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The Nielsen Conjecture for Homeomorphisms asserts that any 
homeomorphism / of a closed manifold is isotopic to a home- 
omorphism realizing the Nielsen number of /, which is a lower 
bound for the number of fixed points among all maps homotopic 
to /. The main theorem of this paper proves this conjecture for 
all orientation preserving homeomorphisms on geometric or Haken 
3-manifolds. It will also be shown that on many manifolds all 
orientation-preserving homeomorphisms are isotopic to fixed point 
free homeomorphisms. 
The proof is based on the understanding of homeomorphisms on 
2-orbifolds and 3-manifolds. Thurston's classification of surface 
homeomorphisms will be generalized to 2-dimensional orbifolds, 
which is used to study fiber preserving homeomorphisms of Seifert 
fiber spaces. Homeomorphisms on most Seifert fiber spaces are in- 
deed isotopic to fiber preserving homeomorphisms, with the excep- 
tion of four manifolds and orientation-reversing homeomorphisms 
on lens spaces or 53. It will also be determined exactly which 
manifolds have a unique Seifert fibration up to isotopy. This in- 
formation will be used to deform a homeomorphism to a certain 
standard map on each piece of the JSJ decomposition, as well as 
on the neighborhood of the decomposition tori, which will make 
it possible to shrink each fixed point class to a single point, and 
remove inessential fixed point classes. 

0. Introduction. 

Consider a map / on a compact polyhedron M. Denote by Fix (/) the set 
of fixed points of /. Two points x,y G Fix (/) are equivalent (or Nielsen 
equivalent) if there is a path 7 from x to y such that 7 and / o 7 are rel 
^7 homotopic.   It can be shown that this is an equivalence relation, so it 
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divides Fix (/) into equivalence classes, called the Nielsen classes. For each 
fixed point class one can define an index. A fixed point class is essential if 
its index is non-zero. The Nielsen number N(f) of / is then defined as the 
number of essential fixed point classes in Fix(/). The important property 
of N(f) is that it is a homotopy invariant of maps. In particular it gives a 
lower bound of the number of fixed points for all maps homotopic to /. One 
is referred to [Jl] for an introduction to the Nielsen fixed point theory. 

It is known that if M is a compact manifold of dimension > 3, then N(f) 
can be realized as the number of fixed points for some map homotopic to /, 
see [Ki, We, Br]. This result is not true for continuous maps on hyperbolic 
surfaces [J2]. For homeomorphisms of manifolds, Nielsen conjectured that 
if / is a surface homeomorphism then the Nielsen number is realized by the 
fixed point number of some homeomorphism isotopic to /. A proof of this 
conjecture was announced by Jiang [J3] and Ivanov [Iv], and given in detail 
by Jiang and Guo in [JG]. The following conjecture of Nielsen remains an 
open problem for manifolds of dimension 3 and 4. 

The Nielsen Conjecture for Homeomorphisms. If M is a closed 
manifold, and f : M —> M is a homeomorphism, then f is isotopic to a 
homeomorphism g whose fixed point number equals N(f). 

This is trivial for 1-manifolds, and the work of Jiang and Guo [JG] proved 
it for 2-manifolds, which uses Thurston's classification of surface homeomor- 
phisms. Kelly [Ke] gave a proof of this conjecture for homeomorphisms on 
manifolds of dimension at least 5, using the fact that any null-homotopic 
simple closed curve in such a manifold bounds an embedded disc. 

The main result of this paper is to prove this conjecture for orientation- 
preserving homeomorphisms on closed orientable 3-dimensional manifolds 
which are either Haken or geometric. Thurston's Geometrisation Conjecture 
asserts that these include all irreducible, orientable, closed 3-manifolds. 

Theorem 9.1. Suppose M is a closed orientable Z-manifold which is either 
Haken or geometric, and f : M —> M is an orientation-preserving home- 
omorphism. Then f is isotopic to a homeomorphism g with #Fix (g) = 
N(f). 

There are eight geometries for 3-manifolds, see [Sc]. A Haken manifold 
can be decomposed along a canonical (possibly empty) set of tori into pieces, 
each of which is either Seifert fibred, or is a non-Seifert fibred atoroidal 
manifold. This decomposition is called the Jaco-Shalen-Johannson torus 
decomposition, or simply the JSJ decomposition.   Thurston [Th2] proved 
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that each component of the decomposed manifold admits a geometric struc- 
ture. We will show that the homeomorphism on each individual piece Mi is 
isotopic to a "standard homeomorphism", which has the property that no 
two components of the fixed point set of /IM* are equivalent on that piece, 
and the behavior of the homeomorphism near each fixed point component 
is well understood. Some major difficulties arise when we try to put the 
pieces together, because two fixed points being equivalent is a global prop- 
erty: Two components of the fixed point set of /IM, may be inequivalent in 
Mi, but equivalent in the whole manifold. See Remark 5.13 for an example. 
Therefore the homeomorphisms /IM* should not only satisfy the above con- 
ditions, but also some extra conditions to guarantee that after gluing the 
pieces together we still get a homeomorphism with good properties. This 
justifies the sophisticated definition of standard homeomorphisms given in 
Section 5. It can then be shown that if the restrictions of the homeomor- 
phism on the pieces are standard homeomorphisms in that sense, then the 
global homeomorphism indeed has the property that each fixed point class is 
connected. The local behavior of the homeomorphism near each fixed point 
component will then enable us to shrink that component to a single point, 
and delete it if it is an inessential class. 

For many manifolds, a much stronger result holds: All homeomorphisms 
on those manifolds are isotopic to fixed point free homeomorphisms. Define 
an orbifold X(M) to be small if it is a sphere with at most three holes or 
cone points, or a projective plane with at most two holes or cone points; 
otherwise it is big. 

Theorem 9.2. Let M be a closed orientable 3-manifold which is either 
Haken or geometric. Then any orientation-preserving homeomorphism f 
on M is isotopic to a fixed point free homeomorphism, unless some compo- 
nent of the JSJ decomposition of M is a Seifert fiber space with big orbifold. 

In particular, the theorem applies to the following manifolds: (1) all 
Seifert fiber spaces whose orbifold is a sphere with at most 3 cone points or 
a projective plane with at most two cone points. This covers all manifolds 
admitting a S3 or S2 x R geometry, and four of the six Euclidean manifolds. 
(2) All manifolds obtained by gluing hyperbolic manifolds together along 
boundary tori. This includes all closed hyperbolic manifolds. (3) All Sol 
manifolds. 

Our proof strongly depends on the knowledge of homeomorphisms on ge- 
ometric manifolds, as well as homeomorphisms on 2-dimensional orbifolds. 
In Section 1 we will generalize Thurston's classification theorem of hyper- 
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bolic surface homeomorphisms to homeomorphisms of hyperbolic orbifolds. 
We define periodic, reducible and pseudo-Anosov homeomorphisms on hy- 
perbolic orbifolds X in a natural way, in the sense that if F is a surface 
covering of X, and / is a lifting of a homeomorphism / on X, then / is 
pseudo-Anosov if and only if / is. 

Theorem 1.4. Suppose X is a hyperbolic orbifold. Then any homeomor- 
phism f : X —> X is isotopic to either a periodic map, a reducible map, or 
a pseudo-Anosov map. 

A similar result is proved in Section 2 for homeomorphisms on Euclidean 
orbifolds. These results are crucial to our proof because the orbifold of 
a Seifert fiber space M has a natural orbifold structure, and any fiber- 
preserving homeomorphism on M induces a homeomorphism of the orbifold. 

In Section 3 we study the problem of which manifolds have a Seifert 
fibration such that every orientation-preserving homeomorphism is isotopic 
to a fiber-preserving one. This property is known to be true for all Seifert 
fiber spaces which are not covered by S2 x S1, Ss or T3 [Sc, Theorem 3.9], 
as well as for those manifolds which have a sphere orbifold with cone points 
of order (2,3,p), p > 5 or (3,3, fc), k > 2 [BO, Proposition 3.1]. In Section 
3 we will show that this is true for all but four Seifert fiber spaces. 

Theorem 3.11. Suppose M is a compact orientable Seifert fiber space 
which is not T3, Mppfli S1 x D2, or T x I. Then there is a Seifert fi- 
bration p : M —> X(M), so that any orientation-preserving homeomorphism 
on M is isotopic to a fiber-preserving homeomorphism with respect to this 
fibration. Moreover, if M is not a lens space or Ss, then the result is true 
for all homeomorphisms on M. 

A strong version of the converse is true: Not only does none of the four 
manifolds listed in the theorem have a "universal" invariant Seifert fibration, 
but also there exist homeomorphisms on these manifolds that do not preserve 
any Seifert fibration. As a corollary, we also completely determine all Seifert 
fiber spaces which have a unique Seifert fibration up to isotopy, see Corollary 
3.12 for more details. 

Two of the exceptional manifolds in Theorem 3.11 are closed. We need 
to find certain representatives for homeomorphisms on these manifolds sep- 
arately. The manifold T3 is easy: Each homeomorphism on T3 is isotopic to 
a linear map. The manifold Mp^2) is a Euclidean manifold with orbifold 
a projective plane with two cones of order 2. This manifold will be treated 
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in Section 4. It is shown that any homeomorphism on it is isotopic to an 
isometry with respect to a certain Euclidean metric. 

Section 5 gives the definition of some basic concepts from fixed-point 
theory, including Nielsen class, index, and the Nielsen number of a map. 
We will also define two types of standard homeomorphisms on 3-manifolds, 
and prove some useful lemmas. 

The remaining part of the paper uses the results in the earlier sections to 
give a proof of Theorem 9.1. Given a generic 3-manifold, the Jaco-Shalen- 
Johannson decomposition cuts M into hyperbolic and Seifert fibered pieces. 
Using Theorem 1.4, one can further cut the Seifert fibered components into 
pieces so that on each piece Mi the homeomorphism / induces an orbifold 
homeomorphism which is either periodic or pseudo-Anosov. The main result 
of Section 6 is to show that if / is such a homeomorphism on a piece M;, 
then it can be isotopic to a standard homeomorphism. 

In Section 7, we will study torus fiber-preserving homeomorphisms on 
torus bundles over 1-orbifolds. These include twisted /-bundles over the 
Klein bottle, the union of two such manifolds along their boundary, T x /, 
and torus bundles over S1. An important lemma is that if / is already 
standard on the boundary of a T x /, then it is isotopic rel d(T x J) to a 
standard homeomorphism. This is useful in putting standard homeomor- 
phisms on the pieces together to form a global standard homeomorphism. 
Also, the study of homeomorphisms on torus bundles over Sl proves Theo- 
rem 9.1 for Sol manifolds. The theorem is proved in Section 8 for five other 
types of geometric manifolds; one is the hyperbolic manifolds, and the other 
four types are Seifert manifolds with spherical or Euclidean orbifolds. 

The proof of Theorem 9.1 is completed in Section 9. With the previous 
results we can show that the homeomorphism is isotopic to one which is 
standard on each piece, including the collars of the decomposing tori. It 
will then be shown that in this case the global homeomorphism will have 
the property that each fixed point class is connected. The behavior of the 
homeomorphism in a neighborhood of each fixed point component is well 
understood, which enables us to shrink each fixed point class to a single 
point, and remove it if it is inessential. Theorem 9.2 is also proved in this 
section. 

We refer the reader to [Sc] for basic definitions and properties of the eight 
3-manifold geometries, which is crucial in understanding this paper. Basic 
concepts about 3-manifold topology can be found in [Ja, He], in particular 
the Jaco-Shalen-Johannson decomposition of Haken manifolds and Seifert 
fiber spaces. See [Thl, Th2] for discussions on hyperbolic 3-manifolds. 

We would like to thank Peter Scott for some helpful conversations about 
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homeomorphisms on Seifert fiber spaces. Thanks also to the referee for his 
careful reading and many helpful comments; in particular, he brought the 
references [CV] and [BZ] to our attention, which eliminates some tedious 
arguments in proving the results of Section 4 in an earlier version of this 
paper. 

Notations and Conventions. Given a set X in M, we use N(X) to denote 
a regular neighborhood of X, use |X| to denote the number of components 
in X, and use #X to denote the number of points in X. 

If / : M —> M is a map, we use Fix (/) to denote the set of fixed points 
of /, and use N(f) to denote the Nielsen number of /. 

A map / on a Seifert fiber space M is a fiber-preserving map if it maps 
each fiber to another fiber. Identifying each fiber of M to a point, we get 
a set X(M), which has a natural 2-dimensional orbifold structure [Sc, §3]. 
If / is fiber-preserving, it induces a map / : X(M) —> X(M). An isotopy 
ht (t G /) of a Seifert fiber space is fiber-preserving if each ht is a fiber- 
preserving map. It is a fiberwise isotopy if ht maps each fiber to itself. 

1. Classification of homeomorphisms on hyperbolic 
2-orbifolds. 

We refer the reader to [Sc, §2] for definitions about 2-dimensional orbifolds, 
their Euler characteristics, and other basic concepts and properties. All orb- 
ifolds in this paper are assumed compact and of dimension 2. Recall that 
an orbifold is good if it is covered by surface. Scott [Sc, Theorem 2.3] gave 
a list of all bad orbifolds without boundary. It is in fact the list of all bad 
orbifolds: for any orbifold X with nonempty boundary, its double X along 
dX is clearly not in that list, thus covered by some surface, hence so is X 
itself. An orbifold is hyperbolic if it has negative Euler characteristic. A 
hyperbolic orbifold is covered by a hyperbolic surface, and admits a hyper- 
bolic structure with totally geodesic boundary. A reflector circle or reflector 
arc will be called a reflector. Denote by S(X) the set of singular points of 
X. Thus each component of S(X) is either a cone point, a reflector, or a 
union of reflector arcs joined at reflector corners. 

Definition 1.1. A homeomorphism of an orbifold X is a map / : X —> X 
such that (1) / is a homeomorphism of the underlying topological space, 
and (2) / preserves the orbifold structure, i.e., it maps a cone point (resp. 
reflector corner) to a cone point (resp. reflector corner) of the same angle, 
and it maps a reflector to a reflector. 
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Similarly, an isotopy on X is a continuous family of orbifold homeomor- 
phisms ft, 0 < t < 1. In this case ft is called an isotopy from /o to /i. 

