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Anderson and Canary ([1]) have constructed examples of 3- 
manifolds M for which the space of convex co-compact represen- 
tations of 7ri(M) in PSL2(C) is disconnected but has connected 
closure (in the topology of algebraic convergence). More precisely, 
they showed that for their examples the intersection of the closures 
of any two path components of the space of convex co-compact 
representations is non-empty. We study these examples and show 
that there is a connected, uncountable set of geometrically finite 
representations which is contained in the closure of every path 
component of the space of convex co-compact representations. 

Introduction. 

Suppose M is an irreducible, orientable, atoroidal, compact 3-manifold 
whose boundary is non-empty. Thurston's Hyperbolization Theorem ([14]) 
guarantees that the interior of M may be imbued with the structure of a 
geometrically finite hyperbolic manifold. Moreover, if DM contains no torus 
components this structure may be taken to be convex co-compact. But 
in particular there is a discrete, faithful representation of the fundamental 
group of M into PSL2(C), the group of orientation preserving isometries 
of hyperbolic 3-space, H3, modelled as the upper half space in R3. If F is 
the image of this representation (so that int (M) = H3/r) then conjugating 
F by an element of PSL2(C) produces a group whose quotient manifold is 
isometric to BI3/r. Hence if we are to understand all the possible hyper- 
bolic structures on the interior of M up to isometry we should study the 
set iJ(7ri(M)) of equivalence classes of faithful representations of 7ri(M) in 
PSL2(C) whose images are discrete, where two representations are in the 
same equivalence class if they are conjugate in PSL2(C). 

#(71-1 (M)) is a quotient of jD(7ri(M)) = {p £ Horn (7ri(M), PSL2(C))\p 
is faithful and has discrete image} and so we can topologize iJ(7ri(M)) 
by giving D(

/
KI(M)) the compact-open topology and jff(7ri(M)) the quo- 

tient  topology.      This  is  called  the  algebraic  topology  on  H(7ri(M)). 
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Call i7(7ri(M)) with the algebraic topology AH('Ki(M)). An element of 
AH(7ri(M)) does not necessarily give a hyperbolic structure to the interior 
of M; it may give a hyperbolic structure to a compact manifold homotopy 
equivalent to M or the quotient of its image may not admit a manifold com- 
pactification, though it is a conjecture of Marden's that the latter does not 
occur. Let A(M) denote the set of marked homeomorphism classes of com- 
pact, oriented, atoroidal, irreducible 3-manifolds homotopy equivalent to M. 
It follows from work of Ahlfors, Bers, Kra, Marden, Maskit, Sullivan and 
Thurston that the components of the interior of AH^TTI^M)) are enumerated 
by the elements of A(M) (see [5]). In particular the homeomorphism type 
is constant on each component of the interior. In the case when 7ri(M) is 
the fundamental group of a surface Bers ([3]) conjectured that any B-group 
is contained in the closure of some Bers slice, and later Thurston ([18]) and 
Sullivan ([17]) extended this to conjecture that the interior of AH(7ri(M)) 
is dense in AH^TT^M)). 

We specialize to the case when dM contains no tori (so that the interior 
of AH(TCI(M)) is CCf(7ri(M)), the subspace consisting of all those repre- 
sentations whose image is convex co-compact, see [11] and [17]). Anderson 
and Canary ([1]) have constructed a family of examples for which there 
are finitely many components of CC(7ri(M)) and the closures of any two 
such components intersect. They exhibit, for each integer k > 3, a mani- 
fold Mfc such that A(Mk) has (k — 1)! elements and they construct for each 
[(M, h)] G A(Mk) representations pi in the component of CC^i(M/.)) in- 
dexed by [(Mk,id)] G A{Mk) so that pi converges to p and p is in the closure 
of the component of CC{TTI(M^)) indexed by [(M, h)} (in fact p uniformizes 
M). This is to say, the homeomorphism type can change in the limit and 
the closure of CC(7ri(Mfc)) is connected. (Recently Anderson, Canary and 
McCullough ([2]) have generalized this result to give necessary and sufficient 
conditions for the closures of two components of the interior of AH^i^M)) 
to intersect, where now M is any compact, orientable, irreducible, atoroidal 
3-manifold with incompressible boundary.) 

In this paper we examine Anderson and Canary's examples and show 
that for these examples there is a set of geometrically finite representations 
which is contained in the closure of every component of CC(7ri(Mfc)). The 
construction shows that in some sense this set can be chosen to be "large", 
in that given any K > 1 the set contains all of the iiT-quasiconformal de- 
formations of some geometrically finite representation of 7ri(M) (this re- 
presentation depending on K). 
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In the first section we will describe the construction of the examples and 
state the theorems that will be proven in Section 3. In Section 2 we will 
present the versions of the Klein-Maskit combination theorems that we will 
be using, a statement of a generalization of the Hyperbolic Dehn Surgery- 
theorem due to Comar (upon which the proofs in Section 3 are largely based) 
and a few technical lemmas that we will use in Section 3. 

