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1. Introduction. 

The Seiberg-Witten theory was initially introduced by Seiberg and Witten 
([SW], [W]) and has led to many exciting results of smooth four manifolds. 
When b+ of a four manifold is larger than one, the original Seiberg-Witten 
invariants constitute a map from the set of Spinc structures on the four man- 
ifold to the integers. And when the first betti number of the four manifold 
M is positive, there is an extension of SW to a map (still denoted by SW) 
to A*if1(M; Z) = Z © H1 © • • • © AblH1. In the case when 6+ is equal to 
one, the map SW depends also on a choice of chamber. On a symplectic 
manifold, as observed in [Tl], there is a canonical idenification of the set of 
Spinc structures with H2(M; Z) and the symplectic form picks up a unique 
chamber. Thus, on a symplectic manifold, SW can be viewed as a map from 
#2(M;Z) to A^^MjZ). 

In a series of remarkable works [T1]-[T5], Taubes develops the Seiberg- 
Witten theory on symplectic manifolds. In [T2], he defines the Gromov- 
Taubes invariants of symplectic 4-manifolds counting embedded, (but not 
necessarily connected) pseudo-holomorphic curves. (It is recently proved in 
[IP] that the Gromov-Taubes invariants can also be constructed from the 
Ruan-Tian invariants [RT]). In [T3]-[T5] Taubes proves, on a symplectic 
4-manifold with 6+ > 1, the equivalence between Seiberg-Witten invariants 
and Gromov-Taubes invariants. And in the case when b+ = 1, the equiva- 
lence holds for all the classes with pairing on all the embedded symplectic 
— 1 spheres bigger than —2. 

Taubes conjectured the equivalence should still hold for the remaining 
classes in the case of 6+ = 1. In this regard, McDuff suggested a modification 
of the Gromov-Taubes invariants ([M]). Adopting McDuff's modification, 
we [LL2] are able to give an affirmative answer to Taubes's conjecture for the 
remaining classes using the blow up formulas for Seiberg-Witten invariants 
and Gromov-Taubes invariants. 
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For symplectic manifolds, the equivalence between the differentiable in- 
variants SW and the symplectic invariants GT has led to many striking con- 
sequences to symplectic topology. To broaden the scope of the application 
of the Seiberg-Witten theory, it is desirable to construct some kind of sec- 
ondary Seiberg-Witten invariants. It is natural to consider the parametrized 
Seiberg-Witten theory. This means, instead of a single four manifold, we 
consider a fibre bundle with a smooth four-manifold as the fibre. Upon 
fixing a smooth family of fibrewise Spinc structures and a family of real 
self-dual two forms, there arises a family of Seiberg-Witten equations, and 
the space of fibrewise monoples gives rise to various kind of invariants, the 
family Seiberg-Witten invariants. 

This idea of the parametrized Seiberg-Witten theory was suggested by 
Donaldson in [D2] (see also the recent papers [K] and [Rub]). In this paper, 
we will develop the Seiberg-Witten theory in the family setting in some 
generality. Though we restrict ourselves to the case that the base is a closed 
oriented manifold, many of the results immediately apply to the case where 
the base is an oriented manifold with boundary. 

A new feature of the family Seiberg-Witten theory is that the chamber 
structure plays a more prominent role. For the ordinary Seiberg-Witten 
invariants, only if 6+ = 1 they depend on chambers. For the family Seiberg- 
Witten invariants, they depend on chambers as long as &+ — 1 is less than or 
equal to the dimension of the base, and the chamber structure is much more 
complicated. We will introduce a finite dimensional bundle, the period bun- 
dle, and make use of this bundle to classify the set of chambers. In general 
the chamber structure is very complicated. However, when the dimension 
of the base is exactly equal to 6"1" — 1, the chamber structure is simple, it is 
either Z2 if b+ = 1 or Z if 6+ > 1. We call this case the critical case. 

As a pleasant by product of the study of the chamber structure, we 
can extend the scope of certain homomorphism Q from the homology of 
the space of cohomologous symplectic forms introduced by Kronheimer [K]. 
This simple extension is interesting, for example, on S2 x 52, it is nontrivial 
while Kronheimer's original Q is not even defined. 

In the cirtical case we extend our techniques in [LL1] to prove a wall 
crossing formula. The wall crossing formula is universal in the sense that it 
only depends on the four-manifold, not on the topology of the fibre bundle. 

But there are many interesting families with high dimensional bases 
which fall into the non-critical case b+ — 1 < dimB. We will study the 
Fulton-MacPherson family, which are built up from the Fulton-MacPherson 
spaces and derive the corresponding wall crossing formulas. These family are 
ultimately related to the counting of nodal pseudo-holomorphic curves. In 
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fact after certain transformation, the wall crossing formulas are manifestly 
tied to the enumeration problem in algebraic geometry. This also strongly 
supports (as a nontrivial example) the general conjecture between the family 
Seiberg-Witten theory and the family Gromov theory. In fact, Ai-Ko Liu 
[Liu] proves a blow up formula for parametrized Seiberg-Witten invariants, 
and when applied to the Pulton-MacPherson familes of Kahler surfaces, it 
is closely related to the wall crossing formula and has beautiful applications 
to counting curves in Kahler surfaces. 

A symplectic family is a fiber bundle with symplectic four-manifolds as 
fibers and a smooth family of symplectic forms over the fibers. This is an 
extremely interesting class of families. Nice examples of such families are 
hyperkahler families, or more general winding families (defined in section 3), 
of the K3 surface and the four-torus (the bases are S'2). A first observation 
is that there is a canonical chamber associated to any symplectic family, the 
symplectic chamber. The family Seiberg-Witten invariants in the symplectic 
chamber will be called the family Taubes-Seiberg-Witten invariants. Though 
the Seiberg-Witten invariants for the K3 surface and the four torus are 
trivial, the invariants of the winding family are very rich. In fact we realized 
that the counting of curves on a projective K3 surface is closely related to the 
invariants (Seiberg-Witten and Gromov) for the hyperkahler family, and Yau 
and Zaslow's beautiful conjectual generating function of curves on projective 
K3 [YZ] was one of the motivations to develop the parametrized Seiberg- 
Witten theory. Recently, Yau and Zaslow's formula is indeed confirmed via 
calculation of the Gromov invariants of hyperkahler family of K3 surfaces 
by Bryan and Leung [BL1]. 

Because of Taubes's results [T1]-[T5], one naturally expects that the 
family Seiberg-Witten theory is particularly interesting for symplectic fam- 
ilies and the nonvanishing of the family Taubes-Seiberg-Witten invariants 
will imply the existence of fibrewise pseudo-holomorphic curves. This is 
indeed the case. However, to set up the family Gromov-Taubes invariants 
counting fiberwise pseudo-holomorphic curves and push Taubes's equiva- 
lence between SW and GT to the family setting, we only have limited suc- 
cess. For a restricted class of families, including the winding families of the 
four torus and primary Kodaira surfaces, we can give a good definition and 
prove TSW=GT. These results will appear in [LL3] and be applied to study 
symplectic manifolds with torsion symplectic canonical classess. 

The orgnization of the paper is as follows. In §2, we introduce the family 
Seiberg-Witten invariants. In §3, we introduce the period bundle and study 
the chamber structure. In §4, we prove the wall crossing formula in the 
critical case and study some interesting examples. We also derive the wall 
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crossing formula for the Fulton-MacPherson family. 

The authors wish to thank S.T. Yau who suggested us to study- 
parametrized Seiberg-Witten theory soon after the birth of the Seiberg- 
Witten theory and has given us many valuable ideas and shown great inter- 
est. The authors wish to thank C. Taubes and G. Tian for many suggestions 
and sharing their ideas. The authors wish to thank E. Brown, R. Fintushel, 
G. Moore, R. Lee, G. Zuckerman for their interest in this work. Both au- 
thors are partially supported by NSF and wish to thank the support and 
hospitality of IAS. Finally the author wish to thank the referee and A. Green- 
spoon for careful readings and excellent suggestions which greatly improve 
the presentation of the paper. 

2. Family Seiberg-Witten invariants. 

In this section, we set up the family Seiberg-Witten theory. In the first two 
subsections, the family Seiberg-Witten equations and the family Seiberg- 
Witten invariants are introduced. The last subsection is devoted to the 
symplectic families. 

2.1. Family Seiberg-Witten equations. 

Let M be an oriented closed 4-manifold. Let bi denote the i-th Betti number 
of M and let &+ denote the dimension of a maximal subspace, i?+(M; R) C 
H2(M] R) where the cup product form is positive. 

Let B be an oriented closed manifold and X be the total space of a fibre 
bundle with fibre M and base B. 

Denote the tangent bundle along the fibre by T(X/B) and the bundles 
of i-forms along the fibre by A2. Choose a metric G on T(X/B)J then it 
defines a principle 50(4) bundle of frames, Fr -¥ X and two associated 
bundles, A+ of self dual 2-forms along the fibre and A- of anti self dual 
2-forms along the fibre. 

For any b £ B, denote by X^ the fibre at b. It will be understood that 
for any object defined on the total space X, the object with subscript b will 
denote the restriction to the fibre X^. 

A Spinc structure C on X/B is an equivalence class of lifts of Tr to 
a principle Spinc(4) bundle J7. Recall the group Spinc(4) is the group 
(SU(2) x SU{2) x U(l))/{±1} and the group 50(4) is also the same as the 
group (5J7(2) x 5*7(2))/{±l}, and the homomorphism Spinc(4) —> 50(4) 
is simply the map forgetting the factor U(l). 
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Associated with J7, there are two U{2) bundle of spinors <S+ and S~ 
coming from the two natural homomorphisms from Spinc(4) to £7(2) = 
(SU(2) x i7(l))/{±l}. S+ is distinguished by the identification of its pro- 
jective bundle with the unit two sphere bundle of A+. The natural homo- 
morphism T*{X/B) ® <S+ —> S~ defines the Clifford multiplication. And 
the adjoint of Clifford multiplication endmorphism defines a canonical ho- 
momorphism 

r:End(<S+)—> A+(g> C. 

Let L = det(<S+). L is viewed as a family of U(l) bundles over B. 
Given a smooth family of U(l) connections A — {A^) on L, combined with 
the family of Levi-Civita connections on Tr, it defines a smooth family of 
covariant differentiation on <S+ still denoted by A = {A^}. Let ^ be a 
section of <S+7 then it is naturally viewed as a smooth family of sections of 
S^. Denote C& the space of pairs (A^^b) where A^ is a U(l)—connection 
on Lb and ^ is a section of S^. C& is an affine Prechet manifold modelled 
on iAl x Coc(S^) (Al is the space of smooth 1-forms on X^). Then the 
configuration space C is the space of pairs (A^). It is just the space of 
sections of the infinite dimensional affine bundle over B with fibre £&. Call 
an element (A,I/J) G C irreducible if ^6 is not identically zero for any b. 
Denote C* the irreducible part of C. 

The unperturbed Seiberg-Witten equations on X/B are equations for 
(A,i>)eC: 

(2.1) DAbipb = 0 

pb
+FAb = ±Twb®rb)- 

In the first equation, DAb • r(5^") —> ^(S^) is the Dirac operator, a first 
order differential operator defined using the Clifford multiplication and the 
covariant differentiation A^ on S^. In the second equation, P^ : A^ —> A^~ 
is the orthogonal projection and i7^ is the curvature two form of Afr. 

Let /i G A+
5 then fib defines a real valued self dual two form on Xb. It is 

quite useful to consider perturbations which are of the form 

(2.2) DAtfo = 0 

P?FAh = -T{il>b®il>;)+iiJib. 

The parameter space for the family Seiberg-Witten equations is thus the 
following subspace of the product X x iA2: 

r = {(G, /x)| for each &, fib is self-dual with respect to (•?&} 
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where X is the space of metrics on T{XjB). X is an infinite dimensional 
fibre bundle over B whose fibre at b is the space of Riemannian metrics on 

Xb (a Prechet manifold). 
r has an alternative description which is often more convenient. Denote 

by V the infinite dimensional bundle over B whose fibre over b is the space 
of pairs (G6, \ih) where Gh is a metric on Xh and [ih is a real valued two form 
and self-dual with respect to Gh. Then T is just the space of sections of P. 
To study r, we introduce V, a finite dimensional bundle over B whose fibre 
over b is the product of the real Grassmannian Gr(Hbjb+) and the vector 
space Hb, where Hb is H2(Xb] R). There is a natural map pre from V to V 

sending each pair (G6, M&) to the pair ([^+], W(27rci(L) - M>)) where [^+] is 
the point in the real Grassmannian given by the b+ dimensional subspace of 
self-dual harmonic two forms and H(2Trci(L)-fJLb) is the harmonic projection 
of 27rci(L) - /i6, both with respect to the metric G&. The next section will 
be devoted to the homotopy classes of the sections of the period bundle 'P. 

