
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 

Volume 9, Number 4, 879-919, 2001 

Quasi-convergence of model geometries under the 
Ricci flow 

DAN KNOPF AND KEVIN MCLEOD 

We study the quasi-convergence equivalence classes of all locally 
homogeneous metrics for which the Ricci flow exists to infinity. We 
consider the most general possible families of such metrics by using 
model geometries (X, Q) with Q minimal. 

1. Introduction. 

There are many Riemannian 3-manifolds (.M3,*?) for which the Ricci flow 

(i) io--"" 
exists for all positive time, yet fails to converge. Many of these examples 
collapse, hence are not explicitly studied in the classification [3] of non- 
singular solutions. (We say a solution to the Ricci flow collapses if the 
maximum injectivity radius of the corresponding solution to the normalized 
Ricci flow 

(2) ^:g = -2 Re +2^ 
ot J n 

goes to 0 as t —> 00.) Hamilton has conjectured that the large-time behavior 
of any collapsing solution will in some sense approach the evolution of a 
locally homogeneous geometry. (Compare [5].) This idea can be developed 
by using the concept of quasi-convergence, an equivalence relation which 
allows us to classify the asymptotic behavior of the Ricci flow. Recall [6] 
that if g,h are evolving Riemannian metrics on a manifold .M71, we say g 
quasi-converges to h and write g G \h] if for any e > 0 there is a time t£ 

such that 

(3) sup      \g - h\h < s. 
Mnx[t£,(x>) 

Prom the standpoint of geometry, this might seem like an unduly restric- 
tive definition, because it does not allow modification by diffeomorphisms. 
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But from the standpoint of analysis, it describes the large-time behavior 
of the Ricci flow more precisely than if, say, we considered \(f>*gi — hi\h. for 
sequences of metrics ^, hi and arbitrary diffeomorphisms (/){. 

Hamilton-Isenberg [4] introduced the term 'quasi-convergence' in their 
study of a particular class of metrics on solv-twisted torus bundles. The 
definition was formulated in [6] as part of an effort to refine our understand- 
ing of the asymptotic behavior of metrics in that class. The intent of the 
current paper is to broaden that investigation and to complement the work 
of Isenberg-Jackson [5] by determining the quasi-convergence equivalence 
classes of all locally homogeneous metrics for which the Ricci flow exists for 
all time. 

Since a locally homogeneous metric on a simply-connected manifold is 
homogeneous [9] and the Ricci flow commutes with covering projections, 
it suffices to study model geometries. A model geometry [10], [8] is a pair 
(A*, G), where A is a simply-connected smooth manifold and Q is a group of 
diffeomorphisms which acts transitively on X with compact point stabilizers 
Gx. Given any ^-invariant scalar product on TXX for some (hence any) 
x € X, we obtain in a natural way a complete homogeneous ^-invariant 
metric on X. For the purpose of describing canonical Riemannian metrics 
on the eight geometric structures of the Thurston conjecture, it is desirable 
that Q (hence Gx) be as large as possible. But for our purpose of classifying 
the asymptotic behavior of the Ricci flow, we have chosen smaller transitive 
groups in order to study larger families of metrics. For each model that 
we study, we are able to consider a full 6-dimensional family of metrics by 
finding a realization (X,G) with trivial stabilizers Gx- We shall say each 
such family has the geometry of the canonical metric it contains. Five of 
Thurston's eight models can be realized by the pair (G^G)^ where G is a 
simply-connected unimodular Lie group. There are exactly six such groups, 

and they have been studied by Milnor. [7] (R3 and Isom (E2) both have the 
geometry of E3.) The three remaining models (H3, H2 x E1, and S2 x E1) 
must be treated separately. 

Our results are summarized in Table 1. (Here, J\f3 denotes the Heisen- 
berg group, H71 denotes the upper half-space in Rn, and ln is a transitive 
subgroup of Conf (H71) defined in §3.) Notice the inverse relationship be- 
tween the size of the isotropy group under which the canonical metric in 
each family is invariant and the size of the quasi-convergence equivalence 
class of an arbitrary metric in that family. 
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Geometry Isotropy Realization (X,g) Class [g] 

s3 
0(3) SU (2), SU (2) singularity at T<oo 

E3 0(3) R3, M3 O-dimensional 

M3 0(3) H3,X3 1-dimensional 

S2 xE1 0(2) Ex§2, Isom (R) x SO (3) singularity at T<oo 

E3 0(3) Is^(E2), Is^E2) 2-dimensional 

H2 xE1 0(2) RxT/2, Isom(R) xX2 3-dimensional 

SL(2JR) 0(2) SL^^)5SL(JR) > 2-dimensional 

nil 0(2) A^3,^3 3-dimensional 

solv trivial Isom(El), Isom(Ei) 4-dimensional 

Table 1: Quasi-convergence in the model geometries. 

A comment is in order concerning our (lack of) results for SL(2,R). 
We have heuristic arguments which suggest that [g] is 3-dimensional in this 
case, but have encountered two obstacles to the proof of this fact. Our anal- 
ysis of the 'off-diagonal' sub-family of these metrics, while straightforward 
in principle, is computationally formidable, perhaps even intractable. A 
more serious obstacle, however, has been our inability to find any conserved 

quantity for arbitrary SL (2,R) metrics — in sharp contrast with the other 
geometries. Because of the close relationship between quasi-convergence and 
conservation laws, this forced us to rely on less effective qualitative analyses 
of their behavior. 

2. The geometries modeled by a Lie group. 

Let Qn be a Lie group, and let g be the Lie algebra of all left-invariant 
vector fields on Q. Since a left-invariant metric on Q is equivalent to a scalar 
product on g, the set of all such metrics can be identified with the set S+ 
of symmetric positive-definite n x n matrices. <S+ is an open convex subset 
of R'H7^1)/2. For each left-invariant metric g on Q, the Ricci flow may thus 
be regarded as a path t \-^ g(t) £ <S+. 

Now consider a 3-dimensional unimodular simply-connected Lie group 
<?, and let g,h G S^ be arbitrary left-invariant metrics. It is impractical 
in general to study the system of six ODE which results when we wish to 



882 Dan Knopf and Kevin McLeod 

compare the evolution of g and h under the Ricci flow. Hence we analyze 
[g] in two steps: 

2.0.1. The diagonal case. For any left-invariant metric g on Q, there 
is by [7] a left-invariant orthogonal frame field J7 = {Fi} such that the 
structure constants cA defined by 

(4) [Fi.F^c&Ffc 

all vanish except possibly when i ^ j / k. Indeed, if we define X1 by 

(5) 2A
1
=F4,        2A

2
 = C!1,        2A

3
 = C?2, 

we can arrange that A1 < A2 < A3 G {-1,0,1}. We call a frame field with 
these properties a Milnor frame for g. The signature of (A*) is characteristic 
of the Lie algebra g (hence of the unique simply-connected Lie group Q 
associated to that algebra) according to Table 2. 

(-,-,-)   (+,+,+) aisSU(2). 

(-,-,0)     (0,+,+) £isIsom(E2). 

(-.-+)   (->+>+) £isSL(2,M). 

(-,0,0)     (0,0,+) Q is the Heisenberg group. 

(-,o,+) £isIsom(Ei). 

(0,0,0) g is M e M e R. 

Table 2:    Signatures of 3-dimensional unimodular simply-connected Lie 
groups. 

If J7 is a Milnor frame for g, then Re (Fi, Fj) = 0 whenever i / j. This 
follows easily from the observation that (R (i^, Fi)Fj,Fk) — 0 for all k and 
any i ^ j. In a Milnor frame, therefore, we may regard g and Re as diagonal 
matrices and the Ricci flow as a system of three ODE. 

Any Milnor frame J7 for g determines a 3-dimensional submanifold 
Vjr c S^ consisting of all metrics for which it is a Milnor frame, that 
is to say, all metrics diagonal with respect to J7. This submanifold is not 
canonically associated to p, as the example of Euclidean geometry clearly 
shows. Nonetheless, it will be useful to begin our analysis of [g] by studying 

(6) [gy = [g}nVT. 
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2.0.2. The general case. In general, there may not exist a frame T which 
is simultaneously a Milnor frame for arbitrary metrics g,h e S^. We can, 
however, use basic linear algebra to overcome this difficulty. We recall that 
gl (fl) — gl (3,1R) and begin with some notational conventions. 