Acknowledgements. This paper represents a portion of the author's 
Ph.D. thesis. The author would like to thank his advisor, Dick Canary, for 
his advice and encouragement, as well as Richard Evans for many enjoyable 
discussions. 

1. The examples. 

Choose an integer k > 3. Let F(j) be a surface of genus j with one boundary 
component and set B(j) = F(j) x [0,1], j = 1,... ,fc. Let V = D2 x S'1 

be a solid torus and let A(j) (j = 1,..., k) be the annulus on dV given by 
A(j) = [e27r*(4j-l)/4fcje27ri(4i+l)/4fc] x ^   Set ^(fi = dF(fi x [Q^].   Form 

Mk by identifying doB(j) with A(j), j = 1,... , fc, with orientation-reversing 
homeomorphisms. In other words, M^ is obtained by attaching, in order, 
the /-bundles -B(l),...,-B(fc) to a solid torus V by identifying the annuli 
do(B(l)),... ido(B(k)) with a collection of k disjoint, parallel, longitudinal 
annuli i4(l),...,i4(fe) C dV. 

Suppose r G Sk is a permutation of the integers !,...,&. Then we 
may obtain a manifold homotopy equivalent to Mk by performing the above 
sort of construction but sewing doB(r(j)) to A(j). Denote the manifold so 
obtained by M£. M£ is homeomorphic to M^ if an only if r and rf belong 
to the same right coset of D^, the dihedral subgroup of 2k elements of Sk- 

Let Ci - {e37ri/4fc} x S1 C dVjmd C2 = {e5ni/4k} x Sl C dV be two 
parallel curves in dVndM£. Form M^ by attaching S1 x [0,1] x [0,1] to M^ 
by an embedding h : S1 x [0,1] x {0,1} —> dV such that hiS1 x {i} x {0}) = 

Ci and /i(51 x {^} x {1}) = €2- M£ is homeomorphic to the manifold 
obtained by removing an open neighbourhood of the core curve of V from 

Ml- 
Let hT : Mk —> M^ be a fixed homotopy equivalence that is the identity 

when restricted to the solid torus V. Anderson and Canary have proven that 
{(M^,/ir)|r E Sfc/Zfc} is a complete set of representatives for A(Mk). For 
our purposes it is more convenient (and more natural in light of Johannson's 
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Deformation Theorem([9])) to require that hT be a homotopy equivalence 
between Mk and M£ which is the identity off of the solid torus V. Using 
essentially the same proof as in   [1] we have the following: 

Lemma 3.2 in [1]. Let {TI, ..., T/V} be a set of right coset representa- 
tives of Zk = ((123. "k)) in Sk (N = (k - 1)!). Then {{Ml\hT1), 
..., (M™yhTN)} is a complete indexing set for the set of path components 
ofCCMMk)). 

In this paper we prove the following two results: 

Theorem A. For any integer k > 3 there is a representation which lies in 
the closure of every component of CC('Ki(Mk)). 

Theorem B. For any integer k > 3 and K > 1 there is a representation px 
such that the set of representations of7ri(Mk) induced by K-quasiconformal 
deformations of px is contained in the closure of every component of 
CCMMk)). 

2. Preliminaries. 

Definitions. 

In this article a Kleinian group is a discrete, torsion-free subgroup of the 
group of isometries of hyperbolic 3-space, H3. Realizing hyperbolic space 
as the upper half space {{z,t) \ t > 0, z G C} allows us to view a Kleinian 
group as a subgroup of PST^C). If T is a Kleinian group then the orbit 
space l[3/r is an orientable 3-manifold with constant sectional curvature 
equal to — 1. By fixing an orientation on H3 and passing this orientation to 
the quotient we may assume that the orbit space of a Kleinian group is an 
oriented 3-manifold. 

If M is a compact, oriented 3-manifold and T is a Kleinian group such 
that H3/r is homeomorphic to int(M) via an orientation preserving home- 
omorphism. we say that M is uniformized by F. If F is also the image of 
a representation p : 7ri(M) —> PSL2(C) then we sometimes say that p 
uniformizes M. 

The limit set of a Kleinian group F is the set of accumulation points 
in C for the action of F on M3. The limit set of F is denoted by A(r). 
When F is non-abelian A(r) is the smallest, non-empty, closed, F-invariant 
subspace of C. The complement of A(r) in C is the domain of discontinuity 
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for T and is denoted by £2(r). As is implied by the name F acts properly 
discontinuously on fi(r). 

A Fuchsian group is a Kleinian group whose limit set is a circle and 
the stabilizer of any component of its domain of discontinuity is the whole 
group. (Sometimes such a group is called Fuchsian of the first kind.) For 
our purposes a Fuchsian group has the extended real line as its limit set. 
That is, for our purposes a Fuchsian group is a subgroup of PiSZ^M). 