Given any pair (G, fj) E T, denote the space of solutions to (2.2) by M 

and its irreducible part by M*. 
The gauge group is replaced by the bundle of groups Q over B, whose 

fiber over b is the group gb = G00(A'6,17(1)). Gb acts smoothly on Cb by 
sending a map gb and a pair (Ab, ipb) to (Ab + 2gbdg^1, gb^b) and the action 
is free on C£. This action naturally extends to a smooth map from Q XB C 
to C which defines a £ action on C (we abuse language here and elsewhere 
in this paper, though Q is not really a group, we will say that it acts on 
C). And the space of the orbits of this action, denoted by C/Q, is given 
the quotient topology. Just as in the case of the ordinary Seiberg-Witten 
equations, Q preserves M and M*, and the quotients are called M and M* 
respectively with the subspace topology inherited from C/Q. 

For any (G,/i) G T, M is always compact. Since B is compact, the 
Weizenbock formula still gives an uniform bound of the G0 norm of ipb of 
any solution (A6,V>&) to (2.2). Prom it, we can derive the uniform bound of 
the G00 norm of solutions to (2.2) up to gauge, and the compactness follows. 

Let (Ab,il>b) be a solution to (2.2). If we linearize the SW equations 
at (Ab^b) and take into account the gauge group action, we get a linear 

Predholm operator, 

V:TbB® iAl © r(<S6
+) —+ zA+ ® T(S^) © iAg. 

V is Predholm of index 

(2.3) d = d{C) = dimB + ^[ci(L)2 - (2e(M) + Sa(M))] 
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where e(M) is the Euler characteristic of M and a(M) is the signature of 
M. 

By the Smale-Sard theorem, for generic (G, JJ) G F, here generic means a 
Baire set, V is surjective at all the irreducible solutions, so M* is a smooth 
manifold of dimension d as in (2.3). 

Given a Spin0 structure £, we define a subset WA{C) in F which we will 
call the "£—wall" in F. A pair (£?, /i) is in >1M(£) if for some 6, 2'KCI(LI))—HI) 

is anti self dual with respect to G&. For any pair (G, /x) G F — >V>1(£), A4 
contains no reducible solutions, so JM = M*. 

From the second description of F, it is not hard to see that WA(C) 
is a codimension max(fo+ — dim5,0) submanifold in F. In particular, if 
6+ — 1 > dim£?, for a generic pair (G, ji) (here generic means an open set 
off a submanifold of positive codimension), there are no reducible solutions. 
Even when &+ < dimB, as long as b+ ^ 0, it is not hard to see any pair (G, \i) 
with sufficient large /x does not lie in WA, thus F — >VA(>C) still contains 
a nonempty open set. Call each connected component of F — yiM(£) a 
£-chamber. 

A choice of an orientation of the real line det+ = det(i?0(M;R) ® 
Hl{M', R) ® iT+(M; R) ® Hd[mB(B- R) serves to orient M. 

Hence there are always pairs (G,/i) G F such that M = M.* and JA* 
is a closed manifold of dimension d as in (2.3) in the space C*/G, and after 
fixing an orientation of the determinant line det+, it represents a homology 
class [M*] in Hd(C*/G;Z). If 6+ - 1 > dimB, such pairs (G,/x) G F are 
generic. 

2.2. Family Seiberg-Witten invariants. 

Denote the set of Spin0 structures on X/B by SP. Although the definition 
oiSP requires a choice of metric on T(X/B), there is a natural identification 
between such sets defined by any two metrics. Thus, the set SP only depends 
on the fibre bundle X/B and is an affine space modelled on H2(X\ Z). 

Given an element C G SP, the definition of the family SW invariants 
of C depends on a cohomology class © on the space C*/(7 and a choice of 
parameter (G, /x) G F. 

Fix a pair (G, ji) such that M is a closed manifold of dimension d = 
'd(C) as in (2.3). Fix an orientation of the determinant line. Choose © G 
Hl(C*/G] Z), the Seiberg-Witten invariant associated to © is defined to be 

(2.4) SW(X/B, £, 0) = (0, [M]) 

if I = d, and zero otherwise, where (—, —) is the pairing between cohomology 
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and homology on the space C*/£/. Sometimes we will drop X jB or L in the 
notation when there is no confusion. 

If 6+ — 1 > dimS, given a Spinc structure £ on XjB then the SW 
invariants of £ is defined for generic pair (G,/i) G F — W^4(£). And since 
F — WJ4(£) is path connected, from the standard cobordism arguments, 
the value of the Seiberg-Witten invariant is independent of the choice of 
the parameter. This is analogous to the invariance of the ordinary Seiberg- 
Witten invariant in the case 6+ is greater than one. Hence we have the 
following theorem: 

Theorem 2.1. Let M be a closed oriented A-manifold and B be a closed 
oriented manifold. Let X be a fibre bundle with fibre M and base B, C be 
a Spinc structure on XjB and G be a cohomology class in H*(C*/G]Z). 
Fix an orientation of det+. If b^ — 1 > dimB, then SW(X/By£y®) is 
independent of the choice of generic (G,IA), and hence is a differentiable 
invariant of the fiber bundle. Furthermore, if f is a self diffeomorphim of 
X preserving the fibers, then 

SW(X/B, C, 9) = ±SW(X/B, /*£, /*e). 

In the case fo+ — 1 < dim J3, the preceding theorem does not hold. How- 
ever, by the standard arguments, the following conclusion still holds: 

Theorem 2.2. Let M be a closed oriented A-manifold and B a closed ori- 
ented manifold. Let X be a fibre bundle with fibre M and base B, C be a 
Spin0 structure on XjB and Q be a cohomology class in H*(C/G] Z). Fix an 
orientation o/det+. Suppose b+ — 1 < dimi? and let Tc be a C—chamber. 
Then 

1, if 6+ = dimB + 1, SW(X/B, £, 0,C) is defined for generic pairs 
(G, fi) G rc and is independent of the choice of (G,/i). 

2. if 0 < 6+ < dimB, SW(X/B)C, 6,c) is defined for some pairs 
(G,/i) E rc and is again independent of the choice of (G,/i). 

With Theorem 2.2 understood, it is important to pin down the depen- 
dence on chambers. This will be the content of the next two sections. 

In the remaining part of this subsection, we will describe how to construct 
some interesting cohomology classes on the infinite dimensional object C*/G. 

The first observation is that it is homotopic to a CP00 x Tbl bundle 
over B. Any cohomology class of B pulls back to a cohomology class of 
C*/Q. If © can be factored by such a class with degree Z, then we call 9 has 
weight I.   There is a distinguished class [B}A in ffdimB(C*/</;Z) which is 
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the pull back of the fundamental cohomology class of B. If © is factored by 
[JB]A, then the family Seiberg-Witten invariant becomes an ordinary Seiberg- 
Witten invariant. Similarly, if G has weight /, then the invariant reduce to 
an invariant on a co dimension I family. 

Another observation is that G naturally acts on the the complex line 
bundle L over X. The diagonal action on the product L x C* defines a 
complex line bundle L Xg C* over X x (C*/G). Denote the first Chern class 
of this line bundle by u and the restriction of u to C*/G by H. H will be 
called the hyperplane class. 

Via slant product with n, we get a map 

H:Hi(X',Z)  -^ H^CIQ;Z). 

Pick homology classes Ci> • • • > G in H*(X\ Z), we can define 

SW{XIB, C, MCi) • • • M(C/)) = SW(XIB, £, MCi) A • • • A ji(Ci)). 

A particular important invariant, the pure invariant, is given in the fol- 
lowing definition. 

Definition 2.3 (pure invariant). When the dimension of M. is even, we 
define the pure invariant to be 

rdim.M/2 

IM 
SW{H) = [  i?dir 

JM 

Set U = H U [B]A. Via slant product with [/, we get a map 

Jl : Hi{X; Z)   —> H^^-^C*/G] Z). 

Pick homology classes £1,..., £/ in H*(X] Z), we can define 

SWiX/BtCjlfo),...,»(&)). 

It counts the number of fiberwise monoples whose zero set intersect each of 
the submanifolds V^, where Vi represents &. 

When X is a, product bundle, /i and /i are simply related by 

M(C) = £(CX[B]). 

Example 2.4 (section  invariants   and   circle   section  invariants). 
Suppose X has sections.   Given any section s : B —> Xy we can define a 
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based gauge group Q(s) C Q consisting of maps sending s^B) to the identity. 
Define 

C(s) = C/g(s)    and    C*(s) = C*/G(s). 

Then C*(s) is a principle S'1 bundle over C*/G and its euler class e(s) is in 
H2(C*/G\ Z). Notice a section s determines a homology class in H*(X', Z), 
and e(s) is simply the slant product of this homology class with U. If d is 
an even integer, then after picking d/2 number of sections, si,..., 5^/25 the 

cohomology class YliLi e(si) ^s 0^ degree d. We can define the correspond- 
ing Seiberg-Witten invariant SW^/B, £, si, S2,..., 5^/2)- This invariant 
only depends on [s^ i = 1,..., d/2, the homotopy classes of s^, as the cor- 
responding cohomology classes depend on the homotopy classes only. A 
geometric interpretation of this invariant is that it counts the number of 
fiberwise monoples vanishing along these sections. 

Similarly, if X allows sections of circles, each circle section defines a 
homology class of X, and induces a cohomology class of C*/G via the 
slant product. Thus, given d circle sections 71,...,7d, we can define 
the SW invariant SW(X/B, £,71,... ,7d) which only depend on the iso- 
topy classes of the circle sections. Geometrically, this invariant counts 
the number of fiberwise monoples which are not nowhere vanishing along 
each of the circle sections. More generally, given an integer p such that 
d — p is a nonnegative even integer, and p circle sections 71,... ,7p and 
(d — p)/2 sections si,..., s^-p)/2i we can define the Seiberg-Witten invari- 

ant SW(X/B, £, 71,..., 7p, 51,..., S(d_p)/2). 

Remark 2.5. Donaldson, in his beautiful survey article [D2], suggested the 
possibility to construct the family Seiberg-Witten invariants. He further 
suggested that these invariants, should be viewed as cohomology classes of 
Bdiff(M), the classifying space of the group of diffeomorphisms of M. 

2.3. Seiberg-Witten invariants on symplectic families. 

In this subsection, we describe the special features of the family Seiberg- 
Witten invariants on sympletic families. The readers should consult [Tl]. 

Let X be a fibre bundle of a four manifold over B and a; be a two form 
on X whose restriction to each fibre is a symplectic form. Each fiber X^ is 

oriented by c^ A a;&. 
Fix a metric G such that CJ& is self-dual with respect to GV G can be 

further normalized such that UJ^ has length y/2. Such a family metric is called 
a u compatible metric,  cu and a u compatible metric determine a smooth 
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family of compatible almost complex structures J on the fibers, hence a 
complex structure (still denoted by J) of the bundle T(X/B). Taking the 
complex determinant, one obtains a complex line bundles K over Af, whose 
restriction to each fibre X^ is given by de^T0,1^). 

There is a canonical Spinc structure with the associated bundles <S+ and 
<S~ naturally isomorphic to | elf-1 and A0'1 = A0'1(r(A,/B)), where | is 
the trivial complex bundle over X. The splitting of <S+ is induced by the 
Clifford action of CJ, which has eigenvalue — 2i on the trivial summand | and 
eigenvalue 2i on the K~1 summand. 

This canonical Spinc structure induces a natural identification between 
the set SP and H2(X\ Z). Under this identification, a class e G H2(X\ Z) is 
sent to the Spinc structure whose S± bundles are given by 

(2.5) <S+ = E 0 (K-1 ® E)    and     S' = A0'1 ® E. 

where E is a complex line bundle over X whose first Chern class is isomorphic 
to e. 

