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Let C be a smooth curve of genus g. Let WJ(C) be the Brill- 
Noether locus of line bundles of degree d and with r+1 independent 
sections. The expected dimension of WJ(C) is p(r,d) = g — (r + 
l)(g — d + r). If p(r, d) > 0 then Fulton and Lazarsfeld have proved 
that WJ(C) is connected. We prove that this is still true if C is a 
singular irreducible curve lying on a regular surface S with — Ks 
generated by global sections. 
We use this result to give a short new proof of the irreducibility 
of the moduli space of rank 2 semistable torsion-free sheaves (with 
a generic polarization and low value of C2) on a K3 surface (this 
result was recently proved by a different method by O'Grady). 

Introduction. 

Let C be a smooth curve of genus g (we will always assume that the base field 
is C), J(C) its Jacobian, and WJ(C) the Brill-Noether locus corresponding 
to line bundles L of degree d and h0(L) > r +1 (see [ACGH]). The expected 
dimension of this subvariety is p(r, d) = g — (r + l)(g — d + r). Pulton and 
Lazarsfeld [F-L] proved that WJ(C) is connected when p > 0. We are going 
to generalize this result for certain singular curves, but before stating our 
result (Theorem I), we need to recall some concepts. 

Let C be an integral curve (not necessarily smooth). We still have a 
generalized Jacobian J(C), defined as the variety parametrizing line bundles, 
but it will not be complete in general. Define the degree of a rank one 
torsion-free sheaf on C to be 

deg(A) = x(A)+pa-l, 

where Pa is the arithmetic genus of C. One can define a scheme J (C) 
parametrizing rank one torsion-free sheaves on C of degree d (see [AIK], 

[D], [R]). If C lies on a surface, then J (C) is integral, and furthermore 

the generalized Jacobian J(C) is an open set in J (C), and then J (C) is a 
natural compactification of J(C). 
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We can define the generalized Brill-Noether locus Wd(C) as the set of 

points in J (C) corresponding to sheaves A with h0(A) > r + 1 (note that 
it is complete because of the upper semicontinuity of h0(-)). There is also 
a determinantal description that gives a scheme structure. This description 
is a straightforward generalization of the description for smooth curves (see 
[ACGH]), but we are only interested in the connectivity of W^(C), so we 
can give it the reduced scheme structure. 

We will consider curves that lie on a surface 5 with the following prop- 
erty: 

(*) h (Os) = 0,   and —Ks   is generated by global sections. 

We will need this condition to prove Proposition 2.5. For instance, S 
can be a K3 surface. Now we can state the theorem that we are going to 
prove. 

Theorem I. Let C be a reduced irreducible curve of arithmetic genus Pa that 

lies in a surface S satisfying (*). Let J (C), d > 0, be the compactification 

of the generalized Jacobian. Then for any r > 0 such that p(r) d) = pa — 

(r + l)(pa — d + r) > 0; the generalized Brill-Noether subvariety Wd(C) is 
nonempty and connected. 

Remark 1.   If r < d — paj by Riemann-Roch inequality we have Wd(C) = 

J (C), and this is connected. Then, in order to prove theorem I we can 
assume r > d — pa. Note that if A corresponds to a point in Wd(C) with 
r > d — pa, then by Riemann-Roch theorem ^(A) > 0. 

Let S be a K3 complex surface and H an ample line bundle. Let 

9RH(CI,C2) be the moduli space of rank two torsion-free sheaves that are 
Gieseker semistable with respect to H, with Chern classes equal to ci and 
C2. As an application of theorem I we give a new short proof of the following. 

Theorem II. With the previous notation, if L is a primitive big and nef 
line bundle, C2 < \L2 + 3, and H is an (L, C2)-generic polarization, then 
9Jt#(Z/, C2) is irreducible. 

For the definition of (Z,, C2)-generic and for the proof of Theorem II see 
Section 5. Mukai [M] has proved irreducibility when the dimension is 0 or 2. 
In general for any surface, it is known that for a fixed polarization and ci, 
the moduli space is irreducible for high enough second Chern class C2 ([G-L], 
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[01], and [02]). The case of a K3 surface has also been studied by O'Grady 
[03], that has proved irreducibility (for any C2 and for any rank) as well as 
results about the Hodge structure, using a different method. Gottsche and 
Huybrechts [G-H] have studied the Hodge numbers of this moduli space. 
Yoshioka also has a paper [Yo] on bundles on K3 surfaces in which he proves 
irreducibility of the moduli space among other things. 

To prove Theorem I for a curve C satisfying (*) we will construct a 
deformation of C into a smooth curve and we will use the fact that Pulton- 
Lazarsfeld's theorem holds for smooth curves to show that it also holds for 
C. Given a family of curves we will need to construct a corresponding family 
of generalized Jacobians and Brill-Noether loci. All this can be done using a 

relative version of J (C), but we will proceed in a different way. We will use 
the fact that all these curves are going to lie on a fixed surface S. Then we 
will think of the coherent sheaves on C as torsion sheaves on S (all sheaves 
in this paper will be coherent). To define precisely which sheaves we will 
consider we need some notation. For any sheaf F on 5, let d(F) be the 
dimension of its support. We say that F has pure dimension n if for any 
subsheaf E of F we have d(E) = d(F) — n. Note that if the support is 
irreducible, then having pure dimension n is equivalent to being torsion-free 
when considered as a sheaf on its support. The following theorem follows 
from [S, Theorem 1.21]. 

Theorem (Simpson). Let C be an integral curve on a surface S. Let J\c\ 
be the functor which associates to any scheme T the set of equivalence classes 
of sheaves A on S x T with 

(a) A is flat over T. 

(b) The induced sheaf At on each fiber S x {t} has pure dimension 1, and 
its support is an integral curve in the linear system \C\. 

(c) // we consider At as a sheaf on its support, it is torsion-free and has 
rank one and degree d. 

Sheaves A and B are equivalent if there exists a line bundle L on T such 
that A = B ® Pj^L, where PT : S x T —)> T is the projection on the second 
factor. 

Then there is a coarse moduli space that we also denote by J\c\-  ^e-; 

the points of J\c\ correspond to isomorphism classes of sheaves, and for any 
family A of such sheaves parametrized by T, there is a morphism 

:T^Jd 
\c\ 
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such that (j)(t) corresponds to the isomorphism class of At. 

Note that J^ parametrizes pairs (C\A) with C an integral curve lin- 
early equivalent to C and A a torsion-free rank one sheaf on C. 

We denote by TT : J\C\ —> U C \C\ the obvious projection giving the 
support of each sheaf, where U is the open subset of \C\ corresponding to 
integral curves. 