• If ft e gl (3, M) is regarded as a basis /? = (Fi, F2, F3), then each V G 0 
defines coordinate functions Vp — (Vo) by V = /3Vp = FiVL 

• If A G gl (3, R) is regarded as a change of basis by right multiplication 
a = PA, then Va = A^Vp. 

• A linear transformation A G gl(g) defines a matrix A^ by AV = 
/3A^V^; under a change of basis, this becomes Aa = A~1KpA. 

• A scalar product h defines a matrix hp G 8% by h (V, W) = VprhpWp\ 
under a change of basis, this becomes ha = AtrhpA. 

• We may write the bracket relations in the form [/3] = /3<7£, where 

(7) [I3} = ([F2,F3}, [Fa.Fi], [Fi,F2]) 

and cr^ is the matrix of structure constants 

/ 1   1   1 \ 
' c23  c31  c12 x 

(8) <T0 ,2 c23  u31  u12 

\ C23  c31  c12 / 

Under a change of basis, this becomes aa = (detA) • A 1ap (A 1) r, 

To complete our analysis, therefore, it is enough to know how to trans- 
form Milnor bases in a given geometry: 

Algorithm 2.1. Let g — g (0), h = h (0) be two scalar products on a Lie 
algebra g. By the Milnor construction, there is a basis /? such that gp and 
dp are diagonal, and a basis a such that ha and <ja are diagonal. Compute 
A depending only on Q and g (0), h (0) such that a = f3A, and let B = A-1. 
Then compute the evolution of ha and compare gp (t) with hp (t) for any 
£ > 0 using the identity 

(9) hp(t) = Btrha(t)B. 
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2.1. The Lie group M3. 

The Ricci flow is trivial and [g] is O-dimensional for any g in this 6- 
dimensional family of metrics having the geometry of E3. 

2.2. nil-geometry. 

2.2.1. The class [g]^ for a nil-geometry metric g. Consider (G,g), 
where Q is the Heisenberg group, {Fi} is a Milnor frame for g with dual 
forms {c</}, and the metric is 

(10) g = Au1 <g> u1 + Bu2 (g) u2 + Cu3 <g> a;3. 

We may take A1 = — 1 and A2 = A3 = 0. Then the sectional curvatures are 

(11) K(F2AF3) = -3^,    K(F3AF1) = ^d,    K(F1AF2) = ^, 

and the Ricci tensor is 

A2 A A 
(12) Re = 2-— CJ

1
 ® u1 - 2— UJ

2
 ® u2 - 2— cu3 ® cu3. 

BG G -B 

Hence if we put AQ = A(ti), BQ = B (0), and Co = C (0), the Ricci flow is 
equivalent to the system 

d A        *
A2 d r,     A d „     A 

(13)        JtA = -*BC'        JtB = ic'        5c-4l- 

Noting that ^ (4-B) = ^ {B/C) = 0, we introduce positive constants 
$, tp denoting the conserved quantities 

(14) >1B-$ = AO50        and        ^ = *==^. 
O Go 

We begin by computing and solving 

dt \B*J \B2J 

to get 
A _        Co/So 
B2      12t + BoCo/Ao' 
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This lets us solve 

-A = -4* ^_J A = -m + BQCo/AQ
A> 

obtaining 

(15a) A = ^/350
1/3C0

1/3 (12t + BQCOMO)-
1
/
3 

(15b) B = | = 4/3B0
2/3C0-1/3 (12* + 5oCoMo)1/3 

(15c) C = | = 4/3
JB0-1/3C0

2/3 (12* + B0Co/Ao)1/3. 

Notice that any compact quotient of Q becomes almost flat with |Rm| ^ t 
Vol - t1/6, and diam - t1/6. 

Now if 

(16) g = ^o;1 <8) a;1 + Ba;2 ® a;2 + Cu3 ® a;3 

is another metric in PJF, then 

|2      M--AV     fB-B\2     fC-Cx2 

where 

A - A ^       AllzBl,zcl/3 (I2t + ffpCp/A)A1/3 ^/3^/3C0
1/3 

^4 ^fsJ/s^/a^^ + SoCoMo;     "*'     ^/3B0
1/3C0

1/3 

B - B     .     A)I%BTC-XI% (I2t + BoCo/Ao \1/3     1 _ iy3Bn
2/3C-1/3 

=    _ ^/3^0
2/3C0-1/3 fm + B0Co/Ao 

Al/3B2
n
/3C-1/3\^ + BoCo/A0 

B A^B^C^3 V12* + DoCoMo ; 4/V3C0-1/3 

C-C ;=       4/3g^1/3c;/3 /12* + .BoCoMo\1/3 4/35o1/3(7;/3 

^       vi;/350-i/3c0
2/3V 12*+DoCoMo J  ^   ^So-^c;/8" 

Lemma 2.2. ^ G [5]^ iff for an arbitrary positive scaling parameter A, 

A) = —,        i?Q = ABQ,        Co = ACQ. 

Proof. Sufficiency is easily checked. To show necessity, choose AQ > 0 arbi- 
trarily and define A by 

^0 
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Then g G [gr]'^ only if 

A/A-+1 =» B0Co = X2BoCo 

C/C-+1 => J5oCg = ASoCg. 

Solving these equations for BQ/BQ gives 

A2Co = ^o =  C0
2 

Co        -BQ      XCQ ' 

which implies CQ/CQ = A and hence BQ/BQ = CQ/ (ACQ) = A. □ 

The intuition here is that letting A -> oo corresponds to letting t -> oo in 
the Ricci flow. In this sense, g represents g translated in time. This quasi- 
convergence behavior is analogous to what was observed for solv-Gowdy 
metrics in [6], and illustrates a general principle: 

Remark 2.3. Let (.Mn,g) be a solution to the Ricci flow for 0 < t < oo 
such that |Rc| —>► 0 uniformly as t —> oo. For u > 0, let g denote the solution 
9M=g^t + u). Then[g} = [g}. 

Proof. For any P G Mn and any locally nonzero vector field V near P, 
consider 

For any e > 0, there is t£ > 0 independent of P, V such that when t > t£, 
we have 

— \ogg(V,V)(P,t + T) <2|Rc|(P,t + r) < - 

and thus 

llogsCVjFKP.t + uJ-logsCV.lOCP.t)!^ [U-dT = e. 
JO    u 

This implies 

e"^ (V, V) (P, t)<g (V, V) (P, t) < eeg {V, V) (P, t), 

whence taking the supremum over all V such that g (V, V) (P, t) = 1 shows 

\g-g\g(Pyt)<C(es-l), 
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where C is a constant depending only on the dimension n. □ 

Notice that it is easy to recover u from A using just the scalar curvature. 
Indeed, setting R (P, t) — R (P, t) gives formally 

u(X) 
A3 - 1 BQCQ 

12      AQ 

The fact that this formula admits solutions u < 0 illustrates that scaling 
by A < 1 amounts to translating a solution backward in time. How far this 
can be done is of course a function of the initial scalar curvature R (0) = 
—2AQ/BQCQ. 

2.2.2. The class [g] for a nil-geometry metric g.   Let f3 = (F^F^^Fs) 

( -2 \ 

0 . If A induces the and hp = (hij) be given; we assume ap — 

change of basis /3 t-t a = (3A and B == A~l, then 

-^n       B11B21    BnBsi \ 

B11B21      B21       S21-B31 (det B)'(Ta = BcrpBtr = -2 

\ -Sii^si   B21B31      BS1     ) 

This is diagonal iff B11B21 = BnB^i — B21B31 = 0. So (up to a permuta- 
tion) we may suppose that 

B = a   b 

c   d ) \ 

and A = 
(ad — be) e 

( ad — be   eg — df    bf — ag > 

de —be 

\ —ce ae      ) 

Imposing the requirement that /ia be diagonal yields the underdetermined 
system 

0 — (c5 — ^/) ^11 + rfe/ii2 — ce/iis 

0 = (6/ — ag) /in — behyi + ae/113 

0 = e (2M/ — adg — 6cg) hyi + e (2acg — adf — bef) h^ 

+ e2 (ad + be) /i23 + (bf — ag) (eg — df) hn — bde2h22 - ace2hss. 
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Recalling that 
hn > 0    and    /iii/i22 — ^12 > 0 

because h is positive definite, we observe that a solution is given by 

\ /   JL     hn his 
/in hu 

(17) B = 

V 

hiih23—hi2hi3 
hiih22—h\2 

1 

Notice that det B — 1 and && = ap, where 

/    1         hi2 hi2h23 — hl3h22      1 
^11 ^11/122—^12 

(18) 
^11^22—^-12 

V / 

(20) ha — A^hnA = 

\ 

Bo 

\ Co J 

To simplify the notation, let Hn > 0 denote the determinant of the upper 
left n x n submatrix of hp: 

(19a) Hi = /in 

(19b) #2 = hnh22 - hl2 

(19c) H3 == huh22h33 + 2/li2/ll3^23 - ^11^23 _ ^22^3 " ^33^12- 

Then we can write 

/ Hi \       f Ao 

H2/H! 

