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1. Introduction. 

Let Mm be a compact immersed minima] submanifold of dimension m in 
the unit S"(1). It was proved by J. Simons in [S] that if ||A!|2 < ^feS> 
where A is the second fundamental form, then M is totally geodesic. It was 
also proved by S.S. Chern, M. Do Carmo and S. Kobayashi using the moving 
frame in [C-D-K] later. For the minimal submanifolds in Rn+1 it was proved 
in [Al] that there is a similar theorem for the volume growth. More precisely, 
Allard showed that if Mm, a minimal submanifold of i?n+1 has Euclidean 
volume growth and the density function 9M(#> r) — 0ym/1\rm < 1+5, for 
some small positive number 5, tnen M is totally geodesic. On the other hand, 
it was shown in [An], [F-C] and [Ty] that when Mm is a minimal submanifold 
(of dimension ?n)in fl71"1"1, the total scalar curvature jM \\A\\'m dv is closed 
related to the topology and the Morse index of M. More recently it was 
shown in [S-Z] that if M is a stable minimal hypersurface with finite total 
scalar curvature then M is totally geodesic. In this short note we will show 
thai there are some gap theorems foi the total scalar curvature. These may 
be thought as the analogy of the above mentioned Simons' theorem for the 
minimal submanifolds in Rn+1. More precisely we can show the following 
result: (We should point out that we do not need the stability assumption, 
whicjx i,rs essential in the above mentioned Shen-Zhu's result in [S-Z] ) 

Theorem A.  Let Mn(n > 4) be a complete minimal immersed hypersurface 

in Rn+      Then there exists a ■■■constant C\(n) -■■ y 7^i^S~'l(n) > 0 men 

that if 
i 

(fjAlFdvy <C1(n), 
1The research was partially supported by NSF grant DMS-0196405. 
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M must be totally geodesic. Here A is the second fundamental form of 
M and S(n) is the constant in the L2-Sobolev inequality. (For example, 
using the L^-Sobolev constant provided in [M-S], one can show that S(n) = 

)2 

will be big enough, where ujn is the volume of the unit ball in 

Rn.) 

In the proof of Theorem A we need first to show the following result 
about the ends of minimal submanifolds, which can be viewed as a gap 
theorem for the number of ends. 

Theorem B. Let Mm (m > 3) be a complete minimal immersed subman- 
ifold of dimension m in Rn+1.    Then there exists a constant C2(m) = 

J^h3'1^ > 0 such that tf 
\± 

\\A\\mdv)     <C2(m) 
M ) 

M has only one end. Here, as in Theorem A, A is the second fundamental 
form and S(m) is the constant in the Lp-Sobolev inequality. 

The above gap theorem further demonstrates the fact that there is a 
close relation between the topology of the minimal submanifold Mm and 
the total scalar curvature /M ||A||md7;. 

Concerning our second result, there are a few previous results which 
we should mention. First it was proved in [F-C], for the minimal surface 
in i?3, that the finiteness of the total scalar curvature implies finiteness 
of the Morse index as well as finite many ends. Later this statement was 
generalized to the high dimension minimal hypersurfaces in [Ty]. More 
recently, using the function theory, [C-S-Z] proved that if M is a stable 
minimal hypersurface in i?n+1 then M has only one end. Our Theorem B and 
related results in the next section conclude that M has only one end or finite 
many ends without assuming that M is stable or of codimension one. Very 
recently, [L-W] proved the Liouville property for minimal submanifold M, 
whose density function ©M(^)^) satisfies that 0M(^J^) < G < 2. Namely 
they showed that there is no bounded harmonic functions on such minimal 
submanifolds. Combining with the observations in the next section of this 
paper, as a corollary, we know that M has at most one end if its density 
function satisfies ©M(£>0 < © < 2. Therefore one can view their result 
as a gap type theorem for the number of ends. The constant Ci and C2 in 
our theorems are far away from the sharpest because of the dependency on 
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the L2-Sobolev constant on minimal submanifolds. It would be very nice if 
one can find the best constant as Simons' theorem in [S] and classify all the 
minimal hypersurfaces for which the equality holds as in [C-D-K], Finally 
we should mention that the argument we used can also sharpen a lower 
bound estimate for the first eigenvalue of a Schrodinger operator of Li-Yau 
[L-Y2], therefore sharpens the upper bound for the number of bound states 
obtained in [L-Y2] (cf. remarks before Theorem 3.2). 