Definition 1.2. A set of mutually disjoint curves C — UC; in the interior 
of a hyperbolic orbifold X is an admissible set if 

(1) Each Ci is either a circle disjoint from S'(X), or is a reflector circle, 
or is an arc with interior disjoint from S(X) and with ends on cone 
points of order 2. 

(2) Each component of X — IntiV(C) is a hyperbolic orbifold. 

It is easy to see that if C is an admissible set of X, then its lifting C on 
a compact covering surface X is an admissible set of X in the usual sense 
[FLP], i.e., it consists of mutually disjoint, mutually non-parallel, essential 
simple closed curves on X. 

Definition 1.3. Suppose / : X 
orbifold. 

X is a homeomorphism on a hyperbolic 

(1) /is periodic if fn = id for some n. 

(2) / is reducible if /(C) = C for some admissible set C. The set C is 
called a reducing set of /. 

(3) / is a pseudo-Anosov map if S(X) has only cone points, and / : Xf —» 
Xf is a pseudo-Anosov map in the sense of Thurston, where Xf is the 
punctured surface X — S(X). 

Figure 1.1. 
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A pseudo-Anosov map has two transverse measured foliations, (J-h^Th) 
and (Ty^Ty). A measured foliation on the orbifold X is also a measured 
foliation of the underlying surface, except that a cone point of X may be a 
singular point of the foliations with prong number 1, see Figure 1.1. 

Thurston's classification of surface homeomorphisms [Th3] says that any 
homeomorphism on a hyperbolic surface is isotopic to either a periodic map, 
a reducible map, or a pseudo-Anosov map. For a proof of this theorem on 
orientable surfaces, see [FLP, Be, CB]. When the surfaces are nonorientable, 
this is proved in [Wu]. The following theorem generalizes this theorem to 
homeomorphisms on hyperbolic orbifolds. 

Theorem 1.4. Suppose X is a hyperbolic orbifold. Then any homeomor- 
phism f : X —> X is isotopic to either a periodic map, a reducible map, or 
a pseudo-Anosov map. 

Proof. If X has reflector circles, let C be the union of such. Then /(C) = C, 
and X — IntiV(C) has the same Euler characteristic as that of X, so / is a 
reducible map. 

If X has reflector arcs but no reflector circles, let F be the underlying 
surface of X, and let C' = C{ U... U Cf

n be the components of dF containing 
some reflector arcs. Clearly we have f(C') = Cf. The set C7 is isotopic to a 
set of curves C = Ci U ... U Cn in the interior of F. By an isotopy we may 
assume that f(C) = C. The set C cuts X into Xi U ... U Xn U Y", where 
Xi is an annulus between C^ and Ci, and Y is the remaining component. 
Since each Xi is an annulus containing some reflector arcs, it is a hyperbolic 
orbifold. If Y is also hyperbolic, then C is an admissible set and we are 
done. So assume that Y has nonnegative Euler characteristic. There are 
several cases. 

Case 1: Y is a Mobius band or an annulus with dY — C. Replace C by the 
central curve of Y. 

Case 2: Y is a disk with two cone points of order 2 and no other cone points. 
Replace C = dY by an arc in Y connecting the two cone points. 

Case 3: Y is either an annulus with one boundary on dX, or a disk with at 
most one cone point. Then / is isotopic to a periodic map. 

In all 3 cases / is isotopic to a periodic map or a reducible map. Therefore 
the theorem holds if X has some reflector arcs. 
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Now assume that X has no reflectors. Let X' = X — S(X), and let 
f be the restriction of f to X'. If f is isotopic to a periodic or pseudo- 
Anosov map, then so is /, and we are done. So assume f is isotopic to 
a reducible map g* with reducing curves C1. Let g be the corresponding 
homeomorphism on X. Then g is isotopic to / via an orbifold isotopy. 
If each component of X — IntN(Cf) is a hyperbolic orbifold, then g is a 
reducible map and we are done. If some component Xi of X — IntN(Cf) 
is not hyperbolic, it must be a disk D with two cone points of order 2. 
Replace dD with an arc in D connecting the two cone points. After doing 
this for all such JD, we get a set C. By an isotopy in D we may assume 
that g(C) — C. The components of X — IntiV(C) are homeomorphic to 
the hyperbolic components of X — Int7V(C/). Therefore the modified g is a 
reducible map on X with C the reducing set. □ 

Theorem 1.5. Let X be a compact covering surface of a hyperbolic orbifold 

X. If f : X —> X is a pseudo-Anosov map and f : X —>• X is a lifting of f, 
then f is a pseudo-Anosov map in the sense of Thurston. 

Proof. Let Y be the underlying surface of X. Then / defines a generalized 
pseudo-Anosov map on Y", in the sense that the cone points might be singular 
points of the foliations with prong number p = 1. Since X is a surface, if y 
is a point in X which covers a cone point of angle 27r/fe, then the foliations 
have prong number kp > 2 at y. It follows that the liftings of the foliations 
are foliations with jio prong number 1 singularities in the interior of X, and 
are preserved by /. Therefore / is a pseudo-Anosov map in the sense of 
Thurston (see [FLP]). □ 

Suppose that S is a hyperbolic surface. Let A be a finite group acting on 
S. Then X = S/A is a hyperbolic orbifold. If / : S —» S is a A-equivariant 
map, then it. induces a map /' : X —> X. Thus the theory of equivariant 
maps on surfaces follows from that on orbifolds. To be more precise, we 
make the following definitions. 

Definition 1.6. Let A be a finite group acting on a hyperbolic surface S. 

(1) A homeomorphism / : S -> S is a A-homeomorphism iffo\ = \of 
for all A E A. 

(2) An isotopy /*, 0 < t < 1, is a A-isotopy if ft is a A-homeomorphism 
for all t. 
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(3) A A-homeomorphism / : S —>• S is a A-reducible map if there is an 
admissible set C = Ci U ... U Cn such that /(C) = C, and A(C) = C 
for all A G A. 

(4) A A-homeomorphism / : S —>► 5 is a A-pseudo-Anosov map if / is 
a pseudo-Anosov map in the sense of Thurston, and the measured 
foliations are A-invariant. 

Since any A-homeomorphism f on S induces a homeomorphism /' on 
the orbifold, and an isotopy of f induces a A-isotopy of /, the following A- 
equivariant version of Thurston classification theorem is a direct consequence 
of Theorem 1.4. 

Corollary 1.7. If f : S —> S is a A-homeomorphism, then it is A-isotopic 
to a A-homeomorphism g which is either a periodic A-homeomorphism, a 
A-reducible map, or a A-pseudo-Anosov map. 

In [Be] Bers proved Thurston's classification theorem using quasi- 
conformal mapping theory. Corollary 1.7 is also true in this category. A 
conformal structure a on S is A-invariant if all maps in A are conformal 
maps with respect to a. Similarly, a quadratic differential u is A-invariant 
if 

X*(u) = u        or        \*(UJ)=UJ 

depending on whether A is orientation-preserving or orientation-reversing. 
A A-homeomorphism / is a A-pseudo-Anosov map in the sense of Bers 
if there is a A-invariant conformal structure a on 5, such that / is an 
extremal map as defined in [Be], and its initial and terminal differential 
u is A-invariant. Notice that such a differential defines a pair of A-invariant 
transverse measured foliations, preserved by the homeomorphism /. Hence 
such a homeomorphism is a A-pseudo-Anosov map as defined before. The 
proof of [Wu] can be modified to prove Corollary 1.7 in the conformal setting. 

Definition 1.8. A reducing set C of / is called a complete reducing set if / 
is isotopic to a homeomorphism g with g(N(C)) = N(C), and gni restricted 
to Xi is either a periodic map or a pseudo-Anosov map, where Xi is an 
arbitrary component of X — IntiV(C), and rti is the least positive integer 
such that gni maps Xi to itself. 

Remark 1.9. Clearly a maximal reducing set of / is a complete reducing 
set. A minimal complete reducing set is called a canonical reducing set. It 
can be shown that if C is a canonical reducing set of /, then its lifting C 
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is a canonical reducing set of a lifting of / on a compact covering surface 
X of X. Since the canonical reducing set of a surface homeomorphism is 
unique [Wu, Theorem 1], it follows that the canonical reducing set for / 
is also unique, and it is empty if and only if / is isotopic to a periodic or 
pseudo-Anosov map. 

We now consider a fiber-preserving homeomorphism / on an orientable 
Seifert fiber space M which has hyperbolic orbifold X(M). Let p : M —>• 
X(M) be the projection map. Let / : X(M) -* X(M) be the orbifold 
homeomorphism induced by /. Recall that a torus T in M is a vertical 
torus if it is a union of fibers in M. 

Lemma 1.10. There is a collection of vertical tori T in M, and a homeo- 
morphism g which is isotopic to f via a fiber-preserving isotopy, such that 

(1) g{N{T)) = N(T); 

(2) The orbifold of each component of M — IntiV(T) is either hyperbolic 
or a disk with two cone points of order 2; and 

(3) // Mi is a component of M — Int7V(T) with hyperbolic orbifold, and 
g(Mi) = Mi, then the orbifold map 'g : X(Mi) —¥ X(Mi) is either 
periodic or pseudo-Anosov. 

Proof. Recall that since X(M) is the orbifold of an orientable Seifert fiber 
space, it has no reflectors because reflectors correspond to solid Klein bottles 
[Sc, p. 430]. Choose a complete reducing set C on X(M) for the homeo- 
morphism /, and modify it as follows: If a is an arc in C connecting two 
cone points of order 2, replace it by the curve af = ON (a). We can mod- 
ify / via a fiber-preserving isotopy, to get a homeomorphism g such that 
g(iV(C)) = N(C), and the r estriction of ^ to each hyperbolic component 
of X(M) — IntN(C) is either periodic or pseudo-Anosov. It is now clear 
that the homeomorphism g and the collection of tori T = p_1(C) satisfy the 
conclusion of the lemma. □ 

2. Classification of homeomorphisms on Euclidean orbifolds. 

A euclidean orbifold is an orbifold X such that its orbifold Euler number is 
zero. A curve C in X — S(X) is an essential curve of X if no component of 
X — IntiV(C) is a disk with at most one cone point, or an annulus containing 
no singular points of X and having one boundary on dX.   Recall that a 
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homeomorphism / on a torus is an Anosov map if there is a pair of transverse 
measured foliations (^1,^1) and (^2? ^2) such that / preserves the foliations, 
and the measures ui are changed by f(ui) = At^i, and f(u2) = (l/A)^, 
where A > 1. We do not define Anosov maps on other euclidean surfaces: 
as we will see, all homeomorphisms on them are isotopic to periodic ones. 

Definition 2.1. Let / : X -> X be an orbifold homeomorphism on a eu- 
clidean orbifold X. 

(1) /is periodic if fn = id for some n. 

(2) / is reducible if /(C) = C for some essential curve C of X. We call C 
a reducing curve of /. 

(3) If S(X) ^ 0, then / : X -> X is an ,4nosw map if / : Xf -> X' is a 
pseudo-Anosov map in the sense of Thurston, where X/ = X — S(X). 

Lemma 2.2 ([Li, Lemma 5]). Any homeomorphism f : K -> K on a 
Klein bottle is isotopic to either the identity map or an involution. 

Proof. Lickorish [Li, Lemma 5] proved that H(K) = Z2 x Z2, and gave the 
representatives of the isotopy classes. It is easily seen that each isotopy class 
contains an involution. □ 

If F is a surface, we use F(pi,... ,pk) to denote an orbifold with un- 
derlying surface F, and with cone points of order pi,...,Pife. If we use 
S^PjT^K^D.A^U to denote the sphere, projective plane, torus, Klein bot- 
tle, disk, annulus and Mobius band, respectively, then a euclidean orbifold 
without reflector is one of the following: 

(1) T, if, A, or U-, 
(2)£>(2,2); 
(3)P(2,2); 
(4)5(2,3,6), 5(2,4,4), 5(3,3,3); 
(5)5(2,2,2,2). 

Lemma 2.3. /// : X —> X is a homeomorphism on X = P(r, s), then f is 
isotopic to a periodic map. 

Proof. Consider P(r, s) as D(r, s)/p, where p is the antipodal map on dD. 
Let a be an arc in P(r, s) connecting the two cone points a, 6, having min- 
imal intersection number with dD/p in its isotopy class.  Thus on D(r,s) 
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a consists of several arcs QQ, • •., CKfe. We claim that k < 1. Assume k > 2. 
Denote by ai(l) and ai(0) the head and tail of a^, respectively. Let /?+,/?- 
be the two components of dD - {aoWj^O)}. The minimality of fc means 
that each c^ (i 7^ 0,A;) is an essential arc on D(r,s) — ao U a^, so it has 
one endpoint on each of /3+, /3_; hence each of /?+,/?- contains exactly & — 1 
endpoints of Uc^. Since p is an involution identifying the endpoints of Ua; 
on dD to each other, we see that for any point x on dD, the two arcs 
dD — {X)p(x)} must contain the same number of points in Ua; fl dD. In 
particular, p must identify ao(l) to-afc(O), which implies that a has more 
than one component, contradicting the assumption that a is an arc. 

Now suppose a, af are two arcs connecting a to 6, which have the same 
minimal intersection number with dD. By the above, the intersection num- 
ber is either 0 or 1. It is clear that in this case these two arcs are isotopic rel 
d. Therefore up to isotopy there are exactly two arcs connecting a to &, say 
a and /?, which can be chosen to have disjoint interiors, so a U ft is a circle. 
Since / : X —>> X is a homeomorphism, it either preserves or permutes these 
two isotopy classes, hence up to isotopy we may assume that /(aU/3) = aU/3, 
and / is a periodic map on N(a U /3). Since D' = X - IntJV(a U /3) is a disk 
with no cone points, f\D' is rel dDf isotopic to a periodic map. □ 

Proposition 2.4. // a euclidean orbifold X is not T or 5(2,2,2,2), then 
any homeomorphism f on X is isotopic to a periodic one. 

Proof. First assume that X has no reflectors. The result is obvious when 
X = A or J7, and has been proved for K and P(2,2) in Lemmas 2.2 and 
2.3 respectively. In all other cases X — S(X) is a pair of pants, so any 
homeomorphism on X - S(X) (hence on X) is periodic. 