H3/H2 J 

so that the solution ha (t) corresponds to 

(21a) A(t) = Hl^H^3 (I2t + Hz/Hiy1'3 

(21b) B (t) = H-1/3H2H~1/3 (m + Hz/Hlfl3 

(21c) C it) = HllzH^Hl13 (12* + H3/Hl)1/3 . 

This lets us write hp (t) = Btr ha (t) B in the form 

!m.A ^A + B h1^A+h11h2^hi2hi^B 

hi 

(22) 

his   A      huhta   A   ,    hiife23-fei2fei3»      fti3   /I    1    (^11^23-/112/113)   ft   ,   /^ 
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Theorem 2.4.  The quasi-convergence class [g] of an arbitrary m\-metric g 
is exactly a 3 -parameter family. 

Proof. Without loss of generality, we may assume that with respect to a 
Milnor frame, g is represented by a diagonal matrix corresponding to the 
initial data (AQ, BQ,CO). Then h G [g] if and only if every term converges to 
0 in the sum 

^-^+&±£^ 
( J|M + ft"**'-^")' B+c-cy    (T^AJ 

+ ^ ^ — + 2 
C2 AB 

2 
fhiAjl] (hl2hia  A   |   ftiifc23-fci2fei3 KV 

+ 2^AC^ + 2- BC 

To see that [g] is at least 3-dimensional, let A > 0 and ^, v G E be given 
and put 

If 

^23 = ^,    ftM = ABo + ^l    ft33 = ACo+^"/ill4>- 

then jffi = AQ/A, ^2 = AQSQ, and i?3 = AAO^OCQ. Therefore /i(0) is 
positive definite, and A/A.—t 1, B/B —> 1, and C/C —> 1. Because /iii/i23 = 
^12^13, it follows easily that |/i — ^|   —Y 0. 

To see that [g] is at most 3-dimensional, suppose h G [5]. Then clearly 
^11^23 = huhiz, and we must have 

4 n-VSrrl/a .2/3^1/3^1/3 
1 —  lim  LI —      ^1    -"3 _  ^0    o0    c0 

t^oo A >|2/3 r>l/3rl/3 .2/3 DI/3^1/3 

and 

and 

1      g   gr173^^173   ^^V73 

t^ooB A V31,2/3^-1/3 4l/3B2/3r-l/3 

t->™C        4l/3R-l/3r2/3 .l/So-l/S^/S- 
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As in the diagonal case, it follows that AQBQ = AQBQ and AQCQ = AQCQ. 

Thus if hn and any two of /112, ^13, /i23 are prescribed, the remaining hij are 
determined. D 

2.3. The Lie group Isom(E2). 

2.3.1. The class [g]^ for an Isom (E2)-metric g.    Consider (G,g)i where 

Q = Isom (E2), {Fi} is a Milnor frame with dual forms {k/}, and the metric 
once again is written as 

(23) g = AOJ
1
 ® u1 + BLJ

2
 ® u2 + Cu3 ® UJ

3
. 

We may take A1 = A2 = — 1 and A3 = 0. Then the sectional curvatures are 

(A + B)2 - 4:A2 

ABC 
(A + B)2 - AB2 

ABC 
(A - B)2 

(24a) K (F2 A Fs) = 

(24b) K(F3AFi) = 

(24c) K(FiAF2)=     ABC    , 

and the Ricci flow is equivalent to the system 

dA     AB
2-A2      d„     AA

2-B2       d„     AA-B)2 

with A) = i4(0), Bo 4= 5(0), and Co = (7(0). Clearly, the geometry 
is flat (and the Ricci flow is trivial) iff A = B. Noting that ~ (AB) = 
^ (C (A + i?)) = 0, we denote these conserved quantities by 

(26) AB = $ = ^o^o        and       C (A + B) = * 4= Co (Ao + So) • 

We can get enough qualitative information to describe the class [g]^ by 
setting p = B/A and considering the simplified system 

(27) ll/, = 8-7^' ^7(:7-4- 

where po =" p (0) and CQ are positive. 

Lemma 2.5. Ast -± oo; p converges to 1 and C converges to some C^ > 0. 
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Proof. Since every point on the ray p = l,C>0isa fixed point, we may 
assume that po 7^ 1> hence that p ^ 1 for all time by uniqueness of solutions 
to ODE. Because dp/dt >0if0<p<l and dp/dt < 0 if 1 < p, it follows 
that p is bounded and monotone, hence approaches a limit p^ satisfying 
either po < p^ < 1 or 1 < p^ < po- Now since p is strictly monotone, we 
may regard C as a function of p; then we have 

— logC= — ——, 
dp 2p 1 + p 

which lets us conclude that lim^oo C (t) exists, because 

—75 = /       ^~T^— d^ "^ loS T^ loS 7"-;  Co Jpo     2pl + p 1 + Poo 1 + Po 

It follows that p^ = 1: if not, there would be some e > 0 such that dC/dt > 
e for all time, an evident contradiction. □ 

This observation proves that 

lim A = lim B = \/$ 
£—>-oo t—>oo 

and 

t-»-oo 2 

Corollary 2.6. // ^ is an Isom (E2) metric, then [g]^ is exactly a 1- 
parameter family. 

Proof. Let (AQ^BQ^CQ) be given and let g correspond to the initial data 
(AQ,BO,CO), noting that g G [g]^ iff A/A, B/B, and C/C all converge to 
1. Choose AQ > 0 arbitrarily. Then A/A -> 1 and B/B -> 1 iff 

And C/C -> 1 iff 

-       y/Ao/Bo + y/Bo/Ao        AQ/VQ + BO/V®^       AQ + BQ   n 

D 
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In spite of the existence of nontrivial quasi-convergence classes, it is 
worth noting that the Ricci flow of Isom (E2) metrics actually does converge: 
the metric becomes asymptotically flat, and the volume of any compact 
quotient increases monotonically to a finite limit. 

2.3.2. The class [g] for an Isom (E2)-metric g.   Let /? = (.Fi, F2, Fs) and 

hp — (hij) be given; we assume crp = —2 

V 
change of basis /? *->• a = f3A and B = A~1

) then 

If A induces the 

0/ 

detB 

-2 

/       S^ + ^ BlljB21 + JB12JB22   511B31 + ^12^32 \ 

-CTn- = B11B2I + B12B22 B21 + ^22 B21B31 + B22B32 

\ BnBsi + B12B32   B21B31 + B22B32 B31 + B32 

So we seek matrices of the form 

I    a     b    c \ 1   a    —b     bd — ac   \ 

J A 1 

B =      —bad and    A = —z—TTTT-      b     a     —ad — be 
(or + bz) 

V' 1/ V a2 + &2   / 
Asking that ^Q; be diagonal gives the system 

0 = a (ahi2 - bhn) + b (a/i22 - bhu) 

0 = (a/in + 6/112) (6d — ac) - (a/112 + ^22) (ad + be) 

+ (a/113 + bh2s) (a2 + 62) 

0 = (a/112 — fe/in) (6d — ac) - (a/i22 — 6^12) (ad + be) 

+ (a/i23 - 6^13) («2 + b2) . 