Acknowledgement. The author would like to thank Professor Peter Li 
for helpful suggestions. 

2, Preliminaries. 

We first establish some basic results on the harmonic function theory on 
minimal submanifolds of i?n+1. Using the bounded harmonic functions with 
finite Dirichlet integral we then show a couple of results concerning the 
finiteness of the number of ends for the minimal submanifolds in i?n+1. 

Let Mm be a minimal submanifold of dimension m > 3 in i?71-1"1, p € M 
be a point on M. Let A be the second fundamental form of M and \\A\\ be 
the length of the second fundamental form. Let rp(x) be the extrinsic dis- 
tance function of Rn+1 with respect to p and Pp(x) be the intrinsic distance 
function. We shall also use the following conventions: 

Bp(a) 

Dp(a) 

Bp(a) 

=       the ball of radius a centered at p in i?n+1. 

=       Bp(a) fl M. 

=       the geodesic ball of radius a centered at p in M. 

The following lemma will be very convenient to use in the construction of 
bounded harmonic functions on M. 

Lemma 2.1. Let Mm {m > 3) be a m-dimensional minimal submanifold 
in Rn+1. Then there exist minimal positive Green's function G(x^y) on M 
such that lim ry(x)->co G(x,y) = 0. 

Proof. Let Dp(a) be as the above. The heat-kernel comparison of Cheng-Li- 
Yau implies that 

HDp(a)(x,y,t) < Ha(ry{x),t), 

where Ba(ry(x),t) is the Dirichlet heat-kernel of Bm(a) in Rm (the ball of 
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radius a centered at origin). This implies that 

Taking a —> oo we have that 

*(„,,,, s-L^ (Jag!!!). 
Integrating along the time direction, we have that 

Remark. One can also construct Green's function directly as in [L-Tl] by 
compact exhaustion and applying the Sobolev inequality to prove that the 
limit exists. By using the heat kernel estimate we can get the upper bound 
of the Green's function as a consequence. 

As a corollary of the heat kernel estimate we have the following: 

Corollary 2.2 (Mean-Value inequality). (See[C-L-Y], [M-S].) LetM™ 
be a minimal submanifold in Rn+1. Suppose f is a nonnegative subharmonic 
function defined on M™. Then 

(2.1) f(p) <  ^n /        f(x)dA 
mujmam 1 JdDp{a) 

(2-2) f(p)<7^f       f{x) do 

where um is the volume of the unit ball in R™. 

Proof. The first part proof can be found in [C-L-Y] or [M-S]. For the second 
part we only need to apply the co-area formula and note that |Vr| < 1. 
More precisely 

/(p)umam = Pf(p)mums™-1 ds< f   f        f(x)dAds 
JO JO   JdDp(s) 

^ [a f     ^ndAds= f    fWdv- Jo   JdDp{s) |Vr| JDp(a) 

Applying an argument of Varopoulos (cf.   [V]), one can have Sobolev in- 
equality as a corollary of the heat-kernel estimate of Cheng-Li-Yau. 
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Corollary 2.3 (Sobolev Inequality). (See also [M-S].)    Let Mm be a 
minimal submanifold in jRn+1, then there exists constant S = S(m) such 
that 

(2.3) f / (/>^ dv)  "    < S(m) [  \V</>\ 
\JM J JM 

for any compact supported smooth function </> on M. 

dv 

Remark.   In fact, Michael and Simon proved a stronger version of Sobolev 
inequality, so-called L1-Sobolev inequality, as follows: 

m — 1 

(2.4) ( /  <^ dv)        < Si [  \V(f>\ dv. 