Now assume X has no reflector circles but has some reflector arcs. By 
an isotopy we may assume that / is already a periodic map on N(C), where 
C is the union of dX and the reflectors. Since X has no reflector circles but 
some reflector arcs, the Euler characteristic of N(C) is negative, no matter 
whether it has reflector corners or not. Thus X — IntiV(C) is an orbifold 
with nonempty boundary, which has positive Euler number but no reflectors, 
hence it must be a disk with at most one cone point. It follows that / is rel 
N(C) isotopic to a periodic map. 

If X has some reflector circles, one can ignore these reflector circles to 
get another orbifold Xf. Clearly / : X —> X is isotopic to a periodic map if 
and only if / : Xf —>• Xf is, so the result follows from the above two cases. 

□ 
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Theorem 2.5.     (a) A homeomorphism f on a euclidean orbifoldX is iso- 
topic to either a periodic map, a reducible map, or an Anosov map. 

(b) Let X be a surface that covers X, and let f : X —>► X be a lifting of f. 
If f is periodic (resp. reducible, Anosov) then f is also periodic (resp. 
reducible, Anosov). 

Proof, (a) If X = T, this is a well known classical result. If X = 5(2,2,2,2), 
then X — S(X) is a hyperbolic surface, so the result follows immediately 
from the definition above and Thurston's classification theorem. In all other 
cases by Proposition 2.4 the homeomorphism / is isotopic to a periodic map. 

(b) This is quite obvious if / is periodic or reducible, or if X = T. 
Suppose X = 5(2,2,2,2), X = T, and / is Anosov. By the proof of Theorem 
1.5, the measured foliations on X lift to measured foliations on X which have 
no prong number 1 singularities. Recall that if a foliation on a surface F 

has singular points of prong number pi,... ,PAJ, then the Euler characteristic 
of F is ^2(2 —pi)/2. Since the Euler characteristic of X J.s zero, the lifted 
foliations on X have no singularities. Thus by definition / is Anosov.       □ 

Remark 2.6. Not all results of hyperbolic orbifolds generalize to euclidean 
orbifolds. For example, if X is a hyperbolic orbifold, then two homeomor- 
phisms on X are isotopic if and only if their liftings are isotopic. However, 
there is a homeomorphism on 5(2, 2,2,2) which permutes the singular points 
(so it is not isotopic to the identity map), and yet its lifting to the torus is 
isotopic to the identity map. 

3. Invariant Seifert fibrations for homeomorphisms. 

In this section we will study the problem of which manifolds M have a Seifert 
fibration such that every orientation-preserving homeomorphism on M is 
isotopic to a fiber-preserving homeomorphism with respect to this fibration. 
Theorems 3.1 and 3.2 are what we can find in the literature. The results 
in this section will deal with the remaining cases. It turns out that all but 
four Seifert fiber spaces have this property. Moreover, if the manifold is not 
a lens space or iS3, then the fibration is preserved by orientation-reversing 
homeomorphisms as well. See Theorem 3.11 below. 

Theorem 3.1 ([Sc, Theorem 3.9]). Let M,N be compact Seifert fiber 
spaces (with fixed Seifert fibrations), and let f : M —> N be a homeomor- 
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phism. Then f is homotopic to a fiber preserving homeomorphism (and 
hence an isomorphism of Seifert bundles) unless one of the following occurs. 

(a) M is covered by S3 or S2 x M, 

(b) M is covered by T3
; 

(c) M is S1 x D2 or a I-bundle over the torus or Klein bottle. 

It is now known that two homeomorphisms of Seifert fiber spaces are 
homotopic if and only if they are isotopic, see [Wa] for Haken manifolds, 
[Sc2] for irreducible Seifert manifolds with infinite fundamental groups, and 
[BO, RB, HR, R, B, La] for various cases of Seifert manifolds covered by Ss 

and S2 x S1. Thus the word "homotopic" in the theorem can be replaced by 
"isotopic". The theorem says that if M is not one of the listed manifolds, 
then Seifert fibrations on M are unique up to isotopy. 

We will restrict our discussion on orientable manifolds. For S1 x D2 and 
T x /, there are obviously homeomorphisms which are not isotopic to any 
fiber-preserving homeomorphisms with respect to any Seifert fibration. If M 
is a twisted /-bundle over the Klein bottle, then M has two Seifert fibrations 
up to isotopy [WW, Lemma 1.1]. Note that those two Seifert fibrations have 
different orbifolds. Let p : M —> X(M) be one of the Seifert fibrations. Then 
po f : M -4 X(M) is another Seifert fibration with the same orbifold. Since 
these two Seifert fibrations have the same orbifold, [WW, Lemma 1.1] implies 
that they are isotopic, that is, there is a homeomorphism ip of M, isotopic 
to the identity, so that / o cp is a fiber-preserving map. It follows that / is 
isotopic to a fiber-preserving homeomorphism with respect to each of the 
two Seifert fibrations of M. It remains to consider the manifolds covered by 
S3, S2 x E, or T3. 

Theorem 3.2 ([BO, Proposition 3.1]). Suppose M is a Seifert manifold 
with orbifold 5(2,3,^), p > 5 or 5(3,3,g); q > 2. Then every homeomor- 
phism f of M is isotopic to a fiber-preserving homeomorphism of M. 

By [Ja, VI. 17], Seifert fibration structures on the manifolds in Theorem 
3.2 are unique up to isomorphism. Theorem 3.2 says that it is unique up to 
isotopy. In this section we will discuss the remaining cases. The following 
lemma is useful in detecting homeomorphisms which are isotopic to fiber- 
preserving homeomorphisms. Note that the lemma is not true if X(M) is a 
S(p)q) or D(p)y since there are many non isotopic fibrations on lens spaces 
and the solid torus, all having one fiber in common. 
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Lemma 3.3. Let p : M -> X{M) be a Seifert fibration of an orientable 
3-manifold M, such that X(M) is not a sphere with at most two cone points 
or a disk with at most one cone point. Let f : M —>• M be a homeomorphism. 
If there is a fiber a of M such that f{a) is isotopic to another fiber, then f 
is isotopic to a fiber preserving homeomorphism with respect to the fibration 
V- 

Proof. By an isotopy we may assume that /(a) is a fiber of M, and / maps 
a fibered neighborhood iV(r) to a fibered neighborhood N(f{a)). Let M' = 
M-IntJV(a), and let N1 = M-IntiV(/(a)), with Seifert fibrations inherited 
from that of M. These are manifolds with boundary, so by Theorem 3.1 
the map /|M' is isotopic to a fiber-preserving map unless Mf is one of the 
manifolds listed in Theorem 3.1(c). If Mf is a solid torus or a T x /, then 
X(M) is either a sphere with at most two cone points or a disk with at most 
one cone point, which have been excluded in the lemma. The remaining case 
is that Mf and N' are twisted /-bundles over the Klein bottle. Recall that up 
to isotopy there are only two Seifert fibrations on a twisted /-bundle over 
the Klein bottle, with orbifold 0(2,2) and the Mobius band respectively 
[WW, Lemma 1.1]. Now the orbifolds X(M/) and X(Nf) are both obtained 
from X(M) by removing a disk with possibly one cone point, so they are 
both orientable or both nonorientable. It follows that /IM

7
 is isotopic to a 

fiber-preserving homeomorphism. Extending the isotopy over M, we get a 
homeomorphism g : M —>» M, which is fiber-preserving on Mf. Now g\N(a) 
maps the fibered solid torus N(a) to a fibered solid torus N(f(a)), sending 
a fiber on dN(a) to a fiber on dN(f(a)). By [Ja, Lemma VI. 19], g\N(a) is 
rel dN(a) isotopic to a fiber-preserving map. □ 

Denote by 1-L(M) the homeotopy group of M, i.e., the group of all home- 
omorphisms modulo the subgroup of all those isotopic to identity. Denote 
by T-L+(M) the subgroup represented by orientation-preserving homeomor- 
phisms. We do not consider S3 or S'2 x S4 as lens spaces. 

Lemma 3.4. Any lens space M has a Seifert fibration p : M —> X(M), 
such that any orientation-preserving homeomorphism f on M is isotopic to 
a fiber preserving homeomorphism with respect to this fibration. 

Proof. Hodgson and Rubinstein [HR, Theorem 5.6 and Corollary 5.7] proved 
that %(M) = Z2,Z2 + Z2, or Z4, and gave explicit representatives of the 
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isotopy classes. The orientation-preserving ones clearly preserve the Seifert 
fibration induced by the Hopf fibration of S3. □ 

Lemma 3.5. // p : M -» X(M) is a Seifert fibration with X(M) = 
5(2,2, k) for some k > 1, then any homeomorphism f : M —> M is iso- 
topic to a fiber preserving homeomorphism with respect to this fibration. 

Proof. Let a be an arc on X(M) connecting two cone points of order 2. 
Then p~~1(a) is a Klein bottle Ki in M. Note that if k = 2 then there are 
three cone points of order 2, so there are three such arcs, and hence three 
Klein bottles Kiy K2, K3. It was shown in the proof of [R, Theorem 6] that 
/ can be deformed by an isotopy so that if k / 2 then / maps Ki to itself, 
and if k = 2 then / maps Ki to one of the K^. Note that each Ki is a 
union of fibers of M, so it gives a fibration of Ki with orbifold an arc with 
two cone points. A regular fiber of Ki is a separating essential simple closed 
curve, which is unique up to isotopy, hence / can be deformed by a global 
isotopy, so that / preserves the fibration on Ki. Since the regular fibers of 
Ki are regular fibers of M, it follows from Lemma 3.3 that / is isotopic to 
a fiber-preserving homeomorphism. □ 

Lemma 3.6. Suppose p :.M —>> X(M) is a Seifert fibration of a spherical 
manifold M with orbifold X(M) — S,(2,3,4). Then any homeomorphism 
f : M -> M is isotopic to a fiber-preserving homeomorphism with respect to 
this fibration. 

Proof. Identify X(M) with the unit sphere in E3 so that the three cone 
points lie on the xy-plane. Let 

g -. X(M) -± X(M) 

be the reflection along the xy-plane. There is a fiber-preserving involution 

g : M -> M 

with c; as its orbifold homeomorphism, constructed as follows: Removing a 
small neighborhood iV(ci) for each cone point Q, we get a three-punctured 
sphere P C X(M), and p"1^) = Px S1. Define 

g : P x S1 -* P x S1 
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by <?(#, y) — (d(x)i y)-> where y is the complex conjugate of y. The restriction 
of g on each boundary torus of P x S1 is an orientation-preserving involution, 
which preserves the slope of any curve. Hence it extends to a fiber preserving 
involution on each fibered solid torus p~1(N(ci))J resulting the required 
homeomorphism g. 

The manifold P x S1 has a product fibration. Its fiber and the boundary 
of P set up a longitude-meridian pair (/i,ra;) for each boundary component 
Ti of P x S1. Denote by M(pi,gi;p2j92;P3>93) the manifold obtained by 
attaching a solid torus Vi to each T;, so that a meridian of Vi is glued to the 
curve Pimi+qik on Ti. The manifold M can be written as M(2,1; 3,62; 4,63), 
where 62 = ±1- By reversing the orientation of M if necessary, we may 
assume that 62 = 1, so M = M(2,1; 3,1; 4,63). The first homology group of 
M has a presentation 

Hi(M) = (mi, 7712, 7713, Z   I mi +7712 +7713 = 0,2777,1 + Z = 0, 

3m2 + Z = 0,4m3 + bsl = 0). 

It follows that 

Hi(M) = Z|i2+6&3+8&2| ^ Z|20+6&3h 

see also [Or, §6.2, Theorem 2]. Thus #i(M) = Z2 if and only if b3 = -3. 
The homeomorphism g defined above sends each generator to its negative. 
Hence if iJi(M) = Zp and p ^ 2, then #* : i?i(M) -> ili(M) is not the 
identity. It follows that # is not isotopic to the identity map if 63 7^ —3. 

According to Rubinstein and Birman [RB, Main Theorem], the 
homeotopy group %{M) of M is either Z2 or a trivial group, and it is 
trivial if and only if 63 = —3. We have shown that when 63 ^ —3, the home- 
omorphism g is a nontrivial element in ^(M), hence any homeomorphism 
on M is isotopic to either g or the identity map. When 63 = —3, H(M) is 
trivial, so all homeomorphisms are isotopic to the identity map. Since both 
g and the identity map are fiber preserving, the result follows. □ 

Lemma 3.7. Let p : M —> S1 be a torus bundle structure on M. Let 
f : M -> M be a homeomorphism. Then either M is an S1 bundle over T2, 
or f is isotopic to a torus fiber preserving homeomorphism with respect to 
the fibration p. 

Proof. Let T be a torus fiber in M, and let Tf = f(T). Deform / by an 
isotopy so that |TnT"| is minimal. After cutting along T, we get a manifold 
N = T x /, so if \T fl T'l = 0, we can deform / by an isotopy so that 



Homeomorphisms of 3-manifolds and the Nielsen number 843 

f(T) = T, and a further isotopy will deform / to a torus fiber-preserving 
homeomorphism, and we are done. So we assume that |T D T'l ^ 0. 

By an innermost circle argument one can eliminate all trivial circles in 
T fl Tf. Thus each component of T' — T is an annulus. Also, a boundary 
compression of an annulus of T' — T would deform T' to a torus having 
less intersection with T. Thus the minimality of \T fl T'l implies that these 
annuli are ^-incompressible in the manifold N obtained by cutting M along 
T, so they are essential annuli P in iV. There is an S^-bundle structure of 
N over an annulus A, so that P is a union of fibers. M can be recovered 
by gluing the two sides of diV together. Since the boundary of P matches 
each other to form the torus T1', the S'1 bundle structure extends over M, 
whose orbifold X(M) is obtained by gluing the two boundary components 
of A together, hence is a torus. □ 

If M is a union of two twisted /-bundles over the Klein bottle glued 
together along their boundary, then there is a homeomorphism 

p;M->J=[-l,l], 

such that p~1{x) is a Klein bottle if x = ±1, and is a torus otherwise. The 
map p is called a torus bundle structure of M over J, while J is considered 
as a closed 1-orbifold with two singular points at ±1. The proof of the 
following lemma is similar to that of Lemma 3.7. We omit the details. 