A family of curves on a surface S parametrized by a curve T is a subva- 
riety C C S x T, flat over T, such that the fiber C\t = Ct over each t G T is 
a curve on S. Analogously, a family of sheaves on a surface S parametrized 
by a curve T is a sheaf A on S x T, flat over T. For each t E T we will 
denote the corresponding member of the family by At — A\t. 

Altman, larrobino and Kleiman [AIK] proved the following theorem 

Theorem (Altman—larrobino—Kleiman). With the same notation as 

before, J\c\ ^ /^ c>/yer ^ an^ ^s geometric fibers are integral The subset 

of J\c\ corresponding to line bundles (i.e., the relative generalized Jacobian) 

is open and dense in J\c\' 

We also consider the family of generalized Brill-Nother loci W^^j C 

J\cu an(i the projection q : W^ I^I —± U. 

Outline of the proof of Theorem I. 

Note that Wd(C) is the fiber of q over the point UQ G \C\ corresponding 
to the curve C. Let U be the open subset of \C\ corresponding to integral 
curves, and V the subset of smooth curves. Define (W^y to be the Brill- 
Noether locus of sheaves with smooth support, i.e., (>V^)y = q~l{V). By 
[F-L], the restriction qv : (Wrf)y -> V has connected fibers. We want to use 
this fact to show that Wd{C) is connected. Let A be a rank one torsion- 
free sheaf on C corresponding to a point in Wd(C), and assume that it is 
generated by global sections. We think of A as a torsion sheaf on S. Then 
we have a short exact sequence on S 

0-^EH H0(A) ®OS->A^0, 

where the map on the right is evaluation. This sequence has already ap- 
peared in the literature (see [L], [Ye]). Our idea is to deform /o to a family 
ft. The cokernel of ft will define a family of sheaves At with h0(At) > h()(A) 

(because h0(E) = 0), and then for each t the point in iJici corresponding 
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to At lies in W^I^I. Assume that there are 'enough' homomorphisms from 
E to iJ0 ® Os and the family ft can be chosen general enough, so that for 
a general £, the support of At is smooth (the details of this construction are 
in Section 2). The family At shows that the point in Wd(C) corresponding 

to A is in the closure of (W^)y in v7|c| ^ can be shown that this closure 
has connected fibers. Let X be the fiber over UQ of this closure. Then all 
sheaves for which this construction works are in the connected component 
X of Wd(C). If this could be done for all sheaves in Wd(C) this would finish 
the proof, but there are sheaves for which this construction doesn't work. 
For these sheaves we show in section 3 that they can be deformed (keeping 
the support C unchanged) to a sheaf for which a refinement of this con- 
struction works. This shows that all points in Wd(C) are in the connected 
component X. 

1. The main lemma. 

The precise statement that we will use to prove Theorem I is the following 
lemma. 

Lemma 1.1. Let C be an integral complete curve in a surface S. Assume 
that for each rank one torsion-free sheaf A on C with h0(A) = r + 1 > 0 and 
deg(A) = d > 0 such that p(r, d) > 0 we have the following data: 

(a) A family of curves C in S parametrized by an irreducible curve T {not 
necessarily complete). 

(b) A connected curve T' [not necessarily irreducible nor complete) with a 
map V> : T -► T. 

(c) A rank one torsion-free sheaf A on C = C XTT*', flat over T', inducing 
rank one torsion-free sheaves on the fibers of C -» T". 

Assume that the following is satisfied: 

(i) C\t   = C for some t0 G T, C\t is linearly equivalent to C for all t G T, 
and C\t is smooth for t ^ tQ. 

(ii)  One irreducible component of T' is a finite cover of T, and the rest of 
the components ofT' are mapped to t0 G T. 

(hi) A^1 = A for some t^ G Tf mapping to tQ G T. 
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(iv) h0(A\t>) >r + lfor all tf G T'. 

Then the generalized Brill-Noether subvariety Wd(C) of the compactified 

generalized Jacobian J (C) is connected. 

Proof. We will use the notation introduced in the previous section. The map 
Q '• ^d,|C| -* U is & projective morphism. Recall that Wd(C) is the fiber of 
q over ^o, where UQ is the point corresponding to C. By [F-L] the morphism 
q has connected fibers over V, thus a general fiber of q is connected, and we 
want to prove that the fiber over UQ eU is also connected. 

uoc *~U 

Let W^ \C\ -^ Uf A U be the Stein factorization of q (see [H, III Corollary 
11.5]), i.e., qf has connected fibers and g is a finite morphism. A general 
fiber of q is connected, and then Uf has one irreducible component Z that 
maps to U birationally. The subset U is open in \C\ and hence normal, 
the restriction g\z : Z —> U is finite and birational, Z and U are integral, 
thus by Zariski's main theorem (see [H, III Corollary 11.4]) each fiber of g\z 
consists of just one point. Let ZQ be the point of Z in the fiber g'1^). 

Claim. Let yo be a point in the fiber g"1(^o) = ^(C)- Then yo is mapped 
by q' to ZQ. 

This claim implies that that W^(C) is connected. Now we will prove the 

claim. 

Let A be the sheaf on S corresponding to the point yo- Let T", T, 
tp E T", tQ G T, ^ : T" -> T be the curves points and morphism given by 

the hypothesis of the lemma. Let </> : T' -» J^ be the morphism given by 

the universal property of the moduli space J'\c\'   Item (iv) imply that the 
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image of (/> is in W^ I^I. 

^^d,\c\ 32/o 

oC 

r 
d,\C\ 

The restriction of q' o <$> to T' \ V;_1(^o) maPs to Z, because for *' G 
r/\'0-1(to) the sheaf .4.^/ has smooth support by item (i). Items (c) and (i) 

imply that g o qf o </>(V;_1(^o)) = u0' Thus ^ o (f)^"1 (t0)) is a finite number 
of points (because it is in the fiber of g over UQ). 

The facts that q' o (j){T' \ ^"H^o)) is in Z and that 4 0 M'1^)) is a 

finite number of points imply that q' o (^(ip*1 (tQ)) is also in Z (because by 
item (b) the curve Tf is connected and thus also its image under q' ocj)), and 
in fact q' o </)('0~1(to)) = ^o because q' o (f)^-1 (t0)) is in the fiber of # over 

By item (ii), t^ G V;_1(^o)- Then ^ o ^(tp) = ^o, and by item (hi) we 
have yo = </>(to), then ^(yo) = q'((j)(tf0)) = ZQ and the claim is proved.        □ 
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In Section 2 we will construct this family under some assumptions on A 
(Proposition 2.5), and in Section 3 we will show how to use that to construct 
a family for any A. Note that because of Remark 1 we can assume ^(A) > 0. 

