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1 

In this paper we construct a new family of minimal surfaces in 
a wedge of a slab, and study its geometrical properties in depth. 
These surfaces arise as a solution to Plateau's problem for some 
polygonal non compact boundaries. 
By using these examples as barriers, we prove that any properly 
immersed minimal surface in a wedge of angle 0 of a slab, where 
6 G [0,7r[, satisfies the convex hull property. Moreover, we obtain 
some non existence results for properly immersed minimal surfaces 
with planar boundary. 

1. Introduction. 

A classical problem considered by Schwarz, Weierstrass and Riemann was 
to determine minimal surfaces bounded by straight lines. These authors ob- 
tained existence results for minimal surfaces with boundary a given polygon, 
where the sides of the polygon could be of finite or infinite length. 

A comprehensive presentation of the Schwarz-Riemann-Weierstrass ap- 
proach to the solution of Plateau's problem for polygonal boundaries can be 
found in Darboux's treatise [2, Vol. 1 and 3]. 

Very recently, Lopez and Wei [9] have obtained an existence and unique- 
ness theorem for properly immersed minimal discs whose boundaries consist 
of two disjoint straight lines and a segment which meets the lines orthogo- 
nally. 

In 1966, Jenkins and Serrin in [4] proved an existence and uniqueness 
theorem for minimal graphs bounded by straight lines. They obtained sim- 
ple, necessary and sufficient conditions to solve the Dirichlet problem in a 
compact convex domain bounded by a polygon assuming values +oo, —oo 
and continuous data on different straight segments in the boundary. 

1Research partially supported by DGICYT grant number PB94-0796. 
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Figure 1: A Jenkins-Serrin graph. 

In Figure 1, we illustrate a particular Jenkins-Serrin graph. In this case, 
the polygon is a rectangle and the data on the four edges are +oo, 0, +oo 
and 0, respectively. 

In this paper, we construct a deformation of these particular Jenkins- 
Serrin graphs by properly embedded minimal discs bounded by straight lines 
and contained in a wedge of a slab. Essentially, the deformation modifies the 
angle formed by the two planes containing the connected components of the 
boundary. In [7], the authors have obtained a natural uniqueness theorem 
for the surfaces in this new family. Furthermore, we use these new surfaces 
as barriers for maximum principle application. So, we have extended the 
family of minimal surfaces satisfying the convex hull property, and we have 
also proved some non existence results for minimal surfaces with planar 
boundaries. 

First, we deal with the existence of properly embedded minimal surfaces 
whose boundary Tgd consists of the following configuration of straight lines: 

Fix 9 G [0,7r] and d > 0, and consider two half-lines rf and rj~ in 
R3, meeting at an angle of 9. If 9 = 0 this means that the straight lines are 
parallel and distinct. Let qf and q^ be two points in r^ and rj~, respectively, 
such that they are symmetric with respect the inner bisector of this half- 
lines. If and only if 9 / 0, we allow q^ = gjf. We choose qf and gf in such 
a way that either q^ = q^ or the half-lines t^ and €[ on r^ and r{~ starting 
at q^ and gj~, respectively, do not intersect. Write d — dist(gjf", gj~). 

Let TTI be the plane determined by l~^ and l^ and let ^2 denote a plane 
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parallel and distinct to TTI. Let £% arid ^ be the orthogonal projections 
to 7r2 of if and £^, respectively. Denote q^ (resp. q^) as the orthogonal 
projection to 7r2 of qf (resp. q^), and label ^J (resp. £Q ) as the segment 

[Qirft] (resP- fer^fe])- Finally, we write 

and define 

^=UK+)>   re-d = U(C) 
i=0 i=0 

r^ = r+dure-d. 

Figure 2: The curve r^^. 

Then, we study the following generalized Plateau's problem: 

Problem. 

Determine a properly immersed minimal surface X : M —> R3 

satisfying: 

(1) M is homeomorphic to the closed unit disc D minus two 
boundary points Ei and E2, that we call the ends of M. 

(2) X{d{M)) = Ted. 

(3) If d > 0, X is an embedding. 

(4) In the limit case £Q  = £Q   (i.e., d = 0), the maps X\M_1+ 
and X\M_^-  are injective, where 7"1" and 7" are the two 
connected components of d(M). 

(5) X(M) lies in the convex hull, £(Ted), of Tea, 0 G [0,7r[. 
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(6) If 6 — TT, X(M) lies in one of the two half slab determined 
by TTI, 712 and the plane containing £*, ij, i = 1,2. 

In the limit case 9 = 0, it is known that 0 < d < \\v\\, where v is the 
vector with origin q^ and end q^, and the example is uniquely determined 
as one of the above mentioned Jenkins-Serrin graphs. See Remark 2, and 
Karcher's work [5] for a good survey. 

Concerning to the general case 6 > 0, we have proved the following: 

Theorem A.  There exists dg > 0 such that, for any d G [O,^], the above 
Plateau's problem can be solved. 

The family of surfaces M arising from the Theorem A is analytical and 
depends on two parameters: the angle 6 €]0,7r[ and another one r which 
concerns to the complex structure induced by the immersion on the disc 
with piecewise analytical boundary. So, if we fix 9, there exist re G] — 1,1[ 
and a subfamily Mg C M of proper, conformal, minimal immersions 

Me = {X9r : Mer -» K3 / r G] - 1,^]} C M 

such that Xer(d(Me r)) = re d^ and M =   (J   M^. 
^e]0,7r[ 

The opening function d :] — 1, re] -> [0, +oo[ has the following properties: 

• d is analytical; 

• d is positive in ] — 1, r^[; 

• d(re) =  lim d(r) = 0. In particular d is bounded; 
r—)•—1 

• d has only one critical point r^ G] — 1, r^[, which is a maximum. More- 
over, d(rf

e) = de. 

In particular, if d GJO,^, the Plateau's problem has two solutions in 
MQ. If d — 0 or d = do, the problem has a unique solution in Mg. Finally, 
if d > de, there are no solutions in Mg. 

Next, we are going to make some remarks about the limits of the family 
of surfaces M. 

As we have mentioned above, the case 9 — 0 leads to Jenkins-Serrin 
graphs. See Remark 2, and [5]. When 9 = TT, the resulting family of sur- 
faces MTT = {Xnr ' Mnr -> M3 / r G] - !,?>]} plays a special role in the 
Lorentz-Minkowski three dimensional space (see [6] for details). The surface 
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Xn miMn r7r) appeared first in [8] and motivated the discovery of the family 
of minimal twisted discs studied in [9]. 

In case r = rg, the complete orientable minimal surface without bound- 

ary Xere : Mo re ~^ ^ obtained from Xere(MQre) by successive Schwarz 
reflections about straight lines is singly periodic. If in addition - E Q, then 

the induced immersion YQ : More/(T) -¥ M3/(T) has four ends and finite 
total curvature. Here T is the translation by vector 2v, where as above v 

joins the points q^  and q^. 

^^ 

Figure 3: A fundamental piece of the surface Xore(More) in case 9 = ir/3. 

Finally, as r —> — 1, the surfaces X0r(MQr) converge to two parallel 
convex planar sectors in planes TTJ, j — 1,2, connected by the segment that 
joins the two vertices of the sectors. See Proposition 3.7 for details. 

Hence, if we fix 0 G]0, TT] , the one parameter family of surfaces XQ r (MQ r), 
r E] — 1, ra], starts at a degenerate and stable surface determined by two par- 
allel planar sectors, and ends in the unstable example XQre(M0re). More- 
over, the spherical image of the Gauss map of the immersion XQ r grows 
as a function of r. Then the geometrical and physical intuitions suggest 
that the immersions XQ r, r E] — 1,^], are stable, and the immersions Xer, 
r Ejr^rfl] are unstable. Hence, the example XQ ri would correspond to an 
almost-stable surface. 
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Figure 4: A fundamental piece of the surface XQrg(MQre) in case 9 = 7r/2. 
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Figure 5: The two solutions in case 9 = 7r/3, d = 0.28||i7||. Figure (a) 
corresponds to the unstable example, and Figure (b) corresponds to the 
stable one. 



