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Let M. be the set of surfaces of bounded curvature that are com- 
pletely and minimally embedded in Euclidean space. By setting a 
uniform lower bound for the injectivity radius of the normal bun- 
dle of any such surface M € .M, we can show that there is an 
embedded tubular neighbourhood of constant radius around any 
M G M. In particular the area growth of M is not more than cu- 
bic, and its spherical area growth, as we will prove, not more than 
linear. This result can be applied to show that M. is compact with 
respect to convergence on compact sets of the Euclidean space. 

1. Introduction. 

This article is related to the problem of proving the uniqueness of the helicoid 
and plane among all the simply-connected surfaces that are completely and 
minimally embedded in the Euclidean space. 

As this goal seems distant, we will suppose that the surfaces we study 
have bounded geometry, that is, that the Gauss curvature is bounded. We 
will denote the set of these surfaces by M. 

There is a double reason for this restriction on the curvature. 

The first is that, as was recently proved by L. Rodriguez & H. Rosenberg 
in [RR], (generalized recently in [X] by F. Xavier): 

Theorem. IfMGAi and it is transverse to one horizontal plane, and if 
the intersection with this plane consists of a finite number of curves, then 
M is either a plane or a helicoid. 

Second, it turns out that the normal bundles of these surfaces have a 
lower uniform bound for their injectivity radius. Indeed we found that: 

Theorem 2. For each M E Ad, there exists a tube of constant radius that 

is embedded in Euclidean space. The radius is at least equal to pe := 
v 1/2, 

where K is the Gauss curvature function on M. 
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Applying this theorem leads to the straightforward estimation (also re- 
portedly achieved by W. Meeks) of the area growth and the spherical area 
growth of the surface (the spherical area being the area given on M by the 
pulled-back metric of its Gauss map TV). 

Theorem 3. Any M G M has an area growth that is not more than cubic. 

More precisely, for any domain S C E3
; 

Area(Mn5) < ci\\K||^2Vol(5e) 

where Se is an e-neighbourhood of S, e > pe and ci = -^—4 - In par- 

ticular, the area of M D B(p,r) is less than 7r(2\/3 — 5/2)(r + e)3!!^!!^ . 

(S€ is the Minkowski sum S + Be of 5 and the e-ball around 0). 
In the case of embedded finite total curvature minimal surfaces with n 

ends, it is known that A(MnB(p,r)) < nnr2. Also note that the cubic area 
growth is optimal: the helicoid takes a cubic area growth. 

Moreover, with the co-area formula as it is applied in [SS], (see also [C]), 
we establish an estimate of the growth of the total curvature in terms of the 
growth of the area: 

Theorem 4. The Gauss map N : M —> E3 has a spherical area growth 
that is not more than linear: for any r-ball around p G M, the spherical area 
of the connected component of M containing p satisfies N{MP fl S(p, r)) < 
CII-fiTllooT", where C G ]R+ is a constant independent of M. 

In particular the Gauss map is at most of order one (as defined by 
Nevanlinna). Notice, for example, that the helicoid is conformally (D, and 
that, when (D is adequately parametrized, its Gauss map, postcomposed 
with stereographic projection, is the exponential map. 

It follows directly from these estimates that M is compact with respect 
to the convergence on compact domains of E . 

Finally, before giving the The general outline of the paper, I would like 
to thank Martin traizet for helpful remarks. 

Section 1: We first consider minimal sections that lie in a sufficiently small 
e-tube of a minimal surface. We prove that for each of these graphs, the 
domain of definition of these graphs is weakly stable and that their boundary 
at infinity has zero measure. Here is the definition of weak stability: A 
surface M is weakly stable if the quadratic form 

A(h) := / (\Vh\2 + aKh2)dA, 
JM 
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which is a modified second derivative of the area functional, is positive for 
any h G CQ(M), where a is any positive number strictly larger than one. 

Proposition 2. Let D be a minimal surface with boundary and let D' be 
a minimal graph above D given by a strictly positive section of the normal 

1/2 
bundle to D; and suppose D and Df have bounded curvature. If (j)\\K\\c^ < 

P < i5> ^en D ^s weakly stable. 

Next, following [CS], we show that D is parabolic, in the sense that its 
boundary at infinity has zero measure. (This has been proved for the case 
in which D is complete without boundary in [H].) 

Section 2: We can then prove, in §2.1, a maximum principle for minimal 
graphs (/) if (/> < pe. Next we prove in §2.2, the following maximum principle. 

Corollary 3»3. If M and M' are two complete embedded minimal sur- 
faces with bounded curvature and M fl M' = 0; then dist (<9M, Mf) > 0 and 
dist (<9M, M') > 0, together, imply that dist (M, M') > 0. 

This corollary generalizes a previous result stated in [S]. The key propo- 
sition is: 

Theorem 1. Let D be a minimal surface with boundary and let D' be a 
minimal graph above D given by a strictly positive section of the normal bun- 
dle to D; suppose D and D' have bounded curvature and that the boundary 
of D has a geodesic curvature bounded from above, the normal vector to the 
boundary pointing inwards. If (f) < C for some constant given in Proposition 
2 then D is parabolic. 

Theorem 1 leads directly to the proof that the e-tube of any M G M is 
embedded, as stated in Theorem 2 above. Prom this we will obtain in §3.2 
the uniform bound for the area as well as a cubic area growth for surfaces 
in M. 

Section 3: In Theorem 3, we use the co-area formula to prove, an a priori 
uniform bound on the spherical area growth of any M G M. 

Section 4: In this section, we illustrate the usefulness of the uniform area 
bound. Using a result of H.I. Choi and R. Schoen [CS], (see also B. White 
[W] and A. Ros [R]), we prove the strong compactness of A4. Any two 
surfaces of A4 will be identical if one is carried onto the other by either a 
rigid motion or a homothety of E3. We can thus normalize any M G Ai so 
that the curvature verifies —1<K. 
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Theorem 5. For any sequence of minimal surfaces in A4 with at least one 
accumulation point in E3

; a sub-sequence converges in Ai on all compacts 
sets o/E3. 