In fact, they showed that Si(m) = ^r^ will be enough to have the above 

inequality.   Using this fact, we can have a lower bound for S(m) in the 

inequality (2.3). In fact S(m) = (    1/T} 
m~ ^ )   will be big enough to have 

y <*;„(    (m-2) J 
inequality (2.3). 

Once we have the minimal positive Green's function on M we can apply 
the scheme of [L-T2] to construct barrier functions at each end of M. 

Lemma 2.4. Let M™ be a minimal submanifold in Rn+1, K C M be a 
compact subset in M, and let Ei be the ends with respect to K, then there 
exist harmonic functions gi on Ei which satisfy that 

giWldEi = 1, lim 9i(x) = 0, /   \Vgi\2 dv < oo. x->oo JEi 

Proof. This result is essentially proved in [L-T2]. For the sake of complete- 
ness we sketch the proof here. Let g? (x) be harmonic function defined on 

Ei fl Dp(rj) and satisfies g?(x)\dEi = 1, 5i (^)bDp(rj)n£;i = 0- We have the 

estimate gf (x) < CG(p,x), for some constant C independent of j. By tak- 
ing j —» oo we get the function gi, which obviously satisfies the first two 
identities in the conclusion of Lemma 2.4. By the fact that g{(x) minimizes 
the Dirichlet integral among all Lipschitz functions with the same bound- 
ary data we know that $M |V^|2 dv is a decreasing sequence of j. This 
establishes the third property of gi. 

Using the barrier functions on each end we can construct linearly inde- 
pendent bounded harmonic functions as in [L-T2]. 



646 Lei Ni 

Lemma 2.5. Let Mm be a minimal submanifold in Rn+1, K C M be a 
compact subset in M, Ei be the ends with respect to K, then there exist 
linearly independent harmonic functions ui on M which satisfy that 

lim        uAx) = 1, lim        uAx) = 0, /    iVifcil2 dv < 
x-*ooxeEi x-^ooxzEi JEi 

OO. 

Proof For the completeness we sketch the proof here too. Let u? to be the 
harmonic function on Bp(rj) satisfying that 

ulWleB^nE, = 0, for k ^ i, ul(x)\dBp{:rj)nE. = 1. 

Using the barrier functions we construct in Lemma 2.4 and taking j -> oo 
we have the bounded harmonic functions. For the proof of finite Dirichlet 
integral one can apply Lemma 1.4 of [L-T2]. 

Proposition 2.6. Let M171 be a minimal submanifold in Rn+l. If M™ has 
Euclidean volume growth, i.e., 

lim  v   ^ " < oo 
r-»oo r171 

then M171 has finite many ends. 

Proof By Lemma 2.5 we know that the number of ends is controlled by the 
dimension of bounded harmonic functions with finite Dirichlet integral. In 
the case when M has Euclidean volume growth, combining with the fact 
that Q rm (cf. [Ty]) is a increasing function of r, we know that M 
has the volume doubling property. Since, by Corollary 2.2, the mean value 
property holds for the subharmonic functions, applying a general theorem 
of Peter Li (cf. Theorem 1 in [L2], also [C-M]) we know that the polynomial 
growth harmonic function space is of finite dimension. In particular, the 
dimension of bounded harmonic function space is finite. Therefore M has 
only finite many ends. 

Remark. By a result of M. Anderson (cf. [An]), we know that if M 
has finite total scalar curvature fM || A\\n dv then M has at most Euclidean 
volume growth. Therefore we have the following corollary, which can also be 
proved using the scaling argument and the Gromov compactness theorem 
(cf. [G-L-P]): 



Gap theorems for minimal submanifolds 647 

Corollary 2.7. Let Mm be minimal submanifold in Rn+1 with finite total 
scalar curvature.  Then M has finite many ends. 