The convex core of a hyperbolic 3-manifold N = M3 /T is the smallest 
convex sub-manifold of N whose inclusion map is a homotopy equivalence. 
The convex core of N is denoted by C(N). Equivalently, C(N) is the quo- 
tient of the convex hull of A(r) in H3 by F. If C(N) is compact, then we say 
that N (or F) is convex co-compact If C(N) has finite volume and 7ri(iV) 
is finitely generated then we say that N is geometrically finite. 

For a hyperbolic 3-manifold iV = M3 /T the conformal extension of N is 
the manifold with boundary given by (H3 U fi(r))/T. 

Given a Kleinian group F and a subgroup J C F a subset B C C is 
precisely J-invariant in F (or, equivalently precisely invariant under J in 
F), if B is invariant under J and if g G F is such that g{B) fl B ^ 0 then 

9 e J. 

A quasiconformal deformation of a representation p is a representation 
pf such that there is a quasiconformal map / of C with pf = f o po /_1. A 
quasifuchsian group is a quasiconformal deformation of a Fuchsian group. 

For a compact, atoroidal, irreducible, orientable 3-manifold M we have 
the set A(M) of homeomorphism classes of marked, compact, atoroidal, ori- 
ented, irreducible 3-manifolds homotopy equivalent to M. Explicitly A(M) 
consists of equivalence classes of pairs [(M',/?,)], where h : M —> M' is a 
homotopy equivalence and two pairs (Mo,/io) and (Mi,/ii) are in the same 
equivalence class if and only if there exists an orientation preserving home- 
omorphism j : MQ —V Mi such that j o h^ is homotopic to hi. 

MQ is a compact core for an irreducible 3-manifold M if MQ is a com- 
pact, co-dimension 0 submanifold of M whose inclusion map is a homotopy 
equivalence. By Scott [16] any 3-manifold with finitely generated fundamen- 
tal group has a compact core. It is a theorem of McCullough, Miller and 
Swarup ([13]) that if ii : Mi -> M and 12 : M2 —> M are two compact cores 
for an oriented 3-manifold M then ii o 12 is homotopic to an orientation 
preserving homeomorphism, where 12 is a homotopy inverse for 22- 
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We have a map 6 : AH"(7ri(M)) —> A(M) defined as follows. Let 
p e AH(7ri(M)) and let Mp be a compact core for HI3/p(7ri(M)). Let 
ip be inclusion of Mp into EI3/p(7ri(M)). Since (ip)*1 o p : 7ri(M) —> 
7ri(Mp) is an isomorphism between aspherical manifolds there is a homotopy 
equivalence hp : M —> Mp such that (hp)* is conjugate to (ip)*1 o p. 
Then 9 maps p to the marked homeomorphism class [(Mp,hp)]. By the 
result of McCullough, Miller and Swarup above 6 is well-defined. Marden's 
Isomorphism Theorem and Stability Theorem [11] and a result of Sullivan's 
[17] implies that two convex co-compact representations are in the same 
component of int(AH"(TT^M))) if and only if they have the same image 
under G. 

The Klein-Maskit combination theorems. 

Very roughly, the Klein-Maskit combination theorems give sufficient con- 
ditions for a group generated by two Kleinian groups to be Kleinian and tells 
us the topology of the manifold associated to the result. The versions we 
state here are special cases of those given in [12]. 

Theorem   1 (The First Klein-Maskit Combination Theorem). Let 
J = (z h^ z + 1) be a rank 1 parabolic subgroup of discrete groups Gi and 
G2 with J 7^ Gi, i = 1,2. Assume that there is a horizontal line W which 
separates C into two closed disks Bi and B2 with A(Gj) C Bj, and with the 
property that Bj is precisely invariant under J in Gs-j- Set G = (Gi,G2). 
Then 

1. G is discrete; 

2. G = Gi *j G2; 

3. G is geometrically finite if and only if both G\ and G2 are geometrically 
finite; 

4. Let C be the plane spanned by W in H3 and let Bf be the half space 
bounded by C and Bi in M3, i — 1,2. Then M3/G is isometric to 
the manifold obtained by removing Bf/J from 1HI3/G2 and removing 
B2/J from H3 /Gi and identifying the resulting manifolds along their 
common boundary C/J. 

5. (EI3UO(G))/G is orientation preserving homeomorphic to the manifold 
obtained by gluing (M3 U«(Gi))/Gi to (M3 Ufi(G2))/G2 by identifying 
the punctured disk B\jJ C 0(Gi)/Gi with the punctured disk B2/J C 
0(G2)/G2 via an orientation reversing homeomorphism. 
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The Second Combination Theorem deals with HNN-extensions of 
Kleinian groups. 