2. A particular case. 

Given a rank one torsion-free sheaf A on an integral curve lying on a surface 
iS, we define another sheaf A* that is going to be some sort of dual. Let j 
be the inclusion of the curve C in the surface S. We define A* as follows: 

A* = Ext1 (j* A, us). 

The operation A —>► A* is a contravariant functor. Note that the support of 
A* is C. It will be clear from the context when we are referring to A* as 
a torsion sheaf on S or as a sheaf on C. In the case in which A is a line 
bundle, then A* — Ay (g) OJC- Now we prove some properties of this "dual". 

Lemma 2.1. Let A be a rank one torsion-free sheaf on an integral curve 
lying on a surface.  Then ^4** — A. 

Proof First observe that if L is a line bundle on C, then (A(g)L)* = A*®Ly. 
To see this, take an injective resolution of ^5 

0 ->> cos -» 2b -> Xi ->> • • • 

Now we use this resolution to calculate the Ext sheaf. 

Ext1 (A ® L, UJS) = h1{Hom(A ® L,2#)) = fc1^ ® Hom{A)X.)) = 

= Lv ® /^(ffom^Z.)) = Lv ® Sxt1^,^). 

The third equality follows from the fact that Hom(A,l.) is supported on 
the curve and Lw is locally free 

It follows that (L ® .A)** = L ® A**, and then proving the lemma for A 
is equivalent to proving it for L ® A. Multiplying with an appropriate very 
ample line bundle, we can assume that A is generated by global sections. 
Then we have an exact sequence 

(2.1) 0^E^V®Os^A^0, 

where V = H0(A). The following lemma proves that E is locally free. 
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Lemma 2.2. Let M be a torsion-free sheaf on an integral curve C that lies 
on a smooth surface S. Let j : C —> S be the inclusion. Let F be a locally 
free sheaf on the surface. Let f : F —> j*M be a surjection. Then the 
elementary transformation F' of Fy defined as the kernel of f 

(2.2) 0 -> F' -+ F 4 j*M ^ 0, 

is a locally free sheaf. 

Proof. M is torsion-free sheaf on C, and then j*M has depth at least one, 
and because S is smooth of dimension 2, this implies that the projective 
dimension of j*M is at most one (Extl(j*M,Os) = 0 for i > 2). Now 
Extl(F, Os) = 0 for i > 1 because F is locally free, and then from the exact 
sequence (2.2), we get 

0 -► ExfiF', Os) -+ Exti+l{j^M, Os) -> 0,    i > 1, 

and then Extl{F', Os) = 0 for i > 1, and this implies that F' is locally free. 
D 

In particular, Evv = E. Applying the functor Hom^^cos) twice to the 
sequence (2.1), we get 

0 -> E -> V ® O5 -^ -4** -> 0. 

Comparing with (2.1) we get the result (because the map on the left is the 
same for both sequences). 

□ 

Lemma 2.3. Ext1 (A, us) = H0(A*), and this is dual to ^(A). 

Proof. The local to global spectral sequence for Ext gives the following exact 
sequence 

0 -> H^Hom^us)) -» Ext1^,^) -> H0(A*) -> H2(Hom(A,ujs)) 

But Hom(A,(jos) =■ 0 because A is supported in C and then the first and 
last terms in the sequence are zero and we have the desired isomorphism. 

□ 

Now we will prove a lemma that we will need.   The proof can also be 
found in [O], but for convenience we reproduce it here. 
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Lemma 2.4. Let E and F be two vector bundles of rank e and f over a 
smooth variety X. Assume that Ew <g) F is generated by global sections. If 

(j) : E —> F is a sheaf morphism, we define -Dfc(</>) to be the subset of X 
where rk^^) < k {there is an obvious determinantal description of Dk((j)) 

that gives a scheme structure). Let dk be the expected dimension of Dk{(j)) 

dk = dim(X)-(e-k)(f-k). 

Then there is a Zariski dense set U of Hom(i2, F) such that if </> G U, then 
we have that D^cj)) \Dfc-i(</)) is smooth of the expected dimension (if dk < 0 
then it will be empty). 

Proof. Let M^ be the set of matrices of dimension ex/ and of rank at 
most k (there is an obvious determinantal description that gives a scheme 
structure to this subvariety). It is well known that the codimension of M& 
in the space of all matrices is (e — &)(/ — &), and that the singular locus of 
Mk is Mfc_i. 

Now, because EV®F is generated by global sections, we have a surjective 
morphism 

H0(EW ® F) ® Ox -> Ev ® F 

that gives a morphism of maximal rank between the varieties defined as the 
total space of the previous vector bundles 

p : X x H0(EV ®F)^ W(EV ® F). 

Define Zk C V(£;v ® F) as the set such that rk^) < k. The fiber of Efe 

over any point in X is obviously Mfc.  Define Zk to be p~1(Sfc).  The fact 
that p has maximal rank implies that Zk has codimension (e — k)(f — k) in 
X x H0(EV ® F) and that the singular locus of Zk is Zk-i- 

Now observe that the restriction of the projection 

Q\zk\zk^ ' Zk \ Zk-i -► H0(EV ® F) 

has fiber qlz^Zk^"1^) — Dk(<l>)\Dk-i(<l>)- Finally, by generic smoothness, 
for a general (j) E H0(EV ® F) this is smooth of the expected dimension (or 
empty). □ 

Now we will construct the deformation of A that we described in the 
section 1 in the particular case in which both A and A* are generated by 
global sections. 
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Proposition 2.5. Let A be a rank one torsion-free sheaf on an integral 
curve C lying on a surface S with hl(Os) = 0 and —Ks generated by global 
sections. Denote j : C ^ S. If A and A* are both generated by global 
sections, then there exists a (not necessarily complete) smooth irreducible 
curve T and a sheaf A on S x T flat over T, such that 

(a) the sheaf induced on the fiber of S x T —> T over some t0 G T is j*A 

(b) the sheaf At induced on the fiber over any t G T with t / t0 is supported 
on a smooth curve Ct and it is a rank one torsion-free sheaf when 
considered as a sheaf on Ct 

(c) h0(At) > h0(A) for every t e T. 

Note that these are the hypothesis of Lemma 1.1 for the particular case 
in which both A and A* are generated by global sections. We will lift this 
condition in the next section. 

Proof. The fact that A is generated by global sections implies that there is 
an exact sequence 

with E locally free (by Proposition 2.2). Taking global sections in this 
sequence we see that H0(E) = 0, because 

0 -> H0(E) -> V 4 H0(A). 