Minimal Surface in a Wedge of a Slab 689 

(a) 

Figure 6: (a) The unstable surface XQre(MQre), for 6 — vr/S. (b) The 
degenerate and stable surface determined by two parallel planar sectors, for 
0 = 7r/3 andr -» -1. 

The second part of the paper is devoted to using the new examples as 
barriers for the maximum principle application. This kind of technique was 
used by Schoen [15], Hoffman-Meeks [3] and Meeks-Rosenberg [11], among 
others. 

It is well-known that any compact minimal surface in M3 verifies the 
convex hull property (see for instance [13]). Recall that a surface satisfies the 
convex hull property if and only if it lies in the convex hull of its boundary. 
In this paper we have proved that this property is also satisfied by any 
properly immersed minimal surface (compact or not) included in a wedge of 
a slab. 

Label We as the solid region of M3 determined by the intersection of: 

• the convex region determined by two halfplanes Pi and P2, meeting 
at an angle 9 along a straight line i?, and 

• a slab W, which is orthogonal to R. 

Write Fi = W n Pi, i = 1,2, and L = W fl R. Moreover, denote WQ as the 
intersection of two orthogonal slabs. To be more precise, we have proved: 
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Theorem B. Let M be a properly immersed minimal surface, M C We, 
where 9 G [0,7r[.  Then, M is contained in the convex hull of its boundary. 

Observe that we are not assuming in Theorem B that d(M) C d(Wo). 
The hypothesis M C We can not be substituted for the weaker one d(M) C 
We- In Figure 7 we illustrate two examples whose boundary lies in a wedge 
of a slab, but none of them is contained in the convex-hull of its boundary. 

Figure 7: (a) A minimal disc bounded by Fgd, for 8 = ir/S and d = 0.56||'u|| 
(b) A minimal disc bounded by F^, for 8 = 0 and d = 0.40||v||. 

Theorem B does not hold for the wedges We, 8 > TT, as a suitable piece 
of the helicoid or the surfaces in M^ shows (see Figure 8). In this sense it is 
sharp. However, it holds for surfaces M lying in a wedge We1, d\ e]0,27r[, 
whose boundary satisfies d(M) C We C W^, 8 e]0,7r[ (see Corollary 4). 

Finally, we have derived some non existence theorems for properly im- 
mersed minimal surfaces with planar boundary. Next theorem gives geo- 
metrical meaning to the number de- Let h denote the thickness of the slab 
W containing the wedge Wg. 

Theorem C. Let M be a properly immersed non fiat minimal surface in a 
slab wedge We, 8 e]0,7r]. Suppose that d(M) C Fi U F2. Then, 

de 
dist(L,<9(M)) < 

2sin(f) 
h. 
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Figure 8: A surface X7rr(M7Tr). 

The surface XQrt {MQri) corresponding to the maximum do of the open- 
9 9 

ingfunction is critical for Theorem C, and so the inequality is sharp. 
Write {Ci, C2} and {.Di, D2} as the two pairs of opposite faces of WQ. 

Theorem D. Let M be a properly immersed non flat minimal surface in WQ 

such that d(M) C Ci UC2. Assume that d{M) lies in a halfspace orthogonal 
to WQ. Then 

dist(Ci,C2)< dist(DuD2). 

Theorem D is a generalization of a classical result by Nitsche (see [12] 
and [14]). 

This paper is laid out as follows. In Section 2, we give several results we 
need in this paper. In Section 3 we present the new family M of minimal 
surfaces and study its geometrical properties. In Section 4 we establish 
Theorems A, B, C and D. 

Acknowledgements. We would like to thank A. Ros for helpful conver- 
sations. We would also like to thank Professor H. Rosenberg for suggesting 
that we use the new family of examples as barriers for maximum principle 
application. 

2. Background and Notation. 

The aim of this section is to fix the principal notation used in this paper, 
and to summarize some results about complete minimal surfaces. 
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Let X : M —> E3 a proper conformal minimal immersion, where M is 
a Riemann surface with piecewise analytic boundary homeomorphic to the 
closed unit disc D minus two boundary points Ei and i?2> that we call the 
ends of M. 

Remark 1. We say that M is a Riemann surface with piecewise analytic 
boundary if and only if M is a subset of an open Riemann surface M', the 
conformal structure of M — d(M) is that induced by Mf and d(M) consists 
of a set of piecewise analytic curves. Meromorphic (resp. holomorphic) func- 
tions and 1-forms on M are, by definition, the restriction of meromorphic 
(resp. holomorphic) functions and 1-forms on M'. 

The Weierstrass representation of X is denoted by (5,77). Recall that g 
is a meromorphic function and 77 a holomorphic 1-form on M. Both of them 
determine the minimal immersion X as follows: 

X(P) = Re(J  (tufafa) 

where 

(1) </>! = j t1 - 92)v, h = ^(1 + g2)rii h = 9V 

are holomorphic 1-forms on M satisfying: 

(2) E1 h iv 0. 

Furthermore, g is the stereographic projection of the Gauss map N : M —> 
S2. 

Minimal surfaces containing straight lines have special properties. 
Among them, we emphasize Schwarz's reflection principle (see, for instance, 
[13]). 

A particular case of minimal surfaces bounded by straight lines was 
studied by Jenkins and Serrin [4]. They prove the following interesting 
theorem: 

Theorem 1 (Jenkins, Serrin). Let D be a bounded covex domain whose 
boundary contains two sets of open straight segments Ai,...,^ and 
J5i,..., Bi, with the property that no two segments Ai and no two segments 
Bi has a common endpoint. The remaining portion of the boundary consists 
of endpoints of the segments Ai and Bi, and open arcs Ci,..., Cm. Consider 
the Dirichlet problem: 
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Determine a minimal graph in D which assumes the value +00 
on each Ai, —00 on each Bi and assigned continuous data on 
each of the open arcs Ci. 

Let V denote a simple closed polygon whose vertices are chosen from among 
the ends points of the segments Ai and Bj. Let a, f3 be, respectively, the 
total lenght of the segments Ai and Bj which are part ofV. Finally, let 7 
denote the perimeter ofV. 

Then, if the family of arcs {Ci} is not empty, the Dirichlet problem stated 
above is solvable if and only if 

2a < 7    and    2(3 < 7. 

Furthermore, the solution is unique if it exists. 

We state two theorems which summarize the versions of the maximum 
principle which we require in the last section of this paper. 

Theorem 2 (Interior maximum principle). Suppose Mi, M2 are min- 
imal surfaces in M3. Suppose p is an interior point of both Mi and M2, and 
suppose TpMi = TpM2. Assume that TpMi = {#3 = 0} so that both Mi, 
M2 are given near p as the graphs of two real analytic functions ui and U2, 
respectively. If ui >U2 in a neighbourhood of p, then Mi = M2. 

A elementary consequence of this result is the nonexistence of compact 
nonplanar minimal surfaces with boundary contained in a plane 11. Meeks 
and Rosenberg proved that this result remains true in the non compact case 
if in addition the surface lies in the slab determined by 11 and a plane D7 

parallel to 11. In fact, they obtained the following: 

Theorem 3 (Meeks, Rosenberg). Suppose M C {(#1,£2, #3) £ K3 * 
£3 > 0} is a properly immersed minimal surface with nonempty, possibly 
noncompact, boundary d{M). If x$(d(M)) > 5, then xs(M) > S. 

See [11, Lemma 2.1] for details. 

3. The existence results. 

In this section we construct the family of minimal surfaces described in the 
introduction. Moreover, we present in successive subsections a complete 
study of the main geometrical properties of these examples. 
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3.1. The Weierstrass representation and symmetry of the new 
family of examples. 

Take n G [1,2] and r E] — 1,1[. Put r = —cos(xo), XQ E]0,7r[. Consider the 
Riemann surface 

Af = {(z,w) G C* x C / w2 = (z - eix°'n)(z - e"^0/71)}, 

and define in the z-plane: 

5+ = {Ae-^   :  A G]0, 1]},     ^ = {Ae^   :  A ^% l]}i 

s^ = {Ae~^   : AG[1,+OO[},    S^ = {Ae^   :  AG[1,+OO[}, 

5^ = {e-**  : t G [a;o/n,7r/n]},   s" = {e^  : t G [a;o/n,7r/n]}. 