Theorem   2 (The Second Klein-Maskit  Combination Theorem). 
Let J = (z i-» z + 1} be a subgroup of a group H. Suppose f is a 
parabolic transformation f(z) = z + c with c not completely real. Let 
A — {z | a < Qz < b} with \a — b\ < \5sc\ and suppose that each com- 
ponent ofC — A is precisely invariant under J in H. Set G = (H, /}.  Then 

1. G is discrete; 

2. G = #*/; 

3. G is geometrically finite if and only if H is; 

4. Let Bf be the totally geodesic half-space whose closure meets C exactly 
in Bi = {z | $sz > b}, and jBf the totally geodesic half-space whose 
closure meets C exactly in B2 = {z \ Qz < a}. Let Pi be the plane 
in H3 {(z,t) I $sz = b} and let P2 be the plane {(z^t) \ $sz — a}. 
Then H3/G is isometric to the manifold obtained by removing Bf/J 
and B2/J from H3 /H and identifying the resulting boundaries Pi/J 
and P2/J via f. 

5. (M3UQ(G))/G is orientation preserving homeomorphic to the manifold 
obtained from (H3 U £L(H))/H by identifying the punctured disk Bi/J 
with the punctured disk B2/J in Q(H)/H via the map induced by f. 

The Hyperbolic Dehn Surgery Theorem. 

Let M be a compact, irreducible, oriented 3-manifold whose boundary 
contains a single torus T. There may be other surfaces in the boundary, 
but only one torus. Choose a meridian m and a longitude I for the torus 
T and consider them as a basis for TT^T). For a pair of relatively prime 
integers (p, q) denote by M(p, q) the manifold obtained by performing (p, q) 
Dehn surgery on M. That is, M(p)q) is obtained by sewing a solid torus 
V to M along T via an orientation reversing homeomorphism which maps 
the meridian of V to a simple closed curve in the homotopy class of mplq 

on T. The following generalization of Thurston's Hyperbolic Dehn Surgery 
Theorem is due to T. Comar. See also Bonahon and Otal [4]. 
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Theorem 3 (The Hyperbolic Dehn Surgery Theorem [6]). Let M 
be a compactj oriented 3-manifold with one toroidal boundary component 
T. Let N = Il3/r be a geometrically finite hyperbolic 3-manifold and 
cj) : int (M) —> N an orientation preserving homeomorphism between the 
interior of M and N. Further assume that every parabolic element of T 
is conjugate to an element of (/>*(7ri(T)). Let {{PmQin)} be a sequence of 
distinct pairs of relatively prime integers. 

Then, for all sufficiently large n, there exists a representation f3n : F •—> 
PSL2(C) with discrete image such that: 

1. /3n(r) is convex co-compact and uniformizes M(pn,qn); 

2. the kernel of /3n is normally generated by mPnlqri; and 

3. {/3n} converges to the identity representation ofT. 

Moreover, if we let in denote the inclusion of M into M{pn,qn), 
then there exists an orientation-preserving homeomorphism (j)n : 
int (M{pn, qn)) —> ]HI3//3n(f) such that f3n o fa is conjugate to (fa)* o (in)*. 

Some Notation: Let A^ denote the horizontal strip {z G C | c < Sz < b}. 

Let Ha denote the half-plane {z e C \ Ssz > a} and let H* denote the 
lower half-plane {z E C | $sz < a}. 

For a G C let £a be the conformal transformation given by {a(^) = z + a. 

Lemma 1. Let K > 1. Let G be a Fuchsian group containing £i as a 
primitive element Then there is a constant c = c(K, G) with the property 
that if f is any K-quasiconformal deformation of G fixing 0,1 and oo then 
Hc and H^c are precisely J-invariant in f o G o f~1. 

Proof 
Suppose there does not exist a c such that Hc is precisely J-invariant in 
foGof~l for every normalised if-quasiconformal deformation / of G. Then 
there is a sequence of normalized if-quasiconformal maps {/n} inducing 
quasiconformal deformations of G and a sequence of group elements {gn} of 
G-J such that fnogno f-l{Hn) n Hn ^ 0. Equivalently gn o f'^Hn) n 
f^iHn) + 0. Since G is Fuchsian then Prop. VLA.6 in [12] gives us that 
the half-spaces H\ and i?*1 are precisely J-invariant in G. Hence /~1(i?n) 
must intersect -Al-p 
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For each n, let zn be a point in Hn such that f^^n) is in ^.-i- Since 
each fn commutes with £1 we may assume that the f^1{zn) all lie in the 
(compact) rectangle R = {z \ 0 < ^Rz < 1, -1 < Ssz < 1}. {/~ 1(zn)} has 
an accumulation point p € R, so we pass to a subsequence and reindex so 
that fn1^) —>p. 