Similarly, we can have the following results on the finiteness of the num- 
ber of ends. 

Proposition 2.8. Let M™ be minimal submanifold of dimension m in 
Rn+1 and let \\A\\2(x) be the square of the length of the second fundamental 
form. If we have ||i4||2(a;) < k{p{x)), where k(t) is a nonincreasing con- 
tinuous function such that f^3 pn~1k(p) dp < oo; then M has only finite 
ends. 

Proof. As in the previous proposition it suffices to prove that the bounded 
harmonic function space is of finite dimension. Since in the case M is a 
minimal submanifold in i?n+1 we have RicciAf(^) > Hl^-ll2^) ^ ""^(p^))? 
a theorem of Li-Tarn (See [L-T2]) says that under the assumption of our 
proposition the bounded harmonic function space is of finite dimension. 
Therefore M has only finite many ends. 

At the end we write the following result for the case when M is a Kahler 
manifold. 

Proposition 2.9. Let Mm (m > 4), a Kahler manifold of real dimension 
m, be a complete minimal submanifold in i2n+1, and let \\A\\2(x) be the 
square of the length of the second fundamental form. If \\A\\ is of square 
integrable then M has only one end. 

Proof. Just as what we did before we only need to show that there is no 
nonconstant harmonic function u on M such that u has finite Dirichlet 
integral. 

First since u has finite Dirichlet integral, by Lemma 3.1 of [LI] (see also 
[Gr]) we know that u is in fact a pluriharmonic function. Let v — |Vu|2. 
Once we know u is a pluriharmonic function we can sharpen the Bochner 
formula for v = \Vu\ to get the following inequality: 

A<;-i^>-||A||20z>. 
V 

The interested reader can consult Lemma 3.2 of [LI] for a proof of the above 
inequality.   Since we also know that there exists positive Green's function 
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on M by Lemma 2.1, we can apply Li-Yau's theorem (cf. Corollary 2.2 of 
[L-Yl]) to conclude v is zero, i.e., u is a constant. 

Remark. Note that the situation here is totally different from the complex 
dimension one case. When M is a Riemann surface one can find examples 
of minimal surfaces with finite total curvature and many ends. On the other 
hand a known result says that if M is a complete minimal immersed surfaces 
in i?3 with finite total curvature and only one embedded end then M is a 
plane. 

3. Gap theorems. 

First we can show the following gap theorem on the number of ends of 
minimal submanifolds in Rn+1. 

Theorem 3.1. Let Mm(ra > 3) be a complete minimal immersed subman- 
ifold in Rn~{~1, and let S(m) be the Sobolev constant in Corollary 2.3. // 

i 

Urdu)     <C72(m) = J-^-5-i 
M I V m -1 

then M has only one end. 

Proof. We argue by contradiction. By the construction of last section we 
learn that if M has more than one end then there exists a nontrivial bounded 
harmonic function u(x) on M which has finite total energy. Let f(x) = \Vu\. 
The Bochner formula from [S-Y] yields 

(3.1) fAf + \\A\\2(x)f2>-^--\Vf\2. 

Let (p be a cut-off function such that 

YK '      \0    ifa;GM\Sp(2r), 

and 
Q 

IV^I < —,   with C = 2, 
r 
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Multiplying ip2 on both sides of the above inequality (3.1) and integrating 
by parts we can write 