Define 

(28) w = < 

if hi2 = 0 

fcll— ^22 + V (fell— ^22)   +4/l^2        -r  , /   ^ 

noting that we always have 

hi2 (u2 + (h22 - ^11) w - ^12) = 0- 
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(The fact that a; may not be a continuous function of hu will not be an 
issue.) In case hu ^ 0, let 

/ 

A = 

u -hu       \ 

h\2 UJ 

1/ 

and notice that the change of basis ft i-> ft A transforms hp — (hij) into 

f hij ), where 

hn = u hn + 2/i12tc; + /i12^22 > 0 

^22 = Cc;2/l22 - 2/1^2^ + ^12^11 > 0 

hu = ^^13 + ^12^23 

^23 — ^^23 — ^12^13- 

So in any case we can define 

uhis + ^12^23 
(29a) 

(29b) 

</> = 
u2hii + 2h\2uj + h\(1h22 

ujh23 — huhis 

w2h22 — 2h\2uj + h\2hii 

and obtain a suitable change of basis by setting 

^     u      hi2    (f) ^ 

(30) B=      -hu     u     il>      - 

\. "   1 / 

Indeed, we have aa = d^ and 

(    OJ     —hu     hi2^ — wcj)   ^ 

^12      c*;       -hi2(t> - vijj      , 

V ^ + ^12       / 

and   find   there   are   Ao,Bo,Co    >    0   such   that   ha    =    A^hpA 

Ao \ 

(31) A = 
UJ- + hl 12 

Bo (It will not be necessary to display AQ^BQ^CQ in the 

Co J 
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general case.) We compute that hp (£) = BtT ha (t) B is given by 

(32) hp = 

/   u2A + hl2B     uhuiA-B)     uj<f>A - hui/tB  \ 

uh12 (A - B)     h2
12A + u2B     h^A + uifiB 

\ u4>A - huipB   hncpA + utpB   <t>2A + ip2B + C ) 

Theorem 2.7.  The quasi-convergence class [g] of an arbitrary Isom(E2)- 
metric g is exactly 2-dimensional. 

Proof. Without loss of generality, we may assume that with respect to a 
frame field for which all structure constants vanish except c^ = c^ = 
—2, g is represented by a diagonal matrix corresponding to the initial data 
(A), So, Co). Then 

|2_ {^A + h^B-Af  |   {h2
2A + o:2B-By 

'      5I<? ~ A2 B2 

+ (<t>2A + ip2B + C-Cy 

c2 

+ 2(a;/M2(^-g))2 + 2(^A-hi2iSf + 2 (hl2(f>A + uiiBf 
AB AC BC 

To see that [g] is at least 2-dimensional, let h\\ > 0 and h\2 be arbitrary 
and take 

AQBQ + h\2 
h22 = his = 0,        /123 = 0, 

in 

noting that 4> = tf) = 0. Then compute 

.       u>2hii + hl2 (h22 + 2w)                uj2h22 + hl2{hii-2uj) 
Ao =  r^ "TT^ )     "0 =  7~^ .o s2 '     ^0 = ^33, 

(u2 + h2
2y 2  \2 

(^2 + ^2) 

and set /133 = Co (^4o + -Bo) / Mo + Bo).   Since lim^oo^i = lim^ooS = 

y/AoBo and linii^ooC = % (V B? + VM)> ^ follows from our analysis of 

the diagonal case that h G [g] iff 

(^2 + /i22)
2A£o = A)£o. 



= 4)£o + -^  , I    .„   2 — = AoBo. 
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But since hiih22 = AQBQ + h^, expanding and collecting terms shows that 

f 2 , u2 \2 A „       {co2hn + hl2(h22 + 2w))(u2h22 + hl2(hn-2(jj)) 
(u  + h12)  AQBQ =  2  

(a;2 + h2
12) 

h\2 (w2 + (^22 - /ill) ^ - ^12)' 

To see that [g] is at most 2-dimensional, we first assert that h G [g] only 
if /i13 = ^23 = 0. Indeed, if h G [p], then </>,?/> satisfy the system 

0 = ucj) — huip, 0 — hi2(j) + CJ^- 

Because this has only the trivial solution /113 = /123 = 0 when hi2 = 0, we 
may assume /ii2 7^ 0. Then since 

0 = a; (hi2(j) + uip) - hu (ucj) - huip) = (u2 + /I12) ^J 

we have ip = 0 and thus (/) = 0. It follows that 

his = T—^23 = —T—7—^13) 
^12 AI12 Ali2 

whence we get his = 0 and then /123 = 0, which proves the assertion. Then 
the computations above show that ^33 is determined by ^11,^227^12) and 
the conservation law CQ (AQ + BQ) = Co (AQ + BQ).   NOW if the remaining 

relation (u2 + h^)  AQBQ = AQBQ imposed on /iii,/i22, ^12 were vacuous, 
the restriction hu = 0 would make the diagonal equivalence class [g]^ a 
2-parameter family. Since this is false, [g] is at most 2-dimensional. □ 

2.4. solv-geometry. 

2.4.1. The class [g]^ for a solv-geometry metric g.   Consider (Gig), 

where Q = Isom(E];) (the group of rigid motions of Minkowski 2-space), 
{Fi} is a Milnor frame with dual forms {k/}, and the metric is 

(33) g = Au1 <g) a;1 + Boo2 ® UJ
2
 + Co;3 ® CJ

3
, 

with A1 = — 1, A2 = 0, and A3 = 1. The sectional curvatures are 

{A - C)2 - AA2 

(34a) K (F2 A Fs) 

(34b) K(FsAFi) 

ABC 
(A + C)2 

ABC 

(34c) K(FiAF2)={-A~C)2~4C2 

ABC 
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IfAo = A (0), B0 = B (0), and CQ = C (0), then the Ricci flow is equivalent 
to the system 

(35) dA-lC2-A2      dB- i^ + C)2       dC-lA2-C2 

Observing that ^ {AC) = j^{B(C - A)) — 0, we denote these conserved 
quantities by 

(36) ,4C = $ = ^o^o    and    B (C - A) = * = B0 (CQ - AQ) . 

Now put p = A/C and consider the simplified system 

If ^.Q — Co? then ^ = 0, p = 1, and S grows linearly with time. If not, then 
by arguing as in the previous section, we see that p is strictly monotone and 
approaches a limit poo satisfying either po < Poo < 1 or 1 < p^ < po. Since 

/«^x d ,     „       1 1 + p 
(38) *IogS = VW' 

the condition poo 7^ 1 is incompatible with the observation that B —> +00. 
It follows easily that A, C -> \/$. 

Proposition 2.8.  [p]^ i5 exactly a 2-parameter family. 

Proof. Let g £ Vjr correspond to the initial data (AQ,BQ,CQ). Choose AQ 

and BQ arbitrarily. Then clearly, A/A -* 1 and C/C —>• 1 iff $ = $, namely 
iff 

^     A) Co 

^0 

Then de I'Hopital shows that 

B AC(A + C)2 

lira —: = lim -=-= r = 1. 
t^B     t-+oo AC(A + C)2 

a 

It is perhaps worth relating this result to that obtained in [6]. 
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Remark 2.9. If g is a solv-Gowdy metric, the 1-parameter family of locally 

homogeneous solv-Gowdy metrics in its quasi-convergence equivalence class 
corresponds to fixing AQ = \/¥ and letting BQ vary. 

Proof. Suppose g is a homogeneous solv-Gowdy metric, written as 

(39) g = e2L d8 ® d6 + eF+w dx ® dx + eF-w dy ® dy 

in coordinates (9,x,y) on Q « R3. A Milnor frame for g is then 

ox dy 

ax oy 

where Z = dW/ds is positive and constant in space.  Indeed, it is easy to 

check that [Fi,F2] = 2F3, [Jb,^] - -2Fi, [^3,^1] = 0, and 

1 £v 

5 = 2eF u;1 ® CJ
1
 + —r CJ

2
 ® a;2 + 2eF a;3 ® a;3. 

Zz 

So for homogeneous solv-Gowdy metrics, we have ^4 = C and thus $ = 4e2jP 

and * = 0. D 

2.4.2. The class [g] for a solv-geometry metric g.   Let /3 = (Fi, F2, i7^) 

(-2      \ 

and /i^ = (hij) be given; we assume cr^ — 

change of basis /3 i->> a = ^^4 and f? = A-1, then 

. If A induces the 

detS 
-07Y = 

/ ^13 _ ^11 ^13^23 - B11B21 B13B33 — B11B31   \ 

B1SB23 - B11B21 S23 - Bll ^23^33 - B21B31 

\ B13B33 - BnBsi B23B33 — B21B31 B33 — B3l ) 

So we seek matrices of the form 

B = 

/ a    b    c  > 

\c / W 
and    A = 

1 

(ap — ce) d 

^   dp     c/ - bg    -cd \ 

ag — ce 

\ -de   be — af     ad   / 
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subject to the constraints d ^ 0 and ag ^ ce but ae = eg.  Imposing the 
requirement that ha be diagonal yields the system 

0 = ae — eg 

0 = (ghn - ehis) (cf - bg) + (ghu - e/i23) (ag - ce) 

+ (ghn - ehss) (be - af) 

0 = (ahis - chn) g + (c^ia - a/133) e 

0 = (ahis - chn) (cf - bg) + (a/i23 - chu) (ag - ce) 

+ (ahss - chis) (be - af). 