There is a natural orientation for the line det+ provided an orientation 
of B is fixed. This is because the half-selfdual complex on M is within 
a relative compact perturbation of a complex linear complex arising of a 
compatible almost complex structure. 

To introduce the family version of Taubes's perturbation of the SW 
equations, it requires the introduction of a smooth family of canonical con- 
nections A0 (up to the gauge action) on K^1. A family of connections on 
if-1, coupled with the family of Levi-Civita connections gives rise to a fam- 
ily of covariant derivatives, V^, on S4". Through restriciton and projection, 
VA defines a family of covariant derivatives, VA, on the trivial summand |. 
The family A0 is characterized by the property that the corresponding fam- 
ily of covariant derivatives, V^o, admits a family of non-trivial covariantly 
constant sections, u0. In the subsequent discussions, u0 will be normalized 
such that u® has norm one. 

Let £ be a Spinc structure on X/B specified by a complex line bundle 
E over X under the aforementioned identification. Recall, in the family 
setting, the SW equations are equtions for pairs (A^,?/>&), where A^ is a 
connection on the complex line bundle L5 = det S^ and ^ is a section of 
S^. Remark that each line bundle L& is naturally the restriction of the 
complex line bundle L = det <S+ to the fiber X^. Prom (2.5), L& is K^1 ®Ei). 
Thus, with A0 fixed, a connection A^ on L5 is written as J4& = .A^ + 2a6, 
where a^ is a connection on the complex line bundle E^. 

Following Taubes, we choose the one parameter family (parametrized by 
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r) of the perturbation two forms /i by 

(2.6) fib = ^-u-iP+FAo. 

It is useful to rewrite the spinor corresponding to the splitting and the 
parameter r as 

A = r1/2.(abU
0

b+pb). 

Now the equations read 

cr(u0 ® Vabab) + DAb/3b = 0, 

(2.7) P+Fa = --•(!- |«6|2 + m2) ■ ujb + -(«6/36* + atfo). 

Here, a^/?^ and a^/?^, being respective sections of Kb and K^ , are identified 
as sections of A^" ® C. 

Notice that there is a canonical chamber, called the Taubes chamber, 
for any Spinc structure £ on a symplectic family. On each fiber A5, when 
r is sufficiently large, 27rci(L) — //& has positive square due to the term 
r2uj A (JJ/16. So no reducible solutions can possibly occur for all large r. 
Since B is compact, there is a uniform constant such that 27rci(L) — /i& has 
positive square for all b once r is greater than that constant. This means 
that for all large r, the pair (G,//) with /i given by (2.6) lie in the same 
£ chamber, and this chamber will be called the Taubes chamber. Notice 
this chamber only depends on the family of symplectic forms through its 
deformation class: If UJ and cu are two familes of symplectic forms on a fibre 
bundle, and there is a path of families of symplectic two forms connecting 
u and u , then the Taubes's chambers for these two families are the same. 
Finally, let us give a definition. 

Definition 2.6. Given a symplectic family, the Seiberg-Witten invariants 
in the Taubes chamber are called the Taubes-Seiberg-Witten invariants. 

3. The period bundle and the chamber structure. 

When 0 < 6+ — 1 < dim B, V — WA(£) may have more than one component, 
i.e., the number of £ chambers may be greater than one. When B is a point, 
we are back to the ordinary Seiberg-Witten theory in the case &+ = 1, and 
the chamber structure is well understood, there are two £ chambers. For 
general 5, the chamber structure is much more complicated. In this section 
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we will discuss the chamber structure when 0 < 6+ — 1 < dimB and give 
a classification in cohomological terms. We will derive the wall crossing 
formula in the next section. 

In the first subsection, we will reduce this problem to a finite dimensional 
bundle V, the period bundle, and study the topology of this bundle. In the 
next subsection, we will give the classification. 

3.1. Reduction to the period bundle V* 

The parameter space Y is the space of sections of the infinite dimensional 
bundle V. Fix a Spinc structure C with the associated complex line bundle L, 
there is a natural map pre from V to V sending the pair (G&, lib) to the pair 
(['^j"],?/(27rci(L&) — lib)) where \H^} is the point in the real Grassmannian 
given by the 6+ dimensional subspace of self-daul harmonic two forms and 
T-^^TTCI(L5) — in,) is the harmonic projection of 2'KCi{Lb) — fib, both with 
respect to the metric Gb> 

The map pre is not surjective, it surjects onto an open subbundle. In 
that regard, we introduce the following definition. 

Definition 3.1 (Self Dual Grassmannian). Let V be a vector space 
with a nondegenerate quadratic form defined over R with signature (p, q). 
All the positive definite p planes in V form an open subset of the p plane 
Grassmanian in V. It will be called the self-dual Grassmannian, and denoted 
by G+(V). 

Let V^ denote the subbundle of V whose fiber over b is Gt+ (iJ^A^; R)) x 
iJ2(A5;R). We first give a simple observation. 

Lemma 3.2. The map pre surjects onto V^ and is regular everywhere. 
Moreover, the preimage of every point is contractible. 

These properties are not hard to prove. We just mention two useful 
facts here. The first fact is that the space of metrics fibers over the space of 
conformal structures with contractible fibers, the space of positive functions. 
The second fact is that a conformal structure is specified by a real three 
dimensional positive subbundles, and relative to a fixed Riemannian metric, 
the space of conformal structures is identified with bundle maps 

v'.K+—>A-,|z/(7?)| < M 
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The point is now the study of the parameter space F, which is the space 
of the sections of V, is reduced to the study of the space of sections of the 
finite dimensional bundle V^. 

Given a Spinc structure £, what we really want to understand is the space 
Y — V\M.(£). For this purpose, we need to introduce the period bundle, which 
is a subbundle of V^'. 

Let us first assume that B is a point. Then, a pair (G, fi) lies in WA(C) 
if P4-P4. — i/J, = 0 has a solution. But this is equivalent to the following: 
inside C00(A+), the afhne subspace {A —> JFA — n} passes through the 
origin, and thus coincide with the linear subspace dCoc(A1). This condition 
is also equivalent to H(27rci(L) — /i) being perpendicular to 'H+. This simple 
observation enables us to describe explicitly the image of F — 'WA(C) under 
the map pre. 

As B is a point, V is itself the space F and V+ is simply a product 
G^(V) x V where V = jy2(M;R). The question we are interested in is 
what kind of positive p plane will be perpendicular to a chosen element I 
in the vector space V. In that regard, we introduce a subspace of P"1", V, 
consisting of the pairs (W, I) in V^ such that I is not perpendicular to W. V 
is called the period space of V. Under the map pre, F — y\M(;C) and WA(C) 
are sent onto V and V+ — V respectively. As remarked before, the map pre 
is regular everywhere with contractible preimages, therefore F — >V^4(>C) is 
homotopic to V. 

To study the topology of V, it is necessary to understand G+(V) first. 
If p is nonzero, G+ (V) is actually contractible, this follows from the the fact 
that G+OO can be identified with SO{p,q)ISO{p) x SO(q) which is a ho- 
mogeneous space formed by maximal compact subgroup quotient. Another 
way to check it is by observing that the projection from one positive p plane 
to another one induces an isomorphism between these two vector spaces. 
Fixing a base positive p plane and projecting every other positive p planes 
to the fixed one induces a smooth function on G+ (V) which has a unique 
maximum at the base point. This can be done by comparing the volume 
form (absolute value) of a positive p plane with that of the base point. The 
upward gradient flow associated to this function produces a homotopy which 
shrinks G^iV) to a point. 

The period space, viewed as an open submanifold in G^^V) x V, can be 
characterised as the complement of the vanishing locus of certain explicit 
map from G+(V) x V to HP. The map is defined by first choosing a base 
point in Gp (V), then projecting the specified p plane to the other positive p 
plane. As we have explained, the projection map is always nondegenerate, 
thus a frame in the base p plane will induce a smooth family of frames. Now 
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we are ready to define the map from Gp (V) x V to Rp. Picking a point in 
G^"(V), which is just a positive p plane, and an element in V, the pairing 
between the attached frame in the p plane and the element in V gives us 
p elements in R, thus it determines a map c from G^(V) x V to Rp. The 
pairs (W, I) in the preimage of 0 G Rp are characterized by the property 
that the p plane W is perpendicular to I in V. Deleting these points from 
G£(V) x V results in the period space. This description of the period space 
readily leads to the following proposition. 

Proposition 3.3. Let V be a vector space with a quadratic form of signature 
(p, q) defined over R. The period space associated to the vector space V is 
homotopic equivalent to Sp~1. 

In fact it is easy to show that the map c is regular everywhere. Thus 
the preimage of every point in Rp is diffeomorphic to each other. Therefore, 
the period space has a structure of a fiber bundle with Rp — {0} as base. 
To show that the period space is homotopic to 5P~1, it is sufficient to show 
that every fiber is contractible. It is an easy exercise that we leave to the 
readers. 

As the period space is homotopic to S'p_1, there must be some p — 1 
cycles which generate the p— 1 homology. It is useful to exhibit such cycles, 
for this purpose, let us present another picture of the period space. 

The period space projects down to V. The preimage of an element x E V 
is the set of positive p planes which do not lie in x-1, where x1- denotes the 
orthogonal complement of x in V. Now decompose the vector space V into 
three parts, V = V+ U VL U Vb, with 

y+ = {x e v\x'x > o},   V- = {xe v\x'x < 0},   Vo = {xe v\x-x = o}. 

VQ, usually called the light cone, is diffeomorphic to R x Sp~1 x Sq~1. V+ is 
diffeomorphic to R^ x S?-1 x Bq and VL is diffeomorphic to R+xBpx S*'1 

and they intersect along VQ. If x E V+ U Vb, no positive p plane can be 
perpendicular to it. Therefore, over V+ U Vo, the period space has a fiber 
bundle structure with contractible fibers, G+(V). If x E VL, the p planes 
perpendicular to it are the positive p planes which do not lie in a?-1 and is 
itself a sub Self Dual Grassmannian. We denote it by Gp(xL). G^x-1) is a 
submanifold in G+(V) of codimension p. In fact following the same line of 
the previous argument, one can easily see that G+(V) is diffeomorphic to an 
affine space bundle over G^x-1-) of fiber dimension p. Prom here it follows 
again that the homotopy type of G+(V) — G^x1-) is just 5P_1, a sphere 
of p — 1 dimension. Let us denote the complement of G+(xL) in Gp(V) by 
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G+(V,x). Any cycle which generates the p — 1 homology of G+(V,x) over 
x G V- is the homology generator of the period space. On the other hand, 
the Sp~l factor in V+ would also be the generator of the p — 1 homology of 
the period space. This simple observation, though elementary, will play a 
very crucial role in the later development of the whole theory. 

Let us summarize the picture when B is a point. The period space of 
V = JH

r2(M;R) is homotopic to the sphere S^-1 where p is equal to &+. 
The number of £ chambers is greater than one only if 6+ = 1. And when 
b+ = 1, the corresponding period space is homotopic to S0 which consists 
of two points. In fact it is why the usual chamber structure of the ordinary 
Seiberg Witten theory has a Z2 grading. 

For general £?, the Z2 grading is not enough to parametrize the chambers. 
In fact we will see shortly it is very typical that the chambers are at least 
graded by Z. Namely there are an infinite number of chambers for even 
a single Spinc structure. This would be a general characteristic difference 
from the ordinary Seiberg-Witten theory. 

Suppose we are given a fiber bundle X over B whose fibers are diffeo- 
morphic to M. The cohomology of the fibers jff2(A&;R) form a flat vector 
bundle V over the base B. We will define the period bundle via V, which 
generalizes the period space and plays the key role in understanding the 
chamber structure. 

Definition 3.4. The period bundle V H> B is defined to be the fiber bundle 
canonically constructed by the flat bundle V = iJ2(A^; R) \-^ B through the 
period construction. 

The period bundle is a subbundle of V — Gp(V) XBV and has a canonical 
surjective bundle morphism to V. 

Prom Proposition 3.2, immediately we have 

Proposition 3.5. The homotopy type of the period bundle. The period bun- 
dle V is homotopic equivalent to an SI>~1 bundle over B through fiberwise 
homotopy. 