- /  |V/|V<fo-2 I  {Vf,V<p)f<pdv+ f  p||2/V*> 
JM JM JM 

m-l JM 

Using Schwartz inequality, for any positive number / > 0, we have 

(3.2) f  P||W^ + 7 / f\Vv\2dv>(-^--l) f  \VfWdv 
JM ! JM \™> - 1      / JM 

On the other hand, the Sobolev inequality yields 

Om-2 

f (fri&dv)  "   . 
M / 

Simple calculation together with Schwartz inequality yields 

(3.3) (77+1) /  \Vf\2<p2dv 
JM 

- 5"1 (/M(
^

);
^ *') ^'(1 + Tl)L /2|V¥'12 ^' 

where // is a positive real number which will be chosen later.  Combining 
(3.2) and (3.3) we have 

m —2 
2m \     m 

fM PHVV dv > (m-}J+7     (fjf'P)^ dv) 
m-l \    I   J:2\X-7,„\2 

Now applying Horder inequality to the left hand side of the above inequality 
we can have 

m —2 

mrdv)  (/ (/yo^W m 

M J        \JM 

7+a=ir^)JM''w*'- 
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Finally we have 

(7 + ^/M^
|2d" 

Choosing I and II small enough one can make 

/(sSr-.OS-1 

// + l VJM
11
^*

1
    

|-£>a 

Then we have 
„ m—2 

'i y^ T\      r /   /*   

T + /  /2|V^|2^>e ( f {f<p)^dv 
JM \JM J II 

Letting r —> oo we will have 

/^s dv < 0, /. 

which implies that f = 0 and therefore u is a constant function. The con- 
tradiction here shows that M has at most one end. 

Remarks.   The first remark we want to make is that the similar argument 
can give an improvement of a lower bound estimate of Li-Yau (cf.  [L-Y2]) 
on the eigenvalue of the Schrodinger operator. More precisely we can have 
the following results. 

Let q(x) be a positive function defined on Z?, a domain in Rn.   We 
consider the operator 

A 
q(x). 

The lower bound estimate for the first eigenvalue of the above operator 
proved by Li-Yau concludes that 

where fln-i is the area of the unit (n- l)-sphere, e is the Euler number. The 
same argument as in the proof of Theorem 3.1 gives a slight improvement 
on the above estimate. A direct trace of the calculation can show 

n(n — 2) .^      .2..  .._-, 
A*l>     ^   4      ;(ftn-lHI<?llL|- 
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The second remark is that we do not know whether the assumption 
m > 2 is necessary or not. There is a theorem by Fischer-Colbrie [F-C] 
saying that if M is a minimal surface in R? with finite total curvature then 
M has finite Morse index. By Huber's theorem we also know that M has 
finite many ends. In [C-S-Z], using the Liouville type theorem of Schoen- 
Yau for the stable minimal hypersurfaces they showed that if M is a stable 
hypersurface in Rn+1 then M has only one end. Comparing to their result 
we neither assume that M is a stable nor M is a hypersurface. 

Now we begin the proof of Theorem A. Namely we will show that if the 
total scalar curvature is smaller than a constant Ci(n) then the minimal 
hypersurface M has to be a hyperplane. We believe that the similar result 
also holds for minimal submanifolds. 

Theorem 3.2. Let Mn(n > 4) be a complete minimal immersed hypersur- 
face in it!n+1, and let S(n) be the Sobolev constant in Corollary 2.3. If 

WArdvY  <Ci(n)==W^-^5-i 
AT / V (n ~~ 2)n 

then M has to be a hyperplane. 

Before we prove Theorem 3.2, we need the following Lemma. 

Lemma 3.3. Let Mn{n > 4) be a complete minimal immersed hypersurface 
in i?n+1. // the total scalar curvature fM \\A\\n dv is finite then fM |m|n~2 dv 
is also finite. 

Proof. First, by Theorem 3.3 of [S-Z] we know that the rescaling sequences 
Mi = {^M} converging smoothly to a flat open Riemannian manifold MQQ 

in the sense of Cheeger-Gromov, to which we can attach one point O such 
that MQQ = MQO U O is the union of several hyperplanes through the origin 
O and O is the only singularity of MQO. At the mean time, by Corollary 2.7 
we know that M has only finite many ends. Therefore we only need to show 
that fE \\A\\n~2 dv is finite for each end E. Because of the convergence of 
the rescaling sequences {M;} we know that the end E, with respect to big 
enough compact subset is a graph over the tangent space at infinity. Now 
we can use an estimate of Schoen (Proposition 3 of [Sc]) to get the following 
uniform estimate of ||A|| (x): 

