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Energy Minimizing Maps to Piecewise Uniformly 
Regular Lipschitz Manifolds 

CHANGYOU WANG 

We prove the optimal partial regularity of energy-minimizing maps 
into polyhedral and certain other approximately polyhedral mani- 
folds. We also estimate the size of preimages of points in the (k — 2) 
skeleton of a polyhedral manifold. 

1. Introduction. 

For a bounded smooth Q, C Rm and a closed X C RK, we define 

ff^X) = {u E ff^i^Kz) e X for a.e. x G 0} 

of maps u : Q, —> X with energy E(u) = Jn \Du\2 dx < oo. A map u G 
JH'

1
(Q,X) is energy minimizing if 

(1.1) E(u) < E(v), 

for every v G iJ1(Jl, X), with t;|^n — Mdn in the sense of trace. Whenever a 
given Dirichlet boundary data g : 30 -> X admits an extension in iJ1(0, X), 
there exists an energy minimizing extension. It is a very interesting ques- 
tion to ask whether such a minimizing map is regular or at least regular 
off a small closed set. When X is a smooth compact Riemannian mani- 
fold without boundary, the problem has been well studied by many people. 
It was first proven by Schoen-Uhlenbeck ([SU], [SU1]) (see also Giaquinta- 
Giusti [GG]) that minimizing maps are smooth in ft except a closed subset 
whose Hausdorff codimension is at least 3. Later, their results were gen- 
eralized to p-energy minimizing maps by Hardt-Lin [HL], Puchs [Fm], and 
Luckhaus [Ls] for 1 < p < oo. When X is an Alexander space, which has 
nonpositive curvature, it was first proven by Gromov-Schoen [GS] and then 
by Korevaar-Schoen [KS], [KS1], Jost [Jl], [J2], and Serbinowski [Stl] that 
any minimizing map is Lipschitz continuous in O and continuous up to the 
boundary dQ if the boundary data are Lipschitz continuous. In the thesis 
[St2], Serbinowski also showed a small energy regularity theorem in case 
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that X has curvature bounded above. Our main theorem, stated below, 
allows the possibility of X having infinite curvature. When X is a round 
cone in RK, it has been treated by [Lf], [HL1]. As a matter of fact, the 
theory developed by Jost [Jl] also allows the domain to be certain singular 
spaces (cf. also [C], [Lfl] for related results). 

In this note, we will consider a special class of Lipschitz submanifolds 
X C RK) which is called piecewise uniformly regular Lipschitz manifolds 
which include both C1 and polyhedral submanifolds (but not varieties with 
cusps) and which will be defined below. Our main result is the following: 

Theorem I. Let X C RK be a compact k-dimensional piecewise uniformly 
regular Lipschitz manifold and u G i?1(fi,X) be an energy minimizing map 
with ix|^ = g^Q where g : Q, -¥ X is a given Lipschitz continuous map. 
Then 

11. There exists a closed subset E C £1, with dim# S < m — 3; such that 
u € Ca(fj \ S,iV) for some 0 < a < 1. Here dim^ denotes the 
Hausdorff dimension of a set in R™, and £1 = O U 90. For m = 3; S 
is discrete. 

12. If, in addition, X C R^1 is a k-dimensional polyhedron. Then for 

any p E Xk-2, either u = p on O or &YniH{u'~1(p)) < m — 1. Here 
u-1(p) = EU(u\n^)-l(p). 

Remark II. In fact, it follows from the proof of 12 (see §4 below) that if 
p G X/c_2 has the property that there is no minimizing geodesies in X passing 
through _p, then either u = p or diniff (u~^(p)) <m — 2. In particular, if X C 
i?3 is a 2-dimensional convex polyhedron such that X has infinite positive 
curvature at each a G XQ (i.e., the enclosed angle of X at a is less than 27r), 
then we actually obtain that either u = a or dimjyr(n""1(a)) < m — 2. 

Now we define a piecewise uniformly regular Lipschitz manifold. We will 

denote the cone over a Y C SK~l by 

C(y) = {Ax|A>0,xGy}. 

The tangent cone of a subset X C i?^ at a point a is 

TaX = C ( ne>oClos < p—^7 : 0 < \x - a\ < e,x G X Ij . 

A fc-dimensional piecewise uniformly regular Lipschitz manifold X C R 
is roughly a C1 triangulated, uniformly asymptotically conical, Lipschitz 
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submanifold. For k = 1, X is a piecewise C1 Jordan curve. For k > 2, 
X being a fc-dimensional Lipschitz submanifold of RK means that X is a 
closed set which is locally the graph of a RK~k valued Lipschitz function 
defined on a domain in Rk. Second the triangulation of X is assumed to be a 
bilipschitz map from X to the support of a simplicial complex so that, for the 
induced skeleta, 0 = X_i C XQ C XI C • • • Xk-i C Xk = X, each difference 
Xi \ Xi-i, for I = 0, • • • , fc, is an open Z-dimensional C1 submanifold. Third 
we assume that, for each I e {0, ••• ,fc} and a G Xi \ Xi-i, there exists 
(k — I — l)-dimensional piecewise uniformly regular Lipschitz submanifold 
Ya of S1*--1 PI (TaXi)1- (inductively defined) such that the tangent cone 

(1.2) TaX = Ta(Xi \ Xz_i) x c(ya)(= rf x c(ya)). 

Moreover, for each a G X, there exist neighbourhoods /7a (c X) of a, V^ 
(C i?x) of 0, and a Lipschitz map *a : TaX nVa ^ X nUa such that 
$o(0) = a and for some ^a G (0,1), 

(1-3) Um sup Up(^b\TbXnB^r   )) = 1, 
^0 6GJB(a,r)n(Xi\Xi_i) 

for alH G {0, • • • , fc}, where r^a = ^a niin{r, dist(6, X^-i)}. Finally, if {bn} C 
X converges to a G X, then there exists a Z-dimensional piecewise uniformly 
regular Lipschitz submanifold Za of 5jFC~1 with -1 < I < k — 1, which may 
also depend on {bn}, and bilipschitz maps T^^ : T^X —> Rk~l~1 x C{Za) 
such that T5n)a(0) = 0 and 

(1.4) lim maxil + ||r6n:a - 7d||,Lip(r6n,a),Lip(T6;;a)} = 1. 