2. Stability of Minimal Graphs. 

Let u(M) be the normal bundle of M G M. With the exponential map, we 
realize an immersion exp : u(M) —> E3 in, at least, a neighboorhood of 
the zero section of z/(M) (which is diffeomorphic to M and thus identified 
with M). The biggest neigborhood U such that exp is an immersion, will 
be called the normal tube of M. 

2.1. Graphs of Minimal Surfaces. 

Let X : C D U —> E3 be a minimal immersion of a subset such that 
the image X(U) is a minimal surface E. N : U —> $2 will denote the 
Gauss map of E. Let X : U —> E3 be a second immersion whose image, 
X(U) — E, is a minimal surface. Furthermore suppose S is a graph above 
E that is, a positive section of ^(S). A function cj) then exists on U such 
that 

X = X + (f)N. 

Since the immersions X and X are harmonic for each induced metric, 

(AX = 0, 

\A(X + 4N) = 0. 

In particular, 0 is a minimal graph if 

(iV,A(Z + 0iV))E3=O. 

A direct computation (see [S]) gives 

Proposition 2.1. Let E be a minimal surface immersed in aflat 3-manifold 
of Gauss curvature K, and Gauss map N : E —> $ . Let V denote the 
connection for the metric g of S; and A, the Laplacian of the pulled-back 
metric gofT, induced on E by (p. Suppose </> G C2(E, IR) is a section of E 
defining a minimal surface E above E.  Then, 

(2.1) A^ + /32(^(V^, V</>) + K(f>\V^|2) - 2ir/32(l + i^2)</) = 0, 
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where /? is the ratio of the area elements: 

rl = S = V ^f = ^+K4>2)il+K<f>2 + |V0|2)+2<M(V0'w)' 
A is the second fundamental form o/S and Acj) = A=^y/g.g^(/)j)i 

Notice that the former equation is uniformly quasilinear elliptic if the 
minimal graph strictly lies in the normal neighbourhood of E, i.e., if 
\(/>(x)\ < a <     . 1      . At focal points of the normal bundle, the ellipticity 

yJ-K(x) 
of the minimal surface equation degenerates. Notice too that the linearized 
equation is the Jacobi equation 

AE0 - 2K(j) = 0 

related to the second derivative of the area functionnal (see next definition). 
subsectionWeak Stability of Minimal Graphs 
We recall the definition given in the introduction. 

Definition 2.2. A minimal surface M is weakly-stable if the quadratic form 

A{h) :=  t {\Vh\2 + aKh2)ds 
JM 

is positive for any h G CQ(M), where a is some positive number a > 1. 

Next we prove the weak stability of a minimal graph above a domain 
D C E obtained as follows: take a sufficiently small e-tube of a surface 
M G Ad that is a tubular neighbourhood of the zero section of the normal 
bundle; suppose E intersects this tube away from the zero section. The 
ensuing estimate defines a minimal section 0 over a domain D of E that is 
not necessarily compact and such that 0, at the boundary, is exactly equal 
to the radius of the tube. 

So we will prove 

Proposition 2.3. Let E and E' be two minimal surfaces with boundary 
and with curvature bounded by a constant CK G IR+. Suppose E' is a graph 
above E; i.e., E' is a positive section (j) of the normal bundle ^(S); such that, 

11 ^1 |oo ^        1/2 > and such that, at boundary points (j)\dY, >        1/2 -   Then E 
K K 

is weakly stable. 
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To prove Proposition 2.3 we need two technical lemma; we first prove a 
stability result for a simplified minimal graph equation, where we essentially 
substitute in the second term of equation (2.1), the gradient V of the graph 
E, by the gradient V taken on E. Next we show in Lemma 2.4 how this 
substitution affects the stability. 

(For notations in the follow-up see Proposition 1 in §1.) 

Lemma 2.4. Let (j) be a positive bounded function solution of the differential 
inequality A</> — c|V</>|2 + Vcj) < 0 on any Riemannian domain D, where c 
and V are functions that we may take positive w.l.o.g. Then, if 1 — ccf) >0, 
for any a > 1, there exists a positive h that satisfies Ah + ~h < 0. 

Proof. As (j) is positive, there is h such that (j) = /i", where a > 0. Plug this 
expression of (j) in the differential inequality, and take a ^ 1. This gives 

a.ha-\Ah + (a.(a - l)/ia"2 + (a./i^1)^! - cha))\Vh\2 + Vha < 0. 

Divide by a./ia_1 

(1) Ah + ((a - l)/*"1 + (a./iQ-1)(l - cha))\Vh\2 + -h<0. 
a 

The coefficient of \Vh\2 is non negative: 

(a - l)/*"1 + (a./i^Xl - cha) > 0. 

That is 
(a-l) + (a.(/>)(l-c</>) >0 

which is true if a > 1. Then from (1): 

V 
Ah + -h<0. 

a 

This completes the proof of Lemma 2.4. 

2.2. Estimates on (j) and weak stability. 

Before proceeding to the next step, which is Lemma 2.5, we need to estimate 
terms of the minimal equation. 

Now consider the minimal equation (2.1) and express it in terms of the 
metric on M, i.e., substitute A by terms involving only derivatives taken 
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on M with its original metric. We will obtain a differential inequality as in 
Lemma (2.3). 

With the same notations as in §2.1, it is convenient to take on U the 
isothermic parametrisation given by the curvature lines of S: 

ds2 = p2\dz\2 = p2(dx\ + dxl), 

or 
2 r 

9ij = P Oij 

(detg — p4). By a direct computation of the derivatives of X = X + 0iV, 
we obtain, the following metric tensor induced by the immersion X: 

fc-SV^) 
where 

(2.8c) a; = 1 - K<j)2 + 2Ki<p,        i = l,2. 

Or, 

where ^ is the function -y/lifj. 
Note that this is the metric on the the surface obtained by pushing 

M along the normals at a constant height (j)(x) and then stretched in the 
direction of the gradient of </> that takes in account the tilting of M at point 
x. 