Consider a curve T mapping to Hom^E1, V ® Os) with t0 E T mapping to 
/o (so that item (a) is satisfied). Denote by ft the morphism given for t G T 
by this map. After shrinking T we can assume that ft is still injective. Let 
TTI be the projection of S x T onto the first factor and let £ = ^E. Using 
the universal sheaf and morphism on Hom(i£, V ® Os) we can construct (by 
pulling back to S x T) an exact sequence on S x T 

0 -> S -4 V ® OSXT -> A -* 0 

that restricts for each t to an exact sequence 

(2.3) Q->E%V®Os->At->0, 

where At is a sheaf supported in the degeneracy locus of ft. It is clear that 
deg(i4) = deg(j4t). 
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Now we are going to prove that if the curve T and the mapping to 
Hom(£', V <g) Os) are chosen generically, the quotient of the map gives the 
desired deformation. 

The flatness of A over T follows from the fact that it has a short reso- 
lution and from the local criterion of flatness (we can apply [H, III Lemma 
10.3.A]). 

The condition on h0(At) follows because H0(E) = 0 and we have a 
sequence 

0 -+ H0(E) = 0 -► V -+ H0(At), 

and then h0(A) < h0(At). This proves item (c). 
Using the long exact sequence obtained by applying Hom(-, Os) to (2.3), 

and the fact that E is locally free, we obtain that Ext1 (At, Os) vanishes for 
i > 2, and so the projective dimension of At is 1, and this implies that At, 
when considered as a sheaf on its support Q, is torsion-free. 

We have to prove that we can choose the curve T and the map to 
Hom(i?, V ® Os) such that Ct is smooth for t ^ t0 (here we will use that 
A* is generated by global sections). 

First note that Ext1(A,Os) is generated by global sections, because 
Extl(A,Os) — A* (g) CJ^"

1
, and both A* and a;^1 are generated by global 

sections. Now we see that Ew is generated by global sections, because we 
have 

0 -> Vv ® Os -» Ev -> Ext1 (A, Os) -> 0, 

Ex&iAiOs) is generated by global sections and H1^ ® Os) = 0. Then 
Ev ® (V ® Os) is generated by global sections. 

Now apply Lemma 2.4 with F = V ® C?5. Then n = ra = r + l, fc = r 
and the expected dimension is 1. And the lemma gives that for </> in a Zariski 
open subset of Hom(E, V ® O5), the degeneracy locus Dr((j)) of (j) is smooth 
away from the locus Dr_i(0) where 0 has rank r — 1, but again by Lemma 
2.4 the locus Dr-i((j)) is empty. This proves item (b). □ 

3. General case. 

Now we don't assume that A satisfies the properties of the particular case 
(i.e., A and A* now might not be generated by global sections). We will find 
a new sheaf that satisfies those conditions. We know how to deform this 
new sheaf, and we will show how we can use this deformation to construct 
a deformation of the original A. 

We start with a rank one torsion-free sheaf A with h0(A), ^(A) > 0 on 
an integral curve C lying on a surface. First we define Af as the base point 
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free part of A, i.e., A' is the image of the evaluation map 

H0(A) ®Oc-*A. 

We have assumed that h0(A) > 0, and then A' is a (nonzero) rank one 
torsion-free sheaf. Obviously, H0(A) = H0(Af). We have a short exact 
sequence 

O-tA' ->A->Q-+0, 

where Q has support of dimension 0. Now consider Af*, and define B to 
be its base point free part. We have ^(A'*) = &(£) = ft1 (A) + h0(Q) > 
/i1(^4) > 0. The first equality by lemma 2.3, and the last inequality by 
assumption. Then B is a (nonzero) rank one torsion-free sheaf. Finally 
define A" to be equal to B*. 

Lemma 3.1. Both A" and Aff* are generated by global sections. 

Proof. Since B is the base point free part of A'*, we have a sequence 

O-^B-tA^-tR-tO 

where R has support of dimension zero. Applying Hom^^ujs) we get 

0 -> Af -► B* = A" -» R -> 0     R = Ext2(R,ujs), 

whose associated cohomology long exact sequence gives 

0 -> H^A') -> H0(B*) -* H0(R) -> H^A') -+ H1^*) -> 0. 

To see that A" is generated by global sections, it is enough to prove that the 
last map is an isomorphism, because then the first three terms make a short 
exact sequence, and the fact that A' and R are generated by global sections 
(the first by definition, the second because its support has dimension zero) 
will imply that JB* (that is equal to'A" by definition) is generated by global 
sections. 

To prove that the last map is an isomorphism, we only need to show 
that /i1(A/) = /i1(S*), and this is true because 

h^A') = h0(A'*) = h0(B) = h0(B**) = hl(B*). 

The first equality is by Lemma 2.3, the second because B is the base point 
free part of A'*, the third by Lemma 2.1, and the last again by Lemma 2.3. 
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To see that A!1* is generated by global sections, note that by definition 
An* = £** = 5, and this is generated by global sections. 

□ 
We started with a rank one torsion-free sheaf A with h?(A) and ^(A) > 

0, and we have constructed new sheaves A' and A" with (nontrivial) maps 
Af —> A and A' —> A". They give rise to exact sequences 

(3.1a) Q-^A' ->A->Q->0 

(3.1b) o->A'->A"->Q->Q. 

Lemma 3.2. With the previous definitions we have h0(Af) = h0(A) and 
h1(A") = h1(A'). 

Proof. By construction h0(A') = h0(A) and h0(A"*) = /i^^*). By lemma 
2.3 this last equality is equivalent to /i1^") = /i1(A/). 

□ 
As A" and A"* are generated by global sections, then by Proposition 

2.5 the sheaf A" can be deformed in a family A" in such a way that the 
support of a general member of the deformation is smooth. The idea now is 
to find (flat) deformations of A' and A, so that for every t we still have maps 
like (3.1a) and (3.1b). Prom the existence of these maps we will be able to 
obtain the condition that h0(At) > h0(A), then we will be able to apply 
Lemma 1.1 and then Theorem I will be proved. The details are in Section 
4. We will start by showing how the condition on h0(At) is obtained, and 
then how we can find the deformations of Af and A. 

Proposition 3.3. Let A, A!, A" be rank one torsion-free sheaves on an 
integral curve C. Assume that they fit into exact sequences like (3.1) and 
that h0(Af) = h0(A) and /i1(A/) = h1^"). Let P be a curve (not necessarily 
complete), and let A, A', and A" be sheaves on S x P, flat over P, inducing 
for each p G P rank one torsion-free sheaves Ap, Af

p, Ap, supported on a 
curve Cp of 5, where Ap = A, Ap = Af, and Ap = A" for some pQ £ P. 
Assume that hP(Ap) > h0(Ap ) for all p € P and that we have short exact 
sequences 

0->A'-*A^Q-+0 

0 _> A' -> A" -► Q -> 0 
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with Q and Q flat over P (i.e., the induced sheaves Qp, Qp have constant 
length, equal to l(Q) and l(Q) respectively). 