Here ||r6n,a - Id\\ = snp0^eTbnX ^ff'"1 ■ 
It is easy to verify that any C1 manifold M C i?^ is a piecewise uniformly 

regular Lipschitz manifold. An example of a fc-dimensional piecewise uni- 
formly regular Lipschitz manifold with singularity is a fc-dimensional poly- 
hedron P = dU C i?/c+1, here U C i?^1 is a simply connected bounded 
polyhedral domain. 

Notice that in the terminology of [GS], a fc-dimensional piecewise uni- 
formly regular Lipschitz manifold X may have infinite curvature at p G 
Xfc_2. Hence it doesn't seem possible to apply the analytic method devel- 
oped by [GS] directly. In fact, an energy minimizing map here may have dis- 
continuity. Moreover, since X has singularity in general, it seems impossible 
to have the usual Euler-Lagrange equations for minimizing maps. Our idea 
is follows. First we prove the Holder continuity for energy minimizing maps 
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into any tangent cone of a compact piecewise uniformly regular Lipschitz 
manifold. Then we combine the usual blowup arguments of the domain and 
target and the extension Lemma due to Luckhaus [Ls] (a generalization of 
that of [SU]) to prove that, at zero energy density points, suitable rescalings 
of an energy minimizing map into a compact piecewise uniformly regular 
Lipschitz manifold X converge strongly in Hl to an energy minimizing map 
from the unit ball B C Rm into a tangent cone of X. Both steps involve 
an induction on k (the dimension of X), the structures of tangent cones 
(cf.(1.2)), and local approximation property to a piecewise uniformly regu- 
lar manifold by its tangent cones (cf.(1.3)-(1.4)). In the process of proving 
the boundary regularity, we give a simple proof of the boundary monotonic- 
ity inequality (cf. [SU], [HL], [Fm] for smooth X), which covers the case 
that X C RK is any closed subset. To prove 12 of Theorem I, we generalize 
the dimension reduction argument by [Lf] and [GS]. 

The paper is written as follows. In Section 2, we prove the continuity 
for minimizing maps into tangent cones of a compact piecewise uniformly 
regular Lipschitz manifold and the interior partial regularity for minimizing 
maps into a compact piecewise uniformly regular Lipschitz manifold. In 
Section 3, we prove the boundary monotonicity inequality and boundary 
regularity. In Section 4, we prove the Hausdorff dimension estimation for 
preimages. 

Acknowledgement. The author wishes to thank Professor Hardt for 
suggesting this problem. The author is partially supported by NSF DMS 
9970549. 

2. Interior Partial Regularity. 

In this section, we first prove Holder continuity for minimizing maps into 
tangent cones of a compact piecewise uniformly regular Lipschitz manifold 
and then show the small energy regularity for minimizing maps into a com- 
pact piecewise uniformly regular Lipschitz manifold. 

Let us first recall both the energy monotonicity inequality and mono- 
tonicity of order functions for minimizing maps into cones. 

Lemma 2.1. Assume that X C RK is a cone and u E iJ1(0,X) is energy 
minimizing.  Then 
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(1) For any x G £1 and 0 < t < s < dist (x, 80,), 

(2.1) t2-m f       \Du\2 + 2[ \y-x\ . 
JBt{x) JB.(x)\Bt(x) Or 

' [       \Du?, 
JBs{x) 

(2) 

(2.2) Au • u = 0, A|^|2 = 2|D^|27    in ft, 

in t/ie sense of distribution. 

(3) For a G ft and 0 < r < dist (a, 5ft).   Either u = 0 on B(a)r) or the 

order function N(a, s) 

for s G [r, dist (a, 9ft)). 

order function N(a, s) =    r
Bs(a) ■ l2    is monotonically nondecreasing 

JdBs(a) \U\ 

Proof. Since the interior monotonicity equality for minimizing maps can be 
proven by only using the variations of domain, (1) follows exactly from that 
of [HL] (cf. also [GS]). Let <f) G C^ft^R) be given. Since X is a cone, 
Ut(x) = (1 + t(j){x))u(x) : ft —> X for |t| small is a comparision map to u. 
By minimality oiu, we have 

0 = ^|^o j \Dut\
2 -2 j Du- D{u(t>), 

which clearly implies both equations of (2.2). To prove (3), we first notice 
that (2.2) implies \u\2 is a (nonnegative) subharmonic function. Hence if 
J&B Ca) l^l2 = 0> then the mean-value inequality for \u\2 yields u = 0 on 

Br(a). Otherwise fdB ,<, \u\2 > 0 for all s G [r, dist (a, 9ft)) and N(a^s) is 
absolutely continuous for s G [r, dist(a,<9ft)) so that it is differentiable for 
a.e. s. In fact, for a.e. s G [r, dist (a, 9ft)), 

—N{a, s) = -* = —rs - 
ds JdBs(a) |UI 

\fdB3(a) \U\2) 
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and 

(2.3) (7        M2)=^/        M2
+/        §-\nf. 

\JdBs(a) Js 
s       JdBs{a) JdB3{a)OS 

On the other hand, approximating the characteristic function of Bs(a) by 
suitable test functions <£>, (2.2) implies 

(2.4) 2 A       l^ixl2 = / -j-H2, a.e 5 G [r,dist(a,5fi)). 

Combining (2.3) with (2.4), we have 

d  „,        N        rt   /aBs(a)la7l    IdBs(a)\U\    ~[lB3(a)\Du\   ) 
—N(a,s) - 25 -^ '—. 

{fdBs(a) \U\2) 

1 i 

du 2\
2 

Observe that, by the Cauchy inequality, (2.4) implies 

/       \Du\><([        H2]2 ([        ,.  ,   ,    • 
JBs{a) \JdBs(a) )       \JdBs(a)   as     ) 

Therefore 

—N(a,s) > 0, a.e. 5 G [r,dist(a,<9Q)). 
as 

The proof is complete. □ 

Corollary 2.2. Let X C RK be a cone and u G i?1(0,X) 6e an energy 
minimizing map.  Then 

(2.5) r2-m f       \Du\2< flog(-))   V-m / M2, 
r(a) 

/or 0 < r < 8 < dist (a, dft). 