Lemma 3.8. Let p : M —> J be a torus bundle structure of M over J. 
Let f : M —> M be a homeomorphism. Then either M is a Seifert fiber 
space over a Euclidean orbifold, or f is isotopic to a torus fiber preserving 
homeomorphism with respect to the fibration p. 

Lemma 3.9. Suppose p : M —>• X(M) is a Seifert fibration of a Euclidean 
manifoldM with orbifoldX(M) = 5(2,4,4) or 5(2, 2,2,2). Then any home- 
omorphism f : M —> M is isotopic to a fiber-preserving homeomorphism 
with respect to this fibration. 

Proof First assume X(M) = 5(2,4,4). Put T = 51 x 51, with each point 
represented by (x, y), where x, y are mod 1 real numbers. Then the manifold 
M can be expressed as (T x I)ftp, with gluing map 

<£:TxO->Txl 
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given by <p(a;,y, 0) = (—y,x, 1). Consider the universal covering W of W = 
T x /, which is identified with R2 x /. The lifting of the two order 4 singular 
fibers of M in W are the vertical arcs at (x,y), with both #,y integers, or 
both half integers. 

Claim 1. There is a fiber-preserving homeomorphism f on M which 
reverses the fiber orientation. 

On W the homeomorphism is given by /'(x, y, z) = (y, x,l — z). Since 

/ o <p(x, y, 0) = /(-y, x, 1) = (x, -y, 0) = cp'1 o /'(x, y, 0), 

the map /' induces a homeomorphism on M, which clearly is fiber-preserving 
and fiber-orientation-reversing. The claim follows. 

The product structure W = T x I gives a torus bundle structure of M 
over S1. By Lemma 3.7 we may assume that / preserves the torus fibration. 
Note that the homeomorphism /' constructed in the claim is also torus fiber- 
preserving, and it reverses the orientation of 51, the torus bundle orbifold. 
If / also reverses the orientation of 51, then fofis orientation-preserving 
on 51, and / is isotopic to a Seifert fiber-preserving homeomorphism if and 
only if /' o / is. Therefore, by considering f o f instead if necessary, we 
may assume without loss of generality that / preserves the orientation of 
S1. After an isotopy, we may further assume that / induces an identity 
map on 51, so it maps each horizontal torus T x t to itself. We say that 
/ : M —> M is a level preserving map. 

Let a : / —» M be given by a(t) = (0,0, t). It is a path representing a 
singular fiber. By an isotopy we may assume that / fixes the base point of 
a. Let af be the path / o a. 

Claim 2.    The path cJ is isotopic to a singular fiber in M. 

Let 5 and a! be the lifting of a and a' on W with initial point (0,0,0). 
Let ft be the straight line in W connecting the ends of a!. Since / is level 
preserving, a' intersect each plane M2 x t at a single point, so there is an 
isotopy ijjt from a! to fi' rel 5, moving each point oi a! along the straight 
line on a level plane to the corresponding point of (51. For each t, the image 
of the path ^ under the projection q : W —> M is a closed curve, which has 
no self intersection because ijjt intersects each level plane at a single point. 
Hence a' is isotopic to the curve'/?7 = q o /?'. Without loss of generality, we 
may assume that a1 is a straight line, connecting (0,0,0) to (x,y, 1). Note 
that x,y must be integers. 

Put 
/- -N      /x-yx + y' 
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For any t, let 
ht:I^ xl 

be the straight line from t(x,y,0) to the point (1 — t)(x,y, 1) + £(#,2/, 1). 
Each ht projects to a simple arc in T x /. By definition, we have 

v(M0)) = v(t(2,i/,0)) = t(-y,S,l) 

't(-x-y)  t(x-y)  1 

2        7       2 

= (l-i)(a;,y,l) + t(x,y,l) 

= /it(l) mod 1, 

so each ht gives a closed curve in M. Moreover, since /it intersects each level 
torus at a single point, it has no self intersection. Thus ht is an isotopy of af. 
When t = 1, the loop hi is a vertical line hi(s) = (#, y, 5), which is a singular 
fiber of M because (x, y) are both integers or both half integers. This proves 
the claim. Figure 3.1 shows the isotopy in TZ2 x /, when (x,y) ='(!> 0). The 
vertical line at (0,0,0) is the curve 5, the line from (0,0,0) to (1,0,1) is 5, 
the vertical line at (x, y, 0) = (5,5,0) is the image of hi, which is the lift of 
a singular fiber in M, and the lines between them represent the isotopy ht. 

The isotopy extends to an isotopy of M, modifying / to a homeomor- 
phism y, which maps the singular fiber a to another singular fiber. By 
Lemma 3.3 such a map is isotopic to a fiber-preserving homeomorphism. 

The proof for the case X(M) = 5(2,2,2, 2) is similar. The gluing map 
cpiTxO-^Txlis now given by <p(x, y, 0) = (—x, —y, 1). Write (x, y) = 
(a;/2,y/2), and define /^ using the same formula as above. The remaining 
part^of the proof are the same, only notice that in this case a vertical line 
of W at (a;,y) represents a singular fiber of M if and only if each of x and 
y is an integer or a half integer. □ 

\ \(1.0,1) 
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Figure 3.1. 
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We now consider the manifold M = S2 x S1. Put S'2 = D^ U £)|, and 
Vi = D? x S'1, so M is the union of Vi and T^ along a torus T. Let m, / be a 
meridian-longitude pair on T, where m bounds a disk in both Vi. The torus 
T is a Heegaard splitting torus of M, which is unique up to isotopy [Wa2]. 
Thus any homeomorphism / : M —> M can be deformed by an isotopy so 
that f(T) = T. The homeomorphism f\T corresponds to a matrix 

V   q 
r   s 

so that f*([i\) = p[l} + q[m] and /*([m]) = r[l] + s[m\ in jffi(r). Since f\T 

extends over the solid tori, we have r = 0 and s = ±1, so p = ±1. Note 
that any homeomorphism on T extends to a unique orientation-preserving 
homeomorphism on M up to isotopy, which maps each Vi to itself if and 
only if the determinant of the matrix equals 1. 

Denote by a, /3,7 the orientation-preserving homeomorphisms on M cor- 
responding to the following matrices, respectively. 

-1   0W1    0W1    1 
0     -IJ ' \0   -IJ ' \0   -1 

These matrices generate all the matrices satisfying the conditions that r = 0 
and s = ±1, hence the homeomorphisms a,/3,7 generate the group 7i+(M) 
of all isotopy classes of orientation-preserving homeomorphisms on M, which 
is an index 2 subgroup of the homeotopy group l-i{M). 

There is an isotopy of 52 which changes m to — ra, the product of which 
with the identity map on 51 then deforms /? to the identity map, so /3 
represents the identity in T-L+{M). Also, a. and 7 both have order 2, and 
they commute, so they generate a group Z2 + Z2. 

Each non meridional curve on T extends to a unique Seifert fibration 
of M. Consider the Seifert fibration corresponding to the curve C which 
represents [m] + 2[l] in JHI(T). Clearly, a maps the isotopy class of C to 
itself, with orientation reversed. Since 

7*[C] - 7*H + 27*P] = -M + 2([J] + [m]) = [C], 

we see that 7 also maps the isotopy class of C to itself. Thus they both 
preserves the Seifert fibration corresponding to C. There are infinitely many 
isotopy classes of Seifert fibrations on S'2 x Sl, all of which are preserved 
by the map a, but it is interesting that the fibration above is the only one 
preserved by 7. Let 5 be the orientation-reversing involution of M such that 
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S\T = id. Then S also preserves all curves on T, hence all Seifert fibrations 
of M. Since a, 7, S generate the homeotopy group of M, it follows that the 
fibration corresponding to C is preserved by all homeomorphisms on M. 
We have proved the following lemma for S2 x S1. Recall from [Sc, p. 457] 
that the two manifolds listed are the only orientable closed manifolds which 
admit the S2 x E geometry. 

Lemma 3.10. Suppose M is either S2 x S1 or RPS#RPS. Then there is 

a Seifert fibration on M such that any homeomorphism on M is isotopic to 

a fiber-preserving homeomorphism with respect to this fibration. 

Proof. We have seen that the lemma is true for S2 x S1, so we assume that 
M = RP3#RPS. Let 

ip = ip1 xip2 :S
2 xS1 ^ S2 xS1, 

where (fi is an antipodal map on 5'2, and cpz : S1 —> S1 is given by the 
involution (p2(x,y) = (—a;,y), with S4 considered the unit circle in R2. 
Then the manifold M is a quotient 

M = (S2 X S1)/^. 

Let 77 = ipi x id, and ^ = <pi x ^2, where -02(x, y) — (x, — y). Clearly, the 
maps 77 and ip commute with (p, so they induce homeomorphisms 77, ^ : M —>« 
M, which reverse the orientation of a reducing sphere in M. Moreover, the 
product S,1-bundle structure of S'2 x S1 is preserved by all the three maps, 
so it induces a Seifert fibration on M, which is preserved by 77 and -0. The 
homeomorphism 77 is orientation-reversing. Thus to prove the lemma, it 
remains to show that any orientation-preserving homeomorphism on M is 
isotopic to either ip or the identity. 

Let S be an essential 2-sphere in M, which is unique up to isotopy be- 
cause M has only two irreducible prime factors, so any homeomorphism / 
on M can be deformed by an isotopy so that f(S) = S. Since -0 reverses the 
orientation of S, exactly half of the isotopy classes of orientation-preserving 
homeomorphisms on M preserve the orientation of S. Therefore, we need 
only show that if / preserves the orientations of both M and 5, then / is 
isotopic to the identity map. Since any orientation-preserving homeomor- 
phism on S is isotopic to the identity map, we may assume that /I5 = id. 

The sphere S cuts M into two pieces XL,^, each being a punctured i?P3, 
which is a twisted /-bundle over the projective plane P = RP2.   Since / 
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is orientation-preserving, it maps each Xi to itself. The result now follows 
from the following claim. 

Claim. If X is a twisted I-bundle over the projective plane P, and f : 
X -> X is an orientation-preserving homeomorphism such that f\dx — id, 
then f is isotopic rel dX to the identity map. 

Clearly, the projective plane P in X is unique up to isotopy. We can 
first deform / so that / sends P to itself, then further isotop / so that the 
restriction of / on P is the identity. 

Put Y = S2 x [0,1]. View X as the quotient space of (S2 x [0,1])/??, 
where 

r? : S2 x 1 -> S2 x 1 

identifies each point on the sphere S2 x 1 to its antipodal point. Let / : Y —> 
Y be the lift of /. Now the restriction of / on 52 x 0 is the identity, and 
the restriction of / on S2 x 1 is the lifting of the identity map on P, hence 
is either the identity or the antipodal map; but since it is the restriction of 
the orientation-preserving homeomorphism / on a boundary component of 
y, it can not be the antipodal map. Thus the restriction of / on dY is the 
identity. 

Consider S2 as the standard unit sphere in R3, and let x be the north 
pole. Then C = x x [0,1] is an arc in Y. By the Light Bulb Theorem [Ro, 
page 257], we may change / by isotopy rel dY so that f\c = id. Let Di^D^ 
be the upper and lower half disks of S2. Deform / by an isotopy rel <9Y so 
that it maps each Di x t isometrically to itself, then further deform / on 
D2 x [0,1], rel 5, so that it maps each D2 x t isometrically to itself. We can 
now assume that / maps each S2 x t to itself isometrically. In particular, it 
always maps a pair of antipodal points of S2 x t to another pair of antipodal 
points. 

Let ft'.S2-^ S2 be the restriction of / on the level sphere 52 x t, i.e, ft 
satisfies 

J{u,t) = (ft(u),t)). 

Define an isotopy gs on Y — S2 x [0,1] by 

r     (u,t) Mt<s 
gs{u,t) = < 

l(/t-a(ti),t)       iH>S 

Then gs is an isotopy from / to the identity map, rel S2 x 0. Moreover, 
the restriction of gs to S2 x 1 is always an isometry, hence maps antipodal 
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pairs to antipodal pairs. Therefore, gs induces an isotopy hs on the quotient 
space X = Y/rj, deforming / to the identity map rel dX. □ 

Recall from [Sc, p. 446] that there is a unique orientable Euclidean 
manifold which admits a Seifert fibration with orbifold P(2,2). We denote 
this manifold by Mp(2,2)- The following theorem is sharp: Each of the four 
manifolds listed admits some homeomorphism which does not preserve any 
Seifert fibration of M. 

Theorem 3.11. Suppose M is a compact orientable Seifert fiber space 
which is not Ts, Mp^), S1 x D2, or T x /. Then there is a Seifert fi- 
bration p : M —)* X(M), so that any orientation-preserving homeomorphism 
on M is isotopic to a fiber-preserving homeomorphism with respect to this 
fibration. Moreover, if M is not a lens space or S3, then the result is true 
for all homeomorphisms on M. 

Proof. By the remark after Theorem 3.1, we need only consider manifolds 
covered by T3, S'3 or g2 x R. The only manifolds covered by S2 x R are 
S2 x S1 and RP3#RP3, in which case the result follows from Lemma 3.10. 
So we assume that M is covered by T3 or S'3, i.e., it is a Euclidean or 
spherical manifold. 

If M = S'3, all orientation-preserving homeomorphisms are isotopic to 
the identity, which preserves any Seifert fibration of S'3. Lemma 3.4 covers 
lens spaces. The remaining manifolds have Seifert fibrations p : M —> X(M) 
with orbifolds X(M) = S(p,q,r), or 5(2,2,2,2), or P(2,2), or T2. The 
case X(M) = 5(2,2,2,2) is proved in Lemma 3.9. The last two cases 
are excluded from the assumption of the theorem. In the remaining cases, 
X{M) — S(p, q,r). Since M is Euclidean or spherical, we have 

111 - + - + ->!. 
p      q      r 

If (p, q,r) — (2,2, A;), or (2,3,4), or (2,4,4), this is covered by lemmas 3.5, 
3.6 and 3.9, respectively. In the remaining cases, either (p, q,r) = (3,3, fc) 
for some k > 2, or (p, g, r) — (2,3, fc) for k > 5, which have been covered by 
Theorem 3.2. □ 

According to [Ja, Theorem VI. 16], the following orientable manifolds 
admit different Seifert fibrations up to isomorphism. 