The space of all iiT-quasiconformal maps normalized to fix 0,1 and oo 
is compact with respect to the topology of uniform convergence on com- 
pact subsets ([10], Theorems 2.1, 2.2). Hence there is a normalized K- 
quasiconformal map / such that, up to subsequence, fn —> f uniformly on 
R. Thus f(p) = lim^oo fnUnl(zn)) = Hm^oo^ = oo, supplying us with 
our contradiction. 

By repeating the above argument or by appealing to symmetry we have 
that there is also a c' such that H*_c, is precisely J-invariant in foGof~l for 
any normalized iiT-quasiconformal deformation / of G. The desired constant 
c(K, G) is the maximum of the two constants. □ 

Corollary 2.   With the above assumptions A(f o G o f~l) c A^ U {oo}. 

Lemma 3. Let G\,... ,GN be quasifuchsian groups containing J = (£i) and 
suppose 3c > 0 such that H^_c and Hc are precisely J-invariant in each Gi. 

Set F to be the group generated by {iajiGj^~.i}^=1, where 0 < ai < a2 < 
... < ajv are any real numbers with a^+i — ai > 2c V i — 1,..., N — 1. 

Then 

1 r = UiiGl^ *J ^asi^Cai *J • • ' *J taNiGNtZNi'> 

2 F is discrete and geometrically finite; 

3 HaNjrC U H*l_c is precisely J-invariant in T; 

4 Let Sj be a surface with boundary such that Gj uniformizes Sj x / 
and for each j let Aj be a component of dSj. Represent a solid torus 
V as D2 x 5'1 and form a manifold M by attaching each Sj x I to 
V by identifying Aj x / with [e^H^-i)/^9e^W+i)/^N] x s

1 via an 
orientation reversing homeomorphism. 

Then Y uniformizes M, and if dSj = Aj Vj then (M3 U il(T))/T is 
orientation preserving homeomorphic to M — 5, where S is the simple 
closed curve {(1,0)} x S1 C dM adjacent to Si and SN- 
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Note. Since both HaN+c and H*1_c are J-invariant, 2) implies that HaN+c 
and H*1_c are precisely J-invariant in T. 

Proof. 
We proceed by induction on iV. Suppose that TV* = 1, so that T = faiiCnL^"*. 
A(r) is a Jordan curve contained in A£j!t£u{oo} and the complement of this 
curve consists of two simply connected components each of which is stabi- 
lized by T. Hence for g G T - J, g(Hai+c) C Hai-C and gi^H^) C #*1+c. 
Since both Hai+C and H*1_c are precisely J-invariant in T this implies 
that for g E r - J, g(Hai+c) C Hai-C n i?a*1+c - <^ and ^(^.e) C 
H*ai+cnHai-c = Aa

al±
c

c and hence that ^(iIai+cUif *1_c)n(ffai+cUiJa*1_c) = 0 
proving that part 3) holds and hence, since 1), 2) and 4) are clearly true, 
the base step of our induction. 

Suppose now that G = (faiiGif"*,... ^-i^-iCfcLi) and H = 

ZakiGktiah- We prove that the lemma is true for T = (G,H). 

To prove parts 1) and 2) consider the line W — f(ofc_i+c)t W- ^ divides 

C into two disks Hak_1+C and il*fc_1+c. By our inductive hypotheses ilafc_1+c 

is precisely J-invariant in G and by assumption H*k_1+C is precisely J- 
invariant in H since H*k_c D H*k_l+C and H*k_c is precisely J-invariant in 
H. Parts 1) and 2) now follow with an application of Theorem 1. 

for g € G - J, g(Hak+c U H*ai_c) C g(Hak_1+c U H*ai_c) C A^0 by 

To prove part 3) first observe the following: 

ioTgeG-J,g(HQ 

our inductive assumption; 

iovheH-J, h(Hak+c U H*ai_c) C h(Hak+c U H*k_c) c A*^ 

for 5 € G- J, 5«ic) = 9(Hak-cnH*ak+c) C 5(Hafc_1+c) C <Il
c
+c; 

and 

for h e i? - J, M^1^) c ^(i?*fc-c) c A^. 

Let 7G be a complete set of right coset representatives for J in G con- 
taining the identity and similarly let TH be a complete set of right coset 
representatives for J in H containing the identity. Then any element g of T 
can be expressed as g = gihi--gnhnZ* where gi eTo, hi ETH and t G Z. 
Using the above observations it-is clear that g(Hak+c U H^1_c) C A^J^. 

Hence it follows that for fl G T-J, ^(i?afc+cUF*1_c)n(iJafc+cUi?*1_c) = 0 
and part 2) of the lemma follows. 
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It only remains to prove part 4). 