Proof. First we notice that (2.3) and (2.4) imply 
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Integrating (2.6) from r to 5, we get 

2 f (a2-™ [       IDUA — < s1-™ f \u\2da. 
Jr     \ JBa{a) )    ° JdBs(a) 

This, combined with (2.1), clearly implies (2.5). □ 

Now we are ready to prove the interior partial regularity for energy mini- 
mizing maps into a compact piecewise uniformly regular Lipschitz manifold. 
It is well known that iterations of the following energy improvement Lemma 
and the Morrey's decay Lemma (cf. [Mc]) yield the interior partial regularity 
(cf. [SU], [HL]). 

Lemma 2.3. Assume that X C RK is a k-dimensional compact piecewise 
uniformly regular Lipschitz manifold. There exist €Q = eo(m,X) > 0 and 
9Q = 9^{m) X) E (0, \) such that ifuE J?1(ri,X) is energy minimizing and 
satisfies, on Br(x) C ft, r2~m fBfx\ \Du\2 < €§, then 

(2.7) (M2-m / \Du\2 < l-r2-™ [       \Du\2. 
JBe0r(x) Z JBr(x) 

Proof. First notice that if we define uXir(y) = u(x + ry) : Bi -> X then 
Uxp G i?1(Si,X) is also energy minimizing. Hence we may assume that 
x = 0, r = 1. Suppose that the Lemma were false. Then, for any 9 G (0, |), 
there exist minimizing maps {un} C F^B^X) such that /^ \Dun\2 = e^ I 
Obut 

(2.8) 02-m/   iDun]2 > ±e2
n. 

JBe 

Let an = rg-r $B un. Then the Poincare inequality implies that 

(2.9) dist2(an,X) < C [   \un- an\2 < C [   \Dun\2 < Ce2
n. 

JB! JB! 

Hence there exist {&n} C X, with 

(2.10) \an-bn\ < Cen. 

Passing to subsequences, we may assume that there exists a G X such that 
bn -> a. Denote Rn = |6n - a|. Then we proceed as follows. 



664 Changyou Wang 

Case 1.   R = limn^rv — < oo: we know 

Un CLnn + R
2

n + \bn-an\ 

<C 

and 

JB! 
D- 

un - a 
= 1. 

Hence we may assume that vn = Un
€~

a —> v weakly in H1 and it is readily 
seen that v(B1) C TaX. 

We may always, after passing to subsequences, that there exists ZQ £ 
{0,1, • • • , A;} such that {bn} C Xi0 \ Xi0-i. 

Case 2.   R — oo: we divide it into two cases. 

Case 2(a). a G X;0 \ XiQ-i: it then follows from the definition of 
X that there exists a /-dimensional piecewise uniformly regular Lipschitz 
submanifold Za C 5jK'"1, with -1 < I < k - 1, and bilipschitz maps 
Tbn,a : TbnX -> R*-1-1 x C(Za) such that T6n)a(0) = 0 and satisfy (1.4). 
Since vn — ^=^L [S bounded in iJ^Si,^), we may assume that vn -> v 

weakly in H1. We need to show that Im (v) C R1*'1"1 x C(Za). By the 
EgrofF's theorem, we can assume that for any S > 0 there exists Es C i?i, 
with (JSJI < 5, such that 1^1 and \v\ are bounded on Bi\Es and Vn converges 
to v uniformly on Bi\Es. By the defintion of tangent cones, we know that 

there exists wn : Bi \ Es -> TbnX such that 

(2.11) Wn\ < Tin, 

for some ryn, with linin^oor]n = 0. Let wn = Tbn,a(wn) : Bi\Es ^ R 

C(Za). Then, by (1.4), 

(2.12) \wn -v\<\v- Vn\ + \vn - Wn\ + \Wn - Wn\ 

<\v- vn\ + \vn - wn\ + ||T6n)a - Id\\\wn\ -> 0. 

k-l-1 

Hence, v maps Bi \ Es to R k-l-i C{Za). Since 5 is arbitrary, we conclude 

that v maps Bi to i^-'-1 x C{Za). Moreover, we see that 

(2.13) 
dist(&n,Xi0_i) 

hm  = oo. 
n—>oo en 
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Case 2(b). a G XiQ-\. We may assume that there exist {6n} C ^0_i such 
that \bn - bn\ = dist(6n,Xi0_i). If 

(2.14) hz*A _, oo, 

we still let ^n — Un~ n. Similar to the discussion of Case 2(a), we can show 

that vn -> v weakly in H1 and Im (v) C R^1'1 x C(Za), where Za C S'^"1 

is given by Case 1. Otherwise, ' n~ n' —> C < oo. Hence one can see that 

I n~q'* -> oo. Now we repeat Case 2 with bn replaced by bn and vn — UT*~hr* 

so that, after repeating finitely many times, there exists {bn} C Xmo for 
some mo G {0, • • • , IQ — 1} such that 

(2.15) distfo^-x) ^ o0) 

and there also exists a p-dimensional piecewise uniformly regular Lipschitz 
submanifold Wa C S^"1, with -l<p<fe-l, such that vn = ^z^n _^ v 

weakly in H\ and Im (v) C R^P'1 X C(Wa). 
Now we need to show that vn —> v strongly in H1^^) and v : B3 —> 

TaX( or i^-'-1 x C(Za), or i^"^1 x C(W0)) is energy minimizing. In 
order to do this, we need to use (1.2)-(1.4) and the extension Lemma due 
to Luckhaus [Ls] (cf. also [SU]). 