(x) < —, 
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for x e M fl dDp(r) and r » 1. 
On the other hand, by Theorem 4.1 of [An], we have 

Vol (Dp(k + 1) \ Dp(k)) < C"(fc + l)n, 

for some uniform constant Cf. Therefore we have 

/ \\A\r*do = f;[ \\A\r2dv 
JM k=ojMn (£,p(A:+1)\-Dp(fe)) 

< oo. 

Now we can prove Theorem 3.2. 

Proof of Theorem 3.2. We first need the following sharp version of Si- 
mon's inequality due to Simon, Schoen and Yau on the length of the second 
fundamental form. 

(3.4) WA||A|| + P||4>i|V||il|||2. 

One can consult [S-S-Y] for the proof of a more general formula. 
Let tp be a cut-off function as in the proof of Theorem 3.1. Multiplying 

ll^ll71-4^2 on both sides of the above inequality and integrating by parts we 
have that 

- (n-3)/ ivpuppirv^-s/ (VP||,V^)P|rV^ 
JM JM 

+    f  \\A\\nip2dv>- [  |V||A|||2||i4||n-V2^. 
JM n JM 

Applying Schwartz inequality, we can write 

(3.5) ((n - 3) + | - II) J^ | V||A|| |2 ||AH""4 <p2 dv 

<TTI U\\n-2\Vv\2dv+ f PIlVA;, 11 JM JM 

for any positive number //. 
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On the other hand, direct calculation yields the following inequality, after 
using the Schwartz inequality. 

JM i vdi AH^^I
2
 dv<(i+1) (^)2 JM ivpn fMir4 ^ dv 

+ (i+^)fM\\A\r2\v<p\2dv, 

for any positive number /. 
Combining (3.5) and and above inequality together we have 

/ ivai^ii^)!2^ < (1+Il^ )
TT f ur^dv 

JM n-3 + ^-II JM 

(1 + J)(^)2 r   p||n-2|V    |2dt; 

(n-2 + l-Il)llJM"   "      '   ^ 

+ (1+7)/ \\A\r2\v<p\2dv. 1   JM 

Applying Sobolev inequality one can write 

n—9 

1    /     C ..      .. n-2   2n 2n 
•S1-   ( / ll^ll"^^tp^dv 

< (i+7)y)2 [ ur^dv 
- n - 3 + I - II JM "   " 

+ (i+j)^pir2ivH2^ 

Now let r —> 00. Use Lemma 3.3 we have 

Choosing / and // small enough one can easily find a positive number e 
such that 
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Then we can conclude that ||A|| = 0.   Therefore, M is a totally geodesic 
hyperplane. 

Added in proof:   It turns out that, for n > 6, the constant in Theorem A 
can be improved by using a trick in [L-Y2] and Theorem 4.2 of [S-Z]. 

Theorem A'.   With the notations in Theorem A, if ||^4||Ln < y/'5~1(n); 

then M is a hyperplane. 

Proof.   Prom the remark after the proof of Theorem 3.1 (just carry the 
similar calculation for general manifold) we know that, 

lii>S-\n)\\q\ 
L^ 

where /xi is the first eigenvalue of the operator — and S{n) is the L2-Sobolev 
constant as defined in (2.3). On the other hand, it is easy to see that if 
(A + q)ip = —Xcp has an eigenvalue A < 0 then Ac/) = —fiq(x)(f> has an 
eingenvalue /J, < 1 (cf. [L-Y2]). Therefore, if ||A||jr,n < y^n)-1 we have 

w (" w) -L 

Hence 
Ai(-(A+||il||2))>0, 

Namely M is a stable hypersurface. Combining with Theorem 4.2 of [S-Z] 
we conclude that M is a hyperplane. 
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