Let Ci be the totally geodesic plane meeting C in {z \ $sz = ai + c}. Let 
B^ be the half-space bounded by Ci and Hai_1+C and let B* be the half- 
space bounded by Ci and H*._1+c. Then by Theorem 1 applied inductively, 

yr - (e3 - srve^GiC1* u (tf - (B+ U JB2-))/<ea2iG2c2
1

i u 
U (M3 - (5+,! U ^))/^_1iGjV_iCj;_li U (H3 - ^)/Ui^Ci- 

For each i let Ai be an annulus in Si with A^ as one of its boundary 
components. Then by Theorem 1, part 5) the right hand side of the above 
expression is the interior of 

M' - (Si x /) U (52 x /) U • • • U (SN x /) 

where in the union Ai x {1} is identified with Ai+i x {0}, i = 1,..., TV" — 1 
by orientation reversing homeomorphisms. 

We claim that Mf is orientation preserving homeomorphic to M. Con- 
sider the solid torus [JAi x /, where again the appropriate identifica- 
tions are made as above. The removal of this solid torus from the above 
manifold is orientation preserving homeomorphic to the disjoint union 
UiLi(si x / - Aj x /). Hence M' is obtained by attaching [Jill ^ x I 

to a solid torus along annuli Ai x /. In other words, M' is orientation 
preserving homeomorphic to M. 

A similar reasoning shows that (H3 U f2(r))/T is of the desired form. □ 

3. The Proof of Theorem A. 

Our goal is to prove the following result: 

Theorem A. There exists a geometrically finite representation p G 
AH(ni(Mk)) with &(p) = [(Mk)id)] such that for each [(M^hr)] e A{M) 
there is a sequence of convex co-compact representations p!^ converging to p 
withG(pl) = [(M^hT)}. 

Remark 1. It is clear that Theorem A follows from Theorem B. For ex- 
pository reasons we prove Theorem A first and then generalize the result 
in Theorem B. Theorem B states that if you choose a quasiconformal con- 
stant K > 1 then there is a geometrically finite representation such that its 
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if-quasiconformal deformations are contained in the closure of every com- 
ponent of CC(7ri(Mfc)). Theorem A furnishes us with this representation. 
So while there is no mention of a K in the statement of Theorem A the 
proof makes use of the K of the statement of Theorem B. 

Proof. 
The idea is that we find a "nice" uniformization for Mk, call it T^, and 
"shuffling parabolics" gT so that the group YT

k generated by Yk and gT is 

a geometrically finite uniformization of MJ. For each r we have an inclu- 

sion jr : Yk —> f|. Using The Hyperbolic Dehn Surgery Theorem we 

obtain convex co-compact representations /3£ : TT
k —> PSL2(C) with im- 

age uniformizing M£ in the correct homeomorphism class and converging 
to the identity representation. Suppose (j) : int(Mfc) —> tf/Tfc is an ori- 
entation preserving homeomorphism. We will consider the representations 
pT

n : 7ri(il4) —> PSL2(C) given by 

pi converges to px = jr 0 (/>* = </>* with image T/,, a geometrically finite 
uniformization of M/.. 

Step 1:  The uniformization of M^ and M£. 

For each j G 1, 2,..., k let GQ(J) be a Fuchsian model for B(j) containing 
^i as a primitive element. Fix K > 1 and let a = c(K, GQ(J)) be the constant 
given by Lemma 1, i = 1,..., k. Set C = max{ci,..., ck}. Choose, for each 
r a prime pr so that pT = pT# if and only if r = r7 and so that pT > ACk, 
Vr. 

By appealing to the Chinese Remainder Theorem or simply by construct- 
ing them, we find integers dr, one for each r, with the following properties: 

dT = 1   mod pr and 
dT = 0  mod pTi for r 7^ r'. 

Define integers aj by 

r 

Set G(j) = ^iGoOOC^ and define rfc to be the group generated by 
G(l),..., G(k). By Lemma 3 rk is discrete, geometrically finite and uni- 
formizes Mk. 
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Set gT = €pTi and F^ = (r^,^). We wish to show that F^ is a geometri- 

cally finite uniformization of M£. 

Observe now that dj = ACr"1^) mod pT and so that G(j) is con- 

jugate by powers of gT in F^ to C4C'r-1(j)iGo(j)Ccr-1(j)i T]ie latter is 

equal to C4CZiGfo(/7"(0)^4CH for some ^ Hence pT has "shuffled" the limit 
sets of the G(j)'s in the manner that r shuffles 1,2,...,k (see figure 
2). Denote the group generated by^4CiGo(r(l))^, ^8CzG?o(r(2))^~(ii,..., 

UckiGo(T(k))£-£ki by r£. Then F^ is generated by F^ and gT. Applying 
Lemma 3 we find that F^ is geometrically finite and uniformizes M£. 

5 

2 

1 

4 

^ 3 

5 
4 

^—   •" o 

 3 / 

7 

1 
3 

*» 
2 

1 

                                                         4 

^ 
5 

?. 

Figure 1. 
The shuffling depicted here is for r = (13) (24) with k — 5. 