Let us end this subsection with a remark concerning a result of Kron- 
heimer. 

Remark 3.6. Given a four-manifold M with a symplectic form CJQ, consider 
the space 

AQ = {to £ Q (iW)|cj is symplectic and cohomologous to CJQ}. 
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For each Spinc structure detertermined by an element e G H2(M] Z) whose 
index 

d = KUQ - e — e - e 

lies in the range 0 < d < b+ — 1 and which satisfies UQ • e < 0, Kronheimer 
[K] defined a homomorphism 

Q:ffd-i(Ao;Z)—>Z 

via Seiberg-Witten equations for the Spinc structure. 

From Proposition 3.3, we have 

Hi(T - WA; Z) - HiiV; Z) - ffi^"1; Z). 

Tracing Kronheimer's definition of Q, it is not hard to see that Q can be 
extended to any Spinc structure determined by an element e G iJ2(M;Z) 
whose index lies in the range d > &+ and which satisfies LUQ • e < 0. 

This extension is particularly interesting in the case 6+ is equal to one. 

3.2. The chamber structure. 

In this subsection, we will describe the chamber structure in cohomological 
terms. 

Fix a Spinc structure £ with L as the associated complex line bundle. 
The map pre maps F — WA(C) onto sections of V. Furthermore, two pairs 
in F — WA(£) lie in the same £ chamber if and only if their images under 
pre are homotopic as sections of the period bundle V. Therefore we have 

Proposition 3.7. Chamber structure. The chambers of a single Spirf 
structure are classified by fiberwise homotopy classes of sections into V, 
denoted by [B,V\f. 

Unlike the case 6+ = 1, the chamber structure can be extremely compli- 
cated. For example consider the case B = Sa and the fiber bundle X is a 
trivial product M x B with 6+(M) = b and a > b. Then the set of fiber- 
wise homotopy classes [B,V]f is given by the set of free homotopy classes 
from Sa to S'6, [Sa,Sb], a very hard object in homotopy theory. In gen- 
eral if we consider a product fiber bundle Af, the set [B,V]f will be given 

by [B,Sb (M)-1], the cohomotopy set of JB, and it does not have a group 
structure. We do not plan to give a complete description of these chambers. 
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Instead, we only like to discuss how to measure the difference of two cham- 
bers from cohomological terms. This piece of information will play a crucial 
role in the derivation of the wall crossing formula. 

Whether two sections of V are fiberwise homotopic to each other is nat- 
urally an extension problem: whether the map / : B x {0,1} i-> V given 
by the two sections can be extended to a map F : B x [0,1] i—> V. This 
can be achieved via the obstruction theory. The answer to this question is 
that there will be a sequence of cohomology classes associated to it which 
measure the obstruction of extension order by order. More precisely, we 
have ([S]) 

Proposition 3.8. The obstruction of extending the map f to F is measured 
by a sequence of elements which live in Hr(B; 7r|.ocal(7:>)) for allr. Here 7rr(V) 
is the local system ofr-th homotopy groups of fibers. In particular if all these 
obstruction classes vanish, the extension F exists. 

As we know that the period space is homotopic to Sb _1, the obstruction 
classes mentioned in the proposition actually lie in Hr(B]7rlocai(Sb _1)) for 
all r. In general the coefficient groups are not the integer group, However 
there is one element which is particularly important, the principal obstruc- 
tion. It is the first obstruction for the extension living in Hb ~1(B] Z). Let 
us denote it by 065(51,52) for [51], [52] G [B,V]f. Even though the homo- 
topy classes themselves do not have any additive property, the obstruction 
class discussed here does have the following remarkable property: 

0&5(5i, 52) + 065(52, 53) = 0&5(5i, 53). 

It is this cohomology class O65 which will enter the formulation of the 
wall crossing formula. The subsequent discussions will illustrate this point. 
Suppose we are given a generic one parameter family of fiber metrics and 
two forms, parametrized by / = [0,1], over X/B, such that, at 0 and 1, no 
reducible solutions occur. Let S denote the subset in B x / where reducible 
solutions occur. The singular locus S is usually complicated and depends 
on the one parameter family of metrics and two forms given. But what is 
important to us is the homology class of the wall crossing locus S and this 
is described by 

Lemma 3.9. The singular locus S represents a homology class of B x I in 
degree fe+ — dim B — 1. Under the natural identification between the homology 
of B and the homology of B x J; this class is Poincare dual to the principal 
obstruction class Obs. 
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Proof. Under the map pre, the one parameter family of fiber metrics and two 
forms gives a section of V+ (precisely, the pull back of /P+ from B to B x I) 
over Bxl. S is just the singular locus in B x I where the section lies outside 
of V (also the pull back). By transversality we can always perturb the one 
parameter family such that the family is transverse, so S is the transveral 
intersection between the nonzero section and the zero section, such that S 
is embedded into B x / as a submanifold. 

As the original extension problem is homotopic in nature, we can assume 
our period bundle is a R6+ — {0} bundle over B. To relate the obstruction 
class with 5, we need a CW complex structure on the manifold with bound- 
ary Bxl which is transversal to S. One way to obtain such a CW complex 
structure is to triangulate Bxl such that the triangulation restricted to S 
gives a triangulation of S as a smooth submanifold and take the dual CW 
complex associated to this particular triangulation. Assume a CW com- 
plex structure transversal to S is given, we want to use it to construct the 
obstruction class. In this case the map has been defined outside S. Thus 
over the cells which do not intersect S at all, there is no obstruction to ex- 
tend the map from low strata. If we extend the map from the zero stratum 
to the higher ones, the first time the obstruction appears is in dimension 
6+. The map still extends automatically across any b+ dimensional cell 
which is disjoint from S and those cells are assigned to the zero element 
in ^b+-i(Sb+~1)- On the other hand, any b+ cell which intersects S is as- 
signed to ±1 in 7iV-_1(S,6+~1) by the transversality assumption. Whether it 
is assigned to 1 or —1 is according to the orientation. At the end, we get a 
b+ cochain of the CW complex. It is a cocycle on B x I representing the 
principal obstruction class. On the other hand, from the Poincare duality, 
it is exactly the Poincare dual to S. This ends the proof of the lemma. 

As just mentioned, this elementary result will be used in the derivation 
of wall crossing formula later. The readers should keep in mind that it is 
the cohomology class associated to 5, not the manifold S itself, which is 
relevant to our later discussion. 

Example 3.10 (winding family). Let M be a manifold with b+ > 1 and 

X be a trivial bundle with base Sb+~1. Then there is a canonical chamber 
characterized by containing the constant parameters, i.e. parameters of con- 
stant metrics and constant self dual two forms. With the canonical chamber 
understood, the chambers are naturally identified with the integer group Z. 
A family of closed two forms with positive square is called a winding family 
of two forms if they represent a generator of the b+ — 1 homology of V+ in- 
troduced in ths last subsection, and it is called a symplectic winding family 
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if all the two forms are symplectic. It is not hard to see the chamber con- 
taining a parameter of constant metric and winding two forms corresponds 
to ±1 under the aforementioned identification. 

Interesting symplectic winding familes include hyperkahler families of 
K3, the four torus and some S1 familes of primary Kodaira surfaces studied 
in [Ge]. 

4. The wall crossing formula. 

In this section we would like to discuss the wall crossing formula for the 
family version of Seiberg-Witten invariants. As before let A* \-> B be a fiber 
bundle of four manifolds. 

In the first subsection, we would like to discuss the phenomena of wall 
crossing in some generality. In the second subsection, we would like to 
specialize to the case of 6+ — 1 = dim B where we can derive a universal wall 
crossing formula. We call this special case the "critical" case. In the third 
subsection, we discuss the Pulton-MacPherson spaces. 

4.1. The Kuranishi models. 

In the case &+ — 1 > dim B, we can always move the metrics and two forms 
perturbation in one parameter family and show by the standard bordism 
argument that the invariants are actually independent of the metrics and 
two form perturbations. However in the fe+ — 1 < dimB case as the general 
position argument could not provide us a completely smooth cobordism 
between these two moduli spaces. Typically, the parameters (including the 
metrics and two forms) will hit the singular values somewhere and reducible 
solutions develop in the bordism. In this case, the bordism is no longer a 
smooth bordism between these two different moduli spaces. To understand 
how the invariance property of the "invariants" fails, we need to understand 
the behavior of the moduli space near the reducible solutions. The following 
is the fundamental tool to describe the neighborhood of the moduli space 
near a solution (AJJ^X/JI). 

Proposition 4.1 (Family Kuranishi Model). Let (Af^ipb) be a solution 
of the family Seiberg- Witten equations at b, then a neighborhood of the moduli 
space near this point (^l^,^) can be described by F~1(0)/S1

7 where 

F:TbBx H1^] R) x Ub >-> Ker (cT) x Coker (DAh) 

is an S    equivariant map and t/& is a small ball in Ker (Z)^). 
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The proof of this proposition is standard (see [DK]). When the spinor 
ipb is not identically zero on the manifold A^, the S1 action is free and the 
Kuranishi model does not tell us too much other than that it is a smooth 
point in the moduli space. However when the spinor T/^ is identically zero, 
S1 acts trivially on the point (Ab, 0) and the Kuranishi model describes 
the local singular behavior near this point. To get useful global topological 
description for the purpose of calculation, we actually need a global version 
of the Kuranishi model which generalizes the picture of b+ — 1 case in [LL1]. 
Let us formulate it as the Global Kuranishi model for the bordism. 

Suppose there is a one parameter family of deformation of the parameters 
t,0 < t < 1. Let B denote the bordism connecting the two different moduli 
spaces at t = 0 and t — 1. Suppose that somewhere between 0 and 1 the 
bordism hits the wall, then we have 

Proposition 4.2 (Global Kuranishi Model). Let S denote the reduc- 
ible solutions in the bordism B connecting two different smooth moduli 
spaces, and we denote the projection map of S to I x B byn and the image 
by SQ. Suppose that S and SQ are both smooth, then the local neighborhood 
of S in B is described by the following Kuranishi model F~1(0)/S1, where 

F : TS x 7r*iV/XjB/<So x U *-> Ker (<i*) x Coker (DA) 

is again an S1 equivariant map, NIxB/^0 is the normal bundle of SQ in- 
side I x B, U is a small ball in Ker (DA) and A varies along the reducible 
connections in S. 

However this global model still has limited use. Usually we do not know 
exactly the diffeomorphism type of the singular set <S, nor do we know that 
S and <So are smooth. To get a more useful model, it must be replaced by a 
fatten version. 

Let Tg1 be the Tbl bundle over B which parametrizes the reducible 
connections in the family X i-» B. It is well known the dimensions of the 
kernel spaces and cokernel spaces may vary on T^1 and KerB(DA) and 
Cokei'B(DA) are in general not honest complex vector bundles over T^1. 
To avoid this difficulty, we can use the technique in [LL1] to perturb the 
Kuranishi model a little bit (see also the technique developed in [R]). In the 
present case, the technique can be applied as the base Tg1 is still compact. 
And after this slight perturbation, we can always assume Ker B(DA) and 
Coker B(DA) are honest vector bundles. As in [LL1], we have 

Proposition 4.3 (Modified Global Kuranishi Model). There exists 
an S1  equivariant, fiber preserving map F from a disc subbundle in the 
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complex vector bundle Ker B(DA) to the complex vector bundle Coker^(D^) 
whose zero set contains the neighborhood of S in B as an imbedded subspace. 

When B is a single point, the picture reduces to the previous one de- 
scribed in [LL1]. Prom now on, let us drop A and write DA simply as D. 

By the modified global modified Kuranishi model, the link space of the 
singularities Link(<S) in B can be always imbedded inside the projective 
space bundle formed by Ker B{D). We do not really care about its topology 
in detail, in fact we even do not assume that S and So are smooth. What 
we only need to know is the homology class represented by Link(<S). It is 
Poincare dual to certain obstruction class over P(Ker B(D)). However there 
is some slight difference than the usual b+ = 1 wall crossing formula. Namely 
there are two sources of the obstruction classes. One of them is comes from 
the obstruction bundle which is described in the following definition. 