Observe that 

and define 

(40) 

0<h{F3-F1,F3- Fx) - hn + h33 - 2h13 

hu + h33 + y/(hii + h33f - 4hl3 
u = 

noting that ui solves UJ
2
 - (hn + h33) CJ + hl3 = 0 and obeys the inequality 

(41) 

If 

A = OJ
Z
 - hio > 0. 13 

/ UJ his \ 

then the change of basis /? H-> fiA transforms hp — (hij) into (hij), where 

hn = uj2hii — 2a;/ii3 + ^13^33 > 0 

/133 = u2hss - 2ouhl3 + ^/iii > 0 

hu = (whi2 — hish2s) A 

^23 = (^^23 - ^13^12) A. 

Hence we may define 

(42a) 

(42b) 

^ hi2 _      (ujhi2 - hish2s) A 

hn      u)2hii - 2ujhl3 + h^hss 

(ujh2s — hishu) A 

^33        ^33 - 2vhl3 + /i^fcn 
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Then a straightforward computation shows that taking 

/   u;     cj)   his ^ 

(43) B = 1 

\ his   ip     u   ) 

gives a suitable change of basis 

'     UJ      iphis — ujcj)   —his \ 

(44) A=A 
UJ 

2 h2 
13 

\  -hu    0/113 - W7        W      / 

Indeed, cra = cr^ and ha = A^hpA = 

( M 

\ 

Bo 

\ 

Co J 

, where 

(45a) 

(45b) 

Ao = 
UJ (/if 1 - 2h\z + hii/iss) + /ifs (^33 -/Hi) 

A2 

W (/l§3 - 2^3 + /H1/133) + 7*13 (^11 - ^33) 
Co=  ^2 . 

It is not useful to compute So explicitly. Indeed, our analysis of the diagonal 
case proves that A (t) and C (t) converge to y/AoCo > 0; in the special case 
his = 0, we have V^oCo\hl3=0 = Vhiihss/v2- Since hp (t) = Btr ha (t) B 
is 

(46) 

/   uj2A + hl3C      ucfrA + his'i/jC     uhis(A + C)  \ 

hp =      u(j)A + his^C   (t)2A + B + ip2C   hisM + u^C 

\ ojhis(A + C)     hisM + ui/jC      hlsA + oj2C   J 

this observation is enough to analyze its asymptotic behavior. 

Theorem 2.10.  The quasi-convergence class [g] of an arbitrary solv-geo- 
metry metric g is exactly a A-parameter family. 

Proof Without loss of generality, we may assume that with respect to a 
frame field for which all structure constants vanish except c^s = — 2 and 
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cf2 = 2, g is represented by a diagonal matrix corresponding to the initial 
data (AQ^BQ, CQ). Since 

2_ (uj2A + hl3C-A)2     (fA + B + ^C-B)2 

I cf \a A 9 ' iff ^2 ^2 

+ C2 + AB 

+ 2 IC +2 BC 

and A, C —>■ \M0C0, it is clear that h € [5] only if h\z — 0. 
If /113 = 0, then u)2A and uPC both converge to V^n^ss and 

2_ (wU-A)2      ((Wni)2wM+(W»33)2w2C + B-B)5 

(a;2C-C)2  , o((/WM^4)2  , 0((WMw2C)2 

+ ^o + 2^ —rk — + 2 C2 AS BC 

Since B -» 00 and by de I'Hopital, 

,.     B      ,.      (a;2X + a;2C)2>lC 
lun —■ = hm K— = 1, 

<-+oo B     t^oo (A + C)2 u2Aw2C 

it is easy to see that h € [g] if only if his = 0 and /111/133 = A)Co- □ 

2.5. The geometry of SL(2J£). 

2.5.1. The class [gj-p for an SL(2,R)-geometry metric g.   Consider 

(Q>9)i where Q = SL(2,R) , {Fi} is a Milnor frame with dual forms {w1}, 
and the metric is 

(47) g = Au1®^1
+ BUJ

2
®UJ

2
 + C(JJ

3
®UI

3
. 

We may take A1 = — 1 and A2 = A3 = 1. Then the sectional curvatures are 

r,/T,      T,N      (B-C)2 -A(3A + 2B + 2C) 
(48a) K (F2 A Fa) = ^ '- v 7 

(48b) if (F3 A Fi) 

(48c) ^(FiAi^) 

ABC 
[A-(B- C)]2 -4B(B- C) 

ABC 
[A + {B- C)}2 + 4(7 {B - C) 

ABC 
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If we write A) = 4(0), B0 = B(0), and CQ == (7(0), the Ricci flow is 
equivalent to the system 

If BQ — Co, the flow preserves the equality B = C and conserves the 
quantity 

A2B 
(50) $ == -FSr. v    ' A + B 

In this case, A' = -4:A2/B2 < 0 and B' = 8 + AA/B > 8, whence it follows 
easily that -A' /> 0 and B1 = C \ 8 as t -> oo. So B = C - 8t and 

lim A (t) = lim ——-—-^ = \/¥ > 0. 

It would be very useful if there were a conserved quantity in the general 
case. Our inability to find any such quantity forces us to use alternate meth- 

ods in analyzing the quasi-convergence behavior of SL (2, R) metrics. Define 
0+ == {(a, b, c) <E E3 : a > 0, b > 0, c> 0} and R+ = {a 6 R : a > 0}. Con- 
sider a typical cube /C C 0_|_ defined by 

/C (aH<,a*,6*,6*,c*,c*) 

== {(a, 6, c) G (9-|_ : a* < a < a*, &* < & < 6*, c* < c < c*}, 

where a* — a*, &* — &*, and c* — c* are presumed small. 

Lemma 2.11. For any JC C 0+ and any initial data (AQ,BO,CQ) G int/C; 

there are t* > 0 and constants k,K > 0 depending only on K such that for 
all t > £*; 

• A decreases monotonically to AQQ = ^loo (^.QJ-BOJCO) > 0; 

• i? and C ^roif; asymptotically like 8t; and 

• |B - C| < ife" -fct 
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Proof. In considering the system (49a)-(49c), we say that a solution exists as 
long as 0 < A,B,C < oo. Notice that 5 = A(B -C) satisfies Sf = -166/A. 
Since the solution S = 0 is unique, we may assume that BQ > CQ. (The 
arguments for the case Bo < CQ are entirely analogous.) The proof comprises 
five claims. 

Claim 2.12. A solution exists as long as 0 < A < oo; any such solution 
has the property that 

c* + 8t < C < B < b* + ( 8 + 4—J t. 

Noting that B > C for as long as a solution exists, we have 

AB 

and 
'A\       C2-BC-A2-AB ^ 

^)=8 BV ^0' 

which lets us estimate 

(51) ,_4*+^*-»s,+^.+4*,,+4g. 
Claim 2.13. A solution exists at least to some to = to (/C) > 0 with the 
property that A < B + C for all £ > to- Hence a solution exists as long as 
A>0. 

If AQ > BQ + Co, then for as long as A > B + C, we have 

so that A (t) < AQ — 16t < a* — 16t. And for the same times, we have 

(B + C)' = 4 
(A + Cf -B2     {A + Bf - C2 

AC AB a* 

so that B + C > (6* + c*) e32t/a\ Clearly, the inequality A > B + C cannot 
persist, and a solution exists up to some to = to (/C) when A = B + C > 0. 

On the other hand, if A = B + C at any t > 0, then A' = -16 and 
(B + C)' = 32 at *, so immediately A < B + C. 
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Claim 2.14. A solution exists at least to some ti = ti (/C) > io with the 
property that A > B — C for allt > ti such that A > 0. 

If A (to) < B (to) - C (to), then Ar > 0 as long as A < B - C, whence A 
remains positive. But since B > C as long as a solution exists and 

4 16 
(B - c)' = JBC[A

2
 - (B + C)2](B -C) < —(B -C) < -m, 

the inequality A < B — C cannot last. Hence a solution exists at least up 
to some ti = ti (/C) > to when A = B — C > 0. 

On the other hand, if A — B — C at any t > 0, we have A' = 0 and 
(B - C)' = -16 at t, so immediately A > B - C. 

Claim 2.15. For all t > ti, A is monotone decreasing to 

2A(ti)(c + 8t1) 
00-^(i1) + 2(C, + 8ii)>U- 

Hence a solution exists for all time. 