Then, label Cc A/* as the connected component of z-1 (C— (u?=0(5^" U 5^"))) 
containing the point 

Po = (1, +V2(l-cos(zo/n))). 

Define 

(3) M = C 

where C means the closure of C in J\f. 
Finally, label 7/" = z"1^), 7^" = ^J"

1
^

7
)) i = 0,1,2. Denote 

2 2 

i=0 i=0 

It is clear that d(M) = 7"1" U 7". Furthermore, note that ^| + and ^| - 
it 'i 

are bijective maps onto 5^" and sj, respectively, i = 1,2. However, 7Q" and 
7^" consist of two copies of SQ and SQ , respectively. See Figure 9 for more 
details. 

Since z(M) is simply connected and 0 ^ z(M) , then the function zn + 
z-n _)_ 2r is well defined on M. We choose the branch of zn satisfying ln = 1. 

This choice of the branch of zn implies that the function zn + z~n + 2r 
has neither zeroes nor poles on M — d(M). 
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Figure 9: (a) The domain z(M). (b) The surface M. 

Hence, the function <p((z,w)) — y/zn + z~n + 2r has a well defined 
branch on the (simply connected) domain M — <9(M), that can be ex- 
tended continuously to M. For convenience, we choose the branch veri- 
fying </?(Po) < 0. Moreover, note that given z§ G (SQ" U SQ ) and denoting 
{P+,P-} = ^(^o), we have ^(P+) = -^(P-). 

We consider the meromorphic data on M 

(4) 

where B > 0. 
For simplicity, we write 

/ n6^ 

and as usual, we denote 

B 
(01,^2,03) = —(-i(l/z + z)rr,(l/z-z)rr,Tr). 

As M is homeomorphic to a closed disc minus two boundary points, then 

X : M —> R3 

(5) X(P)=Re[   (01,02,03) 

is a well defined conformal minimal immersion of M in M3. 
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Remark 2. If n = 2 and r £] —1,1[, the immersions associated to the Weier- 
strass data (4) are known and correspond to some Jenkins-Serrin graphs 
(see Figure 1). Following the notation of [4] and Theorem 2, these minimal 
graphs are the only with boundary values +oo, 0, +oo, 0 on a rectangle. 

Extension by Schwarz reflections of these surfaces gives embedded 
doubly-periodic examples with two orthogonal planes of symmetry between 
adjacent saddle towers. As the quotient of such a surface under its group of 
translations has finite topology, then this quotient has finite total curvature 
(see Meeks-Rosenberg work [10]). 

Karcher [5] proved that the arising Weierstrass data are those described 
in (4). 

For the reasons explained in last remark, we are going to restrict our 
attention to the case n < 2, and in what follows we suppose n G [1, 2[. 

Concerning to its symmetries, let Sh, Sv denote the antiholomorphic 
transformations on M 

Sh((z,w)) = (l/z,w/z),    Sv((z,w)) = faw). 

Notice that Sh(Po) = SV(PQ), and 

g o Sh    =    l/g, go Sv = -g, 

(6) SKfa)    =   -fa S:(cf)3) = fa 

so elementary arguments imply that Sh (resp. Sv) induces on X(M) a 
symmetry with respect to the plane xs = 0 (resp. xi = 0). 

3.2. The boundary behaviour. 

The following step is to study the behaviour of X along d(M). 
First, observe that 

(7) Sl,(7+) = 7r, i = o,l,2 

(8) Shfrt) = 72+, Snfo) = 72". ^(7o+) = 7o+, ^(70") = 7o"- 

Introduce the following notation. Let £f = Xfrf) and £^ = X^'), i = 
0,1,2, and label 

2 

(9) r=U(^uC). 
i=0 

We can prove the following: 
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Lemma 1.  The maps X|7+, -X"|7- are injective, and: 

1. The curves if andii are half-lines contained in a plane xs = k, k > 0. 
Furthermore, they are symmetric with respect to plane xi = 0; and the 
straight lines containing if and i^   meet at an angle 6 = (2 — njir/n. 

2. The curve if (resp. i^) is the image of if (resp. £[) under the 
symmetry with respect to plane £3 = 0. 

3. The functions xi|^+ and x^- diverge to +00 and —00, respectively, 
i = l,2. 

If n G]l,2[; then X2\p+, ^2^- diverge to +00, i — 1,2. In case n = 1, 
i i 

#2^+ and X2\^- are constant. 

4. The curve if (resp. £Q) is the vertical segment joining the end points 
of if and if (resp. i^ andi^). 

Proof. On 7^, put z = t e™/71, t e]0,1]. Taking into account that y?(Po) < 0, 
an analytic continuation argument gives: 

fo(t) = -iB 
\Wtn + t-n - 2r\ 

^(t) = -l- ((l/t + t) cos(7r/n) + i(t - l/t) sin(7r/n)) ^(t) 

M^ = f ((1A " *) cos(7r/n) - i(t + l/t) sin(7r/n)) ^(t). 

These equations imply that i^ is a half-line contained in a straight line 
£3 = fc, £2 — tan(7r/n)xi = fc', for suitable fc, fc' G R. Note that this straight 
line meets the straight line £3 = /c, #1 = 0 at an angle of 2ri . Notice also 
that Re(0i(i)/dt) > 0, and so X\- is injective. 

Moreover, it is clear that x\\r diverges to —00. If n > 1, then X2\i- 

diverges to +00, and n = 1 implies that #2^- is constant. 

The curve 7^" consists of two copies, 81 and ^2, of SQ. We can assume 
that Si(t) and ^(t) are the two lifts to M of the curve e^/n, t E [^CTT], in 

the 2;-plane, satisfying 5i(ir) E 7J" and ^(TT) E 7^", respectively. 
Let (5(t) be the lift to M of the curve e^/n, '£ E [0,xo], in the ^-plane. 

Observe 8(0) — PQ and S(XQ) = SI(XQ) — ^2(^0). 
Taking our choice of branches into account, we have 

<p(6(t)) < 0,    itpfait)) E R-,    i<p(62(t)) E R+. 
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Then, it is straightforward to check that: 

Re(^(^)) =0' i = 1'2' J = 1'2' 

and so £Q is a vertical segment. 
Furthermore, note that: 

*(*(£))=».*(£) **.*(£ 
and this implies that k > 0 and X\ - is injective. 

Taking into account the symmetries induced by Sh and Sv, (7) and (8), 
it is not hard to conclude the proof. □ 

Remark 3. Note that the angle function 9 : [1,2[—>»]0,7r], 0(ri) — (2—n)7r/n, 
is an analytical diffeomorphism. Hence, we can use (0,r) instead of (n,r) 
to parametrize our family of surfaces. 

In the following, we label the plane x^ = k as TTI and the plane #3 = — k 
as 7r2. 

Moreover, and in the remainder of this section, we fix 9 E]0,7r] (or n E 

[MD- 
Consider Ji, ^2 and S as in the proof of Lemma 3.2. 
If we label h :] — 1,1[—> M as the height function, i.e., 

h(r) = 2Re 
/,'■')• 

then a straightforward computation gives 

,, s     yfi T dt 

h(r) = — , > 0, 
n   iarccos(-r) y/-V - COs(t) 

where we are using the branch of arccos which maps ] — 1,1[ into ]0,7r[. 
In what follows, and up to homotheties, we suppose 

(10) B = l/h(r). 

In other words, and from Lemma 3.2, we are normalizing the immersion 
X in such a way that the distance between the planes TTI and 7r2 is 1 (i.e., 
k = 1/2). 
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On the other hand and taking into account Lemma 3.2 and the sym- 
metries of -X"(M), the oriented distance d(r) between ££ and £Q is given 
by: 

(11) d(r) = -2Re JM 
This means that: 

• \d\ is the distance between £Q and £Q. 

• d > 0 if and only if £f and ^ do not intersect, i = 1, 2. See Figure 2. 

• d = 0 if and only if ^J = £Q (i.e., the end points of if and ^ coincide, 
i = l,2). 

• d < 0 if and only if the half-lines £f and ^ intersect at an interior 
point, i = 1,2. 