Definition 4.4 ([LL1]). Obstruction Bundle Obs. Let us denote the pro- 

jection map from P(KerB(D)) to T^1 by TTI. The obstruction bundle Obs 
is given by 

06s = 7r;Coker(£>)® JT, 

where H is the hyperplane line bundle canonically associated with 
P(Ker *(£>)). 

As argued in Lemma 2.2 in [LL1], F_1(0) can be viewed as the zero set 
of a section of Obs. 

Another source of the obstruction class comes from the period bundle 
and has been explained in detail in section 3. Suppose that the period maps 
at 0 and 1 both map into V, then in general there would be some obstruction 
to extending these into a well defined map from B x I to the period space. 
The so-called primary obstruction is measured by a cohomology class Obs 
which lives in Hh+~l(B\ 7r6+_1

,P&). The coefficient is the local system formed 
by the (&+ — 1)—th homotopy group of the fiber of the period bundle. As 
discussed in section 3, the period space is homotopic to Sh ~1. Thus the 
obstruction class Obs lies in the cohomology with integer coefficient. Then 
Ofes is Poincare dual to the base locus in B x / where the bordism hits the 
wall. 

Let us state the result for a general invariant SW(X/B,C,Q). Prom 
now on, we will drop X/B in the notation and simply write invariant 
SW(X/B, £, 0) as SW(£, G). 
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Proposition 4.5.  The wall crossing number is calculated by 

(4.1) ±WCN(C, 6) =   f 6 • ijdimCCokerBP)) . Q^ 

Jp(KerB{D)) 

where the class Obs is pulled back from the base B to P(Ker^(D)) and is 
viewed as a cohomology class living in the projective bundle. 

Proof. First, 

±WCN(C,e)= f e. 

Following [LL1], we reduce the calculation of the wall crossing number to the 
calculation on T^1, with the insertion of the euler class of the obstruction 
bundle Obs and the homotopy theoritical obstruction class Obs. Since we 
can assume, as explained in [LL1], that CokersiD) is a trivial bundle, we 
have 

/ © = / © • Obs • cdMCo^B{D)){Obs) 

— 0 . ^dim(CokerB(JD)) # Q^ 

Jp(KevB(D)) 

For the pure invariant, (4.1) takes the following simple form 

ffdimB+b^dimiKer B(D))-b++l m Q^ L !P(KerB(D)) 

Notice that whenever the base dimension is lower than &+ — 1 then the 
obstruction class Obs vanishes automatically and the wall crossing number 
is zero. This statement coincides with the previous observation that wall 
crossing phenomena does not exist whenever dimB < &+ — 1. Another 
simple fact is if we consider a weight m mixed Seiberg-Witten invariant and 
m > dimB — b+ + 1, then the wall crossing number is always zero. This is 
because if the degree of the cohomology classes from the base will exceed 
the base dimension dim B and the invariants automatically vanish. 

In general to calculate the integral (4.1) we need information about the 
index bundle INDB(D) = KerB(D) - Coker B(D) G ^(T^1), to be precise, 
we want to calculate its Chern character Ch(INDB(D)) G i7*(7^1;Q). 
And it is calculated by the Family Index theorem as a push-forward from 
XXBT*

1
 toTB\ 

Ch(INDB(D))= f Ax    ^,    bl •ChOCfcft), 
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where AM/N denotes the relative A-roof genus of the fiber bundle and fi 

is the tautological line bundle on X Xf Tg1. When we restrict the line 

bundle O to each fiber A5 x T^1, its first chern class is given by the stan- 

dard formula ci(fl&) = X)35* ' 2/*> where the x^yi are some dual basis of 
H^Xt', Z),Hl(Xh', Z) respectively. 

4.2. The critical case. 

In this subsection, we will concentrate on the critical case where b+ — 1 = 
dim B. In this case one has an explicit expression of the wall crossing number 
because of the following lemma. 

Lemma 4.6. Suppose 6+ — 1 is equal to the dimension of B. Then the 

obstruction class Obs is a top dimensional class in HdimB(B; Z). 

Obs will produce a number which can be interpreted as the number 
of times that the parametrized moduli space intersects the wall when the 
intersections are transverse. And when the intersections are transverse, we 
can think of SQ as simply a finite number of points. 

Let us restrict to the case that the two chambers are consecutive. In this 
case, Obs reduces SQ to a single point, and the link of the reducible solutions 
is simply the traditional picture P(Ker (D)) of projective space bundle over 
Tbl in [LL1]. 

Notice that the wall crossing number between any two consecutive cham- 
bers are the same. This simple fact will be crucial to deduce a vanishing 
result in the next subsection. 

Let us first derive the wall crossing formula for the pure invariant. By 
the above discussion, (4.1) is simply 

(4.2). / i?top 

Jp(Ker (D)) 

What we have to calculate is the top power of the hyperplane class on the 
projective bundle of the index bundle (we know we can choose the repre- 
sentative of iiT-theory class so the Ker (D) — Coker (D) is an honest vector 
bundle). In [LL1], we did some lengthy calculation in the &+ = 1 case. Ac- 
tually the calculation can be highly simplified by noticing that we calculated 
the n-th Segre class of the Index bundle with n = &i/2. Denote the n—th 
Segre class by sn. By the same token, what we want to calculate here is 
simply sn(IndD) with n = dimB + &i/2. The Segre classes and the Chern 
classes can be related to each other in a simple way. Namely if one defines 
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S(t) = J2isitl and C(t) = J2icitl( where Ci and Si denote the i—th chern 
class and Segre class respectively), then (see [F]) 

C(t)S(t) = 1, 

i.e, S(t) is the inverse power series of C(t)\ This observation leads to a 
simpler computation. 

The index calculation is performed on M x Tbl.   It follows from the 
family index theorem that the grade 2i term of the expression 

f A(M)ch(L)ch(Q) 
JM 

(where ft G H2(M x Tbl] Z) denotes the first Chern class of the Poincare 
line bundle) is the i-th. Chern character, denoted by chi. The first term of 
the index calculation gives the formal dimension. 

The following lemma calculates the Chern character. 

Lemma 4.7. chi = 0; for alii > 2 and 

ch1=   ci(£).ft2/2![M] 

ch2=   fi4/4![M]. 

Proof. Expanding ch(Q) one gets various powers of Q. From the fact that 
Q is of bi-degree (1,1) on M x T*1, it can not be raised to more than fourth 
power or it will automatically vanish along M. 

Notice that it is slightly different from the usual 6+ = 1 case where we 
automatically have the vanishing of chi with i > 2 because of the light cone 
lemma. 

Let us temporarily forget about the detailed expression of chi and c/12 
in terms of Ct and £, etc. It makes things simpler to keep the calculation 
symbolical. 

The next step is to prove the following recursive relation between the 
yarious Cj. 

Lemma 4.8. The chern classes of the index bundle satisfy the recursive 
formula 

Ci = -(Ci-iChi - 2Ci_2C/i2). 
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Proof. Let us look at the defining equation of the cohomology of the projec- 
tive bundle (the splitting space). 

xm _ CiXm-l + ^m-2  + (.^m^ = ^ 

where m is the complex dimension of the bundle. Notice that the variable 
x can represent any of the Chern roots of the bundle A^, i = 1,..., m. Thus 
we can plug all the Chern roots in to get m equations. Summing these m 
equations we get 

(E^-CX^E^-1)  + (-1) mmcm = 0. 

Using the fact chi = 0, i > 2 and chi = ^2i^ij 2ch2 = J^i ^i we see that 

mcm = Cm-ichi — 2cm-2ch2. 

This proves the recursive formula for i = m. For general i, one divides the 
equation by xk and get 

X™-* - dX™-1-* CmX-* = 0. 

Plugging in the Chern roots and summing over i we get an equation which 
can be reduced to the following form after using chi = 0,2 > 2. 

(4-3)     Ef-W^'fe^"*)) 
l,l<k \ \   i ) ) 

+ mcm-k - Cm-k-ichi + 2cm-k-2ch2 = 0. 

To show that the recursive formula is true, one only needs to show that the 
first sum over I is equal to — fccm_fc. 

To show this let us play a trick. Denote X^»oX^(/M)~p hy F(t)y the 
Laruent series in t. Then the sum in (4.3) can be expressed as the m — k 
power coefficient in t of C(t) • F(t). On the other hand, if we commute the 
sum over p and i in the definition of F(t) and extend p to > 0, then we find 
that F(t) can be re-written as 

E (E(A^rp -1) = E((1+(^r1)-1 -1) 
i      \p>0 / i 

= -E((i+Air
1)- 
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Thus C(t)F(t) can be simplified as 

-na+Ai*) (E(
I+A

**)"
1
)=-E (n(i+v)) • 

The final expression is related to taking derivative on a product of lin- 
ear factors. In fact let us call G(s) = s^C^) = YLr^^'1'. Then 
—sl~rnd/ds(G(s))\s=t-i is exactly equal to this expression. Thus it is easy 
to see that the (m — k)—th order term in t is exactly —kcm-k' This proves 
the lemma. 

Knowing the recursive relation, it follows that one can derive an O.D.E. 
for C(t). equation of C(t). More precisely, view C(t) as an element in 
-R[[Ai, A2,...., Am,t]], then we have 

Lemma 4.9. The series C(t) formally satisfies the following differential 
equation, 

^-C(t) = (chi-2ch2t)C{t). 
dt 

On the other hand we know that C(0) = 1. With this initial condition 
of the differential equation, we immediately get 

C(t) = Exp(cM-cM2). 

Therefore, by (4.2), 

(4.4) S(t) = Exp (-cM + cM2)- 

To get the n—th order term of S(t) we collect the terms on the right 
hand side of (4.4) which is of the type tH2^ such that i + 2j = n. Each term 
of this type contributes (—lychlch^/iljl, thus we get our final formula. 

Theorem 4.10. The wall crossing number of the pure invariant in the crit- 
ical case is expressed in term of the Chern characters as follows, 

(4.5) ±WCN(C,H) =     Yl    ("iMi * chi/i\j\[Tbl]. 
i+2j=b1/2 

This theorem applies to section invariants as well and we state it as a 
proposition. 

Proposition 4.11. The wall crossing number of section invariants is also 
given by (4.5). 
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Proof. Though different sections s give rise to different cohomology classes 
e(s) on the moduli space which is a fiber space over B, they all determine 
the same cohomology class on P(Ker (D)), and this class is nothing but the 
hyperplane class H. Hence they all have the same wall crossing number as 
WCN(C,H). 

If one uses the fact that c/12 = 0 for 6+ = 1 four-manifolds, one imme- 
diately recovers the wall crossing formula in [LL1]. The explicit formula of 
chi depends on some detailed structure of the cohomology ring structure of 
M. However, when M has 61 = 0, the wall crossing number of the pure 
invariant is simply given by ±1. A particular interesting example is an S2 

winding family of K3 surfaces (remember a K3 surface has &"1" = 3). 
For any manifold with 61 ^ 0, we would like to describe the form of its 

wall crossing formula in term of its cohomology ring pairing. First we know 
that chi is calculated by ci(£) • ^2/2\[M} G H2(Tbl) and c/12 is calculated 
by fi4/4![M] G H4(Tbl). Let us define (^ number of linear functional <^ 
on H2(M) by cupping CI(JC) with Xi • Xj. Then chi can be re-expressed 
as X^<j-QijityVi ' Vj ^ H2(Tbl). Likewise we can introduce (^ numbers, 
denoted by e^/./ by cupping a^, Xj^Xk-, xi together. Then c/i2 can be expressed 
as Ez<j<fc</ eijklVi ' Vj 'Vk-VlZ H4(Tbl). 

Even though the formula looks complicated we are still able to conclude 
that the wall crossing formula is a polynomial function in ci (£) of degree at 
most 6i/2. Whether this function is totally trivial or is honestly a polynomial 
of degree bi/2 really depends on the ring structure of the cohomology of 
M. In case we know that the cup product of H1 is nondegenerate, we 
always know that the wall crossing number behaves honestly as a bi/2 degree 
polynomial. This is the case for Kahler surfaces where the hard Lefschetz 
theorem implies the non-degeneracy of the cup product. On the other hand if 
the cup product on H1 is totally null, it automatically implies the vanishing 
of wall crossing number of the section invariants of all the Spinc structures. 