For all t > ti such that a solution exists, we can estimate 

„      „      A(B-C)2-A2 A2 A      A
2 

0>A' = 4^ J- > -4-— > -4- 
5C '-    'Be-    *(c, + 8t)2' 

Integrating this inequality shows that 

A(ti)     A - (c* + 8t)(c* + 8ti)' 

Because the RHS converges to —1/2 (c* + 8ti) as t —> oo, ^4 decreases mono- 
tonically to some ^4oo such that 

. 2A(ti)(c + 8ti) 
00-^(t1) + 2(c* + 8i1) 

>U' 

Claim 2.16. JB and C grow asymptotically like 8t, and there are t*  — 
t* (/C) > ti and k = fc (/C) > 0 such that for t > t*, 

(JB-C)<(S(t*)-C(t*))e-fct. 
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To prove the first statement, recall that c* + 8t < C < B, whence it 
follows from estimate (51) that for t > ti, 

l?'<8 + 4<8 + 4mP<*'*^)6*i4(tl)->8    as    t ^ oo. 
C c* + 8t 

To prove the second, recall that 

A (ti) < (B + C) (ti) < 2 (b* +(& + 4^ h 

and C > c* + 8t. So there is some £* = t* (/C) > ti such that ^4 < C at £*. 
Then for all later times, we have 

(A>-C*)-(Bi + 2BC) 12 
(S-C) -4 — {B-C)<-AtQ{B-C)- 

So for such times, (B — C) < Ke~kt, where k,K depend only on JC.   (In 
fact, it is easy to see that (B — C)' —> —16 {B — C) /AQQ as t —> oo.) D 

Lemma 2.17.  The map fi : 0+ —> Rf defined by 

(52) fi:(ylo^o,Co)^^oo 

i5 homogeneous of degree 1. 

Proof. If A > 0 and we denote a solution to the system (49a )-(49c) by 

th4(A(t),S(t)JC(t))GO+, 

then 

(-(^G)'ABG)'AC(I))€0+ 

is also a solution. Hence it suffices to observe that 

Q (AQ, Bo, Co) - lim A (t) = ^ 
t—too 

while 

Q(AA),ABo,ACo) = lim A^ ( ^ J = A^oo. 
t—>oo \A/ 

D 
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Corollary 2.18. The set fi_1 (1) intersects every ray from the origin in 0+ 
exactly once. 

Proof. Let p be an arbitrary ray, say from 0 G R3 through (AQ, BQ, CQ) G 0+. 
Let uj = ft (AQ, BQ, CQ) > 0. Then by the lemma, 

O (-A0, -Bo, -Co] = 1. 
yu;        a;        u     ) 

So O-1 (1) intersects p at least once. On the other hand, if O (a, 6, c) = 1 for 
some (a, 6, c) G 0+ on p, then ft (Aa, Afr, Ac) = A / 1 for any positive A 7^ 1. 
So fJ"1 (1) intersects p at most once. □ 

Corollary 2.19. The class [g]^ for an SL (2,R) -geometry metric is a 2- 
parameter family. 

Proof. By Claim 2.16 and de PHopital, [g]^ depends only on AOQ. D 

We will next show that [g]^ is a smooth 2-parameter family We shall 
use a theorem of N. Levinson on asymptotically diagonal linear systems. An 
examination of the proof given in [2] allows us to state the result in a form 
adapted to our purposes: 

Theorem 2.20 (The Levinson theorem). Let A and T be continuous 
real-valued matrix functions on a half line to < t < 00. Suppose A = 
diag (Ai,..., An) is diagonal, and T obeys the integrability condition that 
|r(£)| < 7(i) for some 7 G L1([to,oo)). We say an eigenvalue Xj satis- 
fies the dichotomy condition if there exist /3* < (3* : [to, 00) —> R such that 
/3* < 0 and f™ ft* (s) ds = —00 and constants Ki and K2 such that each 
\i {i = 1,... ,n) has one of the following mutually exclusive properties: 

(Dl)    Jt
2 (Ai (£) — Aj (£)) dt < Ki for all intervals [£i,£2] C [to, 00) and 

A (t) < \i it) - Xj (t) < 0* (t) for all t G [to, 00); 

(D2)    /t*
2 (Xi (t) - Xj (t)) dt > K2 for all intervals [ti,t2] C [to, 00). 

Then for each Xj satisfying the dichotomy condition, there is ti G [to, 00) 
depending only on 7, Ki, K2, and n such that system 

V'(t) = (A(t) + T(t))V(t) 
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has a solution Vj defined for ti < t < oo of the form 

Vj (t) = (ej + * (t)) exp /   Xj (s) ds. 
Jtx 

Here ej G W1 is the vector with components Sij, and $ (t) E Mn has the 
property that for every e > 0, there is Te > ti depending only on e, (3*, f3*, 
7, Ki, K2, and n such that supt>Te I* (t)\ < e. 

Our main result on SL (2, M)-metrics is: 

Theorem 2.21. O-1 (a) is a 2-dimensional submanifold of O+ for every 
a>0. 

Proof. The argument consists of three claims: 

Claim 2.22. O is continuous. 

For each t > 0, define a map Q,t : 0+ -» R+ by fit : (-Ao> ^o5 Co) »-> ^4 (i). 
Then for any cube K C O+ and any solution (^4, i?, C) with initial data in 
/C, it follows from Lemma 2.11 that there is k > 0 depending only on JC such 
that for all t2 > h > t* (/C), 

\nt2-ntl\ = 
rt2 

/    A'(t) 
Ju 

dt 

f rt2 
<!    4 

(B - Cf - A' 

BC Jtx 

^2   U 1c h 
dt<       -*& = . 

- '    t2        h     t2 

Hence fit —> O, locally uniformly in 0+, which proves the claim. 

Claim 2.23. Cl is continuously differentiable. 

Consider a solution (A, B,C) with initial data (Ao,Bo,Co) G int/C for 
some JC C 0+. We shall prove that dA/dAo, OA/dBo, and dA/dCo converge 
to finite limits as t —¥ oo uniformly with respect to JC. Let E = B + C and 
F = B - C and define 

(53) P{t) = 

f dA/dAo   dA/dBo   dA/OCo \ 

dE/dAo   dE/dBo   dE/OCo 

\ dF/dAo    dF/dBo    dF/dCo ) 
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Then P satisfies the linear system 

' P'^QP 

P(0) = 

/ 1   0     0   \ 

0   1     1 

\o   1   -1/ 

where it is a straightforward task to compute 

and 

o   -   8A 

Qu = ^(B + C)^-(B-C)2) 

Qi3 = -^(B-C)(A2-(B + C)2) 

921 = WBC 
{B

 
+ c) 042 + {B ' c)2) 

and 

931 = A&C {B " C) (^ + {B + C)2) 
2 

932 = ~AB2C* 

A2BCK J\ v ' J 

= -Ajkr^B2-c2">(A2-(B-c)2) 

Let U = t* (/C) be the time given by Lemma 2.11. Since A(t*) is a 
continuous function of (AQJEQ^CQ) G /C, there are by Claim 2.15 constants 
fci? ^2 > 0 depending only on /C such that 

k1<A<k2 

for all £ > £*. By Claim 2.12, there are fcs,..., fee > 0 depending only on /C 
such that 

fcs + k^t < B < fes + fcgt       and       fes + k^t < C < fes + feet 
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for all t > 0. And by Claim 2.16, there are k7, ks > 0 depending only on K 
such that 

\B - C\ < k7e-
k8t 

for all t > t*. Hence there are ci,..., C4 > 0 depending only on K such that 
the off-diagonal components of Q obey the following estimates for all t>U: 

\Qi2\ < 2B-2C-2 (B + C) (A2 + (B- C)2) 

< 4 (k3 + M)-4 (*5 + ht) (k2 + tfe-2^) < -^ 
V /        C2 + t6 

\Q2i\ < 4A-25-1C-1 (B + C) (A2 + (B- C)2) 

< S&r2 (fca + ^i)-2 (fcs + ket) (k2 + k2e-2ks^ < -iL_ 

IQisI < 2JB-2C-2 \B - C\ (^2 + (B + C)2) < C3e-C4t 

IQ31I < 4^-2S-1C-115 - C\ (A2 + (B + C)2) < c3e-
C4t 

IQ23I < 2^-15-2C-2 |B -C\(B + C) (A2 + (B + C)2) < c3e-
c^ 

IQ32I < 2^-1S-2C-2 \B -C\(B + C) (A2 + (B- C)2) < cse"^. 