See Figure 10. 

to M 

Figure 10:   (a) A surface X(M) for 6 = 27r/3 and d > 0.   (b) A surface 
X(M) for 6 = 27r/3 and d < 0. 



700 FJ. Lopez and F. Martin 

3.3. The properness and convex hull property. 

Next lemma is devoted to study some topological and algebraic properties 
ofX. 

Lemma 2.  The minimal immersion X : M —> M3 verifies: 

1. X is proper, 

2. If 6 / TT, X(M) is contained in the convex hull, £(T), ofT. 

3. If 0 = TTj X(M) is contained in the intersection of the slab —1/2 < 
#3 5: 1/2 and one of the two halfspaces determined by the plane con- 
taining if, ij, i = 0,1,2. 

Proof Firstly, we are going to study the behaviour of X around Ei = (0,1) = 

z-l(0). 
Taking into account the choice of the branch of <£, one has that 

03 = -Bz^"1 dz + A(z) dz, 

where the branch of W2 satisfies W2 = 1. So 

i ,        .„ IL_9 7       .A(z) 
—03 — iBz*     dz — % dz, 

z z 
iz(j)s = —iBzi dz + izA(z)dz, 

where A(z) is holomorphic around Ei = 2;_1(0) in M, and satisfies 

lim^^^0,oo. 

We define 

F{z)     =     _« | ifc= <_£_,»-!+ *(,), 

H{z)   =   J<h = -^+H1{z)1 

where the limits 

lim    ,„     . lim —=-—, lim—3-— 
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exist and are non zero. Then, X can be expressed locally around Ei as 

(12)       X(z) = (Xl(z)1X2(z),X3(z)) = (F&)-G(z),Be(H(z)j) 

-z%-\0^+(O1(z),O2(z),O3(z)), 
iB 

where Oi(z)/\z\ is a bounded function in a neighbourhood of J5i, i = 1,2,3. 
Equation (12) implies that for any sequence {Pm} in M converging £?i, 
the sequence {X(Pm)} diverges in R3. Taking this and the symmetry 5^ 
into account, the same occurs for sequences converging to Ez — (oo, oo) = 
^_1(oo). Hence, we obtain that X is proper. 

On the other hand, (12) yields that the limits linip-^ X^iP) and 
linip-^ -X"3(P) exist. Using Lemma 3.2 we deduce 

(13) limX3(P) = i       limX3(P) = -i 

As F lies in the slab —1/2 < x^ < 1/2, then we can use (13) and Theorem 
2 to obtain that X(M) is contained in this slab. 

Label a+ (resp.  a~) as the plane containing l^   and i^   (resp.  £^ and 

If d < 0, we denote a+ (resp. a ) as the plane parallel to cr4" (resp. a ) 
containing £Q  (resp. £Q). 

In case d > 0, we put a+ = a"^ and a~ =a~. 
Label also <TO to the plane parallel to X2 = 0 containing ^ and ^. 
Let T^4* and H- be the open half spaces determined by a+ and cr-, 

respectively, and containing F. Let Ho denote the closed half space deter- 
mined by CTQ and containing T too. Label <S as the slab ^1([—1/2,1/2]), 
and finally denote £ = /H+ nH~DHonS. Then, a straightforward argument 
gives that 

• If 6 ^ TT and d < 0, then £(r) = S U £$ U ^. 

• If (9 ^ TT and rf > 0, then 8 = 8. 

On the other hand, consider {Pm} a sequence in M converging to Ei, and 
assume that {arg((Xi(Pm), X2(Pm))} converges to ^o € [0,27r[. Let us prove 
that (9o G [7r/2 - 0/2,7r/2 + (9/2]. 

Indeed, from (12) and for m large enough, one has that 

(Xl(Pm),X2(Pm)) = 7^-z^-1(Pm) + qm, 
z — n 
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where {qm} is bounded. As arg(z(Pm)) € [—vr/n, 7r/n], then 

= [7r/2-0/2,7r/2 + 0/2]. 

TT      (2 — n)7r  TT      (2 — n)7r 
2 2n        2 2n 

Since qm is bounded and (Xi(Pm),X2(Pm)) is divergent, we deduce that 
00 G [7r/2 - 0/2,7r/2 + 0/2]. This combined with equation (13) gives 

(14) lim dist(Pm,£(r)) = 0, 
m—>-oo 

and this equation holds for arbitrary sequences converging to Ei. By using 
the symmetry Sh, the equation (14) holds for sequences converging to E2 
too. 

Let K, be a plane which is not parallel to cr+ and <7~, and not intersecting 
F. Let /C denote the closed half space determined by K not containing F. 
Taking into account that X is proper and (14), we have that K fl X(M) is 
compact, and so, by an elementary consequence of Theorem 2, it is empty. 
This proves Assertion 2 in the Lemma. 

By a continuity argument, it is not hard to deduce Assertion 3 and 
complete the proof. □ 

Remark 4. By using the same Weierstrass data, (4), for n G [2/3,1[ and 
suitable r e] — 1,1[, we can construct minimal examples with the same 
boundaries, which are not contained in their convex-hull. See Figure 7. 

3.4. Embeddedness. 

The following Lemmas are devoted to study under what conditions the im- 
mersion X is an embedding. 

Let M+ = {(z,w) G M / 1m{z) > 0} and M' = {(z,w) G M / lm(z) < 
0}, and define p as the lift to M of the divergent curve ]0, +oo[ in z(M). We 
parametrize p as follows: 

p(t) = z-1(t),   tG]0,+oo[. 

Obviously, the surfaces M+ and M~ are topologically a closed disk minus 
two boundary points. Furthermore, 

M^M+UM",   M+nM-=p 

and 
a(M+) = />U71

+U72
+U7^,   a(M-) = pU7rU72"U7o". 
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Figure 11: The surface X(M"") when 6 = 7r/3 and r = 0.8. 

Lemma 3. If 9 E]0,7r[, the surfaces X(M+) and X(M~) are graphs on the 
planex1 = 0. If 6 = TT, the surfaces X(M+)-(if Ul^) andX(M-)-(qu 
£2) are graphs on the plane xi = 0. 

Proof Suppose first that 6 ^ TT. Note that fo/dt < 0, t G]0, +00[, and so 
Xs\p is injective. Moreover, from (10) and (13), 

limX3(p(i)) = l/2)     lim  X3(p(t)) = -1/2. 

On the other hand, p is the fixed point set of Sv. Hence, X(p) lies in the 
plane xi = 0. 

By using the symmetry Sv, it suffices to prove that X(M+) is a graph 
on xi = 0. 

Let pi denote the orthogonal projection on the plane xi = 0. Since 
X(M) C £(T) and X(M) n £(T) = T (see Theorem 2), then 

UpiCOcafeiCM+j), 
t=0 
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and pi(M+) is contained in the closed domain W = pi(£(r)) of the plane 
2 

xi = 0, bounded by Mpi(^).   Let WQ denote the closed domain in W 

2 

bounded by X(p) U (|Jpi(^)), and label Wi = W - WQ. It is clear that 
i=0 

the open domain Wi is bounded by the curve X(p). 

Pi(lf) 

Pitto)       W0    (p w* 

pidi) 

Figure 12: The domain pi(M+). 

As the normal vector N(P) at any point P G M+ — p does not lie in the 
plane #1 = 0, then it is not hard to see that 

Pi\x(M+-p) ■■M+-p^ Pi(M+) 

is a local diffeomorphism. 
In particular, pi(M+) fl Wi is an open subset of Wi. However, as X is 

proper (see Lemma 3.3), we have that pi(M+)n Wi is also a closed subset of 
Wi. Since Wi is connected, either pi(M+) fl Wi = Wi or pi(M"{-) fl Wi = 0. 
On the other hand, recall that X3 extends continuously to the ends {£7i, E2} 
and Xs^i) = 1/2, X3(i?2) = —1/2. This easily implies that only a compact 
subset of the a^-axis is contained in pi(M+), and so pi(M+) fl Wi = 0. 