Let us look at an important example, any S2 family of the four torus T4 

(T4 also has 6"1" = 3). Unlike the case of the K3 surface, the wall crossing 
numbers of T4 are no longer just 1 or —1 and they are expressed as a 
degree two polynomial in £, as was expected from the Kahler property of 
T4. A simple calculation tells us that chi = (ci(£)/2)2 and c/12 = 1. Since 
WCN(C, H) = ch2/2 + c/i2, we have 

Corollary 4.12. The wall crossing number of the pure invariant of a Spinc 

structure C on a S2 family of T4 are given by 

±WCN(C,H) = ± Qci(£)2 + l) • 



Family Seiberg-Witten invariants 805 

Before going on to discuss the wall crossing formula for general Seiberg- 
Witten invariants in the critical case, we want to make a remark concerning 
the noncritical case. 

In the critical case, the formula is very neat because chi = 0, i > 2. How- 
ever, even without this assumption, Q still satisfies the following recursive 
relation, 

Ci = -(ci-ichi — 2ci-2ch2 + Slci-schs H ), 
i 

as can be derived along the line of lemma 4.8. 
Similiarly C(t) satisfies the following differential equation, 

4(C(£)) = C(£)(c/ii - 2\ch2 + 3\chs - 4\ch4 + .••). 
at 

And the same initial condition leads to the solution 

C(t) = Exp (chit - ch2t2 + 2!cM3 ) 

= Exp (^(-ir^M^i-l)!). 

The derivation is done along the same line and we skip the proof. However 
the final expression of the Segre classes is much more lengthy than before. 
This formula has certain application if we consider family wall crossing for- 
mula of the noncritical cases. 

Next let us discuss the invariants induced from Hi(M] Z). In this situa- 
tion, we must insert certain power of the euler class and certain power of the 
H map images to the projective space bundle over Tbl. We denote the class 
on P(Ker (£))) induced by /x(£) also by /i(C)- It is well known that this class 
further determines a class on the torus Tbl. By further abusing notation, 
we denote this class by /i(C) as well. As before, the effect of introducing the 
new classes merely reduces the effective dimension of the torus Tbl. 

Theorem 4.13. Given Ci>--->Cg ^ ^i; ^e wa^ crossing number of 

SW(&,...,tq) is given by 

(4.6)        ±WCJV(Ci,...,Cg) 

=  £ (-mi+j,i)ch[ • chi/(i+JMCI).• ■ ^QITH 

In general the wall crossing number will become a polynomial of ci(C) 
of degree less than or equal to bi/2 — q. We would like to illustrate this by 
studying the primary Kodaira surfaces. 
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The primary Kodaira surfaces are the complex surfaces (non-Kahler) 
which are quotients of R4 with 6+ = 2 and 61 = 3. Let (;r,y,£,£) be the 
coordinate of R4, the discrete group is generated by (rr, y, z, t + 1), (x, y, z + 
1, t), (x, y + 1,2, i) and (x + 1, y, z + Ay, t) where A is a fixed positive num- 
ber. (We exclude A = 0 case as it gives T4.) In symplectic geometry they 
are known to be constructed by Thurston as first examples of symplectic 
manifolds which are not Kahler. 

If we project M to (#,£), (y,t) or to (x,y), we obtain three descriptions 
of the primary Kodaira surfaces as T2 bundle over T2 with dx A dt, dy A dt 
and dx A dy as Poincare duals to the fibres. 

It is easy to see that i71(M;R) is generated by three differential forms 
dx,dy,dt. On the other hand, iJ2(M;R) is generated by dx A dt,dy A 
dt, dy A dz, dx A {dz — Xxdy). Prom here it is easy to see that the subspace 
dx A dt,dy A dt is the two dimensional subspace of H2 generated by H1. 
Comparing with T4, one difference is that the ring structure on H1 is not 
nondegenerate. There are two nice Sl symplectic winding familes, 

UQ(Q) — cos 8dx A dt + sin0dy A dz 

ui(9) = cos 0 dy A dt + sin9 dx A (dz — Xxdy). 

And for generic 6, the first fibration is symplectic with respect to a;o(0)j the 
second is symplectic with respect to OJI(9). 

The critical dimension is fe+ — 1 = 1 now, thus it is natural to consider 
the family version of SW invariants with X = M x S1. As the base is odd 
dimensional, it is easy to deduce that the wall crossing numbers are all zero 
for the pure invariant! Thus we must consider invariants involving Hi. The 
same observation also tells us that the insertion of an even number of classes 
in Hi always give the answer zero. On the other hand, if we insert more 
than bi number of classes, it is also zero. Therefore, we will only look at the 
cases q = 1 and q = 3. 

If we insert three classes into the definition of the invariants, it can be 
easily seen that the wall crossing numbers are given simply by 

±MCi)MC2)MC3)[r3]. 

Whether it is zero or not depends only on whether Q are linear independent 
in 12i(M,R) or not. However the wall crossing formula can be applied only 
if the Spinc structure has a moduli space whose dimension is at least three. 

On the other hand, the q — 1 case is less limited, the moduli spaces are 
only required to have dimensions bigger than zero. 
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Any Spinc structure can be represented as a cohomology class midx A 
dt + m2dy Adt + msdy /\dz + m^dx A (dz - Xxdy) with ra* = 0 (mod 2) (We 
have used the fact that these differential forms are actually an integral basis 
of H2). In the wall crossing formula, c/i2 = 0 as the cup product pairing on 
H1 is degenerate. Thus the wall crossing formula is given by 

WCN(CX) = -CI(JC/2) • n2/2\[M) • M(C)[T
3
]. 

Denoting (* by nidt + n2dy + n^dx, we find a numerical expression 

^CiV(AC) = "(m3'n2
0
+m4'n3)- 

Finally, to see the structure of the invariants, we can form the generating 
series of them. Let us define the generating series WCN(Q to be 

]n     WCN(2(k1dx Adt + My A dt + kzdy A dz 

+ kAdx A {dz - Xdy)), O^^^^t- 

With some simple reduction we get 

WCN{<:) - (l-tl)(l-«2)(l-ts)»(l-*4)2- 

Similiarly we define WCJVP(Ci,C2>C3) arid it can be easily computed as 

4        i 

1177—M^AC2AC3). 

where (/) : A3^1 M- R maps dx Ady A dt to 1. 
It is easy to deduce that if C corresponds to a cohomology class not of 

the form midx A dt + m2dy A dt, then the Seiberg-Witten moduli space in 
the first winding chamber is nonempty if dim Mc > 1- 

4.3. Important examples of the non-critical case: 
Fulton-MacPherson spaces. 

In the last subsection, we are able to derive the family wall crossing formula 
in the critical case. In that case, the formula is universal in the sense that it is 
independent of the details regarding the topology of the fiber bundle. When 
dim i? is bigger than b+ — 1, the picture is much more complicated. In this 
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subsection, we will thoroughly investigate an important class of examples, 
the Pulton-MacPherson spaces. 

The discussion of the Pulton-MacPherson spaces has a twofold purpose. 
On one hand, it demonstrates the complexity of the problem that it is usually 
difficult to derive an explicit formula in the non-critical case. In general, the 
answer and the detailed calculations depend on the topology of the given 
fiber bundle. As a result, we are not able to get an universal formula as we 
did before. 

On the other hand, it was suggested to the authors by G. Tian that 
nodal Gromov-Witten invariants should be differentiable invariants and this 
might be proved using family Seiberg-Witten invariants over some natural 
families. We believe the Pulton-MacPherson families are the right famlies. 

The Pulton-MacPherson spaces will be used to build up a fiber bundle. 
If we want to apply this scheme to K3, T4 or the primary Kodaira surfaces, 
we will thicken the base by S2 or Sl. In general, we will thicken the base by 
Sb ~1. This family is ultimately related to the counting of nodal (or higher 
singularities) pseudo-holomorphic curves. In fact after certain transforma- 
tion, the wall crossing formula in these particular examples can be shown to 
be closely related to the enumeration problem in algebraic geometry. This 
also strongly supports (as an nontrivial example) the general conjecture be- 
tween the family Seiberg-Witten theory and the family Gromov theory. In 
fact, the result will be compared with the results from the blow up formula 
by A.K. Liu in another up-coming paper. The fact that they coincide gives 
rise to a nontrivial consistency check of the calculations. 

First, let us introduce the concept of the Pulton-Macpherson space. Even 
though their construction is completely general, we will restrict our atten- 
tion to almost complex four manifolds only. Let Y be an almost complex 
manifold. Let Z be an almost complex submanifold inside Y of codimension 
ra. Then there is a well defined process of blowing up the submanifold Z 
inside Y. Topologically, it is given by replacing an almost complex neigh- 
borhood of Z by a projective bundle over Z such that the new manifold has 
a canonical almost complex structure. If Y is an almost complex manifold 
with a symplectic structure, one can perform the symplectic blow up by glu- 
ing the symplectic structure on the complement of the neighborhood and the 
symplectic structure on the projective space bundle by some cut off process. 
For the details of the construction, please consult Guillemin- Sternberg and 
McDuff's papers [GS] and [M2]. Prom now on M will be assumed to be an 
almost complex four-manifold. 

A set of ordered n distinct points on M is equivalent to a point in the 
configuration space Mn(A) = (Mn-diagonals), where Mn is the product of 
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n copies of M. The natural question to ask is whether Mn(A) has a smooth 
compactification which respects the action of the symmetric group Sn. It 
was Fulton and MacPherson ([FM]) who first explicitly constructed a good 
compactification of the configuration space when M is a smooth complex 
manifold. Later a similiar construction was also used by Kontsevich and 
other people to study Chern Simons theory. 

The Fulton-MacPherson space M[n] is a nice compactification of Mn(A) 
such that the compactifying divisors have certain moduli meaning. More- 
over, the space M[n] is smooth, Sn equivariant and maps surjectively to the 
space Mn. M[n] can be described in several ways, we will construct M[n] by 
a sequence of 2n — n — 1 blowups from Mn. For each of the 2n — n — 1 subset 
S of {1,... ,ra} with cardinality at least two, let A5 C Mn be the diagonal 
where the points Xi, for i in S) coincide. We start with M[2], it is just the 
blowup of M x M along the diagonal which corresponds to the diagonal 
A{1,2}- Suppose M[n] is constructed with a map to Mn. We will construct 
M[n + 1] by blowing up all diagonals A5 in Mn+1 (or more precisely, the 
preimage of the diagonals under the map M[n] x M J-)- Mn+1) where n + 1 
is an element of S. The blowups are done in n steps. The first step is to 
blow up the diagonal A^...)n}, next we blow up the proper transform of the 
n — 1 diagonals A5 where S has cardinality n. The k—th step is to blow up 
the proper transform of the diagonals A5 where S has cardinality n + 2 — k. 
Notice that after the k—th step, the proper transform of the diagonals to 
be blwon up in the k + 1—th step become disjoint and the order of teh blow 
up of these diagonals in this step is irrelavant. This is exactly why M[n] 
preserves the symmetry of the group Sn. It is not hard to see that all the 
blowups are along submanifolds of complex codimension 2 or 3. 

Given this inductive description of M[n], one may wonder whether M[n+ 
1] H* M[n] gives rise to a smooth fiber bundle which parametrizes blowups. 
Unfortunately some fibers of this map are singular. When a point lies in 
Mn(A), the fibers are all diffeomorphic to M with these n points blown 
up. On the other hand when two or more points collide, the fibers themself 
will become unions of several normal crossing four manifolds. One of them 
is M with several points blown up, the other components are all rational 
(i.e. CP2 with fewer points blown up). They intersect each other in CP1 

and the total number of exceptional CP1 sums up to be n. As the current 
Seiberg-Witten theory is developed for the smooth fiber bundles, we restrict 
our discussion to this case. (The Seiberg-Witten theory for singular spaces 
or singular fibrations is an interesting subject of its own.) 

However a simple modification will give us the desired bundle. We 
start from the space M[n] x M and denote it by XQ.     The composi- 
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tion of M[n] i-t Mn with the i—th (1 < i < n) projection map gives 
rise to n graph Vi : M[n] i-* M[n] x M, corresponding to the diagonals 
^{i,...,n+i}> — - > A{n,...,n+i}- Instead of first blowing up some codimension 3 
diagonals corresponding to subsets with more than two elements to get a 
space, denoted by M[n]+ in [FM], and then blow up the proper transform of 
Vi to get M[n +1], we only blow up M[n] x M successively along the graphs 
Vi. More precisely, we first blow up the first graph Vi and call the new space 
Xi. Next we blow up the proper transformation of the second graph Vz and 
call the new space A^. After n steps, we get the space M[n] = Xn. 