(a) Lens spaces (including S3 and S2 x S1). 
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(b) Prism manifolds, i.e. Seifert fiber spaces with orbifolds X(M)  = 
5(2,2,p). 

(c) Double of twisted /-bundle over the Klein bottle, i.e. a Euclidean 
Seifert fiber space M with X(M) = S,(2, 2,2, 2). 

(d) The solid torus. 

(e) The twisted /-bundle over the Klein bottle. 

The following result supplements Theorems 3.1 and 3.2. 

Corollary 3.12. Let M be a compact orientable Seifert fiber space. Then 
the Seifert fibration of M is unique up to isotopy if and only if M is not T3, 

^P(2,2); T x I, or one of the manifolds listed above. 

Proof. Suppose M is not one of the manifolds listed above. Then by [Ja, 
Theorem VI. 17], Seifert fibrations of M are unique up to isomorphism, that 
is, if pi : M —> Xi are Seifert fibrations for i = 1,2, then Xi = X2, and 
there is a homeomorphism / : M -> M, such that P2 0 f — Pi- If M is not 
T3, T x / or Mp(2,2) either, then by Theorem 3.11, up to isotopy we may 
assume that the homeomorphism / is a fiber-preserving map with respect 
to the fibration pi. It follows that the two fibrations are the same up to 
isotopy. 

Conversely, if M is one of the manifolds listed above, then it has non 
isomorphic Seifert fibrations, so of course they are not isotopic. If M is T3 

or T x /, then any simple closed curve on T x 0 is a regular fiber of some 
Seifert fibration of M. Since these curves represent different elements in 
iZi(M), the fibrations are different, so M has infinitely many non isotopic 
fibrations. Finally for the manifold Mp(2,2)5 ^ wiU be shown in Proposition 
4.2 that it has exactly three non isotopic Seifert fibrations. □ 

4. Homeomorphisms on Mp^^)- 

There are two closed manifolds which are excluded in the statement of Theo- 
rem 3.11. One is T3, the other is the manifold Mp(2,2) > which is the Euclidean 
manifold with a Seifert fibration over the orbifold P(2, 2). Homeomorphisms 
on T3 are clear: Any homeomorphism of T3 is isotopic to an affine map; see 
the proof of Lemma 8.3. The following theorem covers the case of Mp(2,2)- 

Theorem 4.1. Any homeomorphism f on the manifold M — Mp^p) is 
isotopic to an isometry with respect to a Euclidean metric. 
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Proof. We would like to thank the referee for pointing out that this is a well 
known result. It can be found in [CV, p. 478] and [BZ, p. 195]. See the 
proof of the following proposition for more details. □ 

Proposition 4.2. The manifold M = Mp^^) has exactly three Seifert fi- 

brations up to isotopy. 

Proof. The euclidean structure of M is described in [BZ] as follows. Consider 
the three euclidean isometrics ai,a2,Q!3 of M3, which are TT rotations along 
the lines h = {x = 1/2,y — 1}, I2 = {y = 1/2, z = 1} and Z3 = {z — 
1/2, x = 1}. These rotations generate a group O(L) whose quotient is S'3, 
in which the images of the k form the Borromean ring L. Thus the quotient 
map E3 —>• S'3 induces a euclidean orbifold structure on S3 with cone angle 
TT at L. Now M is the double branched cover of S3 branched along L, 
hence it is the quotient of R3 by the subgroup TT of O(L) consisting of all 
elements which are the products of an even number of the a;'s. This gives 
the euclidean structure of M. 

The set of lines parallel to a given coordinate axis is invariant under the 
action of TT, and their images in M are circles, hence form a Seifert fibration 
of M. Thus there are three Seifert fibrations ^1,^2,^3 corresponding to the 
three coordinate axes of M3. These are not isotopic: If two Seifert fibrations 
are isotopic, then a regular fiber of one fibration is isotopic to that of another, 
so their liftings in the universal covering M3 can be deformed to each other 
by an isotopy such that the lengths of the traces of points are bounded 
above; in particular, they must have the same limit set on S^, the sphere 
at the infinity. Since the coordinate axes have different limit points on S^, 
the fj's are mutually distinct. It remains to show that these are the only 
Seifert fibrations. 

The homeotopy group n(M) of M has order 96 (see [CV, p. 478]). 
Its elements are represented by isometries of M with respect to the above 
euclidean metric. Boileau and Zimmermann [BZ, p. 195] gave an explicit 
description of the elements of this group. Its generators lift to the follow- 
ing isometries of M3: (i) the involution ai; (ii) a 7r-rotation along the axis 
{x = y z=z 1/2}; (hi) a 27r/3-rotation along the axis {x = y = z}] (iv) a 
reflection along the plane z = 1/2; (v) a translation moving the origin to 
(1/2,1/2,1/2), followed by a 7r/2-rotation along the line {x = y = 1/2}. 
Note that (ii)-(iv) generate a subgroup of order 24 of the symmetries of the 
unit cube, which together with the map in (v) induce the order 48 symmetry 
group of (S'3, L), which is an index 2 subgroup of %{M). 
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Clearly each of the above maps sends the three Seifert fibrations & to 
themselves, with possibly a permutation. Let £ be a Seifert fibration of M. 
By [Ja, Theorem VL17], Seifert fibrations of M are unique up to isomor- 
phism, so there is a homeomorphism / : M —> M sending & to some £. 
Since / is isotopic to an isometry as above, which sends & to some £j, it 
follows that £ is isotopic to £j. □ 

5. Fixed points and standard maps. 

Suppose Bn is the unit ball in Rn, and / : Bn —>» W1 is a map with the origin 
x as the only fixed point. Then the fixed point index of x is defined as 

where the map 

is defined by 

ind(/,x) = degree (<p), 

<p : S71'1 = dBn -± S71'1 

y - f(y) 
<p(y) = 

lly-/(y)ir 
Since a manifold is locally Euclidean, this defines ind (/, x) for isolated fixed 
points of maps / : M —> M on closed manifolds. 

Suppose / is a map on a closed manifold M, and C is a union of some 
components of Fix.(/). Then C is compact, and there is an open neighbor- 
hood V of C containing no other fixed point of /. Perturb / inside V to 
a map g so that it has only isolated fixed points in V. Then ind (/, C) can 
be defined as the sum of ind (g, x) over all fixed points of g in V. It can be 
shown that this is independent of the perturbation. 

Two fixed points x, y of a map / : M —» M are equivalent if there is a 
path 7 from x to y, such that foj and 7 are rel d homotopic. In particular, 
all points in a component of Fix(/) are equivalent. An equivalent class C 
of fixed points of / is called a Nielsen class. A Nielsen class C is essential 
if ind (/, C) ^ 0; otherwise it is inessential. The Nielsen number N(f) is 
defined as the number of essential fixed point classes in Fix (/). The crucial 
property of N(f) is that it is a homotopy invariant. In particular, it gives a 
lower bound for the number of fixed points for all maps homotopic to /. 
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— C 

(a) (b) (c) 

C C 

(d) (e) 

Figure 5.1. 

Example 5.1. A local homeomorphism near an isolated fixed point x of 
/ is of pseudo-Anosov type if it is the same as the restriction of a pseudo- 
Anosov map near a fixed point. Figure 5.1 shows the picture of some pseudo- 
Anosov type local homeomorphisms. In Figure 5.1(a), the homeomorphism 
is a linear map, expanding along the solid line direction, and shrinking 
along the dotted line direction. One can compute that md(/, x) — —1. 
More generally, if / is a pseudo-Anosov type homeomorphism near z, as 
shown in Figure 5.1(b), then ind(/, x) = 1 — p, where p is the number of 
prongs of the singular foliation at x. If / is the composition of the above 
map with a rotation sending a prong to another, the index is 1. In Figure 
5.1(c), (d) and (e), the homeomorphisms are orientation-reversing. These 
are the compositions of maps shown in Figure 5.1(b) and a reflection along 
an invariant line Z, which is the union of two singular leaves of the invariant 
foliations of /. The index is 0 if the prong number p is odd (Figure 5.1(c)), 
— 1 if p is even and the invariant line is a solid line (Figure 5.1(d)), and 1 
otherwise (Figure 5.1(e)). See [JG, Lemma 3.6] for more details. Similarly, a 
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local homeomorphism in a neighborhood of a boundary point is of pseudo- 
Anosov type if it is the restriction of a global pseudo-Anosov map in a 
neighborhood of a boundary fixed point. 

The combination of the above example and the following product formula 
will be useful in computing the index of fixed points for homeomorphisms 
of 3-manifolds. See [Jl, Lemma L3.5(iv)] for a proof. 

Lemma 5.2. Suppose that Ui is an open neighborhood of Xi in a compact 
topological space Xi, and fi'.Ui-* Xi is a homeomorphism with Xi as the 
only fixed point. Let x = (xi,X2), and let f be the product map / = /i x /2 : 
Xi x X2 -> Xi x X2. Then 

md(f,x) = md(fi,xi) x ind(/2,Z2). 

If A, B are subsets of M, then 7 : / —> M is a path from A to B if 
7(0) 6 -A, and 7(1) e B. If 70,71 are paths from A to B, and there is a 
homotopy cpt : I -* M from 70 to 71 such that </?t(0) G A and <pt(l) G B for 
all t, then we say that 70 is (^4, B) homotopic to 71, and write 

70 -71        rel (A,B). 

When A, B are one point sets, this is also written as 

70 ~ 7i        rel d- 

A set B is f-invariant if f(B) = B. Suppose / : M —>> M is a map, and 
A, 5 are /-invariant sets of M. If there is a path 7 from ^4 to B such that 
7 rs*, f o 7 rel (^4,5), then we say that A, I? are f-related, denoted by 

Jf B. 

In particular, two fixed points x and y of a map / are in the same fixed 
point class if and only if they are /-related. 

A covering p : M -> M is characteristic if the corresponding subgroup 
p^niM is a characteristic subgroup of TTIM, i.e, it is invariant under any 
automorphism of TTIM. Recall that if G is a finite index subgroup of a finitely 
generated group H, then there is a finite index characteristic subgroup Gf 

of H, such that G' C G. It follows that given any finite covering^ : M -> 
M of compact 3-manifold, there is a finite covering q : M —> M so that 
p o q : M —> M is a characteristic covering. Notice that if p : M —> M is 
a characteristic covering, then for any homeomorphism / : M -» M with 
y = f(x), and any points £ and y covering x and y respectively, there is a 
lifting f of f such that f(x) = y. 
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Lemma 5.3. Suppose that A and B are f -invariant subsets of M which are 

f-related by a path 7. Letp : M —» M be a characteristic covering map, and 
A a component ofp~1(A). Then there is a lifting f of f, and a lifting 7 of 
7, which f-relates A to a component B of p~l{B). 

Proof. First choose 7 that covers 7. The homotopy ht : 7 ~ f o 7 lifts to a 
homotopy ht on M, with /io(0) = 7(0). Then pohi(0) = hi(0) = /07(0), so 
^i(O) G p~1(/ o 7(0)). Since p is characteristic, there is a liftingjf of / such 
that /(7(0)) = hi(0). Thus ht is a homotopy 7 ^ / o 7 rel (A, B), where B 
is the component of p~1(B) containing 7(1). □ 

Definition 5.4. A normal structure on a properly embedded arc or circle C 
in a 3-manifold M is an identification of a neighborhood N(C) with C x D, 
where JD is a disk, such that C is identified with C x 0. Suppose C is 
a proper 1-dimensional component of Fix(f). We say that / preserves a 
normal structure on C if there is a normal structure N(C) = C x D on C, 
such that / restricted to a smaller neighborhood Ni(C) = C x Di has the 
property that /(# x Di) C x x D for any x £ C. 

Lemma 5.5. Suppose f : M —> M is an orientation-preserving homeomor- 
phism. If C is a circle component of Fix (f), and f preserves a normal 
structure on C, then f can be deformed by an isotopy in a neighborhood of 
C to a homeomorphism g such that Fix (g) — Fix (/) — C. 

Proof. Let Ni(C) = C x L>i be as in Definition 5.4. Identify /(A/i(C)) with 
51 x D', where Df is the unit disc. Define an isotopy of M by <pt(x,p) = 
(x + t(l — ||p||),p) on f(Ni(C)) and identity outside, where ||p|| is the norm 
of p. Since / maps each x x Df into x x D, the composition g = <pio f has 
no fixed points in Ni(C). □ 

Definition 5.6. A homeomorphism / : M —> M is said to be of flipped 
pseudo-Anosov type at an isolated fixed point x if there is a neighborhood 
N(x) = DxIofx, such that the restriction of / on a smaller neighborhood 
Di x I is a product /1 x jfo, where /1 is a pseudo-Anosov type map given in 
Example 5.1, and /2 is the involution f2(t) = 1 -1. 

Notice that in this case, if we write x — (xi, £2), then by Lemma 5.2 we 
have ind (/, x) = ind (/1, xi) • ind (/2, £2) = ind (/1, ^i), because in this case 

ind(/2,sc2) = !• 
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Lemma 5.7. Suppose f : M —> M is an orientation-preserving homeomor- 
phism. If f is of flipped pseudo-Anosov type at some fixed point x of f in the 
interior of M, and ind (/, x) = 0, then f can be deformed by an isotopy in 
a neighborhood of x to a homeomorphism g such that Fix (g) = Fix (/) — x. 

Proof Let / = fi x /2 : Di x / —> D x / be as in the definition, and let 
x = (xi,X2). Then ind(/i,a;i) = md(/,x) = 0. By [JG, §2.2, Remark 2], /i 
is rel dDi isotopic to a homeomorphism gi which has no fixed point. Extend 
this isotopy to an isotopy of / in Z?i x /, rel d(Di x I). Since / exchanges 
the two sides of Di x 0, this will not create new fixed points. □ 

Definition 5.8. Suppose M is a compact 3-manifold with boundary con- 
sisting of tori. A homeomorphism / : M —¥ M is standard on the boundary 
if for any component T of dM, the map /|T is of one of the following types. 