A similar argument yields pi(M+) H WQ = WQ, i.e., pi(M+) = WQ. NOW 

it is easy to deduce that 

PlU(M+):^+-+Pl(^+) 

is a submersion. 
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Since X is proper and X(M) C £(T), the map pi|x(M+) : M+ -> PiC^"4") 
is also proper, and so, it is a covering. Since pi(M+) = WQ is simply- 
connected, pi|x(M+) : M+ —> pi(M+) is a homeomorphism. This proves 
the Lemma for 0 < TT. 

If 0 = TT, use a continuity argument. This concludes the proof. □ 

Lemma 4. If d(r) > 0, </ien -X"(M+) (re^p.  X(M~)) 25 contained in the 
half space x\ > 0 (re^p. xi < 0). 

/n particular, d(r) > 0 implies that X is an embedding. If d(r) = 0; ^/ien 
X|M_7+ and -X'IM-7- 

are injective. 

Proof In this proof we use similar ideas to those in Lemma 3.3. 
By using the symmetry S^, it suffices to prove the Lemma for X(M+). 
First, note that d(r) > 0 and Lemma 3.2 imply that X(d(M+)) lies in 

the half space xi > 0. 
Let {Qm} be a sequence in M+ converging to JEi, such that 

{arg((Xi((3m),X2(Qm))} converges to #0 € [0,27r[. Let us see that ^o G 
[0,7r/2 + e/2]. 

Indeed, if m is large enough, then from (12) one has that 

(-X:i(Qm),-X:2(Qm)) = ^ ^(QmJ+Pm, 
z — n 

where {pm} is bounded. As arg(2;(Qm)) G [—7r/n,0], then 

TT      (2 — n)7r 
2 2n 

= [0,7r/2 + e/2]. 

As Pm is bounded and (-X'i(Qm),-X'2(Qm)) diverges, we have ^o ^ 
[0,7r/2 + ^/2]. As a consequence, we obtain also that 

(15) lim dist(Qmj{(xuX2,x3) G M3 / xi > 0}) = 0. 
m—>oo 

By using 5^, then a symmetric equation to (15) holds for sequences 
converging to E2. 

Bcause of equation (15) and the properness of X, the same argument as 
at the end of the proof of Lemma 3.3 shows that X(M+) lies in the convex 
hull of its boundary. This concludes the proof. □ 
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3.5. The analytical properties of the opening function d(r). 

In order to understand the global behaviour of our family of surfaces, we 
are going to carry out a careful analysis of the function d :] — 1,1[—>> M. 

Define 6 as the lift of the oriented curve etz/n, t G  [—#o>#()]> in the 
z-plane, and note that 

d(r) = -Re JM 
It is clear that (Sh)*(S) = S and (Sv)*(5) = —S. 
Therefore, from 6, we deduce that 

/ (j)i =  I 0i = -i Izfo. 
Js J5 Js 

If we define/ :]-l,l[—^M 

(16)   /(r) = * fzrr = 2Real (i f zrr) = ^ f™*"™     ^(*(w)     eft, 
J? \ J5      J       n  Jo \y/cos(t) + r\ 

then d(r) is given by 

/(r) (17) d(r) = 
Mr)" 

To obtain the last equality in (16), we have taken into account the choice of 
the branch of <p. 

Lemma 5.  The functions f, h, and d satisfy the following differential equa- 
tions: 

4-n2 

1. (1 - r2)/"(r) - 2r/'(r) + -^/(r) = 0. 

2. (1 - r2)h"(r) - 2rti(r) - ^h(r) = 0. 

3. _d(r)2 + n2 (2 - 3 n2 - 2r2 - n2 r2) (i'(r)2 

+ (4d(r) - 3n2 d"(r)) n2 (-1 + r2) d"(r) 
+2 n2 d'(r) (2 r d(r) + n2 d(3) (r) - 2 n2 r2 d(3) (r) + n2 r4 d^ (r)) = 0. 
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Proof. Differentiating, one has 

/.ox d2  /   x 2r    d   /   x 1 T/TX 
(18) ^2 W - Y^T^ (Tr) - ^Z^^ = W, 

/^x ^2  /      x 2r     ^   /      x 4-n2 7 - 
(19) ^2 (^0 - Y^^ (z-r) + 4n2(1_r2)^ = d(f), 

where h and / are the following meromorphic functions: 

z2n _ 1 

h = 

f = z 

2n(l - r2)^n(^n + ^-n + 2r)3/2' 

i^  (n - 2) - 4rzn - (n + 2)z2n 

2n2(r2 - i)(zn + z-n + 2r)3/2' 

The function y = zn + z~n + 2r is well defined on z(M). Let M^ denote 
the two-sheeted covering Riemann surface (with boundary) of z(M) where 
(p = ^/y is well defined, and label p^ : M^ -> JZ(M) as the conformal covering 
map. Note that, in a natural way, M is biholomorphic to the closure in M^ of 
p~l(z(M — <9(M))), and up this biholomorphism we can consider M C M^. 

Let a be any simple closed curve in z(M) winding once around eZiCo/n 

and e-ixo/n, and let 5 be a lift of a to M^. 
If ^ is a 1-form on M^, then up to a suitable choice of the orientation of 

a one has 

Ja JS 
1l>. 

Applying the above equality to the one-forms in (19) and integrating by 
parts, we obtain 1. 

To obtain 2, integrate by parts (18) along any curve in M homologous 
to —£2 + £i, with the same end points that —S2 + S1 and not passing through 
(±e^0/n,0). 

Moreover, using i, 2 and (17), it is not hard to obtain 3. □ 

Lemma 6.  The function d :] — 1,1[—>> R satisfies: 

1. /£ vanishes at only one point TQ G] — 1,1[. Furthermore d(r) is positive 
in ] — l,r^[ and negative in ]r^, 1[. 

2. lim d(r) = 0. /n particular, d is bounded in ] — l,r^[. 
r—>■—1 
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3. It has only a critical point T'Q G] — l,r^[ which is a maximum.   In 
particular, tf [cT1^})] = 2,   Vx E]0,d(r£)[. 

Proof. From (17), it is obvious that c?(r^) = 0 if and only if /(rg) = 0. 
In order to study the function /, we consider / :] — 1, If—> R given by 

where, 

~ r+00 

f(r) = /       a(r,z)dz) 
Jo 

/     N        2mz   2   (zm — r) n 

(z2m - 2rzm + I)3/2' 2 - n' 

Our purpose is to prove that /(r) = A/ for a suitable A > 0. 
To do this, observe that 

(20) 
d2a        2r    da 4 - n2 d   ( z-2+mP(r,z) 

+ Z-^ oT<T = 
dr2      1 — r2 dr      4n2(l — r2) ^ Vmfr2 — 1) (1 — 2rzm + 2:2m)^/ ' 

where: 

P(r,z) = -r-imr+zm+6mzm+2r2zm+2mr2zm-3rz2m-4mrz2rn+z3m. 

Similar ideas to those used in the proof of Lemma 3.5 show that / satisfies 
Equation 1 in Lemma 3.5. Furthermore, it is not hard to check that 

»r(i + %?)r(^)' ,w   ^(^r^j 

o-p (4m-l\ -p (2m±l\ in (2m-l\ p (4rn±l\ 
7(0) = v   4m   / J-   V   4m   7        f(0) =       •L   V   4m   / ^   V   4m   7 

where T is the classical Gamma function.   Thus, it is straightforward to 

checkth&tm-m. 
/'(0)^  /'(0) 

As /(0) and /(0) are positive, then there exists A > 0 such that f(r) — 
A/(r), which implies that / and / have got the same zeroes. 

Then, it suffices to make a careful analysis of /. 
By deriving, we obtain 

da zm-zl2 d   ( zm-xl2 \ 
rfr (z2m _ 2rzrn + I)3/2        dz \ (z2™ - 2rzTn + I)3/2 
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Hence, integrating by parts, we obtain 

^ /»+oo ^m—3/2 

<21>     ft'> —i,    (3irr55rn)5!*<«.*6]-i.i[. 