We estimate the diagonal components of Q for t > t* as follows: 

^2  8^ 
 75 S Qn <  

(h + ^ty (h + kety 
4fc2 (fc5 + fc6^)2 ^ ^        4 (A* + ^i)2 ife2e-

2*8* 

(k3 + A;4i)4 -        fc! (kz + k4t)4 

16 (fes + k6t)4 < < 4fc2 (fes + fc6^)2       8 

fci (fts + ^O4 ~ ~    (** + ^i)4       ^2' 

(The last  inequality follows from the fact that   (J52 + C2) (B + C)2   > 
4£2C2.) 

Now put T = diag (1, l/t, 1) and W = TP. Consider the system 

(54) W' = (T'T'1 + TQT'1) W = (A + T) W 

defined for t > to, where to > i* is to be determined, 

( Qn \ 

(55) A (t) = diag (Ai (t), A2 (t), A3 («)) = g22 - l/t 

\ Q33 J 
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and 

(56) r(*) = 
/     0       Qut     Q13   \ 

Q2i/t      0      Qas/t 

\ Qsi   Qz2t     o    / 

Notice that Ai behaves like a constant multiple of — 1/t2, A2 behaves like 
— 1/t, and A3 behaves like a negative constant. Choose to > ^2/4 and make 
the following four observations: 

• F obeys the integrability condition of Theorem 2.20 uniformly with 
respect to solutions whose initial values lie in /C. Indeed, it follows 
from the estimates obtained above for \Qij\ (i 7^ j) that there exists 
a positive continuous function 7 € Ll ([£*, 00)) depending only on /C 
and n such that |r (t)\ < 7 (t) for all t > to > t*. 

• The eigenvalue Ai of A obeys the dichotomy condition of Theorem 2.20 
uniformly. Indeed, we deduce from the estimates for Qu that there are 
constants C5, eg > 0 depending only on /C such that 

A2 - Ai > 

A2 - Ai < 

and 

A3 - Ax > 

A3 - Ai < 

4:k2 (fcs + ht)2      1 

(k3 + k4t)4        t 

4 (Jfcg + ket)2 tfe-2kst 

ki {k3 + kAty 

16 (fcs + fcet)4 

fci (fcs + fc4*)4 

4A;2 (fcs + kztf      8 

+ 8fc2 

(fcs + uty 
1 

— < C5 

ce + i2 

8fc2 < C5 

{kz + k4t)
4        k2      (k3 + kit)2 - ce +12     k2' 

Hence both A2 and A3 satisfy property (Dl) if we set 

C5 Kx = K = f 
Jto 

P* (t) = 

C6 + t2 

Ak2 (fcs + htf 

dt < 00 

(fes + hty 
C5__l 

i6 (fes + hty 

h {h + ht)4 

ce + t2 
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• The eigenvalue A2 obeys the dichotomy condition uniformly. Indeed, 
since 

Ai-A2> — 
C5 1 + - 

Cg + t2        t 

Ai satisfies property (D2) with K2 = —K. And because there is cy > 0 
depending only on K. such that 

.       x^    IG^s + M)4     4(A;5 + M)2fc|e-2fc8f  ,  1 ^1 

fci (^3 + kAt)A fci (fca + fc4t) * ~ * 

,       x   z 8^2 (fcs + fceO2      8   i  1        2C5 4 
A3 - A2 < —r :—— H T S 

(fcs + Mr A;2      ^      ce + i2      ^2' 

A3 satisfies property (Dl) with 

Kx = 2K,        P* (t) = -C7, /3* (t) = 
2C5 

C6 + t2        ^2 

• The eigenvalue A3 obeys the dichotomy condition uniformly. Indeed, 
since 

Ai - A3 > 
C5 + —        and        A2 - A3 > —5 + —, 

C6 + t2   '   ^2 '^     '0 CQ + t2      k2 

both Ai and A2 satisfy property (D2) with K2 = —2K. 

Recalling that Ai, A2, and A3 are bounded uniformly with respect to /C, 
we apply Theorem 2.20 to system (54), obtaining a time ti > to depending 
only on /C and vector solutions 

V! (t) = 

V2(t) = 

f(l\ 
0 +0(1) 

/o\ 

\ 

) 

/ 

\ 

exp 

F3(«) = 

//o\ 
0 

vu/ 

+ 0(1) 

+0(1) 

exp 

exp 

Jtl 

Jti 

ds 

ds 

ds 

(exp JiTAi (s)ds ^ 
0 

I       0       / 

0 

0 

voy 
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defined for t>ti. Note that e^i 1^^ s can be estimated by constants de- 
pending only on /C and that everything in sight converges uniformly with 
respect to K. Note also that the set {Vi (t), V2 (t), V3 (t)} is linearly inde- 
pendent. Indeed, suppose akVk (t) = 0 for some constants a1, a2, a3. Then 
as t —> 00, 

a1 = o(l)-a2(o(l))e/A(A2-Al)ds-a3(o(l))e/A(A3-Al)ds. 

By the estimates above for A2 — Ai and A3 — Ai, this is possible only if a1 = 0, 
hence only if 

a2 = o(l)-a3(o(l))e
J"*i(As-Aa)<£8. 

By the estimate for A3 — A2, this is possible only if a2 = 0, hence only if 
a1 = a2 = a3 = 0. Therefore there are constants o^- depending only on 
W (ti) such that WJy (t) = a^Vk (t) for all t > h. Because all a^- can be 
estimated uniformly with respect to /C, we conclude that 9A/9J4OJ dA/dBo, 
and dA/dCo converge to finite limits locally uniformly with respect to initial 
conditions. 

Claim 2.24. VO is never degenerate. 

The fact that Q (Aa, A6, Ac) = XQ, (a, 6, c) for all (a, 6, c) G 0+ and A > 0 
proves Vfi|(ajbjC) (a, 6, c) = fi (a, 6, c) > 0. □ 

As we indicated in the introduction, the computations needed to deter- 
mine the class [g] are formidable. Moreover, we may not be able to apply 
them without a more explicit understanding of the map O. Hence we shall 

not pursue our analysis of SL (2,R) metrics any further here. 

3. The geometries not modeled by a Lie group . 

Denote the upper half-space in W1 by nn = {(x, y) e W1 : x E W1'1, y > 0}, 
and let Conf (Hn) denote the group of all conformal diffeomorphisms of Ti71. 
Let ln be the subgroup of Conf (H71) generated by {TU : u G M71-1} and 
{pv : v > 0}, where TU is the translation 

(57) TU : (x,y) ■-» (x + u,y) 

and pv is the radial dilation 

(58) pv : (x,y) t-> (vx,vy). 
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For U11U2 G Wl~1 and vi,V2 > 0, we readily verify the relations 

Tui7~u2 =: 7*txi+W2 5       PviPv2 ~ Pv\V2'i      Pv^u — ^"vuPvi       [J'uPv)        = ^—u/vPl/v) 

whence it follows that 

(59) F1 = {TUPV : {u,v) £ Un} . 

It is clear that Xn is a minimal transitive subgroup of Conf (%n), because 
the isotropy subgroup 

^.y) ^ {TuPv ^ Z" : (TuPv) (x,y) = (x,y)} 

contains only the identity ropi for all (x,y) G Hn.   (The authors extend 
special thanks to Predric Ancel for suggesting the group Xn.) 

Now let p be an arbitrary scalar product on W1 and define 

(60) g{y,W){x,y) = ^^-,        (x,y)enn,    V, W € T{Xty)H
n. 

Note that g agrees with the usual hyperbolic metric when p is the standard 
inner product, and has the property that each (Tupv) is an isometry: 

((TUA,)* 9) (V, W) (x, y)=g(D (rupv) V, D (Tupv) W) ((Tupv) (x, y)) 

= v2g (V, W) (vx + u, vy) 

If pp = faj), p-1 = (pv) in a basis 0 = (d/dz1,..., fl/a^) for r(cC)2/)H
n 

induced by any local coordinate system z1,... ,zn with dy/dzl = <5;n, we 
can write the Riemannian tensor of g as 

vnn f \ Rijk = -^r{siPjk-6£
jPik) 

and its Ricci tensor as 

Rjk = -(n-l)pnngjk. 

Notice that finding a minimal transitive subgroup of Conf (W1) has not yet 
given us anything essentially new, because g has constant sectional curva- 
ture K = —pnn < 0. (But as we noted in §1, quasi-convergence asks that 
two metrics resemble one another without requiring one to be modified by 
diffeomorphisms.) 
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3.1. The geometry of H3. 