As we are always blowing up smooth manifolds along smooth centers, the 
exceptional divisors will be some projective P1 bundles. On the other hand, 
as the graphs intersect each other, one blow up will definitely affect the 
topological types of the other divisors we have already blown up. Thus we 
do not expect the final n smooth exceptional divisors to be simply projective 
P1 bundles. It rather looks like a blown up manifold which comes from the 
P1 bundle by blowing up certain low dimensional locus. Nevertheless, we 
still have the following important proposition. 

Proposition 4.14. The smooth almost complex manifold M[n] forms a 
smooth fiber bundle over M[n] whose fibers are almost complex four- 

manifolds all diffeomorphic to the manifold M#nCP . 

Proof. We need to show the natural map M[n] *-» M[n] has surjective dif- 
ferential. Away from the exceptional divisors, this is clear. On the other 
hand, the exceptional divisors map to the graphs Vi with surjective differ- 
entials, and since Vi are graphs the differentials of Vi i-> M[n] are isomor- 
phisms. Thus M[n] H* M[n] is a fiber bundle. The fibers are diffeomorphic 

to M#CP because the fibers over Mn(A) are just M blown up at n distinct 
points. 

The space M[n] does not allow an Sn action, the Sn symmetry has been 
broken when we mark the graphs and determine the order of blowing up 
using these markings. Also notice that the fibers actually inherit the almost 
complex structures from the blow up process. Thus our fiber bundle M[n] 
is a universal fiber bundle parametrizing all the inherited almost complex 
structures on the manifold M with n points blown up. 

If M is chosen to be a symplectic four-manifold, then we can choose the 
almost complex structure on M to be compatible with the given symplectic 
form. If so, the manifold Mn becomes a symplectic manifold, too. By 
performing the symplectic blowing up, M[n] also carries a (non-canonical) 
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symplectic structure such that the fibers of the fibration M[n] \-> M[n] are 
symplectic. If one considers the hyperwinding family of symplectic forms, 
one can also construct a family of almost complex structures compatible 
with the given family of symplectic forms and that the canonically defined 
sections in these fiber bundles Xn are simutaneously almost complex(and 
symplectic) with respect to the family of almost complex structures. Thus 
a family version of the Guillemin-Sternberg-Mcduff construction gives us a 
family of symplectic structures on the total space M[n] such that the fibers 
are symplectic with respect to a family of symplectic forms closely related 
to the original hyperwinding family. 

Prom now on, we will choose M[n] x Sb ~1 as the total space X and 
M[n] x Sb ~1 as the base B and discuss the Seiberg-Witten theory on the 
bundle X h-> M[n] x Sb ~1. As the fiber bundles are not of critical dimen- 
sions, as mentioned in §2, to define the Seiberg-Witten invariants, we need 
to perturb the Seiberg-Witten equations by the large self-dual two forms to 
avoid reducible solutions. 

In the derivation of the wall crossing formula, we do not require the 
manifold M to be symplectic. However the later application will be for this 
case. Thus we are free to use the symplectic forms to perturb the Seiberg- 
Witten equations. If M is symplectic with b+ = 1, there are two ways of 
perturbing the equations. Given a symplectic two form, we can perturb the 
equations either by ruj or — ru. Letting r h->- oo, there are two chambers and 
two different invariants. Therefore one should study the family wall crossing 
formula to understand how the invariants jump. When b+ is greater than 
one, we can consider different winding chambers of self dual two forms. The 
family wall crossing formula also makes sense in these cases. 

As the fibers are blown up from manifolds diffeomorphic to M, naturally 
we are interested in the Spin0 structures which have the following schematic 
form, 

C = Co- J2(2rni + W 

where Co is a Spinc structure on M, Ei is the line bundle which is Poincare 
dual to the homology class representing the i—th exceptional class and each 
mi is an integer. Notice that these line bundles Ei give the exceptional line 
bundles of each fiber when they are restricted to each individual fiber. The 
geometric meaning of these numbers rrii will be clear in the later discussion. 
As before, we still require the dimension of its moduli space to be non- 
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negative, i.e., 

V4 I ^o - Y^^rm + I)2 - (2x + 35) j + 4n + (6+ - 1) 

= 1/4 j £g - ^(2771* + I)2 - (2x + 3(7) + n J + 4n + (6+ - 1) 

>0. 

Let us analyze the chamber structure of this family. By Proposition 
3.5, the period bundle is homotopic to an Sb ~1 bundle over M[n] x Sb ~1. 
Thus by Proposition 3.6, the chambers are classified by the set of fiberwise 
homotopy classes of the sections [M[n] x Sb ~1, V]f. Usually this set is com- 
plicated. We are only interested in a subset consisting of those homoptopy 
classes of sections whose restriction from M[n] x Sb ~1 to M[n] x {pt} is 
nullhomotopic. This subset can be identified with Z2 if b+ = 1 and Z if 
b+ > 1. As the group Z is an infinite cyclic group generated by 1, we can 
calculate the wall crossing number from the zero winding chamber to the 
first winding chamber. Notice that in this case the obstruction class Obs is 
the pull back M[n] x S6*"1 —» S6*"1 of the generator of H*+-i(5&+-i; Z). 
By inserting this special obstruction class into the wall crossing formula we 
conclude that the calculation can be performed on certain projective space 
bundle over the torus fibration with M[n] as its base. Notice that it is not 
necessarily true that the singular locus inside M[n] x Sb ~1 is diffeomor- 
phic to M[n]. However, we will conveniently adopt this picture, as the wall 
crossing formula is purely homological. 

In this special case, the wall crossing number calculation is again re- 
duced to the calculation of the top power of the hyperplane class over the 
torus fibration (when 61 (M) = 0, the torus fibration reduces to M[n] itself). 
As argued in the critical case, this calculation is exactly equivalent to the 
calculation of the Segre classes of the Index bundle. It is a very complicated 
calculation if we want to directly apply the family index theorem. Though 
there is a slight modification which simplifies the calculation to certain de- 
gree, we are not able to calculate the final result explicitly. What we can 
do is to reduce the calculation to a problem in algebraic geometry. In the 
process, it would be manifest how the family version of Seiberg-Witten in- 
variants correspond to the similar story on the Gromov side—in terms of 
algebraic geometry. 

We change the strategy as follows. Instead of making CokerM[n](Z)) a 
trivial bundle by adding its K theory inverse, we do it to Ker ^[^(D). Thus 
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we can assume that there is some representative of the Index bundle such 
that KerM[Tl](-D) is trivial, while CokerM[n](D) absorbs all the topology of 
the bundles. Since Coker M[n] (D) forms the inverse bundle ofINDM[n] (D) in 
the K group, the Segre classes of /iVZ)M[n] (D) are exactly the Chern classes 
of Coker M[n] (D). In other words, if we want to calculate the top power of the 
hyperplane bundle, it is equivalent to calculate the top dimensional (in term 
of the base manifold) Chern class of the Cokernel bundle. We would like 
to demonstrate that there is some special candidate for the CokerM[n](D) 
which allows us to interpret the problem in term of algebraic geometry. 

Before going into the detail, let us explain the relationship between the 
wall crossing numbers and the family version Seiberg-Witten invariants. In 
general to apply the wall crossing formula to calculate the Seiberg-Witten 
invariants, we need the information of one specific chamber. This is exactly 
the case one can achieve for the ruled and rational surfaces (6+ = 1, B = pt) 
and hyperwinding families of the K3 surfaces and T4 where we have some 
sort of vanishing theorem for the invariants due to the existence of special 
metrics of nonnegative scalar curvature. Then the wall crossing number is 
exactly the Seiberg-Witten invariants. In our case the same conclusion still 
holds, but we offer a different argument. Instead, we would like to prove 
that the pure Seiberg-Witten invariants vanish in the unwinding chamber. 

Proposition 4.15 (Vanishing result for Seiberg-Witten Invariants). 
The pure family Seiberg-Witten invariants ofb+>l family M[n] vanish in 
the zero winding chamber. 

Proof If b+ is even, the pure invariants of these families are automatically 
zero by dimension reason. Thus we only need to study the case when b+ is 
odd. Denote the pure Seiberg-Witten invariant in the i-th winding chamber 
bySW(£,H,i),then 

WCN(jr, H) = SW(C, H, 1) - SW(C, H7 0) 

- SW(£, H, 0) - SW{C, H, -I). 

On the other hand, we can use an orientation reversing diffeomorphism of 
Sh _1 to map one chamber into another. We conclude that 

SW(C, H, -1) - -SW(C, H, 1) 

as changing the base orientation changes the orientation of det^~. Therefore 

SWiC, H,0) = 0        and       SW(£, H, 1) = WCN(C, H). 
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We also learn from this proposition that the wall crossing number calcu- 
lation gives us the invariants themselves instead of their differences. Notice 
that this discussion does not apply to other types of invariants as other type 
of invariants may have different parity under the orientation reversion of the 
base. On the other hand, the argument offered here is very general. 

Now we would like to discuss how to transform our question to a question 
which is closely related to algebraic geometry. For simplicity, let us focus 
on the bi = 0 case first. 

Let us look at the family index expression that we want to evaluate, it 
is given by 

(4.7) [ AM\n}/M\n} ' ch7;(^)' 
M[n]/M[n] l J/     L J 2 

Even though we evaluate this as a topological number, we will make use of 
the fact that M is an almost complex manifold. Writing C as if-1 ® C2, 
then (4.7) can be recasted into 

(4-8) /.ri/   tToddA[n]/M[nych(C). 
JM[n]/M[n] L J/     L  J 

And then the Family index theorem becomes Grothendieck RR theorem in 
the almost complex category. C can be written as Co — Y2i rni^i where Co 
is a line bundle on M and Ei are these line bundles dual to the exceptional 
divisors. 

To evaluate (4.8), we would like to use the Koszul resolution of certain 
"sheaves" in the almost complex category. For this purpose, let us review 
the usual Koszul resolution in complex geometry. Let A C B be a pair of 
complex manifolds such that A is imbedded as a complex codimension d 
submanifold and is the zero set of a section of a locally free sheaf Q of rank 
d. Then the structure sheaf OA of A, extended by zero, is a sky-scraper 
sheaf on B. There is a canonical resolution of OA in terms of locally free 
sheaves, 

0 H-> AdQ* »->... A2Q* .-+ Q* ^ OB ^ OA ^ 0, 

which is usually called the Koszul resolution. As was remarked at the end 
of the Atiyah-Hirzebruch's paper, [AH], this resolution goes over to the 
differentiable category as well. Thus it exists even though the manifold is 
almost complex. Applying to our special case (d is equal to one) we get 

0 i-> O(-Ei) ^O^OEi^O. 
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Tensoring this sequence with a locally free sheaf J\f we get 

0 H-> J\f(-Ei) ^ U H+ MEi h-> 0. 

Notice that here we are using the C00 version of the sheaf theory which 
was sketched in [AH]. 

Let us assume rrii > 0 first. In fact, we apply the sequences to different Ei 
in the reversing order. Namely we apply it first to J\f = CQ — J2i<n-i rni^i ~ 
(mn - l)En. Then we apply it to J\f = CQ - Y^i<n-i rniEi -\mn - ^)En 

until the En is exhausted. Then we do the similar thing to En-i, etc., until 
all the Ei have been eliminated. In the mean time, a sequence of sheaves 
supporting at those Ei will be generated. What matters here is that we have 
found a new representative of (9(Co — Y^i rniEi) lIi the following form 

ofCo-^m^j 

= 0(Co) -        E        0Ei[Cv-Y. msEs - jiEi 
i'i3i'fi<3i<'mi — 1 \ s<i— 1 

As the Chern character is an additive homomorphism from the K group to 
the cohomology ring, the family index calculation is reduced to the following 
form. 