This implies that / has at most one zero. 
Prom its definition, it is clear that f(r) > 0, Vr E] — 1,0]. 
In order to compute the limit of / at 1, we use the Probenius Method for 

the study of ordinary differential equations with singularities (see [1, §4.8]). 
Taking into account that / is a solution of Equation 1 in Lemma 3.5 and 
the above mentioned method, we deduce that 

(22) f(r) = alog(l - r)^i(r) + fr^M 

where a, b G R, <pi(l) 7^ 0 and <pi, i = 1,2, are analytic at r — 1. 
As lim/'(r) = — oo, we deduce a ^ 0, and so lim/(r) = —oo.   An 

r->-l r-*! 

intermediate value argument gives the existence of a unique zero re of f. 
As /(0) > 0, then d(r) > 0, Vr e] - l,r^[, and so d(r) < 0, Vr G]r^ 1[. 

This concludes the proof of Statement 1. 
In order to prove 2y observe that 

(23) lim /» = f" ^"^^tjU £ R+, V     ^ r^-1 ^ V   J       J0 (z2m + 2zrn + I)3/2 

Moreover,   it   is   clear  that   0    <    y/—r — cos(t)    <    \/l — cos(t),   t   G 
[arccos(—r),7r], then 

, ,   '     V2   f*                    dt                  2,    ,      , ,     N .^ 
^(^) > — / = = log(tan(arccos(—r)/4)), 

\/2   Z171" dt 2 

s(-r) V^1 _ cos(^) 

and so 

(24) lim hir) >  lim  ( log 
/arccos(—r) tanf ^-i = +oo. 

Both (23) and (24) give Assertion 2. 
To obtain 5, note that 3 in Lemma 3.5 yields that d'^r'o) < 0 for 

each critical point r^ G] — l,r^[ of d. Consequently, there exists only 
one critical point of d in ] — l,r^[ and it is a maximum. Obviously, 
d(r'e) — Maximum{d(r)  : r G] — l,r^[}. 

Hence, it is clear that fl ^"^{x})] > 2, Vx G]0,d(r^)[. If % [^"^{a;})] > 
2, for some x G]0, d(r^)[, then it implies the existence of a local minimum of 
d in ] — l,r<9[, which is absurd. This concludes the proof. □ 



710 F.J. Lopez and F. Martin 

Definition 1. For each 0 E]0,7r], we denote do as the maximum of the 
opening function d(r), r G] — l,r^]. 

Remark 5. Since the function d(n, r) is differentiable in [1, 2] x] — 1,1[, then 
the function 6 i—Y do is continuous in ]0,7r]. 

In case n = 2 (i.e., 0 = 0), Theorem 2 implies that 0 < d(r) < 1, 
Vr €] — 1,1[, and Supremum{d(r), r e] — 1,1[} = 1, (see Remark 2). Hence, 
the function 9 i—)► c?^ extends continuously to [0, TT], defining do = 1. 

For n G [1,2[, it is straightforward to check from (17) that fjj > 0, i.e., 

This implies that the function 9 \—> de is decreasing in ]0, TT], and in partic- 
ular, 

0<d7r <de < 1,     6>G]0,7r[. 

3.6. Main Theorem. 

We summarize the information in the preceding subsections (Lemmas 3.2, 
3.3, 3.4, 3.4 and 3.5) in the the following: 

Theorem 4. Let 9 G]0,7r] and r G] - 1,1[. 
Consider the Weierstrass data given by (3) and (4), where n = j^ and 

B is given in (10). Define the immersion X as in (5).  Then X satisfies: 

(i) X(M) is a properly immersed minimal disk with two boundary ends in 

(ii) X(d(M)) = r = [JIM U17), where 

1. The curves if and l^ are half-lines contained in a plane xs = 
1/2, they are symmetric with respect to the plane xi = 0, and the 
straight lines containing them meet at an angle 9. 

2. The curve if, {resp. i^) ^s ^ie image under the symmetry with 
respect to the plane xs = 0 of if (resp. £j~). 

3. The curve if (resp. i^) is the vertical segment joining the end 
points of if and if (resp. i^ andi^). 

(in) If 9 G]0,7r[, X(M) is contained in the convex-hull 8 (T) ofY. If 9 = TT, 

X(M) is contained in the intersection of the slab —1/2 < x^ < 1/2 
and one of the two half spaces determined by the plane containing if, 
C,i = 0,1,2. 
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(iv) X(M) is invariant under the symmetries with respect to the planes 
xi = 0 and X3 = 0. 

(v) // d is given as in (11), then this function of r and 9 measures the 
oriented distance between £Q  and £Q . This means that 

1. |d| = dist(#,*o). 
2. d < 0 if and only if £f fl £^ ^ 0, i = 1,2; and d > 0 otherwise. 

3. d = 0 if and only if £Q = £Q . 

(vi) For each 9 E]0,7r], there exists an only re E]0,1[ such that d(re) = 
0. The function d{r) is negative in ]r^5l[ and positive in ] — l,r0[. 
Furthermore, limr_>_i d{r) = 0 and d(r) has an unique critical point 
r'e G] — l,r0[. The number do — d(r^) is the maximum of the opening 
function d{r) on ) — 1,^] . 

(vii) X is an embedding if and only if d > 0. // d = 0 (i.e., r = rg), 
t/ien X|M_7+ and X\M_^- are injective, where 7"1" and j~ are the 
connected components of d{M). 

The numbers r G] — 1,1[ and ^ G]0,7r] are analytical parameters of our 
family of surfaces. Prom now on we will refer to XQ r as the immersion 
arising in above theorem for the values r and 9. Analogously we indicated 
by MQ r the disc with the corresponding complex structure. 

Then we can describe our family of surfaces M as follows: 

(25) M - {Xer : Mor -> M3 /r G] - 1,1[, 9 G]0,7r]}. 

Note that 9 has a clear geometrical meaning: the angle that l^ makes 
with i^, i = 1,2. The meaning of parameter r concerns to the underlying 
complex structure of the surface. 

Remark 6. Elementary geometrical arguments give that the complete ori- 
entable minimal surface without boundary 

Xer'-Mor—^E3 

obtained from XQr(Mer) by successive Schwarz reflections about straight 
lines is invariant under the vertical translation T by vector (0,0,2). 

The case f G Q and r = re is specially interesting. The immersion 

Xe = Xe re is singly periodic and the induced immersion 

Ye : Me re/(T)—>RS/(T) 
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has four ends and finite total curvature.   If we write ^ = p/g, p,  q E N, 
gcd(p,q) — 1, then it is not hard to check that: 

• If p is even the surface MQ rQ is the two sheeted orientable covering of 
a nonorientable minimal surface properly immersed in M3. Moreover, 
YQ has four ends, its total curvature is —87r(p + q) and MQ re/(T) has 
genus 2p — 1. A fundamental piece bounded by straight lines of the 
surface ^(M^), 0 = 7r/2, is illustrated in Figure 13. 

Figure 13:   A fundamental piece of the surface Xe(More), for 8 = 7r/2, 
contained in the slab —1/2 < £3 < 3/2. 

• If p is odd the surface XQre{Mere) is invariant under a translation T" 
by vector (0,0,1), and the induced immersion 

Y^.M9rJ{T') 7<r') 
has two ends.   Moreover, if q is even (resp.   q is odd), YQ has total 

curvature -87r(p + q) (resp.   -47r(p + q)) and M^^T') has genus 
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2p (resp.   p).   Figure 14 shows a fundamental piece of the surface 

X0(M0r,),0 = 7r/3. 

Figure 14:   A fundamental piece of the surface Xo(Mere)^ for 6 = TT/S, 

contained in the slab —1/2 < £3 < 1/2. 

© The ends of YQ re are embedded if and only if 7r/8 belongs to N. 

3.7. Stability and limits. 

Finally, a few words about the stability of the surfaces XQr(Mgr), r E 
l-l.r*]. 

From (16), it is straightforward to check that /(Z^L) > 0. Since 
limr->i f(r) — —00 (see the proof of Lemma 3.5), then re E]

2
^

1
 ,1[. There- 

fore, for r = rg, the spherical image of the Gauss map of X contains a 
hemisphere, and so this immersion is unstable. 

However, and in the sense explained in the following proposition, the 
limit surface obtained as r —> — 1 is stable. 

Proposition 1. As set of points in R3
; the surfaces Xor(Mor) converge 

on compact subsets of E3,   as r   ->   —1,   to the union of the segment 
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[(0,0, —1/2), (0,0,1/2)] and the two parallel planar sectors in TTI and ^2 de- 
termined by the planes cos(|)a;i — sin(|)a;2 = 0 and cos(|)a;i + sin(|)a;2 = 0 
and contained in the half space X2 > 0. 