Then we have h0(Ap) > h0(ApQ) for allp G P. 

Proof. For each p G P we have sequences 

O-tAp-tAp-^Qp-tO 

0^Af
p^A;^Qp^0. 

The maps on the left are injective because they are nonzero and the sheaves 
have rank one and are torsion-free. Using the associated long exact sequences 
and the hypothesis we have 

h0(Ap) > h0(Afp) > h0(A^ - l(Qp) > h0(A") - l(Q) = h0(Af) = h0(A). 

D 

It only remains to prove that those sheaves can be "deformed along", 
and that those deformations are flat, i.e. that given A, A' and A" we can 
construct A' and A". This is proved in the following propositions. 

Proposition 3.4. Let L and M be rank one torsion-free sheaves on an 
integral curve C that lies on a surface S. Assume we have a short exact 
sequence 

(3.2) 0->L^M-*Q->0. 

Assume furthermore that we are given a sheaf M on S x P (where P is a 
connected but not necessarily irreducible curve) that is a deformation of M, 
flat over P. I.e., M\pQ = M for some p0 G P, and for all p G P we have 
that Mp = M\p are torsion-free sheaves on Cp, where Cp is a curve on S. 

Then, there is a connected curve P' with a map f : P' —> P and a sheaf 
£ over S x P' with the following properties: 

One irreducible component of Pf is a finite cover of P and the rest of 
the components map to PQ G P. The sheaf £ is a deformation of L, in the 
sense that £\pi = L for some pf

0 G Pr mapping to PQ G P, the sheaf £ is 
flat over Pf and induces rank one torsion-free sheaves on the fibers over P1. 
And if we define M' to be the pullback of M. to S x P', there exists an exact 
sequence 

0 -» £ -» M' -» Q! -» 0, 
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inducing short exact sequences 

for every p' G P'. 

Proof. If the support of Q were in the smooth part of the curve, we would 
have M = L (g) Oc(D), with D an effective divisor of degree Z(Q). Then, if 
we are given a deformation Mp of M, we only need to find a deformation 
Dp of the effective divisor D, with the only condition that Dp is an effective 
divisor on Cp, with degree l(Q). This can easily be done if we are in the 
analytic category. In general we might need to do a base change of the 
parametrizing curve P and we will obtain a finite cover Pr of P (What we 
are doing is moving a dimension zero and length l(Q) subscheme of S', with 
the only restriction that for each p the corresponding scheme is in Cp). Then 
we only need to define Zy = Mp/ ® Oc ,(—Dp/) and the proposition would 
be proved (with Pf a finite cover of P). 

To be able to apply this, we will have to make first a deformation of L, 
keeping M fixed, until we get Q to be supported in the smooth part of C 
(the curve C also remains fixed in this deformation). This is the reason for 
the need of the curve Pf with some irreducible components mapping to p0. 

We will prove this by induction on the length of the intersection of the 
support of Q and the singular part of C. 

Lemma 3.5. Let L and M be rank one torsion-free sheaves on an integral 
curve C that lies on a surface S. Assume we have a short exact sequence 

Assume that Q = R® Qf where Qf has length l(Q) — 1 and it is supported in 
the smooth part of C', and R has length one as it is supported in a singular 
point ofC{ uthe length of the intersection of the support ofQ and the singular 
part of C is one"). 

Then there is a flat deformation Ly of L parametrized by a connected 
curve Y (it might not be irreducible) such that Ly0 = L for some yo £ Y 
and for every y E Y there is an exact sequence 

0->Ly->M ->Qy->0 

and there is some yi GY such that the support of Qy1 is in the smooth part 
ofC. 
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Proof. In this situation, the exact sequence (3.2) gives rise to another exact 
sequence 

0^L®lX^M->R^0 

where the map on the right is the composition of M —> Q and the projection 
Q -^ R, and we denote by Iz the ideal sheaf of the support Z of Q'. Because 
Z is in the smooth part of C, Iz is an invertible sheaf. Note that Qf is the 
quotient of OQ by this ideal sheaf. Define L to be L ® /^. If we know how 

to make a flat deformation Ly of L so that the quotient Ry is supported in 
the smooth part of C for some yi £ V, then we can construct a deformation 
Ly of L defined as 

Ly    =   Ly®Iz. 

Note that this deformation is also flat. The cokernel Qy of Ly —>► M is 
supported in the smooth part of C for the points y G Y for which i?y is 
supported in the smooth part of C. 

This shows that to prove the lemma we can assume that Q has length 
one and its support is a singular point of C, i.e. Q = Ox, where # is a 
singular point of C. 

Consider the scheme Quot1(M) representing the functor of quotients 
of M of length 1. If the support x of the quotient Q is in the smooth 
part of C, then there is only one surjective map (up to scalar) because 
dimHom(M, Q) = 1, whose kernel is M ® Oc(-x). 

If x is in the singular part, then in general dimHom(M, Q) > 1, and 
the quotients are parametrized by PHom(M, Q) (the universal bundle is 
flat over PHom(M, Q)). We want to show that^Quot1(M) is connected 
by constructing a flat family of quotients M —> Qc (the family Qc will be 
parametrized by an open set of the normalization C of C) such that for a 
general c the support of Qc is in the smooth part of C, and for some point 
CQ the support of Qc0 is a singular point of C. 

Consider the normalization C of C, and let F be an open set of C 

(3-3) 

F -^-^ CxF 

C 

Where TTI is the projection to the first factor and j = (u,i), the morphism 
v : F '->• C —> C being the restriction to F of the normalization map and i 
the identity map. Note that j is a closed immersion, and its image is just 
CxcF^F. 
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Let CQ be a point of C in v~l{x) (the family is going to be parametrized 
by an open neighborhood F of CQ). We have to construct a surjection of 

M = TTJ'M onto Q = j*0F. Note that Q|cxc = Qc = O^) and that Q is 
flat over F. 

Now, to define that quotient, it is enough to define it in the restriction 
to the image of j (because this is exactly the support of Q). So the map we 
have to define is 

J*M->OF. 

But j*M = v*M is a rank one sheaf on the smooth curve F, so it is the 
direct sum of a line bundle and a torsion part T. Shrinking F if necessary, 
the line bundle part is isomorphic to Op, and we have 

J*M = T®OF, 

and then to define the quotient we just take an isomorphism in the torsion- 
free part. This finishes the proof of the lemma. 

□ 

Now we go to the general case: the intersection of the support of Q with 
the singular part of C has length n. We are going to see how this can be 
reduced to the case n = 1. 