Suppose the minimal graph lies in the normal tube, i.e., infx;(l + K(j)2) > 
0. Then the minimal graph equation on M (2.1), reads 

(2.6) A(f> + (32 IJ2 «»(1 - «i^)% ) - 2K(32(l + Kcj)2)^ = 0 

where KI = —K,2 = K> In particuliar, we deduce the inequality 

(2.7) K(f> - c/32|V(^ - 2if/32(l + K())2)(j) < 0 

where c = K,(1 — K(/>). We won't need to compute explicitely Acj) in terms of 
the laplacian and gradient on M, where 
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but only 

But, from (2.5) and the above expression of gij in (2.5) 

.g^detg 1  ((l-^y + 
tf 2 _L ^2 _^1   ^2 
^ 

(2'8»    w"'-**^ -ifa" (1+4)"+3, 
Or 

(2.8b) ^ = ^2^ + ^ 

Hence 

(Vh^h)2 = -giihihj 

= /32(1 + K<j)2)(S/h, V/i) - 2^((V/i, V/i) + (Vfc, JV(/))2) 

Estimates on </>,^,^-,^4,^. 
The condition of Lemma 2.4: 1 — c<^ > a is satisfied if fry^ < 1 — a, 

that is if ft</> < 1 — a; geometrically, this is satified if the positive function 
(p represents a minimal section that lies inside the half-tube around E of 
radius less than (1 — a)-times the radius of the normal tube. 

But we can choose a smaller tube around a domain of M. 
Consider the e-tube T(e, E) with e < —^2, where 0 < u < 1. Suppose 

ll-Klloo 
this tube is not embedded; then pieces of E will cut the tube away from 
the zero section. Let E7 be one such piece. Note that the boundary of E' 
consists of points that lie on the boundary of the tube, so that the height 

at these points equal —^72 • 
Halloo 

This piece is a priori not a graph on E or on a subdomain of E. However 
we will show this is the case: 

Consider a point pf G E' which is above a point p G E, and at a height less 
than .. Jfn/2 along the normal p G E. E' is pinched at pf between two tangent 

spheres of radius ., ^^. A straightforward computation shows that these 

tangent spheres will cut a third sphere with the same radius but tangent to 

E at p and below E, if 

But then E' would cut E. 
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In particular in the e-tube T(e,E) with e■— n^i^ lj2 < \\x\f~i/2^ ^ ^ 

T(e, E) is a graph above E, and defines a C1-bounded minimal graph (/) with 

(1> W < M* 

(2) l|V*P < (jg^f - 1. 

Hence for a tube sufficiently small we can suppose that 

M<ei,|Wr<C2 

uniformly on the domain of definition of (j) and this estimate is valid up to 
the boundary of M. 

(Note that we can obtain estimates for derivatives of </> of second order 
: Prom the bounded geometry hypothesis we assume that the curvature of 
the surface is uniformly bounded 

i.e. 

-K <Cf
v 

But then, the bound on A implies that locally the surface is given as a graph 
of a function u with bounded gradient. Since \Du\ is bounded, the minimal 
surface equation is uniformly elliptic. By standard elliptic theory, we get 
C00 estimates for u.Since \Du\ is bounded, \D3u\ is proportional to \DA\ so 
we get uniform bounds on \DA|.Trivially, D\A\ < \DA\. So 

\VA\<Cf
2 

i.e., 
|V/c| < (72. 

Finally we can likewise deduce a bound on the norm of the second deriva- 
tives of (/) from the bounds |</>| < ei, |V0| < 62, away from the boundary of 
M. 

I'M ^63) 
With the estimates of (pi we can prove the following result. 

Lemma 2.5. // there is a positive function f on E such that Af + Vf < 0. 
Then there exists a positive function ijj and a constant | < A such that 
Aip - 2\Kil) < 0 on E. 
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Proof, Suppose there exists a positive / such that 

A/ + Vf < 0. 

It follows that the first eigenvalue of this operator is positive; 

(2.10) / (\Vh\l - Vh2)dAg > 0, 

for all h e C^(D). But it is clear from (2.7) that 

\Vh\ldA-g = /32 ((1 - K<f)2)\Vh\2 + (V/i, V(/>)2 + <l>A(Vh, Vfc)) •^•^• 

But detg — -^f (P is given explicitely in Proposition 1.1), and —Kef)2 = 

K2(j>2] hence 

\Vh\l < ((1 + ^ + KV + |V0|2) |Vh\2. 

It is immediate that 

(2 11) U^m\2dA-g<S.Js\Vh\2dAg, 
K   *      ^ \5 = ||l + K0 + /SV + |V0|2||oo 

Thus, from (2.10) 

6 f \Vh\2dAg - f ^h2dAg > 0. 

This simplifies to 

! \Vh\2dAg + 1 f K(l + K(f>2)h2dAg > 0, 

if we use the expression of V given in (2.6). But as we chose the tube small 
such that K(f> < 1 — a so that 

{l + K4>2 >a(2-a) 

\s<3-3a + a2 + ||V</)||^. 

Consequently, S is weakly stable if (K has a negative sign) 

2a(2-a) 
5 -   ' 

that is if 
IIV A < f - (a - I)2- 

A direct computation shows that (2.9) together with (2.10) are satisfied 
if a > 1 — \/2/10, i.e. if u < \/2/10; this is a rough estimate but sufficient 
for our purpose. d 
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2.3. Parabolic minimal domains. 