Lemma 2.4. For a given closed subset X C RK. Let v,w G iif1(S'm_1,X); 

0 < A < i, e e (0,1). Suppose 

r Jsr 
v — w |2 

|I>t;|2 + |DHi8 + J 2^^^ • 

T/iere ea;i5^ Ci — Ci(m),C2 = ^(m) and a map </> G i?1(Bi \ Bi-.\,RK) 
such that 

<t,(z) = o(z),    V|z| = 1, 

LB, jD*|2£Ciif2(1+K)>' 
^(Bi \ BX-A) C {y € i2K I dist (y, X) < r} 

jl       2 — Tn 
^2^/i r = 02-71 64 A   2    . 



666 Changyou Wang 

Now we can proceed as follows. 

Case a. Im (u) C TaX: Take any comparision map v G Hl{Bi,TaX) 
coinciding with v in Bi \ Bi-.\0, where 0 < AQ < 1 is sufficiently small. By 
the Fatou's Lemma and the Pubini's theorem, there exists po G (1 — AQ, 1) 
such that 

(2.16) f      \vn - v\2 -> 0,     /      \Dvn\2 + \Dv\2 < C. 
JdBP0 JdBP0 

Choose Rn —> oo such that enRn —> 0. Define 

(2.17) vn =   ^ , Un = *a(Cn(Vn))- 
max(itri, 1^1) 

Here ^ is given by (1.3) in the definition of X so that 

(2.18) Km Lip(*a|TaXnB(o^nen)) = 1. 

Case b. Im v C R^1-1 x C(Za) for some Z-dimensional piecewise uniformly 
regular Lipschitz Za C SK~l, with — 1 < I < k — 1. Here we consider the case 
2(a) above only, since the other cases in case 2 can be handled in the same 
way. Taking any comparision map v G Hl(Bi,Rk~l~l x C{Za)) coinciding 
with v in Bi\ Bi-\Q) where 0 < AQ < 1 is sufficiently small. Hence, by the 
Fatou's Lemma and the Fubini's theorem, (2.16) holds too. From (2.14), we 

can choose Rn —> oo such that enRn —> 0 and Rn < 9a  ^  l~   , where 
6a G (0,1) is given by the definition of X. Define 

(2-19) g" =     sJ^T isiV        ^n = tf6n(enTa,6n(t5„)). max(itn, \v\) 

Here ^hn and Ta^n : R^1'1 x C(Za) -> TbnX is given by the definition of 
X. Therefore, (1.3) and (1.4) imply that 

(2-20) Jim max{Lip(ra)6n), Lip(*6n|r6nXnjB(o,jRnen))} = 1. 

Applying Lemma 2.4 to un and un, there exists a map un G Hl(Bi,RK) 
such that 

(2.21) {Ln(z) = un (Y~\J '    V^l < tot1 " An)' 

(2.22) un = Un, V|z| > po, 

(2.23) f \DiLn\2 < CXne2
n, 

JBPo\Bpo(1_Xn) 
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An -> 0, and dist('Un,X) -> 0 uniformly in BpQ \ i?p0(i_An)- Notice that 
un has its image out of X only in BpQ \ Bpo^i_xn) but with uniformly small 
distance to X. On the other hand, since X is a compact piecewise uniformly 
regular Lipschitz manifold, there exist a 770 > 0 and a Lipschitz retraction 
map F^ : X^ —> X (i.e. F(y) = y for y G X) such that Lip(Fr?0) < Co, 
here Xm = {x G i?jft:|dist(a;, X) < 770}. Therefore if we define wn : Bpo —> X 
by 

Wn(z) = Un(z),   V\z\ < po(l - Xn) 

wn(z) = Fm(un(z)),    y\z\ € (po(l - Xn),Po)- 

Then wn is a comparision map to un. Now we calculate the energy as follows. 
For simplicity, we only do the calculation in the case b. 

/      \Dv\2 < lim   /     \Dvn\ 
J n^oo JB 

= lim €n
_2 /      \Dun n->00 JBon 

< lim e n-
2 f    \Dwn\2 

J
BP0 

= lim e-2 f / \D^n\2 + / ^(^(fin))!2 

- ^iL^, \D (**• (^^ fe)))2 

+ /■ |D(FW(&,))|2|) 
JBp0\Bpo(1_An) / 

< Jim e-2 U2Lip2(*6n|T6nxns(o1JR„6re))Lip2(31a,6n) 

■ (1 - Xnr-2 f    \Dvn\2 + Up2(FV0) f iDinA 

^^((1+0(»))(1"A")m"2C|D"|2 + CA") 
\Dvf. 

Since the limit cone i?*1-'""1 x C(Za) appearing in case b above is also 
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a tangent cone of a fc-dimensional picewise uniformly regular Lipschitz sub- 
manifold Y C RKj the conclusion of Lemma 2.3 follows if we can prove 

Lemma 2.5. Assume that X is a k-dimensional compact piecewise uni- 
formly regular Lipschitz manifold. Then for any a G X there exists 
do = Oo(m^a^X) G (0,^) such that if u G ^(Bi^TaX) is an energy mini- 
mizing map then 

(2.24) 0O
2- f    \Du\2 < I f   \Du\2. 

Proof. It is done by an induction on k. 

(1) k = 1: Since X is a piecewise C1 Jordan curve. For a G -X"i, we know 
that TaX = R1 and a minimizing u G i?1(Si, R1) is a harmonic function so 
that (2.24) holds trivially. For a G XQ, we have TaX = OAi U OA2 and the 
angle between OAi and OA2 is positive. Here OAi for i = 1,2 is a ray in 
i?2 emmitting from the origin of R2. Observe that there exists an isometric 
map F : OAi U OA2 -> R1 so that F(u) : Bi -> R1 is a harmonic function, 
hence u is Lipschitz continuous and (2.24) holds again. 