(i) A fixed point free map. 

(ii) A periodic map with isolated fixed points. 

(iii) A fiber-preserving, fiber-orientation-reversing map with respect to 
some S4 fibration of T, inducing an involution on the orbifold; more- 
over, fix is not isotopic to a map of the above two types. 

Definition 5.9. Suppose M is a compact 3-manifold with boundary con- 
sisting of tori. 

(1) A homeomorphism / on a compact 3-manifold M is said to have the 
FR-property (Fixed-point Relating Property) if the following is true: 

If A E Fix (/) and B is either a fixed point of / or an /-invariant 
component of <9F, and A, B are /-related by a path 7, then 7 is {A, B) 
homotopic to a path in Fix (/). 

(2) / is a Type 1 standard map if (i) / has the FR-property, (ii) / is 
standard on the boundary, (iii) Fix (/) consists of isolated points, and 
(iv) / is of flipped pseudo-Anosov type at each fixed point. 

(3) / is a Type 2 standard map if it satisfies (i), (ii) above, as well as (iii) 
Fix (/) is a properly embedded 1-dimensional submanifold, and (iv) / 
preserves a normal structure on Fix(/). 



Homeomorphisms of 3-maiiifolds and the Nielsen number 857 

Lemma 5.10. Suppose M is a closed 3-manifold. If f : M —> M is a type 
1 standard map, then f is isotopic to a homeomorphism g with exactly N(f) 
fixed points. If f is a type 2 standard map, then it is isotopic to a fixed point 
free homeomorphism. 

Proof. The FR-property implies that each fixed point class of / is path 
connected. In particular, if / is a Type 1 standard map on a closed manifold, 
then each fixed point is a Nielsen class, and by Lemma 5.7 / can be modified 
by an isotopy supported in a neighborhood of inessential fixed points to 
eliminate these fixed points, deforming / to a homeomorphism g with exactly 
N(f) fixed points. If / is a type 2 standard map, since M is closed, all 
components of Fix (/) are circles, which can be eliminated using Lemma 
5.5. □ 

The following result about surface homeomorphisms is due to Jiang and 
Guo [JG, Lemma 1.2 and Lemma 2.2] when F is hyperbolic. The result is 
well known if F is Euclidean or spherical, and can be proved in the same 
way. 

Lemma 5.11. (1) // cp : F —> F is a periodic map on a surface, then 
it has the FR-property, except when F = S2 and ip is orientation 
preserving. 

(2) // F is hyperbolic or Euclidean, and (p : F -> F is a pseudo-Anosov or 
Anosov map, then each fixed point of cp is an isolated point, and it has 
the FR-property, except that two fixed points on the same boundary 
component C of F are (p-related if (p is isotopic to id on C. 

(3) In particular, if F is orientable and (p is orientation reversing, then in 
both cases (1) and (2), </? has the FR-property. 

Lemma 5.12. Suppose f is an orientation-reversing homeomorphism on a 
torus T. Then f is isotopic to either a fixed point free homeomorphism or 
an Anosov map. 

Proof. By an isotopy we may assume that / is either periodic, reducible, or 
Anosov. If it is periodic and Fix (/) is nonempty, then it is an involution, 
so it is also reducible. For a reducible homeomorphism, up to isotopy we 
may assume that its fixed point set consists of two circles, which can be 
eliminated by a small flow along the circle direction. □ 
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Remark 5.13. Whether two fixed points of a map are equivalent is a global 
property. It may happen that / maps a submanifold Mi of M to itself, and 
/ has two fixed points x, y in Mi such that they are inequivalent in Mi, but 
equivalent in M. Here is an example. Let JFI,!^ be once punctured tori, 
let fi : Fi -* Fi be an orientation reversing pseudo-Anosov map, and let 
/2 : F2 —> F2 be an orientation reversing involution. Glue /1 and /2 together 
along the boundary dF\ — dFz to get a map / on F = Fi U F2. Then the 
two fixed points of /1 on dFi are inequivalent in Fi, but equivalent in F. 
Now let M = F x 51, and let g : M —>- M be the product / x r, where r is 
an involution on 51. Then g is an orientation-preserving map. Let gi be the 
restriction of g on Mi = Fi x 51. Then the four fixed points of gi on <9Mi 
are inequivalent in Mi, but as fixed points of 5, they form two equivalent 
pairs in M. 

6. Fiber-preserving homeomorphisms. 

Let / : M —> M be an orientation-preserving, fiber-preserving homeomor- 
phism on a Seifert fiber space M, let p : M —>• X(M) be the projection map, 
and let / : X(M) —> X(M) be the induced homeomorphism on the orbifold. 
In this section we will consider the case that / : X(M) —> X(M) is either 
periodic, Anosov, or pseudo-Anosov. 

Consider the restriction of / on p_1(1l^) for a component W of Fix(f). 
For each x E W, the fiber Lx = p~1(x) is /-invariant. Since W is connected, 
it is clear that / preserves the orientation of a fiber over W if and only if 
it preserves the orientation of all fibers over W. In this case we say that 
/ is fiber-orientation-preserving over W. Otherwise it is fiber orientation- 
reversing over W. 

Lemma 6.1. Suppose f is fiber-orientation-preserving over some compo- 

nent W of Fix (f). Let M' — p_1(7V(T;r)). Then f can be deformed via a 
fiber-preserving isotopy rel M — Mf, to a homeomorphism which has no fixed 
point in M'. 

Proof By a small fiber-preserving isotopy rel M — Mf we may modify / to a 
homeomorphism g such that the orbifold homeomorphism p has only isolated 
fixed points in N(W). Thus g maps only finitely many fibers Ci,... Cn of 
M7 to themselves. 

For each Ci, since g is fiber-orientation-preserving, gld can be deformed 
by an isotopy to a fixed point free homeomorphism.   The isotopy can be 
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extended to a fiberwise isotopy supported in a small neighborhood of Cj, 
eliminating all fixed points in N(Ci). The result follows by performing such 
an isotopy for each Ci. □ 

Notice that if M is a connected orientable circle bundle over an orientable 
surface, then all fibers can be coherently oriented, so a fiber-preserving home- 
omorphism / : M —> M either preserves or reverses the orientation on all 
fibers. 

Lemma 6.2. Suppose q : M —> F is a connected orientable circle bun- 
dle over an orientable compact surface F, and suppose f : M —> M is 
an orientation-preserving, fiber-orientation-reversing homeomorphism, such 
that f : X(M) —>• X(M) is periodic, Anosov or pseudo-Anosov. Then f has 
the FR-property. 

Proof. Consider the case that A,B are fixed points of /, and are /-related 
by a path 7. (The case that B is an /-invariant boundary component of / 
is similar.) Then A — q(A) and B = q(B) are fixed points of / on X(M), 
and they are /-related by 7 = q o 7. Since / is fiber orientation-reversing, / 
is orientation-reversing on F. Hence by Lemma 5.11, 7 is (A, B) homotopic 
to a path (3 in Fix(/). As / is fiber orientation-reversing, Fix(/) is double 
covered by Fix(/), so there is a unique path ft in Fix(/) covering /?, with 
/3(0) = 7(0). The path Z?-1 • 7 projects to the null-homotopic loop /S-1 • 7 
on F, so it is rel d homotopic to a path a in the fiber L over 7(1). Since 

a ~ ^_1 .7^/0 (f3~l - 7) ~ f o a rel 5, 

and since / reverses the orientation of L, this is true only if a is a null- 
homotopic loop in L. It follows that 7 ~ /? rel <9. D 

Proposition 6.3. Suppose f : M —>► M is an orientation preserving home- 
omorphism which is fiber preserving with respect to a Seifert fibration of 
M. 

(1) IfX(M) is hyperbolic or Euclidean, and f : X(M) -» X(M) is pseudo- 
Anosov or Anosov, then f is isotopic to a Type 1 standard map. 

(2) // / : X(M) —> X(M) is periodic, then f is isotopic to a Type 2 
standard map. 
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Proof. By Lemma 6.1 we may assume that / reverses the orientation of any 
fiber which contains a fixed point of /. In particular, if T is a component 
of <9M, then either /|r is fixed point free, or it is a fiber-preserving, fiber- 
orientation-reversing map. Hence up to a fiber-preserving isotopy we may 
assume that / is standard on the boundary. 

Suppose A E Fix(f) is /-related to B by a path 7, where B is a fixed 
point of / or an /-invariant component of dM. By [Sc, Theorem 2.5], there 
is a finite covering q : X(M') -> X(M) of orbifold such that X^') is an 
orientable surface. The pull-back of the Seifert fibration p : M —> X(M) via 
q gives a covering manifold qf : Mf —> M with Seifert fibration pf : Mr —> 

-X^M'). Since X(Mf) is an orientable surface, the fibrationpf is an orientable 
circle bundle over the orientable surface F = X(Mf). By the remark before 
Lemma 5.3, after passing to a further finite covering if necessary, we may 
assume that q' is characteristic. 

Let /' : M' -> Mf be a lifting of / which fixes a point A' with q'(A') = A. 
By Lemma 5.3, Af is /'-related to some component B' of (g/)_1(jB), by a 
path 7' which is a lifting of 7. Since A is a fixed point of /, by the above 
assumption / reverses the orientation of the fiber containing A. As a lifting 
of /, the map f reverses the orientation of the fiber containing A', and 
hence the orientation of all fibers because the fibers of Mf can be coherently 
oriented. Since the orbifold homeomorphism f : X(M') -> X(Mf) is a 
lifting of the (periodic, Anosov or pseudo-Anosov) map /, it is also periodic, 
Anosov or pseudo-Anosov. By Lemma 6.2, f has the FR-property. Hence 
there is a homotopy h^ deforming 7' to /?' C Fix(f') rel (A'^B'). The 
projection of h't on M is a homotopy q1 o h!t : j ~ qf o /3f rel (A, B). Since 
q' o ft is a path in Fix (/), this proves that / has the FR-property. 

Suppose / is Anosov or pseudo-Anosov. Then Fix (/), hence Fix (/), are 
isolated points. For each point x € Fix(/), choose a product neighborhood 
N(x) — D x /, with each p x / in a Seifert fiber of M. By a fiberwise 
isotopy we may assume that / is a product /1 x /2 in a smaller neighborhood 
Ni(x) = Di x I, where /2 is the involution on /. The map fi:D-+Dis 
a lifting of /UEM, which is of pseudo-Anosov type. Therefore / is a type 1 
standard map. 

Now suppose / is periodic. Then Fix(f) consists of geodesies, so Fix (/) 
is a 1-dimensional submanifold. Let C be a component of Fix (/). Let N(C) 
be a regular neighborhood of C which is an /-bundle induced by the Seifert 
fibration, over a surface A, which is either an annulus, a Mobius band, or 
a rectangle. Let q : N(C) —> A be the quotient map pinching each /-fiber 
to a point. The homeomorphism / induces a map /1 : Ai -> A, where Ai 
is a subsurface of A containing q(C).  Notice that p : M -± X(M) induces 
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a map r : A -> X(M), which is locally a covering map of orbifolds, and fi 
covers the orbifold homeomorphism /, i.e, rofi = for. Since f is periodic 
with a 1-dimensional fixed point set, it is an involution, hence fi is locally 
an involution near each fixed point. Therefore, we may choose a smaller A if 
necessary, so that fi is an involution on A. It is now clear that fi preserves 
some normal structure of the curve q(C) on A, which then lifts to a normal 
structure on N(C) preserved by /. This completes the proof that / is a 
type 2 standard map. □ 

The following result supplements Proposition 6.3.   It covers fiber pre- 
serving homeomorphisms on manifolds which have spherical orbifolds. 

Proposition 6.4. Suppose that M is a closed Seifert fiber space with orb- 
ifold X(M) a sphere with at most three cone points, or a projective plane 
P with at most two cone points. Let f : M —t M be a fiber-preserving 
orientation-preserving homeomorphism. Then f is isotopic to a fixed point 
free homeomorphism. 

Proof. By a fiber-preserving isotopy we may assume that / : X(M) —> X(M) 
is periodic. This is obvious when X(M) is a sphere with at most three cone 
points or a projective plane with at most one cone point, and follows from 
Lemma 2.3 when X(M) — P(rrs). By roposition 6.3, / is isotopic to a 
homeomorphism such that Fix (/) is a 1-manifold, and / preserves a normal 
structure of Fix (/). By Lemma 5.5 we can modify / by an isotopy to remove 
all such fixed points. □ 

7. Homeomorphisms on torus bundles. 

A 1-orbifold Y is an interval with 0, 1 or 2 cone points at its ends, or an S1. 
In the first case a torus bundle over Y is a T x /, in the second case a twisted 
/-bundle over the Klein bottle, in the third case a union of two twisted /- 
bundles over Klein bottle, and in the fourth case it is a torus bundle over 51. 
In this section we will study homeomorphisms on these manifolds with each 
fiber a torus. In particular, we will prove Theorem 9.1 for homeomorphisms 
on Sol manifolds. 

Lemma 7.1. // M is a twisted I-bundle over the Klein bottle, then an 
orientation-preserving homeomorphism f : M —> M can be deformed by 
an isotopy to a type 2 standard map. 
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Proof. According to [WW, Lemma 1.1], up to isotopy M admits exactly two 
Seifert fibrations: It is a twisted circle bundle over Mobius band, and it is 
also a Seifert fiber space over a disk with two singular points of index 2. Since 
those two Seifert fibrations are not homeomorphic, the homeomorphism / 
must preserve each Seifert fibration up to isotopy. So we may assume that 
/ is a fiber preserving homeomorphism. By Proposition 2.4, with a further 
isotopy we may assume that the orbifold map / is periodic. Hence we can 
apply Proposition 6.3 to modify / by an isotopy to a type 2 standard map. 

□ 
Lemma 7.2. Let N = T x I, where T is a torus. Let Ti = T x i, and let 
fi — /|T»- Suppose f : N —> TV is an orientation-preserving homeomorphism 
which is standard on the boundary. 

(1) If fi(Ti) ^z Ti, then f is rel ON isotopic to a type 1 standard map g. 
Moreover, if ff : Ti —> Ti is not isotopic to an Anosov map, then g is 
fixed point free. 