We now prove the parabolic nature of M (or M) as described as above, ie, a 
piece of minimal surface which is the support of the function (f) that defines 
a graphical surface M. Moreover, proposition 2.3 shows that M (and M) 
are weakly stable. Hence M is clearly parabolic when M has no boundary 
(cf. [FC]). More generally we prove that, when dM is not empty, M is 
still parabolic,that is: if u is a bounded continuous function which satisfies 
u < c on dM and such that Au > 0 on M, then u < c on M. (in other 

words the maximum principle applies to continuous bounded subharmonic 
function) The proof is in two parts; in the second part (proposition 2.11) 
we show the parabolic nature of a domain N whose boundary has geodesic 
curvature bounded from above, such that there is positive u that satisfies 
Au — 2aKu < 0, and that is bounded from below on the neighborhood of 
ON ( for example u > 1 if dist(a;,e?iV) < e). In the first part we show that 
such a positive u exists. Notice that, from Lemma 2.4, we already know 
that there exists a positive function ^o that is, by construction, uniformly 
bounded from below on dM; however ^o satisfies an equality of the ' mixed 
type" A^o + aKuo < 0, with the metric of M and the curvature of M ( 
or resp. A^o + aKvo < 0 for a positive VQ with uniform bound on the 
boundary) 

We will, in the first part, estimate \K — K\ and then show that the 
existence of UQ ( or VQ) implies the existence of a positive u with a uniform 
bound from below at the boundary and solution of 

Au + aKu < 0 

We now come to the heart of the matter: 

Claim. There exists a positive function u on M , bounded from below on 
a tubular neighborhood in M of dM, such that 

Au + (3Ku<0, /3<-l. 

Let us first estimate \K — K\. 

Proposition 2.6. Let M and M be two weakly stable pieces of minimal 

surfaces of bounded curvature and let M a minimal surface over M whose 
distance to each point of M, (j), is uniformly bounded and whose first deriva- 

tive is uniformly bounded by e. Let KM and K^- be respectively the Gaussian 
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curvature function on M, respectively on M. K^ defines a function on M: 
K(q), the Gaussian curvature of the point of M above q). There exists 
0 < a < 1 such that for any point p E M, M and M are graphical over a 

flat tangent disk Dar/2(p) around p of radius ^ where r := distM(p,dM). 
Moreover there exist constant C^ and Cf

4, independant of (j), (but dependent 
on e), such that 

qeD \ m) J     r 

sup|^M(g)-^(,)|<^^. 
qeD r 

Proof Consider a geodesic disk of radius r around p, Dr(p) in M . Prom 
[SS] we obtain the curvature estimate K(q) < ^ for any q G Dr/2(p)y 
Consequently on the subdisk Dar/2{p), where 0 < a < 1 independently of 
p, the variation of the Gauss map is bounded: 

\VN{q)\ < y   hence \N(q) - N(p)\ < 2C'a,        \/q € Dar/2{p). 

Thus, for a < 1 sufficiently small, a piece of M is graphical over the flat 
disk Da,r/2(p). 

Furthermore,the hypothesis on (j) and its derivatives show that M is also 

graphical over Dar/2(p). 

We then translate this piece of M and M that are graphical over Dar/2(p) 

from p to a fixed origin and then rescale by dilating R3 by a ratio ^; we 
thereby obtain two pieces of graphical surfaces over a disk of radius 1 with 
uniformly bounded gradients and curvature. 

Lemma 2.7. Let f and g two functions of minimal graphs over a flat disk 
of radius 1 whose C2-norm of these graphical minimal surfaces are bounded. 
Then there exist constants C2 and C2 independent of f and g such that on 

D1/2, 

(2-12) Wfij - gijh < C2\\f - g\\o 

nf-g) 
(f-o) 

<c'2. 
0 
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Let L be the minimal operator defined by 

LU) - (1 + fDfyy - VxfyUy + (1 + fDUx- 

Let t be a function of x and consider: 

L(f + t(g-f)). 

This function is smooth with respect to t. Because 

L(f) = L(g) = 0, 

there exists a smooth function to(x) such that 

LV + to(g-f)).(g-f) = 0. 

Moreover M = Lf(f + t0(g - /)) is an order 2 uniformly elliptic linear 
operator of the type 

Mu = CijUij + CiUi, 

where u := g — /, and the coefficients Cij are uniformly bounded, that is 
Cij and a are functions of first derivatives of / and g that are uniformly 
bounded because the curvatures of the surfaces are bounded. 

We apply Schauder estimates to this equation (cf. [GT]) and deduce the 
existence of a constant C2 independant of / and g such that 

Hj\ <C2\\U\\ 

This proves in particular the first inequality of lemma 2.7. 
To obtain the second inequality , we apply the gradient interior estimate 

of [CY] for the function logt£. 
□ 

We have so far obtained an estimate of the difference in height between 
the rescaled pieces and the flat disk, u = f — g. The distance </>_ from 
the piece of Mf to the piece of Mg can be expressed in terms of u: take 
coordinates (x, y, z) £ R3 such that the flat disk is parametrized by (x, y) := 
(x, y, 0).. Prom the mean value theorem, we see that 

u(x,y) :=(/)-(x,y)t(x,y) 

where 

C = (N3(x,y) -N^x^ghfafj.) - N2{x,y)g'y{i^)) ,     (x,j/),(^/i) G D1/2. 
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where TV is the normal to Mf at point (x,y,f(x,y). ( is bounded in the 
C2-norm and if the bound on the first derivatives , e is small enough, then 
C is bounded from below by a positive constant. Thus, from (2.12) we see 
that in particular that 

\Kf-Kg\\0<Cs\\<t>-\\o    and 
V4>- 

<P- <Ci. 

We finally replace the expression of the curvature and gradient of the 
retracted graphs in terms of the original surfaces before retraction. This 
gives Proposition 2.6. □ 

Proposition 2.8 (solution  to  the  perturbed   inequality). Suppose 
there exists on M a function UQ > 0 such that 

AUQ + VUQ < 0 

where V > 0 is a potential which decays quadratically ; let X be a positive 
function on M such that 

A(P)< 
Ca 

r := dist(p,9M). 

Accordingly there exists a positive number ro; as well as a positive function 

u, such that, 

(2.13) Au + {V + \)u < 0 

on the subdomain Mro of points whose distance to the boundary of M is at 
least ro • 

Proof Let us begin by reviewing three properties of UQ: first, from Lemma 
2.4, u0 = </>a; because 0 is positive and equal to one on the boundary, so is 
UQ. 