Furthermore, for each e E]0, l/2[, the surfaces XQr(MQr) fl {|x3| < 
1/2 — e} converge on compact subsets o/R3, as r —> —1, to the segment 
[(0,0,-1/2 H-e), (0,0,1/2-e)]. 

An example of these limit surfaces has been illustrated in Figure 6. 

Proof. For convenience, we write 

n/ \ dz 
gr=iz,    r)r = B{r)- 

z2Vzn + z-n + 2r1 

and observe 

2Xer(P) = Re(J    ({l-g2
r)r,r,i{l+g2

r)r,r,2grr)r)\ 

for r e] - 1,1[. Recall that z(Po) = 1. 
Note that z(Mer) = z{MQr>), r, r' G] - l,r^], and label SI = z(Mor), 

re)- l,ro\. 
If we write A — D fl O, then 2;|z-i(^) is injective, and so we identify the 

sets z~l{A) and A. 
We deal with the convergence of the family of minimal surfaces 

{Xer{A)}, asr -► -1. 
2   

Introduce the change of variable z = B(r)2-n x.    In the z-plane, A 
2   

corresponds to the set B(r)n-2 • A, the Weierstrass data become 

._, N_^_ . da; 
gr = iB(r)2-n x,    ^ = — z- 

x2-n/2yB(r)^x2ri + 2rB{r)^xn + 1 

and the initial condition is PQ = ^(-fb) — B(r)n-2. 
Taking into account that limr_^_i B(r) = 0 (see the proof of Lemma 3.5), 

2        
then, as r -» -1, the set B(r)n-2 A converges to $7, and the Weierstrass data 

dx 
0-1 = 0,   77-1 = -^^72- 

Moreover, note that limr_^_i x(Po) = oo. 
2 

Hence, if r^ is a sequence converging to —1 as j —>• oo, and Pj G B(rj)n-2 • 
A, then the sequence Xerj(Pj) converges in M3 if and only if the sequence 
Pj converges in ft U {oo}. 
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If Pj  converges  to  a finite  point   (in the  z-plane),   then  z(Pj)   = 
2 

B(rj)2~nPj converges to 0 in the z-plane. Thus, it is obvious that Xrj(Pj) 
converges to a point in TTI (lying in the sector described in the statement of 
the lemma). 

If Pj converges to oo (in the x-plane), an analogous argument gives that 
Xorj{Pj) converges to a point of the a^-axis whose third coordinate lies in 
[0,1/2]. Furthermore, as d{r) —> 0 as r —>• — 1 (see Lemma 3.5), then, for 
any q G [(0,0,0), (0,0,1/2)], we can find a sequence Pj as above converging 
to q. 

By using the symmetry S^, we conclude the proof of the first part of the 
proposition. 

For the second part, take e G]0, l/2[. The third coordinate function of 
XQr is continuous at (0,-1) and (oo,—1), as function of {z,r). Then, we 
can find 5e > 0 and a compact set K€ C fi, such that 

z (X^;1 ({la*I < 1/2 - e})) C Ke,    Vr e] - 1, -1 + Se[. 

Hence, if rj is a sequence converging to —1 as j —> oo, and in the 
2   

£-plane, Pj £ B(rj)n-2 • (^4 fl Ke), then Pj converges to oo, and so, as 
we have mentioned above, the sequence Xorj{Pj) converges to a point of 
[(0,0,0), (0,0,1/2)]. 

Taking the symmetry Sh into account once again, we conclude the proof. 
□ 

4. Properly immersed minimal surfaces in a wedge of a slab. 

By the strong halfspace theorem [3], a properly immersed minimal surface 
in a wedge of a slab has non empty boundary. In this section we prove that 
such a surface satisfies the convex hull property. Furthermore, we obtain 
some non-existence theorems for properly immersed minimal surfaces with 
planar boundaries. 

First, we introduce some notation. 
Let L be the segment {(0,0, t)  : t G] - l/2,l/2[}. Label 

W | {x^x^xz) GM3  : -- <a;3 < -}. 

For 9 G]0,27r[, we write 

We = {(xuX2,xz)eW-L :   arg((x1,X2))G[0,^]}UL. 
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Define also 

Tig = {{xi.x^.xz) € W-L : arg((xi,X2)) = 6} U L, 

where (9 G [0,27r[. 
Recall that the surfaces XQr(MQr), r G] — l,r^[, constructed in Section 3 

are contained in a wedge of angle 9 G]0, TT] of a horizontal slab. Furthermore 
the thickness of this slab is 1. Thus, after a rigid motion (unique if 9 ^ TT), 

we can assume that d(XQr(MQr)) C d(We). In the case of 9 = TT we choose 
the rigid motion in such a way that X7Tr(M7rr) is symmetric with respect to 
the plane xi — 0. 

For the sake of simplicity, we label Sor = XQr(MQr). Moreover, we write 

SQ instead of Sere- 
We start with the following lemma: 

Lemma 7. Let M be a connected properly immersed minimal surface in the 

wedge WQ1, 9I < 27r, and suppose that d(M) C SQ. Then M is a planar 

region in SQ. 

Proof. Up to a homothety and a translation in the direction of the xi-axis, 
we can assume that: 

• The distance from d(M) to the planes £3 = 1/2 and £3 = —1/2 is 
positive. As the immersion is proper, the distance from M to the 
planes X3 = 1/2 and X3 = —1/2 is also positive (see Theorem 2). 

• There exists S > 0 such that xi > 5, }i(xi,X2,xs) G d(M). 

First suppose that #1 < TT. 

An application of Theorem 2 gives that E^ fl M = 0. Then, consider 

(9o = lnfimum{0 E [0,7r] : £0 fl M = 0} . 

The theorem holds if and only if #0 = 0. 
We proceed by contradiction, and suppose 9o > 0. Note that Theorem 

2 gives M C WeQ. 
From Definition 1, it is clear that 

dist(L,d(Se0r)) < ^"v   r G] - l,r,0[. 
2sin(^J 
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Figure 15: The surfaces Sj  fl WQ0 and M. 

Up to a translation in the direction of the xi-axis, we can assume 

(26) <J> ^0 

2 sin 
(*)' 

and so d(SeQr) fl M — 0, Vr G] — 1,7^]. In the following we prove that, in 
fact, Se0r n M = 0, Vr e] - l,r^0]. Otherwise, we can find r7 G] - lyr^0] 
such that 56ior/ fl M ^ 0. On the other hand, taking into account that the 
surfaces are properly immersed, we use Proposition 3.7 to infer the existence 
of s G] - 1,7-0] such that SoQr fl M = 0, Vr G] - 1, s]. Let r" = Infimum{r G 
] — l,r0o] : SQ0r fl M ^ 0}. Since S^ and M are properly immersed and 
do not have any contact at infinity, Vr G] — 1, rgj, then SQQ r" fl M ^ 0 and, 
obviously, SQQr fl M = 0, Vr G] — l^'f. Moreover, the above arguments 
imply that: 

{SeQr» n M) n (d(S0o r") u a(M)) = 0. 

Hence, Theorem 2 leads to a contradiction. 
In particular, SQQ fl M = 0. 
Denote by 5^o the homothetic shrinking of S^ by t, t > 1. It is clear 

that SQ and M do not contact at infinity. Taking into account that SQQ 

lies in We0 and X3 ((S(50o) - L) D (SQ U S^)) = {-1/2,1/2}, it follows that 

0(SSo n Wi0) C (M = 1/2} U L, and so (S|o n M) n (a(Sg0) U 9(M)) - 0, 
t > 1. Reasoning as above, Theorem 2 implies that SL fl M = 0, t > 1. 
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For any t > 1, the surface SQQ fl Wo0 splits W^0 into two connected 
components, one of them bounded: Int(S'^o)) and the other one unbounded: 
Ext(iS0o). For t = 1, the surface Se0 also divides WQQ into two connected 
components, that we continue calling Int(50o) and Ext(So0). 