Consider H3 with the homogeneous metric g defined above. We shall re- 
gard the Ricci flow -j^g = —2 Re as an evolution equation for p. We 
may suppose without loss of generality that pp is diagonal to start, say 

Then pp remains diagonal and evolves accord- PP (0) = Bo 

\ 
ing to the system 

d 
(61) 

with solution 

(62) 

Co J 

A 
dtA = A:c> 

A^Ao + ^t, B = Bo + A, 
^o 

dt 
C = 4 

C = Co + At. 

Notice the conserved quantities 

A=        Ao 
B ■ Bo 

AB .  AQBO 
and        -^ = * = -^2-. 

Now suppose q is another scalar product and h is the homogeneous metric 
on H3 given by 

(63) 

if qp = (ftj)) we set 

(64) 

h(V,W)(x,y) = ^P-. 

A = 

1        —211       912923—^13922 

911922-9i2 

912 913—911923 

911922-912 

911 

1 

and    make    the    linear    change    of    coordinates     I  z1    z2    z3  )      = 

(  x1    x2    y ) A (inducing the change of basis a = (3A in the tangent space) 

to obtain 

/ Qi 

Qcc = Q2/Q1 

V 

\ 

Q3/Q2 J 

( M 
Bo 

Co J 
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where Qn > 0 is the determinant of the upper left n x n submatrix of 
(qij). (Compare §2.2.2, and notice that dy/dz1 = 5in and {qp)nn = {qa)nn = 
Q2/Q3') Then the evolution of h by the Ricci flow corresponds to 

(65) 

/A 

V 
B 

\ 

CJ 

( Qi + 4%2^ 
Q3 

2l A-A 
Qi +4 

Ql i 
Q1Q31 

\ 

gf + 4*/ V Q2 

Returning to the basis /3, we compute qp = (^4_1)   QaA-1 to be 

/    JL 3il A HZ. A \ 

(66) 

£12/1 

2^4 ^h-A + B 
Qi** 

912913   /I    1     911923—912913 K? 
"Q^^"1" O2 D 

£13^     £mi3^+^iTO-9i29i3g     ^^4- (911923-912913)   g + C 

\    Wl Wj^ W2 V]^ V2 / 

Theorem 3.1.  T/ie quasi-convergence class [g] of an arbitrary metric g hav- 
ing the geometry ofW3 is exactly a 1-parameter family. 

Proof In the notation adopted above, we have h G [g] if and only iff every 
term in the sum 

\h-g\2
a = 

(A-Af | (ip+^y 
A2 B2 

1923—912913} 

+ 
(j^A + (^syia)2B + C - C)2       (ff^)2 

+ 2- 
C2 AB 

2 

+ 2 
^213   /A f 912913   /<    I    <m<?23-gl29l3KY 

AC '    " BC 
= Ti + Ta + T3 + 2T4 + 2T5 + 2r6 

converges to 0 as t —)■ oo. 
To see that [g] is at least 1-dimensional, choose any A > 0 and verify- 

that \h — gfl —> 0 when 

/ XAQ/CO \ 

XBo/Co 

\ A; 
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To see that [g] is at most 1-dimensional, suppose \h — g\   —> 0. Since 

T         ^^    -^   ( 
AOBQQIJ 

and 

T5=      AC      ^9l3, 
(CoQ2

2\ 

we have qu = qiz = 0. Then since 

T       I923 * J      , n2 (CoQ2
2\ 

KBoQV' 

we have 523 = 0 and can thus compute 

So any choice of a single diagonal element qu determines the remaining two. 
□ 

3.2. The geometry of H2 x E1. 

Let 

(67) X = R x H2 = {(w,x,y) :w€R, (x,y) € U2} 

and 

(68) Q = Isom(M) x X2= {{<JS)Tupv) : s G M, (u,v) € U2} , 

where as is the translation as (w) = w + s. Then G acts transitively on X 
by 

(crsiTupv) : (w,x,y) 1-^ (a5 (w), (rwpv) (x,y)) = (tu + 5,ra + u,vy). 

To define the 6-parameter family of homogeneous metrics having the ge- 
ometry of H2 x E1, it is easiest to use local coordinates. Let f3 = 
(d/dz1,d/dz2,d/dz3)   be  a basis for T(WiXjy)X  induced by  coordinates 
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z1, z2, z3. Let p be an arbitrary scalar product on R3, say pp = (pij), p^1 = 

(p^), and define ^ at the point (w,x,y) by 

(69) 

Since 

Pu/y  P22/y2  P23/y2 

\ Pis/j/    P23/y2    P33/2/2  / 

D(as,rupv) = 

(1 

V 

\ 

W 
it is easily checked that each element of Q is an isometry. Assuming as before 
that dy/dz1 = ^3, we find that the sectional curvatures of g are 

(70a) K 

(70b) K 

(70c) K 

dzl dz2 

d d 
dz1 dz3 

d d 
dz2 dz3 

and its Ricci tensor at the point (w,x,y) is 

P12 
p33 

4 P11P22 - P12 

P12 P22 

4 P11P33 - P13 

P12 P11 

P22P33   - P23 

P22 

4 P22P33 - P23 

( 

Rc = 

(71) 

P?2 
(^V'-ZV3)^     {P12P2S-P 13P22)/y\ p22pS3 _ (p23)2 

(P13P23 - P1 V3) /y   (P1 V3 - (P13)2) /y2   (P12P13 -P11?23) Iv 
(p12p23 _ p13p22) /y       (p12p13 _ pllp23) /p2       ^Up22 _ ^12)^ tfj 

+ P22 
/o 

V 

\ 

^23 

33 n23 

P22) 

Notice that for this model, taking a minimal subgroup Q < Isom (R) x 
Conf (Ji2) has allowed us to study more than just the usual product metrics. 

Now suppose q is another scalar product, say qp = (qij) , #7    = {qlJ)j 
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and h is the homogeneous metric defined at (w,x,y) by 

^   gii     qu/y    qis/y ^ 

(72) h =     qu/y  q22/y2   923/y2 

\ 913/2/  923/y2   933 /y2 J 

As before, we shall study [g] by letting p and 9 evolve by the Ricci flow; 
we may assume without loss of generality that pp is diagonal at t = 0, say 

Then pp remains diagonal and evolves by the P0(O) Bo 

V C0 J 
system 

™     £•-«.   ^=4 ±C = 2 
dt 

with solution 

(74)                A = AQ,        B = B0 + 2^ C = Co + 2t 

Trivially, we have the conserved quantities 

A = AQ        and        ~ = 
C =-!• 

Let A be given by equation (64) and make a linear change of coordinates 
to induce the change of basis a = ft A in T(WtXiy)X. Then qp becomes 

<?a = 

f Qi 

V 
Q2/Q1 

\ 

Q3/Q2 J 

( Ao 

V 
Bo 

\ 

Co J 

where Qn > 0 is the determinant of the upper left n x n submatrix of 
q/3 ■= (ftj)- Hence the evolution of /i by the Ricci flow corresponds to 

(75) 

f A 

\ 

B 

\ 

CJ 

( Qi 

\ 

Ql 4- 9    ^2    + 
Qi +zQiQ3t 

\ 

S+2i/ 
Returning to the basis /3, we calculate that qp = (A  1) r qaA"1 is the matrix 
given in (66). 
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Theorem 3.2.  The quasi-convergence class [g] of an arbitrary metric g hav- 
ing the geometry ofW2 x E1 is exactly a 3 -parameter family. 

Proof Note that h G [g] if and only iff every term in the sum 

\h - g\2g = T1+T2 + TS + 2T4 + 2T5 + 2T6 

converges to 0 as t -> oo, where Ti,... ^TQ are defined in Theorem 3.1. 

To see that [g] is at most 3-dimensional, suppose h G [g] and note that 
T3, T4, and T5 all converge to 0 for any choice of initial data.  Since Ti —>» 

(* - 0' we must have 

(a) 

Then since T2 

(b) 

And since TQ - 

(c) 

\JS&3 ~1) ' we set the relation 

Co 
Q3 

A)£o 

2      Co 

Ql 

(^0923 - qmn)   AoBoQ3 » we have 

912913 
923 Ao 

Thus qu is determined by (a), 923 is determined by (c) once 912 and 913 are 
known, and then 933 is determined by (b) once 922 is known. 

To see that [g] is at least 3-dimensional, let A > 0 and fx, v G M be given 
and take {qij) to be 

/ ^0 

A0 

Ao 

\ 

XCp        _ 
AQBQ "^ Ao + ±J 

Then Qi = ^4o> Q2 = A, and Q3 = A2^40 
150 

1Co, so (g^) is positive definite. 
And the calculations above show clearly that \h — g\g —» 0. □ 
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