Second, the derivatives of (/> are uniformly bounded; in particular UQ is 
bounded below by a positive constant on the tubular neighborhood of dMi. 

Third, from proposition (2.6), there is a constant C4 such that for p G D, 

VUQ 

UQ 
< CA 

0,D 

where D is the geodesic disk of radius ar around p for a positive a < 1. 
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We can now solve (2.13). 
Define 

Then 

u 

— (Au+Vu) = —(A(WUQ) + VWUO) = Aw + 2(Vwy—^-) + — (AuQ + Vuo). 

Hence, if 
LQW := Aw + 2(Vw, VQ)    < -Xw 

where VQ := ^, then (2.13) is satisfied. 
The proof that a positive solution to (2.13) exists , has been reduced to 

the proof of the following lemma. D 

Lemma 2.9. Suppose dM has bounded geodesic curvature from above. 
There exist positive solutions w of 

(2.14) Lxw = LQW + Xw < 0 

with 

Lo = A + Vvo,     \Vo\<^- 

Furthermore these solutions are bounded from below on a tubular neighbor- 
hood of dMro. 

We use comparative functions to prove Lemma 2.9. 

Proof. Let p be any point in M and consider a minimizing geodesic that 
joins p to the boundary dM. In a neighborhood of this geodesic, the metric 
of M can be displayed in terms of the distance r to the boundary dM and 
of t, the normal distance to the geodesic: 

ds2 = dr2 + G{r,t)2dt2. 

This parametrization of M is smooth up to p. For technical reasons, we 
will take r > 1, and consider the subdomain Mi of M whose points lie at a 
distance at least 1 from the boundary of M. On this subdomain we consider 
functions u that depend only on r; for such functions, 

Au = ^/ + ti,(- + (logGf)/). 
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Notice that (logG/ = Kg(r,t) i.e. the geodesic curvature of a parallel curve 
at distance r from dM. This means that the geodesic curvature corresponds 
to the variation of length of the parallel curve to the boundary in the positive 
r. direction, i.e., moving away from the boundary along a geodesic normal 
to the boundary of M. 

As the Gaussian curvature K decays quadratically in r, we can estimate 
Kg{r,t) in terms of ^(l,t) via the following inequalities 

_K2 < dKg(t,r) = _K _ ^2 < C _ ^2 

We now bound Kg from above, (resp.  from below), with test-functions 
JFQ (resp. /o) that satisfy 

(2.15) 

and K,g(t,r) < Fo(t,r) 
(resp. 

(2.16) 

■Fo(t,l)>Kg(t,l) 

lm < -/0
2 

l/o(t,l) <«fl(t,l) 

and Kg(t,r) > fo(t,r)). 
Suppose that boundary has bounded geodesic curvature from above: 

Kg(t, 1) < bo. 

Then we check that the function 

Fo(r) = - 
r 

with conditions 
(b(b-l)>C 

\b > bo 

satisfies inequalities (2.15). 
Similarly the function 

Mr) = —     1 

^i^ry+ r 

satisfies (2.16). 
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Let us consider separately the two following cases: 
In the first case, when K,g(t,l) > 0, notice that, as a result of (2.15) and 

(2.16), we obtain: 

i b 
<Kg(r,t) < -        Vr > 1. 

Kg(t,l) 

In particular 

+ r-l -   *x     ' ~ r 

Mr,t)|<-. 

In the second case, when ^(t, 1) < 0, notice that (2.16) holds for r < 
rc(t) = 1 — A 1N , until the geodesic reaches the cut-locus where Kg = —oo. 
However, since the geodesic that joins p, which is not on the cut-locus, to 
the boundary is minimizing, p must lie before the cut-locus, hence /%(£, r) is 
defined at least up to point p but r extends continuously up to the cut-locus. 

In both cases we can always conclude that 

/ N b 

Kg(r,t)<-. 

Now we go back to the operator Li, defined in lemma 2.9 and study its 
operation on a function u, smooth on M \ (cut locus), and that depends 
only on the distance to the boundary. As Kg and T^o are bounded, the 
inequality above shows that 

uf 

Liu = Au + Vvnu — u" + ^ — 
r 

where ip is a function defined on Mi that is uniformly bounded from above, 
i.e. 

□ 

Lemma 2.10. Let ij) be any function ofr, ip < 6, b G M. Then there exist ro, 
and positive smooth functions u of the variable r (distance to the boundary) 
that satisfy 

(2.17) u" + -u, + —u<0        CeR   r>ro. 

Proof The proof is in 3 steps. 
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We first solve an ODE ; for b > 1, b e N, ci G R. 

//     b  ,     ci 
u" + -v! + -±u = 0. 

Solutions are best written in terms of the Bessel functions of the first and 
second type J and Y (see [WA]): 

Let A = 0, B < 0. Then function n is asymptotically equal to 

(6-2)!  1=* 
v~Voo = -B± J-c,2   >0. 

TT 

And u' is asymptotically equal to 

Second, for r large, there exist solutions of 

u" + -u' + ^u<Q       Vcs G M+ 

with u > 0 and ?/ > 0. 
Specifically, let u := v — ^,     0 < e Then, for r large enough, u > 0 and 

as uf = i/ + ^, it7 > 0 if e > v^. 
Moreover 

it  + -it + -ott = -«(-2 + D ) H o—v < 0 

Vcso 
for r sufficiently large if ci is large i.e., if ci > C2 +   v_   . 

Finally if C2 > C then 

V," + -n' + -TTU < 0. 

That is, 

But, if ^ - 6 < 0 and (C - C2) < 0, 

ttz^+ie^so. 
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□ 

End of proof of Lemma 2.9. 
Now that we have proved lemma 2.10 we can go back to finish proving 

lemma 2.9. 
We knew from Lemma 2.10 that the function u := u o r solution of 

inequality (2.17) is positive, has a positive asymptotic value, and from the 
expression of the Laplacian and remark preceeding Lemma 2.10, that it 
satisfies on Mro \ { cut locus} 

AU + VVQU + XU < 0. 