Taking into account that M is connected, d(M) C Ext(S^ ) and SQ fl 
M = 0, then it is easy to check that M C Ext(S£ ), Vt G [1, +oo[. Therefore, 

M C fi = fl^iExt^^). Taking into account that (56>0 fl £00/2) — L is a, 
connected arc diverging to both ends of Se0, it is not hard to deduce that 
S0o/2 H fl = 0. Hence, 

M n £0o/2 - 0. 

Since M is connected, this fact contradicts the choice of 0o- 
Finally, suppose that Oi > TT. Let us see that in fact M C W^. Otherwise, 

Mi = M fl Wj^ — W^r is a surface contained in a wegde of angle 61 — TT < TT 

whose boundary lies in E^. So, by using the preceding reasoning, Mi is a 
piece of a plane, which is absurd. This proves the lemma. □ 

To state the next algebraic lemma, we will need the following notation. 
For any a G S2 and y G M3, define 

Hy
a = {xeR3  :  (a,(x-y))>0}. 

As usual, we identify E2 = {Oi, £2, £3) E M3   : £3 = 0} and S1 = §2 n R2. 

Lemma 8.  Given 3 G S2 — {(0,0,±1)} and y G R3, £/iere exists SQ G S1 

and z G R2 5^c/i ifeaf: 

• (^ n w) c (fll n w). 

• T/ie map x \—> (a, (x — y)) is bounded in IHU — HZ ) fl W. 

The proof is merely an exercise. We will omit it. 
We can now prove the main result of this section. 

Theorem 5. Any connected properly immersed minimal surface in a slab 
wedge WQ, 6 G]0,7r[; lies in the convex hull of its boundary. 

Proof. Let M be a minimal surface satisfying the hypotheses of the theorem. 

If M is a piece of a plane the result obviously holds. Suppose that M is 
not flat. 
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Consider a £ S2 and y G M3 such that d(M) lies in HK. We have to 
prove that M C H^_a too. 

We proceed by contradiction, and suppose that M D (H^ — d(H^)) ^ 0. 
Let Mf be a connected component of M fl iJ|. If a = (0,0, ±1), and taking 
into account that d{M') C c^jffH), it is easy to deduce from Theorem 2 that 
M' (and so M) is flat, which is absurd. In what follows, we assume that a is 
not vertical. Consider ao E S1 and z G R2 given by Lemma 4 when applied 
to (a, y). If M1 C i7| — HZ , then, from Theorem 2 we deduce, as above, 
that M' is a planar region, which is absurd. Hence, M' fl H^ ^ 0. 

Let M" be a connected component of M' fl i/J , and take 6o ^ S1 or- 

thogonal to SQ.   Since d{M") C  (d(HZQ) n W^) and (9 < TT, then the set 

{(#,&()) : ^ ^ ^(M^)} is bounded either from above or below. 

Up to a rigid motion, we can suppose that SQ = (0,1, 0), z = (0, 0, 0) and 
d(M") C SQ. Thus, we can apply Lemma 4 to deduce that M" is a planar 
region. This is contrary to our assumptions, and concludes the proof.       □ 

Corollary 1. Let M be a connected properly immersed minimal surface in 
the halfslab W^. Assume d(M) C Wg, 9 E]0,7r[. Then M lies in the convex 
hullofd(M). 

Proof. It suffices to prove that M C WQ. Indeed, if M (ji WQ, take a 
connected component M" of M — WQ. Since d(Mff) C £#, then, up to a 
rigid motion, we can apply Lemma 4 to infer that M,f is a planar region in 
E0, which is absurd. □ 

Corollary 2. Let M be a connected properly immersed minimal surface in 

the halfslab WQ^ 0I G]0,27r[. Assume d(M) C WQ, 6 G]0,7r[. Then M lies 
in the convex hull of d(M). 

Proof It suffices to prove that M C Wn, and use Corollary 4. Indeed, if 
M (£ WTT, take a connected component M" of M - W^. Since <9(M") C S^ 
and M" lies in a wedge of angle 6i — TT < TT, then, up to a rigid motion, 
we can apply Lemma 4 to infer that M" is a planar region in S^, which is 
absurd. □ 

Theorem 4 can be extended to the case of 6 = 0.  For any d G]0,+OO[, 
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define 

Cd = | (31,32,a*) 6 M3   : 0 < X2 < d, -~ < xz < - 

Theorem 6. Any connected properly immersed minimal surface in Cd, d G 
]0,+oo[; lies in the convex hull of its boundary. 

The proof is as in Theorem 4. 

Remark 7. Theorem 4 and Corollary 4 fail in the case of 9 = TT. A simple 
counterexample is the surface S^, for any r G] — 1,7V [. A suitable piece of 
a helicoid is another counterexample. 

The following theorem represents another interesting application of the 
above techniques. 

Theorem 7. Let M be a connected properly immersed non flat minimal 
surface in a wedge WQ, 8 E]0,7r]. Suppose that d(M) C EQ U E^. Then, 

dist(L,0(M)) < 
2 sin (§)' 

where dg is given in Definition 1. 

Proof. First observe that the sets d(M) fl EQ and d(M) fl Eg are not empty. 
Otherwise, Lemma 4 says that M is flat, which is absurd. 

Suppose that dist(L,<9(M))   > (e\' After a suitable homothetic 

shrinking   of  M,   we   can  suppose   that   dist(L,d(M))    >    0 . %\   and 
2sinV2) 

dist(a(M),{|x3| = 1/2}) > 0. ^Frorn Definition 1, it follows that dist(L,> 
d(Ser)) < ——f—^v, and so we can use the surfaces S$r, r G] — l,r^[, as bar- 

viers for the maximum principle application.  So, reasoning as in the proof 
of Lemma 4, we obtain M fl 3$ = 0. 

Consider the homothetic shrinking SQ of SQ by £, t > 1. Following 
the proof of Lemma 4, we use these surfaces as barriers to deduce that 
M fl E0/2 = 0, which contradicts the fact that M is connected. □ 

The surface 5^r/, corresponding to the maximum dg of the opening func- 
tion, reaches the equality in Theorem 4. Hence, this result is sharp. 

Finally, we prove a non existence theorem for properly immersed non 
flat minimal surfaces with planar boundary. As stated in the introduction, 
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this theorem is a generalization of a well-known result of Nitsche [12] in the 
non compact case (see also [14]). 

For d e]0,+oo[, label 

F% = I (xi,0:2,33) € Cd : xs = -- I , 

F] = I (0:1,2:2,2:3) G Cd : 2:3 = - I . 

Moreover, for any d e]0,1[, and t G R, we denote 5^ as the Jenkins-Serrin 
graph over the rectangle {*} x [O.d] x [—5, 5] with boundary values: 

• -00 on {t}x]0,d[x{—5, 5}, 
2' 2J 

1    1- 
2' 2- 

• Oon{t}x {0,d}x [-i,i]. 

See Remarks 2 and 5. 

Theorem 8, Let M be a connected properly immersed minimal surface in 
R3 satisfying: 

1. M cCd and d(M) C (*$ U F]); ^ere 0 < d < 1, 

2. 2:1 >0; 7(2:1,2:2,2:3) ed(M). 

Then M is a planar region in F® U Fj. 

Proof 

Suppose M is not flat. 
Prom Theorem 4 we get xi > 0, 7(2:1,2:2,2:3) € M. Thus, M fl 5^ = 0, 

£ < 0. If it is necessary, we take d', I > d' > d, and translate M in the 
direction of the o^-axis, in such a way that the distance from M to the 
planes 2:2 = 0 and 2:2 = d' is positive. In particular, M fl 5^, does not meet 
d(M)uS(55l), t>0. 

On the other hand, as the set Cd' - (UtGR1^') 'ls ^c^ded in {x^ = 
— 5} U {2:3 = 1} and M is not flat, then there is tf > 0 large enough such 
that M H 8%, ^ 0. 

Label to = Infimum{t G E : M fl S^, ^ 0}. From the above arguments, 
to G [0, +oo[. As M and S^.te M, are properly immersed, then S^HM ^ 0. 
Therefore, S^? and M have an interior contact point, and so Theorem 2 leads 
to a contradiction. □ 
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Figure 16: The surfaces S^.te R, and M. 
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