(2) k > 2: Suppose that the Lemma is true for any Z-dimensional piecewise 
uniformly regular Lipschitz manifold for all 1 < I < k — 1. We need to 
show that the Lemma remains to be true for a fc-dimensional piecewise 
uniformly regular Lipschitz manifold X. To do it, we proceed as follows. For 
a G Xk \ Xk-i, since TaX = Rk we know that a minimizing u G H1(Bi,Rk) 
is a vector valued harmonic function so that (2.24) holds trivially. For 
a G X/\X/_i for some 0 < I < fc-1, we know that TaX = RlxC(Ya) with Ya 

being a (k—I — l)-dimensional piecewise uniformly regular Lipschitz manifold 

in S^-1. Therefore the minimality of u = (^1,^2) : Bi -> Rl x C(Ya) implies 
that ui : Bi —> Rl is a harmonic function and U2 : Bi -± C(Ya) is energy 
minimizing. Therefore, our proof is complete if we can prove (2.24) for any 
minimizing map w : Bi —> C(Ya). To do it, we first observe that we can 
assume that fdB \w\2 > 0 (otherwise Lemma 2.1 implies that w = 0 on 
Bi so that (2.24) holds trivially). Also notice that, since C(Ya) is a cone, 
w G H1(Bi,C(Ya)) is energy minimizing implies that Xw G H 1(Si, C(Ya)) is 
also minimizing for any A > 0. Therefore, to prove (2.24) for w is equivalent 

to prove (2.24) for Aiu, for some A > 0. By choosing A = (fdBl \w\2)~^ > 0, 

we may assume that w G H1(Bi,C(Ya)) satisfies fdBi \w\2 = 1. It follows 
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from Corollary 2.2 that 

(2.25) 02— J   \Dw\2<(log£\     . 

Hence for any fixed number €Q > 0 and minimizer w G iJ1(Bi, C(Ya)) with 

IdBt \w\2 = 1 and /si l^^l2 > eo we have 

(2.26) 92-m f   \Dw\2 < - f   \Dw\2, 

2 

provided that we choose 9 < e   eo . 

Claim. Assume that Ya is given as above. There exist eo = eo(m, Ya) > 0 , 
Oi = 0i(m, ya) G (0, ^) such that if w G if 1(Bi, (7(1^)) is energy minimizing 
satisfying /B  ID^I2 < e^ and JaB  |7i;|2 = 1 then (2.24) holds. 

Proof of Claim. We use induction on the dimension of Ya. It is easy to see 
that (2.24) is true when the dimension of Ya is 0. Suppose that (2.24) is 
true for any Z-dimensional piecewise uniformly regular Lipschitz submanifold 
Z C SK~l with I < dim(Ya). We want to show that (2.24) is also true for 
Ya itself. Suppose that it were false. Then for any 9 G (0, ^) there exist 
minimizing maps {wn} C H1 (Bi^C(Ya)) such that 

(2.27) /   |^n|2-e2|0,      /     K|2 = l, 

but (2.24) fails. Denote an = T^-T JdB wn. Then 

i 

\an\<C(m)( [ 
\Jdi 

The Poincare inequality implies, 

(2.28) /     \wn - an\2 < C(m) [   \Dwn\2 < Ce2
n, 

JdBx JBx 

and 

(2.29) dist2(an, C(Ya)) < i^ j     \wn - a„|2 < C(m)e2. 
\Oi>\\ JdB1 

Kl2)   <c. 
IdBi 
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Therefore there exist {bn} C C(Ya) with \bn - ar,.\ < Ce„. Passing to subse- 

quence, bn converges to b £ C(Ya). Note that |6| = \dB1\~2 because 

- IdBil-1 = \dBi\-1 ff     \b\2 - IwnA -4 0, as n \b\' - \dBr\-1 = Idflir1 I  /      \b\z - \wn\*) -^ 0, as n -»■ 00. 

Since Tbn(C(Ya)) = R1 x ^(Ya) and p = dim(ya) < A; - 1, it follows 
l&n| 

from the definition of Ya that there exists a piecewise uniformly regular 
manifold Zb C S'^-1, with q = dim(Z6) < p - 1, and bilipschitz maps 
T&n . : r6n (ya) -> i?^9"1 x (7(^6) which satisfy (1.4). Now we can repeat 

the argument similar to that of Lemma 2.3 to show that vn = Wr>~bn -> v 
strongly in H1, where v G Hl(B3_,Rp~~q x C(Zb)) is an energy minimizing 

4 

map.   Denote v = (fi,^) • ^3  -^ i?p~g x C(Zb)).   Then we have that 
4 

vi : #3 -> i?p~9 is a harmonic function and V2 : JBi -> C(Z6) is a mimimizing 
4 4 

map. Since Z& has dimension less than the dimension of Ya. It follows from 
the induction hypothesis that (2.24) holds for V2 for some small #i so does 
(2.24) hold for v.   This contradicts with the choices of un.   This finishes 

proof of the claim. Hence Lemma 2.5 follows by letting 0Q = min{e eo , 9i}. 
Therefore the proof of Lemma 2.3 is also complete. □ 

Completion of Proof of Interior Partial Regularity.. 

Lemma 2.6. Assume that X C RK is a k-dimensional compact piecewise 
uniformly regular Lipschitz manifold. Suppose that u G Hl(VL,X) is energy 
minimizing. Then there exists a closed subset E C O, with dimnOZ) < m—3, 
such that u eCa(tt\ S,-X") for some a G (0,1). 

Proof. Define S = {x G fi| limr_*or2-m /Br(x) \Dii\2 > 22-me2
0}, where 6o is 

given by Lemma 2.3. Then it follows from (2.1) and a standard covering 
argument (cf. [SU]) that E is closed with Hm-2(I1) = 0. On the other hand, 
for any XQ G fi \ S, there exists ro > 0 such that 

(2.30) r2-m I \Du\2 < 22-me2. 
J BrQ(xo) 

It follows from (2.1) that 

(2.31) r2-m [       \Du\2 < 2m-2 f \Du\2 < eg, 
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for any x G £?ro (XQ) and 0 < r < ^ Applying Lemma 2.3 repeatedly, we 

know that there exists 9Q = 60(171, X) G (0, 5) such that for any k > 1 

(2.32) (^r)2-m f \Du\2 < 2"^, 

for any aj G Sm^o) an(i 0 < r < !J. Hence there exists ao = ao(m,X) G 
(0,1) so that 

(2.33) r2-m f       \Du\2 < C(eo, m, X)r2Qo, 

for any x G Bra(aJo) and 0 < r < ^. Therefore, Morrey's decay Lemma (cf. 