Notice that the inequality extends to the cut-locus, since Au i-> — oo (see 
for example [K] p. 185- ) ; hence, in the sense of distribution 

Au + \7Vou + Xu<0,      on Mro 

□ 

End of proof of Proposition 2.8. 
We can now finish proving Proposition 2.8. 
Let us define u := U.UQ] then u is a positive solution of (2.13). 
Let us now consider the behavior of u on the boundary of Mro. Recall 

that UQ is uniformly bounded from below by a positive constant c in a tubular 
neighbourhood in M of dM of small radius e ( see the beginning of 2.4 : UQ is 
equal to c on dM ant its first derivatives are uniformly bounded) . We claim 
that ^o is bounded from below on dMro; apply the Harnack inequality on 
UQ on open disks Dp around points p G dMro of radius TQ. On the concentric 
subdisk of radius 2:Q?p, sup^o < KJJ iniuQ. As M has bounded geometry, 
we may bound uniformly KDP by some constant C : sup^o < Cinf UQ. In 
particular, in a tubular neighbourhood of dMroi UQ is bounded below by ^. 

Finally, as u is a function of r only, u := U.UQ, is bounded below in a 
tubular neighborhood of dMro. □ 

Theorem 1. M is pan:olic. 

To prove this theorem, it remains to prove 

Proposition 2.11. Let M be a minimal piece whose boundary's geodesic 
curvature is uniformly bounded from above . Suppose there exists a positive 
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function (/> that satisfies A</> + a|^4|2</> < 0, a > 1 and suppose that (f) is, on 
a tubular neighborhood of dM, uniformly bounded from below by a positive 
constant ; then M is parabolic. 

Proof (We will chose the same convention for the sign of the geodesic cur- 
vature as in the proof of Lemma 2.9) Let (/) > 0 such that A<f) — aKcj) < 0, 
with a > 1, and such that 0 is bounded below in a neighborhood of dMrQ 

(Proposition 2.8). 
Change the original metric ds on M conformally by the factor </> that 

introduces a new metric : ds = (j)ds. By proving the parabolicity of M with 
this new metric we will prove that (M, ds) is parabolic . We will prove this 
in 4 steps. 

1.   (M)ds) has non negative scalar curvature 

We choose local isothermic coordinates on M ; then ds = \\dz\, ds = 
\(f)\dz\. Let AQ be the flat laplacian. 

~ _ _ AoM^A) _    Alogjcj)) _ Alog(X) 

But Acj) — aKcj) < 0, hence 

But the Gaussian curvature of a minimal surface K is not positive ; thus if 

K>0. 
a > 1, then 

2. (Mro,ds) is complete. 

The proof is the same word for word as that given in [FC]. We note 
that a diverging geodesic starting from point p that touches the boundary 
infinitely often must have infinite length, since (/> is bounded from above in 
a neighborhood of the boundary. Hence we need only consider diverging 
geodesies that touch the boundary a finite number of times. This boils 
down to study the case of a diverging geodesic in a complete surface without 
boundary. 

(We may go directly to step 4. and apply it to prove next Proposition 
3.2 directly to the subdomain Mro). 

3. If MrQ is parabolic then M is parabolic. 
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Consider the set of paths in M starting at a point p E Mro. We will 

show that any such path 7 will hit dM with probability one. 
On the first hand, let us consider paths 7 such that, for some to, j(t) G 

MrQ,\/t > to- As Mro is parabolic, the Wiener measure of the set of such 7 
is zero. 

On the other hand, consider paths 7 that hit M \ Mro infinitely often at 
points pnjn G N. Let us prove that 7 will hit dM with probability one. 

Let TQ the geodesic of length d joining dM to pn and AB a piece of dM 
such that pn is the mid-point. Let AC and BD be 2 geodesies from dM of 
length 2d. Prom Kakutani's result, the Wiener measure of the set of paths 
that start at pn and hit AB for the first time before hitting a := ACDB 
is given by the value of the harmonic function ou(pn) where CJ is defined on 
the domain R bounded by ABCD, and equals 0 on a and 1 on the piece of 
boundary AB. Let us find a lower bound of cj(pn) . This is equivalent to 
finding an upper bound at p of the harmonic function rj := 1 — CJ, that is, 
the harmonic function that is 1 on a and 0 elsewhere on the boundary. 

One way to estimate the value of the harmonic measure 77 at p is the 
notion of extremal length (cf. [AB]) There exists an upper bound on 77 in 
terms of the extremal length: 

which gives a lower bound for 

u = 1 - 77 > 1 - Ce-nX{pn) 

where 
A(p) =supA(p,r,flr,i2).- 

T 

The supremum is taken for all cuts r starting from pn and joining ac — AB 
in dR such that rc is simply-connected, where A(jp, r, cr, R) is the extremal 
length in R between a and r for the set of all paths joining a to r. Recall 
that 

\( m • J W A(p, r, cr, R) = sup rnf /       . 
p      M   ^pl^lj 

The infimum is taken on all paths /J, joining r to a in i?, and the supremum 
over all Borel functions p , the area and distance being computed in the 
metric p.ds. 

Let us choose r = TQ, which gives a value A0 < A. Furthermore let p be 
the natural metric on M; this gives a lower bound Ai for AQ. Therefore 

e"7^ <.e"7rAo < e""7^1. 



942 Marc Soret 

That is 

u > 1 - Ce-7^ > 1 - Ce-^0 > 1 - Ce"7^1. 

We then estimate the area and length on M with comparison theory as in 
Lemma 2.9. As the curvature of M is bounded, the area A(R) is bounded 
by a constant AQ that depends only on d and AB.  (Prom Lemma 2.9 the 
area is polynomial in d, thus AQ < C'ABd71.) 

Hence 
(4£)2    CMS 

Now let AS be sufficiently big that Ce~nC5 < 1. We finally obtain a bound 
from below for CJ independent of n. 