(4.9)     f ToddmiM{Jch(Co) 
'M[n]/M[n 

Z)        0Ei ( ^o -  Z msEs ~ 3iEi 
hji'^<ji<mi—l Y s<i—1 

The first term of (4.9) is intepreted as the index bundle of the d operator 
on the fibers MjjnCP2 with the coefficient line bundle CQ. AS CQ is pulled 
back to M[n] by its projection to M x M[rz], the index bundle is a constant 
bundle on M[n] whose rank is equal to ind (<9, Co) on M. On the other 
hand, all the contributions of the Chern characters come from the terms 
which appear with a negative sign. As the sky-scraper sheaves appear in 
the Chern character, we can restrict our total space from M[n] to Ei. By 
the Grothendieck-Riemann-Roch theorem in the differentiable content (see 
[AH] for example), the remaining terms can be casted into the following 
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form 

(4.10) - e^jtKi^mi-i Ind (fl, (OUi))) ®{co-  J2 msEs 

V s<i-l 

where the index is taken over the fibers of Ei over M[n] which are unions of 
normal crossing rational curves. 

This formula (4.10) can again be casted into another form. To do so, it 
requires us introduce some notation. Inductively, let us consider the man- 
ifold M x M[n] with the first i — 1—th graphs blown up, denoted as Xi-i. 
Then the proper transformations of the i—th graph still forms a section of 
the projection map from the blown up manifold Xi-i to M[n]. Thus we can 
identify the restriction of the vertical tangent bundle (complex two dimen- 
sional) to this section as a complex rank two vector bundle on M[n] which 
will be denoted by Vi. Written in terms of Vi, the formula (4.10) can be 
expressed as 

(4.11) - e^CK^m;-! SHVC) ®{C0-   Yl   msEs 
\ 5<i-l 

where S^iy*) denotes the ji—th symmetric power of V*.   Thus the wall 
crossing number should be expressed as C2n of this vector bundle. 

If mi < 0, then the above discussion is not completely valid. In this 
case the Spinc structure can be rewritten as £0 + X)i(2777'i + l)^i with mi 
positive. In this case we still use the same exact sequence 

0 ^ 0{-Ei) ^O^OE^O. 

But we replace the middle term by the first and the third term. Thus the 
term 

J2    oEilco+ J2 (ms + ^ + iiEi 

h3ii0<ji<mi \ s<i—l 

still keeps the form similiar to the original one. The major difference is that 
it appears with a positive sign instead. 

Also mi is replaced by mi + 1. The key term is written as 

©i.ii.o^^IncKd, {O(-ji))) ®    Co + Y, t™* + ^^    ' 
\ s<i-l I 
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We can go through the previous argument. This time the line bundles 
restrict to negative degree line bundles on the exceptional CP1. Recall that 
the sheaf cohomology of a negative degree line bundle on CP1 is related to 
the sheaf cohomology of the positive ones by the well known Serre duality 
on curves. We can formally write 

[H0(CP\ O(-k))] - [H'iCP1,0(-fc))] 

= -[H^CP1,0{k - 2))]* + [H0(CP\ 0(k - 2))]*. 

Apply this formalism to the family of bundles, we still get a series of sym- 
metric powers. The highest power one can get is rrii + 1 — 2 = rrii — 1, the 
same index as before. Moreover the Serre duality gives us an extra minus 
sign. Thus the answer appears with a negative sign, again compatible with 
the previous answer. Thus we conclude the surprising answer that these line 
bundles CQ + X^(2mz + 1)-Sij £o — ^i(^rni + l)-^* share the same family 
wall crossing number for the section invariants. 

At this moment, let us restrict to the case where M is a complex manifold 
(including the case when M is the K3 surface or T4). Then (4.10) can be 
interpreted as 

(4.12) - e^jCKj^m,-! #U  ( Eib, \ Co -   Y,   msEs  I   ® 0Eih{ji) 
s<i-l 

It is this expression which has an interesting algebro-geometric mean- 
ing. The first term of the index bundle is nothing else but H0(M,Co), the 
space of holomorphic sections of the line bundle CQ. The term which is sub- 
stracted actually records the rrii jets information of the line bundle Co at 
the n points of M parametrized by the point in the base M[n]. There is a 
natural map from the tautological line bundle over P(iJ0(M, Co)) to the jet 
bundle such that this morphism vanishes at a point in P(i?0(M, Co)) x M[n] 
exactly when the corresponding section in H0(M, Co) vanishes at these n 
points with prescribed orders. In other words, the counting of such points 
on the manifold P(H0(M, Co)) x M[n] is equivalent to counting of holo- 
morphic curves (given by the linear system corresponding to Co) which has 
certain singularities along the n points. Thus we have seen in these type of 
examples that the algebro-geometric problem is actually encoded in a differ- 
ential topological invariant. This gives us a very nontrivial example that the 
family version of Seiberg-Witten theory should have certain Gromov type 
interpretation. 
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Let us come back to the almost complex category. In the previous dis- 
cussion, we have made the assumption bi = 0 to simplify the discussion. 
Now let us consider the general bi / 0 case. 

When bi — 0, the torus Tbl collapses to a point and it does not play 
any role in the formula. When bi ^ 0, the key observation is that the torus 
fibration is reduced to Thl x M[n] in this special situation. Even though the 
fiber bundle M[n] i-f M[n] is not a trivial product bundle, the nontriviality 
is due to the blow up process which has no effect on the jff1, nor on the flat 
connections on the manifold M. Therefore the torus fibration should be the 
same as the one for M x M\p\ v-t M[n], the trivial product. 

The factorization of the torus fibration leads to certain simplifications of 
the calculations. Previously, the Index virtual bundle was splitted into two 
parts. The positive part is a trivial bundle over the base and the negative 
part carries all the topological information. In the b\ > 0 case the same 
conclusion is not valid. As the twisting factor ch(Q) play sa role, the positive 
factor is replaced by a virtual bundle of constant rank. This virtual bundle 
can be written as the formal difference of two terms. The negative part is 
still a trivial bundle. However the positive part is not. If we take a closer 
look at the bundle involved, it is exactly the bundle which appears in the 
family wall crossing formula of CQ in the fiber bundle M x pt (b+ = 1) or 
M x Sb ~1 (6+ > 1). This vector bundle has a special feature that it is 
trivial along the factor M[n]. On the other hand the negative part of the 
index bundle is still given by the original expression discussed above. It also 
has a special feature that it is trivial along the Tbl factor. Thus we get a 
nice picture out of the complicated situation. Namely we are working on a 
product space Tbl x M[n] and the index bundle is decomposed into terms 
which are pulled back from Tbl and M[n] respectively. 

Let us denote the projection map from Tbl x M[n] to Tbl and M[n] by 
TTT and TTM respectively. Then the index bundle can be written as 

INDM[n](D) = ^W1 - 7r^2, (4.13) 

where Wi G if (T61) and W2 G K(M[n]). 
To calculate the Segre classes of the index bundle S(INDM^(D)), we 

would like to make use of the product structure described here. Instead of 
doing it directly, we can rewrite (4.13) as 

INDM[n](D)®7T*MW2 = ^W1. 

As Segre classes are the formal inverse of the Chern classes, they also sat- 
isfy the Whitney formula.   Thus we have S(INDM[n](D)) • S^Wb)  = 
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S^TWI). Multiplying both sides by C^TT^W^) and make use of the S-C = 1 
property we finally get 

S(INDM[n](D)) = Si^Wr) ■ C(-K*MW2). 

If we are interested in the general terms of the left hand side, it is ex- 
pressed in terms of the combinations of the Chern classes and Segre classes 
of Wi and W2 in a cubermsome way. However the result we are interested 
at is the top Segre class (where the word "top" means the top dimension of 
Tbl x M[n]). In this case the formula simplifies and it is given by the top 
Segre class of Wi and the top chern class of W2. We also notice that the 
top Segre class of Wi is nothing else but the wall crossing number of JCQ in 
the critical product family. Thus, we have gotten an amazing result relating 
the family wall crossing formula of the fiber bundle M[n](or M[n] x Sb ~1) 
and the family wall crossing formula of M or M x Sb ~1. The following is 
the main theorem of this subsection. 

Theorem 4.16. Let ^rni(>C) be the wall crossing number of the consecutive 

chambers of the family M[n] or M[n] x Sb ~1. Let £ be written as Co + 
Y2i(2mi + l)Ei with rrii > 0, then <$M[n]0O can be written as the following 
expression in terms of 5(£Q), the wall crossing number of the consecutive 

chamber of the family M x pt or M x Sb ~1, 

(4.14) 

a<i-l 

iJi^i^mi-lSHK) ®     O) -   E   m'E»)      • ^O), 

where CQ = 2Co — KM- If 2rai + 1 is negative in the formula of C, then 
its wall crossing number is the same as the one with —(2mi + 1) replacing 

2mi+l. Namely there is an explicit Z2 symmetry among the Spinc structures 
which preserves the wall crossing number. 

When &i(M) = 0, the wall crossing number of the critical family becomes 
±1 and the formula goes back to the expression studied earlier. We want 
to emphasize that only in the &i / 0 case does the dependence on 8{CQ) 

become explicit. 
The theorem is not only valid for the pure family Seiberg Witten invari- 

ant, it is valid for the invariant involving Hi{M\ Z) as well, as long as 8(£,Q) 
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is understood to be the wall crossing number of the corresponding invariant 
of the critical family. 5(>Co) 

On the other hand, if we are interested in the wall crossing numbers of 
the mixed invariants, it is easy to derive the corresponding wall crossing 
formula. Let 77 be the cohomology class in If*(M[n];Z) whose insertion 
defines the mixed Seiberg-Witten invariants. Then the wall crossing formula 
is of almost the same form except that /Mrni C2n(- * *) is replaced by /Mrni r) • 
C2n-degrj(' ")- Especially the wall crossing formula for the mixed invariant 
with the fundamental class [M[n]] G Htop(M[n]; Z) inserted is the same as 
the wall crossing formula 5(JCQ). 

There are several things we learn from the derivation of the wall crossing 
formula for these special families constructed out of the Pulton-MacPherson 
spaces. First, the lengthy formula in terms of all the Chern characters may 
not be so useful in deriving the formula. One may need to figure out certain 
tricks (in our case, the Koszul resolution of sheaves in the smooth category) 
to simplify the calculation. As the final answer depends on the topology of 
the fiber bundle, one should not expect the answer to be as universal as in 
the critical case. To calculate the formula for the other interesting family is 
an interesting question of its own. 

Second, as the wall crossing formula satisfies the amazing factorization 
property, one may suspect that the Seiberg-Witten invariants themselves 
also satisfy the similiar constraints. Namely they are related to the family 
invariants of the critical families in an explicit way. In fact, the family blow 
up formula [Liu] supports this. Using the family blow up formula, one is 
able to check that the family Seiberg-Witten invariants satisfy the constraint 
predicted here. For the manifolds M with 6+ — 1 positive and even, the 
result could be gotten by the wall crossing formula and the vanishing result 
stated earlier. However the family blow up formula gives us an independent 
derivation valid for all cases (including the 6+ = 1 case). The compatibility 
of the blow up formula and the wall crossing formula gives us a commutative 
diagram between blowing up and crossing chambers. Let us begin from the 
fiber bundle M x M[n] x Sb ~1. One can either move from the zero winding 
chamber to the nonzero winding chamber and then blow up to M[n] xSb ~1. 
Or one can first blow up n times to M[n] x Sb ~1 and then go across the 
walls to the nonzero winding chambers. The family blow up formula also 
explains why the vanishing result holds for the zero winding chamber. Once 
the pure invariants of the zero winding chamber of the critical families are 
known to be zero, the others follow as well by the family blow up formula. 
For the details please consult [Liu]. 
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Finally, let us give the explicit formulas when n = L When n = 1, M[n] 
is simply M, and Vi is just the tangent bundle. Consider the case mi = 2, 
then by (4.14) 

5M(C) = S(Co) [ C2((S0(TM) e ^(TM)) ® Co) 
JM 

= 5(Co)(3Co • Co + 2C0 • ci(M) + C2(M)). 

When M is the four torus, both ci(M) and C2(M) are trivial, so by 
Corollary 4.11, 

(4.15) SM(C) = 6(CO)3CO'CO 

= l(Co-Co + l)3Co'Co. 

In [BL2], for a hyperkahler family of four torus, the number of 1—nodal 
curves in a primitive class Co, is exactly given by (4.15). This is again an 
evidence supporting 'SW=TGW\ 
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