[Mc]) implies that u G Cao(BrQ_(xo)). 
4 

One can follow the dimension reduction argument of [SU] to show that 
S has Hausdorff dimension at most m — 3. The key is to show that the set 
of minimizing maps into X is compact. 

Lemma 2.7. Assume that X C RK is a Lipschitz neighbourhood retraction. 
Suppose that {un} C i?1(jBi,X) is a sequence of minimizing maps andun —> 
u weakly in i?1(JBi,X).  Then un —> u strongly in ^(Bs^X) and u : Bz —> 

4 4 
X is energy minimizing. 

Proof. Take any comparision map w G ^(Bi, X) coinciding with u in Bi \ 
Bi-\0 for some small AQ G (0, |). By the Fatou's Lemma and the Fubini's 
theorem, there exists po G (1 — AQ, 1) such that 

(2.34) /        {un-wf-^O,   I       \Dun\2 + \Dw\2 < C < 00. 
JdBP0 JdBP0 

Applying Lemma 2.4 to un and w, we have that there exists un G 
Hl(BpQ,R

K) such that 

un{x) =w[ \ ,     \x\ < po(l - An) 

= un(x), \x\ = po. 

(2.35) / \Dun\2 < CXn. 
^BP0\BP0(1-Xn) 
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dist('Sn, X) -> 0, as An -^ 0, uniformly in Bpo \ j3p0(i_An). Let F : Xs0 -> X 
be a Lipschitz retraction map. Here Xs0 is the SQ neighbourhood of X in 
RK. Define 

wn(x) = w 
X 

kl < P0(1- An) 

= F(un(x)),    po(l - Xn) < \x\ < po. 

Then wn is a comparision map to un, we have 

/     \Du\2 < lim   /     \Dun\2 

lim   /      l^uvj2 
i
^00 JBon 

<  lim 
n-^-oo 

<  lim 
n—>oo 

r.   |2 i^^n 

<  lim 
n—>oo 

jBP0{l-Xn) K^-^nJ <>BPO\Bpo{1_Xn) 

(1 - An)m-2 /*    |^|2 + CLip2(F)Ar 

< f    \Dw\2. 

This clearly implies both the minimality of u and the strong convergence of 
un to u. □ 

3. Boundary Regularity. 

In this section, we prove that any minimizing map from fi into a k- 
dimensional compact piecewise uniformly regular Lipschitz manifold X is 
Holder continuous near 50, provided that g : dVt —> X is Lipschitz contin- 
uous. The argument is a generalization of [SU1], [HL], Three key points 
are: small energy boundary regularity, boundary monotonicity inequality, 
and nonexistence of boundary minimizing tangent maps. 

Here we only sketch the proof for O = B^ = {x — (xi,xm) G Bi : 
%m > 0}. One can refer to [HL] for the modification to a general O. Denote 
T+ = {x = (xi.Xm) G Br : Xm > 0} for 0 < r < 1. We first give a new 
proof of boundary monotonicity inequality (cf. [SU1], [HL] for smooth X)) 

which doesn't rely on the nearest point projection from neighbourhoods of 
XtoX. 
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Lemma 3,1. Assume that X C RK is a closed subset Let u G Hl{B^X) 
be energy minimizing with u^ = g, where g : B^ —> X is a given Lipschitz 
map. Then there exist SQ = 5o(m,flf,X) G (0, |) and Co = Co(m,g,X) > 0 
sifccft t/ia^, for 0 < r < s < 5o, 

2 

(3.1) r2-m /    \Du\2 + [ \x\2-m du 
d\x\ 

< eCo(s-r)s2-m   f     ^^2 + ^ _ ^ 

JBt 

Proof. We shall consider the energy of a comparision map on B+ obtained 
by homogeneous extension from (0,..., 0, p2). We use the polar coordinates 
(r, 0, CJ), center at (0,..., 0, p2), and denote the polar angle functions center 
at 0 as (0, u) G [0, f] x S171'2. Then it follows from [HL] p. 578 that 

9 = ^ + sm~1(psm9). 

Now we define 

v(r,6,u) = u(p,(j),u):0<8< G(p) 

= g(p2tzm(7r - 0),(j) : @(p) <6<ir. 

Here 0(p) = TT — sin~1(l + p2)-2.   Then v is a comparison map of u, we 
have 

f    \Du\2 

JBt 

<  f\Dv\2 

JBt 

rG(p) rRM) n r ( 
= de rm-3dr 

Jo Jo J5m-2 y 

+ [    dt f 
Jo        JB™-1 

dv 

p 

DX)tg 
p2-t 

<(m-2)-1R(p,ct>r-2[0{P)f        ( 
Jo     Js™-2 \ 

2 

dx 

dv 

sm'2 0 + 
dv 
89 

smm-2eduj 

dui 
sin-2 6 + 

dv 
89 

smrn-29dujd9 

+ C 

= 1 + 11. 
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Here R(p, 0) = p^Jl + p2 - 2pcos(j). It is easy to see that 

\II\ < Cp2 [        \Dg\2 < CUP
2(g)p™+\ 

To estimate /, we use the change of coordinates: (0, a;) -» (0, a;), and observe 
that there exists 5Q = 6o(g,m,X) G (0, i) such that for any p G (O.SQ) 

dcj) 

86 
pcos9 

< 1 + Cp, 

sin 9 
sine/) 

and 

Hence 

^l-p2sm2e 

<l + Cp,    sin™-2 9d9du<(l + Cp) sinm-2 (f> dcj) du, 

RM)<p(l + Cp). 

I < (1 + Cp) 
m - 2 JdBt 

f  + \DTuf 
JdB+ 

Here dB+ = {x = (xi,xm) G dBp\xm > 0} and DT denotes the tangential 
derivative. Therefore, 

/\ l^l2 < (1 + Cp)—P— f     \DTu\2 + CUp2(g)p> 
JB+ m- Z jdB+ 

This clearly implies (3.1). 

.m+l 

D 

Now we prove boundary energy improvement Lemma for minimizing 
maps into a compact piecewise uniformly regular Lipschitz manifold, under 
the small energy hypothesis. 

