^ are the corresponding points on 
A,. 

As with CATQ spaces, there is a natural picture, CBBQ triangles are 
"fatter" than Euclidean triangles. As mentioned in the introduction, by the 
usual arguments using Toponogov's theorem the localized version of this 
definition curvature is equivalent to the global and, for the purposes of this 
exposition, do not distinguish between the two. We end this section with 
some useful theorems concerning the geometry of CBBK spaces. 

Lemma 6.4.  Let (X,d) be a CBB^ space. 

1. Any tangent cone to X at x is a CBBQ space. 

2. If K — 0 and u is a nonprincipal ultrafilter then C^X is a CBBQ 

space. 

Proof. The first claim is discussed in [BGP92]. The discussion in Section 
2.4.2 in [KL96] reduces the second claim to the claim that the tangent cone 
to a CBBQ space is CBBQ as well. The latter fact is also discussed in 
[BGP92]. 

Theorem 6.5 (Grove-Petersen [GP]). Let X be a locally compact, com- 
plete, noncompact CBBQ metric space. If X contains a line {i.e., an un- 
bounded geodesic which minimizes for all time) then X splits isometrically 

as E x M where E is some totally convex subset of X and M is the real line 
with its usual metric. 

For our purposes, we use this theorem to prove an analogous result to 
lemma 6.2. 

Lemma 6.6. Let (X,d) be a CBBQ space and let 71 (t) and 72(t) be two 
lines in X.  Then, 71 (t) and 72 (t) are either parallel or diverge linearly. 

Proof. Since these are lines, theorem 6.5 says that X splits isometrically as 
XQ x R where R is the geodesic 71. Now, 72 (t) is a geodesic line in the 
product and hence its projection to each factor must be a geodesic line as 
well. Therefore, the projection of 72(t) in XQ is either a point or a line. If it 
is a point, then 71 and 72 are parallel. If its projection in XQ is not a point, 
then since it is a line, this implies that d(7i(£),72(*)) must be linear in t. □ 
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7. Applications of Proposition 5.1. 

The purpose of this section is to use the differentiability result (albeit 
weakly) to examine the possible quasi-isometric embeddings of TVQ, a non- 
abelian simply connected connected nilpotent Lie group equipped with a 
left invariant Riemannian metric. As discussed in the introduction, we wish 
to prove that quasi-isometric embeddings of such a Lie group into CATQ or 
CBBQ cannot exist. After taking asymptotic cones, denoting by N the re- 
sulting nonabelian simply connected connected graded nilpotent Lie group 
equipped with a left-invariant sub-Riemannian metric, we reduce to proving 
the following theorem. 

Theorem C. Let G be a connected simply connected graded nonabelian 
nilpotent Lie group equipped with a left invariant Carnot-Caratheodory met- 
ric and U C G be an open set Then U does not admit a biLipschitz embed- 
ding into any CATQ or CBBQ metric space. 

This follows quickly from the next lemma which estimates the growth 
rate between radial geodesies. 

Lemma 7.1. Suppose f : (TV, V, (•, •), dcc) —> (X, d!) is an L-biLipschitz map 
such that radial geodesies in N are mapped to d-geodesic lines in X. Then, 
there exists a pair of geodesies 71 (t) and 72 (t) in X which are images of the 

radial geodesies etv and ewetv, and constants C\, C2 > 0 and 0 < a < fi < 1 
such that, 

CiW<d{ll{t))12{t))<c2\tf 

for \t\ > 1. 

Proof This is an exercise in using the Campbell-Baker-Hausdorff formula. 
Recall that since N is nilpotent, the Campbell-Baker-Hausdorff expan- 
sion has only finitely many terms. Suppose 71 (t) = f(htev) and 72(t) = 

f(ewhtev) for v,w E V such that [v,w] ^ 0. Using the biLipschitz prop- 
erty, we reduce immediately to consider the rate of growth of the function 
dcc(htev

1e
whtev) for |t| > 1. 

dcc{hte
v,ewhte

v) = dcc(e
0

1hte~vewhte
v) 

= d   (e0 eW+tbuM+Hiw^J)) 

where H{v,w,t) are the higher order bracket terms in the Campbell-Baker- 
Hausdorff expansion. Note that the order n bracket terms in the expansion 
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each have a coefficient which of the form Btm where B is a constant from the 
Campbell-Baker-Hausdorff expansion and m < n. Therefore, for 0 < b < 1 
this is equal to, 

Again, Hf(w:v,t) are higher order bracket terms but now, the terms or order 
n each have a coefficient of the form ±Btm~nb, where B a constant. Now, 
picking 0 < a < (3 < 1 such that m — na > 0 for at least one value of n and 
m — n/S < 0 for all values of n, we have that: 

Ci\t\a<dcc(htev,ewhtev)<C2\tf 

where d is the minimum of the function t^ dcc(e
0, e^w+W^lwM+H'(w,v,t)^ 

on   (—oo,—1] U [l,oo)   and  C2   is  the  maximum  of the  function  t   \-> 

d>cc(e , eiiip      1*1 p ) on the same domain. Ci exists because the 
function in question is nonnegative and goes to infinity as t —> ±00 while 
C2 exists because the function in question is nonegative and goes to zero as 
t -> ±00. Thus, using the L-biLipschitz property of the map, we have the 
desired result with the constants C; adjusted by either L or i. □ 

Proof of Theorem C. Suppose / : N —> X is the L-biLipschitz map we wish 
to investigate and X is either CBA^ or CBB^. Then, Proposition 5.1 lets 
us reduce to an examination of a biLipschitz map F : (TV, dcc) —> (CXX, d) 
where (iV, dcc) and (CXX, d) are the appropriate tangent cones and F takes 
radial geodesies to geodesic lines. Lemma 6.3 or Lemma 6.4 implies that the 
tangent cone CXX is either CATQ or CBBQ. NOW we satisfy the assumptions 
of Lemma 7.1 and hence have a pair of geodesies with the specified divergence 
rate. However, this contradicts Lemma 6.2 or Lemma 6.6. □ 
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