Take a surjection from Q to a sheaf Q1 of length n — 1, such that Q 
is isomorphic to Q' at the smooth points. The kernel R of this surjection 
will have length 1, and will be supported in a singular point of C. It is 
isomorphic to Ox, for some singular point x. We have a diagram 

0 0 

0  > L  ► 1/   >  R   v 0 

0  v L  v M  ►  Q   ► 0 

Q' Of 
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Observe that L, 1/ and R satisfy the hypothesis of Lemma 3.5, so we can 
find deformations Ly, Ry (parametrized by some curve Y and with Ly0 = L 
and Ry0 = R for some yo G y) such that for some yi E Y we have that 
the support of the corresponding sheaf Ry1 is a smooth point of C. All the 
maps of the previous diagram can be deformed along. To do this, we change 
L by Ly, i? will be deformed to Ry and 1/ is kept constant. Then Q is 
deformed to a family Qy defined as M/Ly. The cokernel of Ry -¥ Qy will 
be Qy/Ry = M/V — Q1', and hence we keep it constant. Then for each y 
we still have a commutative diagram, and furthermore it is easy to see that 
all deformations are flat (note that Ry is a flat deformation and Q' is kept 
constant, and then Qy is a flat deformation). An important point is that M 
remains fixed, and the injection L -> M is deformed to Ly —>• M. 

0 0 

0  > Lv 

-> Lqi 

-> 1/ -*    Ry      >    0 

-> M 

Q' 

o 

-^ Qy 

Q' 

-> 0 

0 
For yi we have that the length of the intersection of the support of Qy1 with 
the singular part of C is n — 1. We repeat the process (starting now with 
Lyi, M and QyJ, until all the points of the support of Q are moved to the 
smooth part of C. This finishes the proof of the proposition. 

□ 

The following proposition is similar to Proposition 3.4, but now the roles 
of L and M are changed: we are given a deformation of L and we have to 
deform M along. 

Proposition 3.6. Let L and M be rank one torsion-free sheaves on an 
integral curve C that lies on a surface S. Assume we have a short exact 
sequence 

(3.4) 0^L^M^Q->0. 
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Assume furthermore that we are given a sheaf C on S x P {where P is a 
connected hut not necessarily irreducible curve) that is a deformation of L, 
flat over P , i.e., C\PQ = L for some p0 E P, and for allp G P, we have that 
Lp — JC\P are torsion-free sheaves on Cp, where Cp is a curve on S. 

Then, there is a connected curve P' with a map f : P' —> P and a sheaf 
M.1 over S x P' with the following properties: 

One irreducible component of P' is a finite cover of P and the rest of the 

components map to pQ E P. The sheaf M1 is a deformation of M, in the 

sense that M'\pi = M for some pf
0 E Pf mapping to p0 E P, the sheaf M.' is 

flat over P1 and induces rank one torsion-free sheaves on the fibers over P'. 

And if we define £ to be the pullback of £ to S x Pf, there exists an exact 
sequence 

0 -► £ -> M' -± Qf -> 0, 

inducing short exact sequences 

0 -» Lf
pf -> M^ -> Q'j,^ 0 

for every p' E P1. 

Proof. The proof is very similar to the proof of Proposition 3.4. Again we 
start by observing that if the support of Q were in the smooth part of the 
curve, we would have M = L ® Oc(D), with D an effective divisor. Then if 
we are given a flat deformation Lp of L, we find a deformation Dp of D as 
in the first part, and the proposition would be proved. So again we need a 
lemma that deforms Q so that its support is in the smooth part of C. 

Lemma 3.7. Let L and M be rank one torsion-free sheaves on an integral 

curve C that lies on a surface S. Assume we have a short exact sequence 

0-^L->M-*Q->0. 

Assume that the part of Q with support in the smooth part of C has length 
1{Q) — 1, i.e., Q = R © Qf, where R has length one and is supported in 
a singular point of C and Q' has length l(Q) — 1 and is supported in the 
smooth part of C. Then there is a flat deformation My of M parametrized 
by a curve Y, such that for every y E Y there is an exact sequence 

0-±L-+My^Qy->0 

with My a torsion-free sheaf, and there is some yi E Y such that the support 
of Qyi is in the smooth part of C. 
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Proof. Arguing as in the proof of Lemma 3.5, we see that it is enough to 
prove the case l(Q) — 1, and Q — Ox for x a singular point of C, then we 
can assume that the extension of the hypothesis of the lemma is 

(3.5) O-^L-^M-^Os-^O. 

Now we will consider all extensions of Ox (for x any point in C) by L. If x 
is a smooth point, then there is only one extension that is not trivial (up to 
equivalence) 

O^L^M^L® Oc(x) -+Ox^0. 

All these extensions are then parametrized by the smooth part of C. 

But if # is a singular point, we could have more extensions, because in 
general s = dim Ext1 (0X) L) > 1. They will be parametrized by a projective 
space P5-1. We call this space Ex. Note that there is a universal extension 
onCxEx that is flat over Ex. We denote by ei the point in Ex corresponding 
to the extension (3.5). 

Assume that Qc is a family of torsion sheaves on C with length 1, 
parametrized by a curve F such that for a general point c E F of the 
parametrizing curve the support of Qc in C is a smooth point, and for a 
special point CQ G F the support of Qc0 is a singular point. Now assume 
that we can construct a flat family (parametrized by F) of nontrivial ex- 
tensions of Qc by L. The extension corresponding to CQ gives a point 62 in 
Ex. The space Ex is a projective space, thus connected, and then there is 
a curve containing ei and 62- Using this curve (together with the universal 
extension for Ex) and the curve F (together with the family of extensions 
that it parametrizes) we construct the curve Y that proves the lemma. 

Now we need to construct F. As in the proof of Lemma 3.5, the 
parametrizing curve F will be an affine neighborhood of CQ in the normal- 
ization C of C, where CQ is a point that maps to the singular point x of C. 
Consider again the diagram (3.3) of the proof of Lemma 3.5. The family will 
be given by an extension of Q = J*OF by £ = TT^L on C x F. These exten- 

sions are parametrized by the group Ext1(Q, C). The following lemma gives 
information about this group and relates this extension with the extensions 
that we get after restriction for each slice C x c. We will call Qc and Lc the 
restrictions of Q and C to the slice C x c. Note that the restriction Lg is 
isomorphic to L. 

Lemma 3.8.   With the previous notation, we have 

l)^t1(Q,C)^H\Ext1{Q,C)) 



746 Tomas L. Gomez 

2) Ext1^^) has rank zero outside of the support of Q, and rank 1 on 
the smooth points of the support of Q 

3) Let I be the ideal sheaf corresponding to a slice Cxc. Then the natural 
map 

is injective. 

Proof. Item 1 follows from the fact that Hom(Q,£) = 0 and the exact 
sequence 

0-> ^(HomiQC)) -* Ext^Q,^) -> H0(Extl(Q,C)) -> H2(Hom{Q,£)). 