(2) If fi(Ti) = Ti, then f is rel ON isotopic to a type 2 standard map. 

Proof. (1) Suppose fi(Ti) ^ 2*. We may assume that / maps T = T x i 
to itself. By Lemma 5.12 we may modify f = f\T by an isotopy to a fixed 
point free or Anosov map. The isotopy can be extended to an isotopy of 
/ rel dN, modifying / to a homeomorphism g so that in a neighborhood 
of T it is the product of /' with an involution. Each point of Fix (g) is 
an essential fixed point class of g, and since g has no invariant boundary 
component, no point of Fix(g) is ^-related to a boundary component, so g 
has the FR-property. Therefore g is a type 1 standard map, and g is fixed 
point free unless /' is Anosov, which is true if and only if /? : Ti -» Ti is 
isotopic to an Anosov map. 

(2) Suppose fi(Ti) = Ti. We separate the argument into several cases 
according to the type of fi in Definition 5.8. Note that the three types of fi 
are mutually exclusive up to isotopy, hence /o and /i have the same type. 

Case 1. fi has no fixed point. 
In this case we can just modify / by an isotopy rel dN so that for any 

x G (0,1), / sends the torus T x x to T x y for some y G (0, x). Then / has 
no fixed point on N(T), so it is automatically a type 2 standard map. 

Case 2. fi is a periodic map with isolated fixed points. 
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In this case it follows from [JW, Proposition 3.1] that / is rel ON isotopic 
to an affine map g with respect to some Euclidean structure of T x I, so that 
each component of Fix (g) is an arc from TQ to Ti. (Note that since f]^ is 
orientation-preserving and is not the identity map, Fix (/) can not be torus 
or circle on T^, which rules out the other possibilities of [JW, Prop. 3.1].) 
Since g is affine, it maps each T x t to itself, hence it preserves a normal 
structure. 

Every path class in T x I contains a unique straight path. Since g is an 
affine map, any straight path connecting fixed points is pointwise fixed by 
g. Hence g has the FR-property. 

Case 3. fi is a fiber-preserving, fiber-orientation-reversing homeomorphism 
with respect to some S1 fibration of Ti. 

In this case the fiber direction of fi is uniquely determined by the isotopy 
type of /;, hence the two fibrations on Ti are isotopic to each other. The 
fibrations on Ti extends to an S^-bundle structure of N over an annulus A, 
and / is rel dN isotopic to a fiber-preserving map. The induced homeo- 
morphism / : A -* A is orientation-reversing, so it is rel dA isotopic to an 
involution. The result now follows immediately from Lemma 6.2. □ 

Recall that N(f) denotes the Nielsen number of a map /. 

Lemma 7.3. Suppose M is a torus bundle over S1, and f : M —> M is an 
orientation-preserving homeomorphism which preserves the torus fibration. 
Then f can be deformed by an isotopy to a homeomorphism g with exactly 
N(f) fixed points. Furthermore, N(f) = 0 unless (i) the induced homeo- 
morphism f : S'1 -» S'1 is orientation-reversing, and (ii) the restriction of 
f on at least one of the invariant torus fibers is isotopic to an Anosov map. 

Proof. If /' : 51 —> 51 is orientation-preserving, then we can deform / via a 
fiber-preserving isotopy, so that /' is fixed point free, hence / is also fixed 
point free, and the result follows. 

If /' is orientation-reversing, then / has two invariant torus fibers Ti 
and T2, and Fix(f) C Ti U T2. By the Nielsen Realization Theorem of 
surface homeomorphisms [JG, Main Theorem], we may deform fi = /(^ 
by an isotopy so that N(fi) = #Fix(/i) as homeomorphisms on tori. The 
isotopy can be extended to a fiber-preserving isotopy of /, deforming / to 
a new homeomorphism g such that the restriction of g on N(Ti) = Ti x / is 
a product fi x </?, where tp : I -+ I is the involution (p(t) = 1 — t. Since Ti 
are still the only fibers preserved by #, we have Fix (g) = Fix(fi) U Fix (/2). 
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Let t = 1/2 be the fixed point of cp. Note that since cp is an involution, the 
index of t is 1. Since g is locally a product fiXcp near each fixed point, by 
Lemma 5.2 we have 

ind (/, x) = ind (/;, x) x ind (<£, t) 

for any x E Fix(/). It follows that the index of each fixed point of g is 
nonzero. We need to show that no two of them are Nielsen equivalent. 

Suppose x^y G Fix(g) are in the the same fixed point class of g. Then 
there is a path 7 from x to y such that 

g 07 ~ 7 rel d. 

Let 7' = q o 7. Then 7' is a path from q(x) to (z(y), and 

gf oj' ~ 7' rel 3, 

where gf is the orbifold map on S1 induced by g. Since gf is orientation- 
reversing, this implies that 7' is homotopic to a trivial loop. Thus x and y 
must be in the same T;, and 7 can be deformed into T^. Now TT^T;) injects 
into 7ri(M), so the homotopy 7^/07 can be deformed into T;, which 
implies that # and y are in the same fixed point class of /i, contradicting 
the fact that #Fix (/;) = N(fi). Therefore the number of fixed points of g 
is exactly N(f). 

By Lemma 5.12, fi is isotopic to a fixed point free or Anosov map. So if 
neither fi is isotopic to an Anosov map, then g is fixed point free. □ 

Denote by J the 1-orbifold [—1,1] with two singular points at its ends. 
If p : M —> J is a torus fibration, then M is a union of two twisted /-bundle 
over the Klein bottle, glued together along their boundary. 

Lemma 7.4. Suppose M is a torus bundle over the 1-orbifold J, and f : 
M -^ M is an orientation-preserving homeomorphism which preserves the 
torus fibration.  Then f is isotopic to a homeomorphism with no fixed points. 

Proof. Let /' : J —>- J be the orbifold map induced by /. By an isotopy we 
may assume that f is either the identity or an involution on J. In particular, 
f fixes the middle point of J, so the middle torus fiber T is invariant under 
the homeomorphism /. 

First assume that /' is an involution on J. As in the proof of Lemma 7.3, 
f\T is isotopic to either a fixed point free homeomorphism, or an Anosov 
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map. Now T cuts M into JVi, iV^, which are twisted /-bundles over the Klein 
bottle. The homeomorphism f2 sends each Ni to itself, so by Proposition 
2.4 it is isotopic to a periodic map. In particular, f2\dNi = (/IT)

2
 is isotopic 

to a periodic map, so /|T can not be an Anosov map. Thus /|T is isotopic to 
a fixed point free homeomorphism. The isotopy can be fiberwise extended 
over M, modifying / to a fixed point free homeomorphism. 

Now assume that f : J —> J is the identity map. Since Ni is a twisted 
/-bundle over the Klein bottle, by Lemma 7.1 we can deform / by an isotopy 
so that /IJV; is a Type 2 standard map. By Lemma 7.2 we can deform /|;V(T) 

by an isotopy rel dN(T) to a Type 2 standard map. Thus Fix(f) is a union 
of 1-manifold in Ni and N(T), with some normal structure preserved by /. 
Since f]^ and /|JV(T) have no isolated fixed points, Fix(f) must be a union 
of circles in M. By Lemma 5.5 one can modify / by an isotopy to eliminate 
all such fixed points, and get a fixed point free homeomorphism. □ 

Proposition 7.5. Suppose M is an orientable 3-manifold with Sol geometry 
and f : M —> M is an orientation-preserving homeomorphism. Then f is 
isotopic to a fixed point free homeomorphism. 

Proof. A Sol manifold has a structure of torus bundle over 1-orbifold, and 
by [Sc, Theorem 5.3] it is not a Seifert fiber space. Thus by Lemmas 3.7 
and 3.8, we may assume that / is torus fiber-preserving. If M is a torus 
bundle over the 1-orbifold J, the result follows from Lemma 7.4. Hence we 
may assume that M is a torus bundle over S1. By Lemma 7.3, / can be 
deformed by an isotopy so that #Fix(/) = N(f). It remains to show that 
N(f) = 0. 

Figure 7.1 
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Continue with the proof of Lemma 7.3. We have shown that / induces an 
involution on the orbifold 51, whose two fixed points yield two /-invariant 
tori Ti,T2 of M, and Fix(/) = Fix(/i) UFix(/2), where ft = f\Ti. We may 
consider M as a quotient 

M = (Tx I)/<p 

where 
V?:TxO->Txl 

is the gluing map. We may assume that Ti=Txl=:TxO, and T2 = T x \. 
Thus / pulls back to a torus fiber-preserving homeomorphism 

/:Tx J-^Tx/ 

which induces an involution on /.   Put /' = /|TXO> and f" = /|TX1-   See 
Figure 7.1. We have the following commutative diagram. 

Tx 0 —£-► Tx 1 

/' /" 

Tx 1 <-£— Tx 0 

Fixing a basis for Hi (T), each map then determines a matrix with respect 
to this basis. Let A be the matrix of cp. Since /' and f" are the restriction of 
/, they induce the same matrix B. The above commutative diagram implies 
that 

BA'1 = AB. 

Since M is a Sol manifold, the gluing map cp is an Anosov map, so the matrix 
A has two distinct real eigenvalues Ai, A2. Let Vi be an eigenvector of A^. 
With respect to the basis (^1,^2) the map cp is represented by a diagonal 
matrix with diagonal entries Ai and A2. Let B' be the matrix representing 
/' and /'' with respect to this new basis. Then 

Since Ai =^ A2, by comparing the coefficient in the above equation we have 

B-W   0 
hence tr (B) = tr (B1) = 0. 
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Denote by h the map /2 : T2 —> T2. Let 

be the induced homomorphism on the i-th homology group of T2. The 
matrix B is also the representation matrix of hu. According to [Ki], the 
Nielsen number of a torus map is the same as the absolute value of its 
Lefschetz number: 

N(h) = |tr (/io*) - tr (hu) + tr (/i2*)l- 

Clearly tr(/io*) = 1- Since h = f2 is orientation-reversing on T2, we have 
tr(^2*) = —1. Therefore 

iV(/2) = N(h) = tr (hu) = tr (B) = 0. 

Similarly, one can show that N(fi) = 0. Since Fix(/) = Fix(/i) U 
Fix (/2), this implies that N(f) = 0. □ 

8. Homeomorphisms on some geometric manifolds. 

There are eight 3-manifold geometries, see [Sc, Theorem 5.3]. In this section 
we will prove the main theorem for six types of geometric manifolds. The 

remaining two geometries are the H2 x R and SL2M.. These are Seifert 
fibred manifolds with hyperbolic orbifolds, and will be treated in Section 9, 
together with manifolds admitting nontrivial JSJ splittings. 

If M is a manifold with toroidal boundary whose interior admits a com- 
plete hyperbolic structure, then we can identify M with the e-thick part of a 
complete hyperbolic manifold. More explicitly, the interior X of M admits 
a complete hyperbolic structure with finite volume. Let Xe be the set of 
all points x in IntX such that there is an embedded hyperbolic open ball of 
radius e centered at x. There exists an eo > 0 such that for any e < eo, Xe 

is homeomorphic to M and each boundary component of Xe is a horosphere 
modulo a rank two abelian group of parabolic motions. (See [Thl, 5.11].) 
We identify M with such an X€. 

Lemma 8.1. Let f be an orientation-preserving homeomorphism of an ori- 
entable hyperbolic manifold M. Then f is isotopic to a type 2 standard map 

9- 

Proof. Since M is identified with X€, the homeomorphism / : M —> M 
extends to a homeomorphism f : X —)• X. By Mostow's Rigidity Theorem 
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[Mo, p. 54], there is a unique isometry g' : X —>► X which is homotopic to 
/'. Since X retracts to Xe — M, the homeomorphism g = </|M is homotopic 
to /. By a recent result of Gabai, Meyerhoff and Thurston [Ga, GMT], / is 
actually isotopic to the isometry g : M —» M. 

If g = id, then by a small flow along a non vanishing vector field which is 
tangential on the boundary, we get a fixed point free homeomorphism, and 
we are done. So assume that g / id. 

Suppose each of AQ, AI is either a fixed point of g or a boundary compo- 
nent of M, and AQ is ^-related to Ai via the path 7. The universal covering 
M of M is the hyperbolic 3-space H3 with some horospheres removed. By 
lifting 7 to M we see that 7 is (AQ,AI) homotopic to a geodesic 7', which 
is perpendicular to Ai if it is a boundary component. Moreover, such a 
geodesic 7' is unique among all paths which are (AQ,AI) homotopic to 7. 
Since g is an isometry, the path g o 7' is also a geodesic, and 

g o 7' ~ g o 7 ~ 7 ~ y rel (^4o> ^.i)- 

So by the uniqueness of 7', we must have 7' = g o 7'. In particular, 7' 
is a path in Fix(g). Therefore g has the FR-property. Since g is a non 
identity orientation-preserving isometry, Fix (g) consists of mutually disjoint 
geodesies, so it is a properly embedded 1-manifold. A neighborhood of 
Fix (g) is parametrized by a family of hyperbolic disks perpendicular to 
Fix (5), each of which is preserved by the isometry #, hence g preserved 
a normal structure of Fix(g). It is known that isometries on hyperbolic 
manifolds are periodic [Thl], so in this case g\dM is a periodic map with 
isolated fixed points. □ 

Corollary 8.2. If M is a closed hyperbolic manifold, and f : M —> M is an 
orientation-preserving homeomorphism, then f is isotopic to a fixed point 
free homeomorphism. 

Proof. By Lemma 8.1 we may assume that / is a type 2 standard map, so 
Fix (/) is a 1-manifold. Since M is closed, Fix (/) consists of circles, which, 
by Lemma 5.5, can be removed via an isotopy. □ 

Lemma 8.3. Let f be a homeomorphism on the manifold T3. Then f is 
isotopic to a homeomorphism g with #Fix(g) = N(f). 