Lemma 3.2. Assume that X C RK is a k-dimensional piecewise uniformly 
regular Lipschitz manifold. There exist CQ = eo(m,X) > 0; 9o = 9o(m,X) G 
(0,5), and Co = Co(m,X) > 0 such that if u G ^(B^X) is energy 
minimizing with u^ — g, here g : B^ -> X is a given Lipschitz map, and 
fB+ \Du\2 < eg; then 

(3.2) eo~mfB+ \Du\2 ^ lm*X)fB+ \Du\2,CoLip>g\ . 
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Proof. If the Lemma were false. Then, for any 9 E (0, |), there would exist 
a sequence of minimizing maps un G ^(B^X) such that I^ITI = dn with 
gn : B^  —> X given Lipschitz maps and 

(3.3) f    \Dun\2 = e2
n^0, 

JB+ 

and 

(3.4) ^^ -+ 0, 

but 

(3.5) e2-™ [    \Dun\2 > U. 
JB+ 2 

Assume that pn(0) —>» a G X. For simplicity, we assume that 

v      bn(0)-a| 
hm -—1-i !- < oo. 

n—>oo 

One can refer to the discussion of section 2 above for all other cases. Hence 
there exists a q G TaX such that gn{f~a -> g. Define *;n = :!^ : B+ -> X. 
Then we know that J5+ |-D^n|2 = 1, and by the Poincare inequality, 

/+ Kl2 < Ce-2 lf+ K -gn\2 + Up2(gn) + \gn(0) - a\2 ) < C. 

Hence we may assume that vn —> v weakly in Hl(B^RK). Since Vnl^iz) — 
gn{x)-a _^ y uniformly (by (3.4)), we know that ^1^ = q-   Next we show 
that 

(3.6)       v : B^  —> TaX,   and is energy minimizing from Bf into TaX, 

(3.7) Vn->v  strongly in Hl(Bt,RK)- 
4 

The proof of the first part of (3.6) is as same as that of Lemma 2.3. To prove 
the minimality of v and the strong convergence of vntov^ we apply Lemma 
2.4 in the following way. Take any comparision map w G Hl(Bl[,TaX) 
coinciding with v in B^\B^_X  and w^ = q. Here AQ G (0, |) is sufficiently 
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small.  By the Fatou's Lemma and the Pubini's theorem, there exists po € 
(1 — AQ, 1) such that 

(3.8) /      \vn-w\2-+0,   [      \Dvn\2 + Dw\2 <C. 
JdB+0 JdB+0 

As in Lemma 2.3, we choose Rn —¥ oo such that Rn^n —* 0.  Define wn = 

maxf^kl}   •'   Bl    ->  TaX'    Then We knOW that  Wn^   =  q'    FOr  A"   ^  0' 
denote Qn = {x = (xi}xm) £ £p0(i-An) : ^m > PoK}(C B+). Notice that 
dQn = A^U Al, where A^ = {x = (xi,xm) E dQn : a;m > poAn} and' 
A^ = {x = (#i,£m) G 5fin : rCyTt = po^n}-   Then it is easy to see that 
there exists a bilipschitz map Fn : fln —> B+Q such that F{A]l) = dB+0, 
Fn(A

2
n) = Tpo and 

(3.9) lim Lip(Fn) = 1. 
n->oo 

Define un : ftn -> X by 

tin (a?) = ^a^n^n^n^))). 

Here \I/a is given by the definition of X. One can see from (3.8) that 

(3.10) f     \un-un(Fn)\
2->0,   [     \Dun\2 + \D(un(Fn))\2<C. 

JdVLn JdQn 

Hence, we can apply Lemma 2.4 to un and un on B+ \ On to conclude that 

there exist maps un e H
1(B^ \ Qn,RK) such that 

(3.11) un(x) = Unix),    Vx e dVtn 

= un(x),    VxedB+{jTpo. 

(3.12) f \DiLn\2 < CXne2
n, 

JB+0\nn 

and dist (un,X) -4 0 uniformly in 5+ \ Qn. Then, similar to the discussion 
of Lemma 2.3, we have a comparision map pn : B+0 -> X to un, which is 
given by 

pn(x) = Un(x),      VX e tin 

= Ftw(fin(x))l    Va;GS+\nn. 
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Here i^0 is the same Lipschitz retraction map as in Lemma 2.3. Then, as 
in the proof of Lemma 2.3, we have 

/     |^|2 <  lim   f     \Dvn\2 

JBt rW00 JB+0 

n2  ['      \Dpn\2 

[   \Dun\2+! \DFm^n)A 
Jnn JB+0\nn ) 

<^m6-2(Lip2--(Fn)Lip2(*JTaXnB(0Aen)) 

• /     l^e^n^ + CLip2^) / |Mn|2) 
JBt* JB+0\nn J 

<  lim  l(l + o(^\]  [     \Dv\2 + CXn) 
n->oo^ KnJJJB^ J 

=   /      |^|2. 

= lim en    /      iDtXnl 
■fBP0 

<  lim e^ 
JP0 

lim e^2 

n—>cx) 

This clearly implies both (3.6) and (3.7). Therefore, we reach the desired 
contradiction, if we assume the following Lemma. 

Lemma 3.3. Assume that X C RK is a k-dimensional compact piece- 
wise uniformly regular Lipschitz manifold. Then, for any a G X, if 
u G iJ1(B^,TaX) is an energy minimizing map with u]^ = 0, then there 
exists 0o = 0o(m, a, X) G (0, \) such that 

(3.13) 6l-m f    \DU\2<U    \Du?. 
JBe JB1 

Proof. The proof is based on an induction of k. Here we would like to point 
out that the proof of Lemma 2.1 implies 

(3.14) Au.u = 0,    A\u\2 = 2\Du\2)   in B+, 
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in the sense of distribution. Hence, similar to (2.5) (cf. Corollary 2.2), we 
have 

(3.15) e2~mJB+ \Du\2 ^ (l0S Q))     f  + lwl2'    We G (0' V- 

The rest of the proof can be carried by the same way as Lemma 2.5 and is 
omitted here. □ 

To obtain the full boundary regularity, we also need 

Lemma 3.4. Assume that X C RK is a closed subset Suppose that </> G 
JT1(B^",X) is energy minimizing with (f)]^ = constant and (f)(x) = ^(ifr)- 
Then (/> = constant. 