To prove item 2 note that the stalk of Ext1(Q,C) at a point p is iso- 
morphic to Ext1(i?//, i?), where R is the local ring at the point p, and / is 
the ideal defining the support or Q. The ideal / is principal if the point p 
is smooth, then R/I has a free resolution 

0^I^R->R/I->0 

and it follows that Ex.t1(R/I,R) 9* R/I. 
For item 3, consider the exact sequence 

where the first map is multiplication by the local equation / of the slice 
Cxc. Applying iIora(-,Z/c) we get 

Hom{Q,Lc) = 0 -¥ Extl(Q-c,Lc) -* Exfi&Lc) -> Extl(Q„Lc), 

but the last map is zero. To see this, take a locally free resolution of Q. The 
map induced on the resolution by the multiplication with the equation / is 
just multiplication by the same / on each term 

T*  > Q  > 0 

•/ •/ 

T9  > Q  > 0 

A local section of the sheaf Extf^Q, Lc) is represented by some local section 
ip(') of Hom(Jrt,Lc), and the endomorphism induced by multiplication by 
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/ on J5x£z(Q,Lc) is given by precomposition with multiplication <£(/•)> but 
ip is a morphism of sheaves of modules and then this is equal to /¥>(•), and 
this is equal to zero because fLc = 0. Then we have that 

(3.6) Ext^Q^Lcj^Ext^QLc). 

Taking the exact sequence 

and applying Hom(Q^ •) we get 

Extl(Q,C) 4 ExfiiQC) -* Extl{Q,Lc) 

and using this and the isomorphism (3.6) we have an injection 

Ext\Q,Z) ® OCXF/I = Ext1 (&£)/(/ • Extl(Q,C)) ^ Ext^QcM). 

D 

Now we are going to construct the family of extensions. By item 2 of the 
lemma the sheaf £ — Ext1^, C) is isomorphic to Ox ®T{£) (shrinking F if 
necessary) where X is the support of Q and T{£) is the torsion part. Take 
a nonvanishing section of the torsion-free part, and by item 1 this gives a 
nonzero element ip of Ext1(Q,>C). This element gives a nontrivial extension 

Observe that M is flat over the base, because both C and Q are flat. 
By items 3 and 1 we have that the image of ij) under the restriction map 

Ext1(Q,i:)-+E:rt1(gc,£) 

is nonzero for any c (recall that L^ = L for all c), and this means that the 
extensions that we obtain after restriction to the corresponding slices 

(3.7) 0^L->Mc->Qc-^0 

are non trivial. Furthermore Mc is torsion-free. To prove this claim, let 
T{Mc) be the torsion part of Mg. The map L -> T(Mc) coming from (3.7) 
is zero, because L is torsion-free, i.e. T(Mz) injects in Qc- Then we have 
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Qc doesn't decompose as the direct sum of two sheaves, and then one of these 
summands must be zera The first summand cannot be zero, because this 
would imply that L = Mc/T(Mc) and then Mc = "L© Qa, contradicting the 
hypothesis that the extension is not trivial. Then we must have T(Mc) = 0, 
and the claim is proved. 

□ 

Now we are going to consider the general case, in which the part of Q 
supported in singular points has length n. We are going to see that this can 
be reduced to the case n = 1, in a similar way to proposition 3.4. 

Let R = Ox, where x is a singular point in the support of Q, and take a 
surjection from Q to R. We have a diagram 

L'/L 

0  > L  > M  >    Q 

0  ► 1/  > M  ►    R 

-» 0 

-> 0 

Note that I/, M and R satisfy the hypothesis of Lemma 3.7, then we can 
find (flat) deformations My and Ry parametrized by a curve Y such that for 
some yi G Y we have that the support of the corresponding sheaf Ry1 is a 
smooth point of C. All sheaves and maps can be deformed along. To do this 
we define Qy — My/L (we have L ^-> L' M- My, thus this quotient is well 
defined). The kernel of Qy -> Ry is L'/L. Then Qy is a flat deformation 
(being the extension of a flat deformation Ry by a constant and hence flat 
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deformation V'/L). Then for each y we have a commutative diagram 

0 

L'/L 

-> L -> Mv ->      Qy 

-► L' -> M„ 

■> 0 

-> 0 -> i^ 

0 

Observe that the length of the part of Qy1 supported in singular points is 
n— 1, so repeating this process we can deform Q until its support lies in the 
smooth part of C. This finishes the proof of the proposition. 

□ 

4. Proof of Theorem I. 

In this section we will prove Theorem I: 

Proof. Nonemptiness follows from the fact that the Brill-Nother loci for 
smooth curves is nonempty, and by upper semicontinuity of h0(-). By Re- 
mark 1 we can assume r > d — pa. We will prove Theorem I by applying 
Lemma 1.1. 

We start with a rank one torsion-free sheaf A corresponding to a point in 
Wd, d > 0, r > 0, with p(r, d) > 0 (recall that we are assuming r > d — pa). 
We have h0(A)> ^(A) > 0. As we explained at the beginning of the section 
3, we call Af its base point free part. Then we take B to be the base point 
free part of A'*, and finally define An to be B*. 

By Lemma 3.1, A" and A,f* are rank one locally free sheaves on C 
generated by global sections. Then by Proposition 2.5 we find a deformation 
A" of A" parametrized by a some smooth irreducible curve T. 

The support of Aff defines a family of curves C parametrized by the 
irreducible curve T. Note that C\t is smooth for t ^ 0. 
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By the definition of Af and A" we have exact sequences 

(4.1a) 0^Af->A-^Q-±0 

(4.16) 0-+A' ->A" -+Q-+0 

with h0(Af) = h0(A) and /i1^') = h^A') (Lemma 3.2). If we look at 
(4.1b) we see that we are in the situation of Proposition 3.4, with L = A', 
M — A", M — A", P = T. Then we get a family A' (parametrized by some 
connected but in general not irreducible curve). Now we use this family Af 

and the sequence (4.1a) to apply 3.6 with L = A', M = A and £ = Af. We 
get a new family A. We denote by T' the curve parametrizing the family A. 

This family satisfies all the hypothesis of Lemma 1.1 (item (iv) is given 
by Proposition 3.3), and then Theorem I is proved. 