Lemma 3 gives us that both i?4CA;+3C and J^lc are precisely J-invariant 
in r£ and A(rj) C i4|gfc+c £ ^^gfc+3C. Since VT > 4Cfc we can apply 
Theorem 2 to conclude that F^ is discrete, torsion free and geometrically 
finite. 

We shall see that F^ uniformizes iW£. (H3 U £2(r£))/rj[ is orientation 
preserving homeomorphic to M£ — 6 where 5 C dV is a longitudinal simple 
closed curve adjacent to both J5(r(l)) and B(r(k)). Take two distinct annuli 
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in (dMl — 5) D dV each having 5 as a boundary component. By Theorem 

2, (H3 U £J(rp)/r£ is orientation preserving homeomorphic to the manifold 
obtained from M£ - 5 by identifying these two annuli. This resulting man- 
ifold is clearly orientation preserving homeomorphic to M£ — a, where a is 
a core curve for V. Hence 

H3/^ = int (H3 U fi(rj)/rj = M^ - ^(a) ^ Ml 

Figure 2. 

Step 2:  Constructing the algebraic limits. 

Let a be the core curve of V and consider M£ — N{a), which is home- 
omorphic to M£. Choose a meridian m and a longitude I on the resulting 
torus boundary component so that I is homotopic to a in V and m bounds a 
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disk in J\f(a). By Lemma 10.3 of [2] the manifold M^(l, n) obtained by per- 

forming (l,n) Dehn surgery on M£ is homeomorphic to M^, Vn. Moreover, 

if qn : M^(l,n) —-> M£ is the homeomorphism furnished by Lemma 10.3 of 

[2] then qn can be chosen to be the identity on each B(j) c M^(l,n). 

Choose an orientation preserving homeomorphism (f)r : int (M£) —> 

IHI3/r^. The Hyperbolic Dehn Surgery Theorem supplies us with represen- 
tations /3£ : T^ —> PSL2(C) such that for large enough n 

i. finfik) is convex co-compact; 

ii. there exist orientation preserving homeomorphisms </>£ : int (M^) —► 
H3//3^(f;) such that if in : M£ —* M^(l,n) is inclusion then 0* o 
(0r)* is conjugate to (^)* o (in)+. 

Choose an orientation preserving homeomorphism (j) : int (Mfc) —> 
H3 /Tk- Let jT : r*. —)► F^ be inclusion and set 

Pi =/3n0ir O
0*. 

The kernel of /?£ is normally generated by ^r^f- Hence it is the group 
generated by the set of all elements of the form hg^h'1 with h E fj. 1^ 
has trivial intersection with this group, and hence p£ is faithful. 

For ease of notation denote UcT-^j)iGU)^CT-^j)i hy ^U) > 3 = 

!,...,*. ir^iGOOC/i) = fFGrU)^' where n,- = ^zlgZiW. gince 

Pn(9^GT(j)grni) = fa(Gr(j)) and the image of these GT^J's generates 
^n(rp we have that the image of p£ is that of /3£ and hence is discrete, 
convex co-compact, and uniformizes M£. 

Recall the map 6 : AH(7r1(Mk)) —> A(Mk) defined previously. 

We wish to show that G(p£) = [(M^, /iT)] where /iT is a homotopy equiv- 
alence between M*. and M^ which is the identity off of V. This will im- 
ply that p£ belongs to the component of CC(7ri(Mfc)) corresponding to 
[(M£,/ir)]. Let gn : M^(l,n) —> M£ be an orientation preserving home- 

omorphism and pr : M3/rk —> E[3/r£ an orientation preserving covering 
map with (pr)* = jT. We claim that rT = qn o in o (0r)_1 opT o 0 is a homo- 
topy equivalence between int (M*.) and int(M^).   Since p£ is conjugate to 
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(0n 0 (^n)-1)* 0 (^T)* with p^ faithful and both ^ and qn homeomorphisms, 
(rr)* is injective. By similar reasoning (rT)* is surjective. 

Denote the homotopy inverse of hT by hT. The composition h = rT o 
/iT is a homotopy equivalence from M^ to itself. If K{M) denotes the 
characteristic submanifold of M (see [8] or [9] for details) then by Theorem 
24.2 of [9] h is homotopic to a map (again called h) such that h : K(M%) —> 
K(Ml) is homotopy equivalence and h : M^ - K(M^) —► M^ - K(M^) is 
a homeomorphism. The characteristic submanifold of M£ is M%—\JAf(A(i)) 
and so consists of the B(j) together with a solid torus VQ C V such that 
dVo H dV C dMj; n <9V (see Section 4 of [7]). Applying Proposition 28.4 of 
[9] we can homotope h to a map (again, called h) that is a homeomorphism 
when restricted to each B(j) and to VQ by a homotopy that preserves the 
3o(J3(j)) and the lids of JB(J), for j = 1, ...,fc. There is the possibility 
that this new map reverses the orientation on do(B(j)), for each j. If this 
were the case then h*(a) would not be conjugate to a in 7ri(M£), where a 
generates 7ri(V). However, (rT)* o (/iT)*(a) is conjugate to a and hence it 
is not the case that h reverses the orientation on do(B(j)). Hence h may 
be assumed to be the identity on do(B(j)) Vj. Since h is homotopic to the 
identity on VQ, h is an orientation preserving homeomorphism from M% to 
itself. In particular [(M^rT)} = [(M^hT)}. 