Proof Identify T3 with M3/Z3, and identify the fundamental group 7ri(T3) 
with the covering translation group Z3. The homeomorphism / : T3 —> T3 
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induces an automorphism /* : Z3 -* Z3. The latter extends to a linear 
automorphism g : M3 —> R3, inducing a linear automorphism g : T3 —> T3 

which is homotopic to /. 
Let A be the matrix of /*, and E be the identity matrix. According to 

[Jl, Example 2 of §11.4 and 1.3.2(2)], if A does not have 1 as an eigenvalue, 
then the linear homeomorphism g has exactly N(f) = |det(J3 — A)\ fixed 
points, all having the same index which equals the sign of det(jB — A). If 
1 is an eigenvalue, then N(f) =■ 0, and an arbitrarily small translation in 
the direction of a 1-eigenvector removes all fixed points. Thus we obtain an 
affine homeomorphism, still denoted by g, with #Fix(g) = iV(/), which is 
homotopic to /. 

Since T3 is a Haken manifold, g is in fact isotopic to /. □ 

Lemma 8.4. /// is an orientation-preserving homeomorphism on the man- 
ifold M = Mp(2,2); then it is isotopic to a fixed point free homeomorphism. 

Proof. By Theorem 4.1 / is isotopic to an isometry with respect to some 
Euclidean metric of M. Since / is orientation-preserving, its fixed point set 
consists of disjoint circles, which can be removed by Lemma 5.5. □ 

Proposition 8.5. If M is a closed orientable 3-manifold which admits a 
Sol, Nil, Hs, Es, Ss or S2 x E geometry, then any orientation-preserving 
homeomorphism f on M is isotopic to a homeomorphism g such that 
#Fix(g) = N(f). 

Proof. If M admits a Sol or hyperbolic manifold, T3, or Mp(2,2)> the result 
follows from Proposition 7.5, Lemmas 8.2, 8.3 and 8.4, respectively. So as- 
sume that M is not such a manifold. All the remaining manifolds are Seifert 
fiber spaces. By Theorem 3.11 the map / is isotopic to a fiber-preserving 
homeomorphism with respect to some Seifert fibration of M which has spher- 
ical or Euclidean orbifold. If X(M) is Euclidean, by Theorem 2.5 the induced 
orbifold map / is isotopic to a periodic, reducible, or Anosov map. Note 
that this is trivially true if X(M) is spherical because all homeomorphisms 
on a spherical orbifold are isotopic to periodic maps. 

If /is Anosov, by Proposition 6.3 / is isotopic to a Type 1 map, and 
by Lemma 5.7 / can be further deformed by an isotopy so that N(f) = 
#Fix(f), as desired. If X(M) is spherical, by Proposition 6.4 / is isotopic to 
a fixed point free homeomorphism. If / is periodic and X(M) is Euclidean, 
by Proposition 6.3 / is isotopic to a Type 2 standard map g.   Since M 
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is closed, each component of Fix(g) is a circle; hence by Lemma 5.5 g is 
isotopic to a fixed point free homeomorphism. 

Now assume that / is reducible, and let C be a reducing curve on X(M). 
Then M also has the structure of a torus bundle over a 1-orbifold, with the 
torus T over C a torus fiber. Since /(T) = T, we can deform / by an 
isotopy to a torus fiber-preserving map. The Seifert fibration provides an 
51 bundle structure on T, which is preserved by /, hence /IJ- is a reducible 
homeomorphism. We can now apply Lemmas 7.3 and 7.4 to conclude that 
/ is isotopic to a homeomorphism with no fixed points. □ 

9. Proof of the main theorems. 

Theorem 9.1. Suppose M is a closed orientable 3-manifold which is either 
Haken or geometric, and f : M -> M is an orientation-preserving homeo- 
morphism. Then f can be deformed by an isotopy to a homeomorphism g 
with#Fix(g)=N(f). 

Proof. If M admits a Sol, Nil, E3, S3 oi S2 xR geometry, the result follows 
from Proposition 8.5. Assume that M is not such a manifold, and let T 
be the (possibly empty) minimal set of tori of the Jaco-Shalen-Johannson 
decomposition. Then each component of M — IntiV(T) is either hyperbolic, 
or a twisted /-bundle over Klein bottle, or a Seifert fiber space with hy- 
perbolic orbifold. By an isotopy we can deform / so that it maps N{T) 
homeomorphically to itself. 

Suppose that P is a Seifert fibered component of M — lntN(T) such 
that f(P) = P. By [Sc, Theorem 3.9], f\p is isotopic to a fiber-preserving 
map. By Lemma 1.10 and Proposition 2.4, we can find a set of vertical tori 
Tp in P, cutting P into pieces with hyperbolic or JD(2,2) orbifold, and a 
fiber-preserving isotopy of /, so that after isotopy, the restriction of / on 
each invariant piece has periodic or pseudo-Anosov orbifold map. Adding 
all such Tp to T, we get a collection of tori T7, such that 

(i) /(ivon) = N(ry, 
(ii) Each component Mi of M — IntiV^T7) is either hyperbolic, or a Seifert 

fiber space such that X(Mi) is a hyperbolic orbifold or I}(2,2). 

(iii) If / maps a Seifert fibered component Mi to itself, and if Mi ha^ 
hyperbolic orbifold, then / is fiber-preserving, and the orbifold map f 
on X(Mi) is either periodic or pseudo-Anosov. 
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We can now apply Proposition 6.3, Lemma 7.1 and Lemma 8.1 to each 
component Mi of M — Int7V(T/) which is mapped to itself by /, isotoping 
/ so that f^ is a standard map for all M^ After that, use Lemma 7.2 to 
further deform / by an isotopy rel dNj on each component Nj of NiT'), so 

that it is a standard map on Nj. 
By the definition of standard maps, Fix (/) intersects each of Mi and 

Nj in isolated points and properly embedded 1-manifolds, so Fix(/) is a 
disjoint union of points, arcs, and circles. Moreover, at each isolated point 
of Fix (/) the homeomorphism / is of flipped-pseudo-Anosov type, and at 

each arc or circle it preserves some normal structure. 
We want to show that different components of Fix (/) are not equivalent. 

If this is not true, there is a path a connecting different components Co, C\ 
of Fix (/), such that / o a ~ a rel d. Denote by T" the set of tori dN(Tf). 
Among all such a, choose one such that \a — T"\ is minimal. If \a — T"| = 0 
or 1, then a lies in some Mi or iVj, which we denote by X. Since a contains 
some fixed point of /, / must map X to itself. Since X is a component of 
M cut along incompressible tori, 7ri(X) maps injectively into 7ri(M); so a 
and / o a being rel d homotopic in M implies that they are rel d homotopic 
in X. But since / is a standard map on X, the two endpoints of a belong to 
the same component of Fix(/|x), which is a contradiction. Hence we may 
assume that \a — T,r\ > 2. Below, we will find another such curve a" with 
\a

f' — T""! < |a _ 7~"|5 which would contradict the choice of a. 

Let D be a disk, and let h : D -± M be the homotopy a ~ f o a rel <9. 
We may assume that h is transverse to T", and |^~1(T//)| is minimal among 
all such h. Then /i~1(T//) consists of a properly embedded 1-manifold on D, 
together with possibly one or two isolated points mapped to the ends of a. 
Clearly, T" is TTi-injective in M, so one can modify h to remove all circles in 
h~1{T"). Note that h~l{T") must contain some arcs because \a — T"\ > 2. 

Now consider an outermost arc b in hrl(T"). Let /3 = h{b). The ends 
of /3 can not both be on a, otherwise we can use the outermost disk to 
homotope a and reduce \a — T,f\, contradicting the choice of a. Since / is a 
homeomorphism preserving T", the same thing is true for / o a. Therefore, 
/? has one end on each of a and / o a. 

The arc b cuts off a disk A on D whose interior is disjoint from /i_1(T//)- 
The boundary of A gives rise to a loop 

h(dA)=a1\jpu(foa1)-
1, 

where ai is a subpath of a starting from an end point x of a.  Let T be 
the torus in T" which contains /?.  Then the restriction of h on A gives a 
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homotopy 

ai ~ f o ai    rel (x,T). 

Since / has the FR-property on each component of M — IiitiV(T) and N(T), 
by definition there is a path 7 in Fix(/) such that 7 ~ ot\ rel (x,T). Since 
7 is in Fix (/), the path a' = 7_1 • a has the property that 

/ o af = (/ o 7_1) • (/ o a) = 7~1 • (/ o a) ~ j~1 - a — ol    rel d. 

Since OL\ ~ 7 rel (a;,T), the path 7~1 • ai is rel d homotopic to a path J on 
T. Write a = ai • ai- Then 

a' = 7~1 • a = (7-1 • ai) • a2 ^ ^ * ^2    rel 5. 

By a small perturbation on 5, we get a path a" ~ a' rel 5 such that la" — 
T"|< |a-r"|. Since 

/ o a" ~ / o OL ~ af ~ a''    rel 9, 

this contradicts the minimality of |a — T7^. 
So far we have proved that each component of Fix(f) is a Nielsen class 

of /. Our next goal is to show that we can deform / by an isotopy in 
a neighborhood of each arc component C of Fix(/) so that the class C 
becomes a single point, or is completely deleted if ind (/, C) = 0. 

Notice that C is the union of several arcs Cfc, each being a component 

of some Fix(/|Mi) or Fix(/|jvi), and the ends of C are isolated points of, 
say, Fix(/|^Mo) and Fix(/|aMi)- Since / is a standard map on each piece, 
we can identify N(C) with a subset of M3 as follows: 

(1) N(C) = [-3,3] x D, where D = [-2,2] x [-2,2]. 

(2) 07 = [-1,1] x (0,0). 

(3) Forte [-1,1], / maps txDi into txD, where Di = [-1,1] x [-1,1] is 
a smaller neighborhood of (0,0). This is because / preserves a normal 

structure on each arc component of Fix (/|M») 
or Fix (/IJVJ-)- 

(4) On [—2,-1] x D, the map has the property that f(x,y,z) = 
((p(x,y),—z), where (p(x,y) has the property that it switches the 
two sides of the xy-pl&ne on the two sides of the x-axis, i.e, if 
tp(x, y) = (xf

: y') then y' > 0 if and only if y < 0. This follows from the 

fact that the point (—1,0,0) is an isolated point of Fix(/|Mo)> hence 
is of flipped-pseudo-Anosov type. Similarly for [1, 2] x D. 
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Consider the ball Bi = [-2,2] x Di. Define a map h : Bi -> R3 by 
h(v) = v — f(v). It follows from the above discussion that f\B1 have 
the following properties. 

(5) h(v) is parallel to the x axis if and only v = (£,0,0) for some x. 
Moreover, for all — 2 < x < — 1, h(v) points to the same direction of 
the x-axis. Similarly for all 1 < x < 2. 

We can now compute ind (/, C). Put e = (1,0,0). By (5) there are only 
two points on dBi that are mapped to ±e by the map h(v) = h(v)/\\h(v)\\^ 
namely the points ±2e. It follows that the degree of the map h : dBi -» S2 

is either 0 or ±1, depending on whether h(2e) = h(—2e) or not. 
If h(2e) = h(—2e) = e, say, then v — f(y) is never a positive multiple of 

—e. Define an isotopy supported in a small neighborhood of C by flowing 
along the direction of —e. This isotopy will modify / to a homeomorphism 
g with no fixed point in Bi. 

If h(2e) = e and h(—2e) = —e, say, we can define an isotopy supported 
in a small neighborhood of C by flowing each point (x, y, z) towards (0, y, z). 
This will deform / to a new homeomorphism g with the origin as the only 
fixed point in Bi. Since ind (/, C) ^ 0, the origin is an essential fixed point of 
g. This completes the proof that we can deform / by an isotopy so that each 
arc component C of Fix(/) becomes a single point, or totally disappears, 
depending on whether C is an essential fixed point class of /. 

Suppose x is an isolated inessential fixed point of /. Since / is standard 
of on N(T"), this implies that x is a flipped-pseudo-Anosov type fixed point 
in the interior of some M;, so we can remove it using Lemma 5.7. If C is 
a circle component of Fix(/), we can remove it using Lemma 5.5. These, 
together with the above isotopies near each arc component of Fix(/), will 
deform / to a new homeomorphism g such that each component of Fix (g) 
is an essential fixed point class. Therefore, #Fix(g) = N(f). □ 

Define an orbifold X(M) to be small if it is a sphere with a total of 
at most three holes or cone points, or a projective plane with a total of 2 
holes or cone points. Note that any homeomorphism on a small orbifold is 
isotopic to a periodic map. 

Theorem 9.2. Let M be a closed orientable 3-manifold which is either 
Haken or geometric. Then any orientation-preserving homeomorphism f 
on M is isotopic to a fixed point free homeomorphism, unless some compo- 
nent of the JSJ decomposition of M is a Seifert fiber space with big orbifold. 
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Proof. This follows from Proposition 7.5 if M is a Sol manifold, and from 
Corollary 8.2 if M is hyperbolic. If M is a Seifert fiber space with X(M) a 
sphere with at most 3 cone points, then by Theorem 3.11, / is isotopic to a 
fiber-preserving homeomorphism. It follows immediately from Proposition 
6.4 that / is isotopic to a fixed point free map. 

Now suppose M has a nonempty JSJ decomposition. Let T be the 
decomposition tori, and deform / by an isotopy so that f(N(T)) = N(T). 
By the same argument as above, we may assume that the restriction of / 
on each component Mi of M — IntiV(T) is a type 2 standard map. 

Let T be a component of T, and assume that / maps N(T) to itself. 
Suppose / exchange the two boundary components of N(T). Then f2 maps 
each piece Mi adjacent to N(T) to itself. Since Mi is either hyperbolic 
or Seifert fibered, /2|Mi is isotopic to a periodic or Seifert fiber-preserving 
homeomorphism, so the restriction of f2 to the boundary of iV(T) can not be 
isotopic to an Anosov map. By Lemma 7.2(1), /ITVYT) is rel dN(T) isotopic 
to a fixed point free homeomorphism, which is automatically a type 2 map. 
If / maps each boundary component of N(T) to itself, then / is already 
a type 2 standard map on the two pieces adjacent to N(T), so by Lemma 
7.2(2) /^(T) is also rel dN(T) isotopic to a type 2 map. 

After the above isotopy, we get a homeomorphism / which is of type 2 
on each Mi and N(T). Thus each component of Fix(f) is a circle, which 
can be removed by Lemma 5.5. □ 
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