□ 

5. Moduli space of torsion-free sheaves on K3 surfaces. 

In this section we will apply Theorem I to prove Theorem II. The proof is 
similar to an argument in [G-H]. Recall that S is a K3 complex surface. 
Given a line bundle L on S and an integer C2, for any class £ in the Neron- 
Severi group NS(S) of S satisfying L2 - 4c2 < C2 < 0 and ( = L mod 2, 
we define the associated wall W^ = {M : £ • M = 0 and M G ample cone 
(C NS(S)®R) }. We say that W^ is a wall of type (L,C2) (see [Q]). We say 
that a polarization is (L, C2)-generic if it doesn't lie on any wall. In this case, 
semistability implies stability (i.e., there are no strictly semistable sheaves), 
the moduli space is smooth of dimension 

dimDJttf (L, 02) = 4c2 - L2 - 6, 

and then irreducibility is equivalent to connectivity (see [H-L2]). 
First we prove that we can reduce the proof of Theorem II to a special 

case 

Proposition 5.1. Assume that 9Jtfl-(L,C2) is irreducible under the addi- 
tional hypothesis that Pic(5) = Z. Then MH(L,C2) is also irreducible under 
the conditions of Theorem 11. 

Proof. Let S be a surface with an (L, C2)-generic polarization H. By [G-H, 
2.1.1], there is a connected family of surfaces S parametrized by a curve T 
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and a line bundle L on S such that (c>o,>Co) ~ O^-k) aild Pic(<5t) = Ct • Z 
for t 7^ 0. By [G-H, prop. 2.2], there is a smooth proper family Z -> T such 
that SQ = SDTHC'S'J ^0?

C
2) (note that the polarization is H and not £0) and 

-Zt = 2«A(5t,A,C2)fort^0. 
By hypothesis we know that Zt is irreducible for t ^ 0, and then by [H, 

III Ex 11.4], we obtain that ZQ is connected, but ZQ is smooth (because H 
is generic), and then this implies that ZQ is irreducible. 

□ 

Then from now on we will assume that Pic (5) = Z and hence H = L is 
the ample generator. 

Proposition 5.2. Let V be a torsion-free stable rank two sheaf with ci = L, 
C2 < \L2 + 3. 

(a) Then V fits in an exact sequence 

(5.1) 0 -+ Os -> V -> L ® Iz -> 0. 

(b) Conversely, every nonsplit extension of L ® Iz by Os is a torsion-free 
stable sheaf 

Proof Take V stable. Using the Riemann-Roch theorem, 

7-2 
h0(V) + h2(V) > — - C2 + 4 > 1. 

If h?(V) were different from zero, by Serre duality we would have 
Hom(V, O) / 0, contradicting stability because this would give a nonzero 
morphism V -> Os- 

Then hP{V) ^ 0. Take a section of V. By stability, the quotient of the 
section is torsion-free, and we have an extension like (5.1). The extension is 
not split because V is stable. This proves (a). 

To prove part (b), assume L®m ® Iw is a destabilizing subsheaf. Then 
m > 0. By standard arguments we can assume that the quotient is torsion- 
free. The composition L®171 ® Iw —y V —> L ® Iz is nonzero, because 
otherwise it would factor through Os and this is impossible because m > 0. 
Then m = 1 and we have Iw c-> 7^. Furthermore, l(W) > l(Z) because if 
W = Z, the sequence would split. Then we have a sequence 

0 -> L ® Iw -+ V -> Iw' -> 0, 
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but we reach a contradiction because C2 = l(W) + l(Wf) > l(Z) + l(Wf) 
C2 + l(Wf). Then there is no destabilizing subsheaf, and V is stable. 

□ 

Consider the moduli space M of stable framed modules (£?, a) where 
E is a rank two torsion-free sheaf with ci(E) = L and second Chern class 
equal to C2? and a : E -> L is a nontrivial homomorphism (see [H-Ll]). The 
stability condition depends on a degree 1 polynomial S(n) = ^n + £o- If 
0 < Si < L2, then (E,a) is stable iff i£ is stable as a vector bundle (see 
[G-H, Lemma 1.1]). Let N C M be the subset corresponding to framed 
modules (E,a) such that ker(a:) = Os> In [G-H, lemma 1.3], it is proved 
that AT is a closed subset. Note that N can also be constructed as a moduli 
space of coherent systems [LP]. We have a diagram 

(5.2) 

mL{L,c2) mm{S) 

By Proposition 5.2(a) ip is surjective, and by Proposition 5.2(b) the 
image of ij) is 

X = {Z e HilbC2(5) : dim Ext1 (L ® IZ) Os) > 1} 

Proposition 5.3.  The set X is connected. 

Proof. By Serre duality and looking at the sequence 

0 -> H0(L ® Iz) -»■ iI0(L) -». H0{Oz) -> ff^L ® 1^) -> 0, 

we have dim Ext1 (L ® 1^, Os) > 1    ^-^ ^0(i ® Iz) > ^L2 + 3 - 02- Now 
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consider the following commutative diagram 

0 0 

0  y Os  > L®Iz  ► 3*(uc®Iz)  > 0 

0  >• Os  ►      L       > L\c = J*OJC  > 0 

I I 
Oz             Oz 

where C G F(H0(L 0 Iz)) (the curve C might be singular, but we know it 
is irreducible and reduced because Pic(S) = Z and L primitive), j : C ^ S 
is the inclusion, and uc = L\c is the dualizing sheaf on C. 

Using the top row we get h0(L® Iz) > \L2 + 3 - C2 <=> h?(uoc ® Iz) > 
\L2 + 2 — C2. This condition can be restated in terms of Brill-Noether sets 

m- 
where r = \L2 + 1 — C2, and d L2 — C2. We have 

(   J\     o        L2     q     dimOT(L^2) p(r,d) = 2c2- — -Z = > 0, 

(recall that for dim9JT(L,C2) = 0 the irreducibility of the moduli space is 
known by the work of Mukai [M]) and we can apply Theorem I. Now consider 
the variety 

N = {(Z, C) : Z c C, dim Ext1 (L ® Iz, Os) > 1} C Hilb0^^) x P(#0(L)) 

and the projections 

N 

pi 

HilbC2(5) 

P2 P(iJ0(L)) 
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By Theorem I, p2 is surjective with connected fibers.   Then N is con- 
nected, and also the image of pi, that is equal to X. 

D 

Finally we can prove Theorem II: 

Proof. The fiber of ^ (see diagram (5.2)) over a point corresponding to Z is 
P(Ext1(L®/^, Os))- In particular it is connected. By the previous proposi- 
tion X is connected, and then N is also connected. Finally the surjectivity 
of (p (Proposition 5.2(a)) proves that -Jfti^iJ, C2) is connected. This shows 
that the moduli space is irreducible under the additional hypothesis that 
Pic(5) = Z, and applying proposition 5.1 we obtain Theorem II. 

□ 

Remark 2. Using similar techniques one can prove the irreducibility of the 
moduli space for any value of C2. The proof is longer, due to the fact that 
we don't have a nice characterization of stable sheaves as in Proposition 5.2. 
The details are in [Go]. 
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