Consequently 7 has probability one to hit the boundary since it hits a 
tubular neighborhood of dM infinitely often, and since, at each point pn , 
the probability to hit dM is bounded below by a constant independant of 
pn. (In particular M \ Mro is parabolic too) □ 

4.   M is parabolic 

The function log(f + 1) is superharmonic on M where f is the distance 
to the boundary with respect to the new metric. We now prove that the 
maximum principle for bounded subharmonic function is true. In other 
words, when u is a bounded subharmonic function such that U\QM ^ c then 
we prove that u < c on M. 

Consider v := u — 6log(f + 1), for some positive e. We can easily verifiy 
that v is subharmonic and that, for a big ro, v < c on Mro. But from the 
proof of step 3, M \ Mro is parabolic; hence v < c on d(M \ Mro) implies 
v < c on M \ Mro. Thus v < c on M. That is u < c + elog(f + 1). As this 
is true for any e, we deduce that u < c on M. □ 

2.4. Maximum Principle. 

In [S], we proved: 

Proposition 3.1. Let E be a complete parab >* J minimal surface in a 
complete flat 3-space, and let (f) be a minimal graph bounded in the C -norm, 

(j) > 0 on E. If (f)> 5 > 0 on <9E; then (j){x) > mins (c,      *      J on E. 

(Idea of the proof: a positive minimal graph on a surface is subharmonic 
for a semilinear elliptic equation; and the maximum principle is satisfied for 
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subharmonic functions of this semilinear elliptic equation if the domain is 
parabolic and has bounded curvature). 

Notice that it is possible to construct a bounded solution of the minimal 
equation on a hyperbolic domain that doesn't satisfy the maximum principle. 
But with the help of Proposition 2.6, and the latter proposition, we will get 
rid of the parabolicity hypothesis and prove: 

Proposition 3.2. Let S be a complete minimal surface in a complete flat 
3-space, and let (/> be a minimal graph <p > 0 on S. If (j) > 8 > 0 on <9E; 

then (f)(x) > minf^, pe) on E with pe =      ^2 - 

Note that, to prove Proposition 3.2 we can suppose (f) < pe on E . 

Proof We show that (/> satisfies the minimum principle on E. On the con- 
trary, suppose 

(*} 7 := infacf) < S\ 

there exists a sequence of points in (pn)ne isr £ E such that limn(f)(pn) = 7. 
Take an ei-tube T(ei, E) of E with ei < pe and consider the restriction 

of the section defined by (f> that lies in T(ei, E). In other words consider the 
subdomain Ei C E on which (f) < ei. 

Prom Proposition 2.3 it follows that 

D1:=ixeX1\\V<f>\<r)} 

if the 77 is sufficiently small, is weakly stable. 
We claim that pn lies in Di for n large. Suppose this is not true. Then, 

|V<^[ > c for some positive c. 
First there exists an ^-tube T(c?Ei) of dEi such that pn £ T(dEi). 

Indeed at these points, the gradient is bounded, so if the distance to the 
boundary tends to zero the value at these points tends to the value on the 
boundary , which is strictly bigger than 7. Hence at each point of pn the 
ball of radius r]/2 around pn is inside E. 

Second, because the curvature is bounded, there would exist a point 
pf

n in B(p'n}r]/2) whose 0-value would be strictly less than 7. This is a 
contradiction. 

Therefore the limit of V(j)(pn) is zero. Then (pn) belongs to Di for n 
large. Prom Proposition 2.5 Di is parabolic, thus 7 > infoD^. But the 
boundary of Di is composed of points of dEi or points where the gradient 
has a norm equal to 77/2. Hence inf^^cf) > 7, and (*) is impossible. Finally 
this is true for any ei < pe. Proposition 3.2 follows. D 
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A consequence of Proposition 3.2 will be: 

Corollary 3.3. Let E and S7 be two disjoint properly embedded complete 
minimal surfaces with nonempty boundary and bounded curvature in a com- 
plete flat 3-manifold; then dist(£, E') = min(dist(<9£, E'), dist(9E/, S)). 

The argument of the proof of this deduction proceeds as in [S] where we 
deduced a weaker version of this corollary (assuming E to be parabolic) and 
we will use only Proposition 3.2 here (see [S] for a proof of corollary (3.3)). 

3. Uniform Area Bound and Area Growth. 

3.1. Embedded tubes around M G M. 

A direct consequence of Proposition 3.2 is 

Theorem 2. Let M E M, then there exists a tube of constant radius that 
is embedded in the Euclidean space.  The radius is at least equal to pe. 

Proof. Suppose the pg-tube around M is not embedded. Then M cuts 
T(pe,M) away from the zero section. This intersection is a piece of minimal 
surface, and from estimate (2.8), it is even a graph (j) over a subdomain Mf 

of M. But then we apply Proposition 3.2 to </>. This gives 0 > pe because 
tfrldM' — Pe- As a result, the pe-tube of M only contains the zero section of 
M This establishes Theorem 2. □ 

3.2. Uniform Area Bound. 

Let M be a compact piece of minimal surface in A4. Let T(e, M) an e-tube 
around M with e < pe (*). Prom Theorem 2 T(e,M) is embedded in E3. 
Thus by Weyl's formula 

(3.1) Vol(T(£,M)) = 2eA(M) + %- f Kds. 

In particular 

Vol(T.(e,M))>2eA(M)(l ^—j 

Prom (*), 

(3.3) Vol(T(e,M)) > ^eA(M). 
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Thus an upperbound on the volume of the tube of M will furnish un upper- 
bound for the area of any M G Mi. 

Now let S C E3 be a domain. Then the e-tube around MfliS is contained 
in the e-neighbourhood of S, hence 

Vol(T(e,MnS)) < Vol(5c). 

With (3.3), this gives 

Theorem 3. Any M E M has an area-growth that is cubic at most. More 
precisely, for any domain S C E3, 

Area(MnS) < ciHiq^Vol (Se) 

with ci =       /Q  K/OW /ai\  where S€ is an e-neighbourhood of S, with e > 

uKli/2 - In particular, the area of M fl B(p,r) is less than 7r(r + e)3!!^!!1/2. 