Proof. It follows exactly from [HL] §5. □ 

Lemma 3.5. Assume that X C RK is a k-dimensional compact piecewise 
uniformly regular Lipschitz manifold. Let u G ^(Bf, X) is an energy mini- 
mizing map with ufa = 9 for a given Lipschitz map g : B^ -± X. Then there 
exist SQ = 5o(g,m,X) € (0,1) and ao G (0,1) so that u G Cao(Bf_SQ n{x = 
(xi,xm) : xm < 6Q},X). 

Proof. First we notice that iterations of Lemma 3.2 and Lemma 2.3 imply 
that there exist £o = ^(^ <?> X) G (0,1) and ao G (0,1) and a closed subset 
S C Ti with JH

rm-2(S) = 0 such that u G Cao(B+_SQ n{x = (xuxm) : xm < 
5o}\S, X) (cf. also [SU1], [HL]). Now we need to show that S = 0. Suppose 
S 7^ 0, then, for any XQ G S and n I 0, u(xo + n-) : Bf -> X converges 
strongly in Hl{B^X) to a nonconstant map v : B^ -> X, which is an 
energy minimizing map such that vfa = constant and v(x) = ^(ifr), which 
is impossible by Lemma 3.4. Here we have used (3.1) and a compactness 
result similar to Lemma 2.7. □ 

4. Hausdorff Dimension Estimation for Preimages. 

In this section, we prove 12 of Theorem I. So we now assume X C Rk+1 is 
a fc-dimensional polyhedron and u G fl'1(n,X) is energy minimizing. For 
p G Xfc_2, denote Sp = {x G ft \ ?}\u(x) = p}. When X is a round cone 
in R4 and p is its vertex, Lin [Lf] proved that Sp has Hausdorff dimension 
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at most m — 1, provided that u ^ p. Here we generalize his argument, 
which is based on Federer dimension reduction principle [Fh]. Observe that 
it suffices to show that dim#5p}$ < m — 1 for any small S > 0. Here 
Sp,6 = {x € Sp : dist(x, dQ, U E) > 25}. The key is the following Lemma. 

Lemma 4.1. Suppose that {xn},{xo} C S^j satisfy xn —> XQ. T/ien t/iere 
exists a nonzero energy minimizing map (/> : Rm —¥ TpX of homogeneous 
degree a for some a > 0 (i.e., (f>{x) — |^|a^(o-)) such that 0(0) = 0(yo) — 0 
/or some yo ^ 9JBI. Moreover, there exists a nonzero energy minimizing 
map ij) : i?m_1 —> T^X o/ homogeneous degree ai /or some ai > 0 5^c/i ^/ia^ 
^(0) = 0. 

Proof. We may assume that p is the origin of RK. Since u is continuous near 
Sp, there exists 5Q > 0 such that u(Sp}s0) C 1^,, where Vp is a neighbourhood 
of X at p such that XVp C X ioi 0 < X < 2. Hence, we can apply Lemma 

r f \Du\2 

2.1 to u (with ft = jB(a;o,£o)) to conclude that N(x,r) = ^Br(a:) , |2 is 

monotonically nondecreasing with respect to 0 < r < JQ for all x E S^Q. 

Therefore, N(x, 0) = limr^o ^"(^j r) exists for all x G Spjo and is upper semi- 

continuous. Define vn(y) = "(*0
A^

nj/) : r-1(B(xo,(5o)\{xo}) -> A"1^, where 

rn = \xn - XQ\ and \n = (r^~m fdB2rnM W2)*. For n sufficiently large, we 
have N(xo,2rn) < 2N(xo,0). Notice that vn is a sequence of minimizing 
maps into A"1^ c TPX and satisfies 

(4.1) /     |^|2 = 1,     /   \Dvn\2 < 2N(x, 0), Vn » 1. 
JdB2 JB2 

Hence {vn} C H1{B2^TpX) is bounded. Applying Lemma 2.6 and 2.8, we 
can assume that vn —> (j) in ijr1nC0(i?2, TpX) locally so that 0 : B2 —> TpX is 
energy minimizing, and 0(0) = </>(yo) — 0 for some yo ^ 3JBI(0). Moreover, 
0^0 and 

rf„  |D0|2 

(4.2) r      UI2    =^0*0,0),    V0<r<2. 
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To see these, we may assume that fdB  [unl2 < 1 for all r G  (§,2) and 
observe that 

!- /     Kl2= /   -r /     K 
JdBr Jr    at JdBt 

<\f   \Dun\2 + C(e) [ 
Z J Bo JB 

\uJ2 

B2 JB2\Br 

<67V(xo,0) + C(e)(2-r). 

Hence, for sufficiently small e and ro sufficiently close to 2, we have 

1 
/ Wn? > 

2 

In particular, (j) ls nonzero. (4.2) follows from 

r/B \D<i)\2dx rnrJB    (xn)Du2 

By (4.2) and the proof of Lemma 2.1, there exists /i : [0, 2] —>- R so that 
3J:0(r,0) = h(r)(f)(r,6) for all <9 G S™-1 and r G (0,2). It is easy to see 

that h(r) = ^^ so that 0(x) = Ixl^^^^C^). Since (f>(yQ) = 0 for 
some 7/o ^ ^-Bij w^ can repeat the same argument with center at yo to 
conclude that there exists a nonzero energy minimizing map ip : Rm —>> TpX 
with homogeneous degree ai for some ai > 0, which is independent of one 
direction and -0(0) = 0. D 

Completion of Proof of 12 of Theorem I. 

Following [Lf] or [GS], we can show that if dimffSpj > m—1 then there exists 
a nontrival minimizing geodesic ip : R1 —t TpX such that ^(O) = ^(1) ^ 0, 
which is clearly impossible. □ 
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