Observe that since i : M£ —> M^ is an embedding and inoi is homotopic 
to an orientation preserving homeomorphism in o i(M^) is a compact core 

for M£(l,n). Homotoping inoi slightly we may assume that the image of 

M^ lies in the interior of M£(l,n). Then 0^ o in o i(M£) is a compact core 
forrf/p^TTitM*)). Hence 

©(PD = [(^ o zn o i(Jl^), #; o g"1 o rT)] 

= [(inoi(MZ))q-1orT)] 

= [(qn°in°i(MZ),rT)] 

= [M,rT)] 

and this second to last equality holds because qn o zn o z is homotopic to an 
orientation preserving homeomorphism. 

Hence p!^ belongs to the component of CC(7ri(Mfc)) indexed by 
[(M%,hT)] as claimed. 

Finally, p^ converges to px = (/>* which can be seen to belong to the 
closure of the component of CC(iri(Mk)) indexed by [(Mk,id)] by either 
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setting r = id and using the proof above, or by a direct application of the 
Hyperbolic Dehn Surgery Theorem (see Remark(l) following the proof of 
Theorem B in [2]), or by appealing to Corollary 6 of Ohshika ([15]). 

We have completed the proof. □ 

Theorem B (Intersection Contains a Connected, Uncountable Set). 
For every K>1 there is a geometrically finite representation px of iri(Mk) 
such that the set OK C QC(PK) consisting of all of the K-quasiconformal 
deformations of px is contained in the closure of every component of 
CC(7ri(il4)) and Q(pK) = [(Mk,id)]. 

Proof. 
Fix pf in OK and suppose that / is the K-quasiconformal map inducing 
the isomorphism between pf and p = PK, where PK is the representation 
constructed in Theorem A. By conjugating if necessary we assume that / 
fixes 0,1 and oo, so that J is a primitive subgroup of pf(7ri(Mk)). 

Set G(jy = pf(p~1(G(j))). Then G(jy is quasi-Fuchsian for each j and, 
by Corollary 2, A(G(jy) C AJ._Q (these CLJ are the CLJ that appeared in 

the construction of F^). Let F^ = pf(7ri(Mk)) and for each r G Sk/^k set 
Tf

T = (rf
k,gT). We will show that F^. is discrete, torsion-free, geometrically 

finite and that the quotient of H3 by r'T is homeomorphic (via an orientation 
preserving homeomorphism) to the interior of M%. 

As   in   Theorem   A,   define   nj    =    ai~4^"1(j)   and   set   Gr(j)/    = 

grnjG(jygrj. Set F; to be the group generated by the GT(j)/. Then f; 
is generated by F^. and gT. By Lemma 3 Tf

T uniformizes M%. Just as in 
Theorem A we can apply Lemma 1, Lemma 3 and Theorem 2 to show that 
F^. is geometrically finite and uniformizes M£. 

We now proceed exactly as in Theorem A. To begin, appealing to The- 
orem 3 (The Hyperbolic Dehn Surgery Theorem) gives a sequence of rep- 
resentations a^ of F^ in PSL2(C) converging to the identity, so that the 
image of each a£ is convex co-compact uniformization of M£. Then, with 
jfT : FJk —> Tf

T being inclusion, we set 

Then, as in Theorem A, for n sufficiently large each pl^ is faithful and 
has discrete image uniformizing M£ convex co-compactly. Moreover, p£ 
converges to pf. □ 
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Observing that we could have easily done the above proof substituting 
M% whenever we saw Mk = Mjf, for some a in Sfc, we have the following 
corollary to the proof. 

Corollary C (There are many sets in the intersection). For every 
K > 1 and [(M^hv)] G A(Mk) there is a geometrically finite representation 
Px and a set O^ C QC{p(J

K) consisting of the K-quasiconformal deforma- 
tions of px such that O^ is contained in the closure of every component of 
CCMMfc)) and <d{P°K) = [(M^ha)]. 

In a subsequent paper we will prove the analogous results to Theorems 
A and B for a general irreducible, orientable, atoroidal, compact 3-manifold 
with boundary, and also prove a theorem that, as a special case, gives us 
that the components of the intersection of the closures of every component 
of CC(7ri(Mfc)) are indexed by their marked homeomorphism type. 
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