Remark.   Define A(Mr) the area of Mr = M fl 5(0, r) and let S(Mr) the 
spherical area. 

Prom Theorem 3: 

A(Mr) < C2(r + efHiq1/2 

withc2=
(2V3-5/2)(V3-i)- 

Furthermore we shall deduce from §4 that 

—-        S(Mr) _ n 

Prom (3.3) we deduce 
— A{M^_ 

whereC3 = 5(7b)- 

4. Spherical Area Estimate. 

Theorem 4. The Gauss map N : M —> E3 has a spherical area growth 
that is at most linear: for any r-ball around p G M, the spherical area of 
the connected component of M containing p satisfies N(Mp D B(p,r)) < 
CWKWoor, where C E ]R+ is a constant independent of M. 
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Proof. Let M G M. Let p be any point on M and let r the Euclidean 
distance function taken from p; Mr will denote the connected component of 
M in M fl B(p,r) containing p. r, as a function on M, satisfies 

Ar2 - A<X,X) = 2{AX,X) + 2(VX, VX). 

The metric on S is induced by the immersion, so: (V-X", VX) = 2 and M is 
minimal so X is harmonic: AX = 0. Hence 

Ar2 = 4, 

and 
2 - |Vr| 

Ar = ■ - 

Prom Stokes formula 

(4.1) f   Ards - f   -—^ds = /     |Vr|dZ. 

Prom first variation of length 

(4.2) -^ /     |Vr|dI = f     Kgdl + f     V v.  (|Vr|)cfl. 
dr JdMr JdMr JdMr        lVrl2 

Let5(r) = -/MrirdS. 
Prom the co-area formula: 

/     V v. (|Vr|)dZ - i^- ( f   V v. |Vr|2^ . 

Define S(r) = /M —Kds. Prom Gauss-Bonnet theorem: 

/     ^dZ - 5(r) - 27rx(M) = 5(r) - 27r. 
JdMr 

because Mr is simply-connected. Hence we use (4.1) and obtain from (4.2) 

(4.3) ± f    2^mds . S(r)      1 -  (/■    V^IVrl'*) . 
dr JMr       r 2dr \JMr    W^ J 

Furthermore 

,  (VvrVr,Vr) =HessM(r)(Vr)Vr). 
ar 
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We compute HCSSM in terms of the Hessien in E3; 

HessE3(r)(Vr, Vr) = HessM(r)(Vr, Vr) + {A(Vr? Vr), V^r). 

But 
|Vr|2 - iVri4 

Hess£;3(r)(Vr, Vr) - *—J ]—-L. 
T 

We directly deduce the bound : 

(4.4) V w  |Vr|2 < 2|Vxr|i^i + ?l^-^~. 

We now plug (4.4) into (4.3), and integrate with respect to r; this gives the 
following bound on the spherical area (iVr|2 + jV"Lr|2 — 1): 

/    S(t)dt<  /    (—^ L. + \A\)ds + 2irr. 
JO JMr

K r } 

Prom Cauchy-Schwarz formula: 

^ S(t)dt< [    --ds + S(r)l/2A(r)l/2 + 2nr. 
JO JMr   r 

Define w(r) = /J S(t)dt. Integration by parts on the first factor of the right 
hand term gives the following differential inequality: 

^(r)<2^+ [rWdt + rl,(r)'1/2A(r)1'2+2vr. 
r        Jo     t2 

Prorn Theorem 3 A(r) < cr3; hence 

/ 5      o 1        ,... I     3 
w{r) < -cr* + C2(tz;'(rj)2r2 -f 27rr. 

First let us show that 'ijj has subquadratic growth ; it suffices to consider the 
differential inequality 

ty\r)2 < ci!/(r)r3. 

Hence 
1    ^ W 

cr3 "   i/>2(r) 

Integrate from r to oo using lim.r.^00%p(r) =.oc: 

t/?(r) < 2cr2. 

But ip — f S(t)dt with 5 increasing. Hence, 

S(r) < 4cr. 

This proves Theorem 4. 
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5. Ai is compact. 

In the last paragraph, we establish the strong compactness of M. This 
property is a direct consequence of the uniform area bound stated in Section 
3. 

Any two surfaces of M will be identical if one is carried onto the other 
by either a rigid motion or a homothety of E3. Thus we can normalize 
the curvature function K of any M G M such that: — 1 < K < 0. In this 
context, we have 

Theorem 5. For any sequence of minimal surfaces in A4, with at least 
one accumulation point in E3

; a subsequence converges to a M G A4 with 
multiplicity one in all compact sets of E3. 

Proof. Let (Mn) G M a subsequence of embedded minimal minimal surfaces 
with an accumulation point in E3. Prom Theorem 2, Mn are proper. 

Then it follows from Theorem 3. that for any compact domain K of E3, 
the area of Mn fl fi is bounded independently from n: there is a constant CQ 

such that 

(5.1) A(MrinQ)<cn. 

Since K is uniformly bounded, it follows from 5.1 that there exists another 
constant CQ that bounds the spherical area: 

s(Mnnn) <cn. 

We are now in a position to apply results of H.I. Choi, R Schoen, and B. 
White (cf. [CS], [W]) as stated by A. Ros in [R]. There exists a subsequence 
(Mnfc) if (.Mn), a properly embedded minimal surface M G E3 and a discrete 
singular set X C M such that: for any p G M \ X and any positive e, there 
exists a cylinder Cp(e) around p, of finite height and normal to M such that 
Cp(e) fl Mnk is a multi-valued graph of finite multiplicity above M fl Cp(e). 
Moreover this graph converges in the Cfc-norm to M D Cp(e) as n^ tends to 
infinity. 

If p G X, then necessarily 

IhnnSiMnnBfae)) > 47r 

for any e G ]R+. 
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However the spherical area estimate given in Theorem 4 implies that X 
is empty. Furthermore, from Theorem 2 we conclude that the multiplicity 
of convergence is one. 

C2-convergence implies that the curvature function of M is bounded by 
one, thus M E M. □ 
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