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Equivariant Seiberg-Witten Floer Homology 

MATILDE MARCOLLI AND BAI-LING WANG 

In this paper we construct, for all compact oriented three- 
manifolds, a U(l)-equivariant version of Seiberg-Witten Floer ho- 
mology, which is invariant under the choice of metric and perturba- 
tion. We give a detailed analysis of the boundary structure of the 
monopole moduli spaces, compactified to smooth manifolds with 
corners. The proof of the independence of metric and perturba- 
tion is then obtained via an analysis of all the relevant obstruc- 
tion bundles and sections, and the corresponding gluing theorems. 
The paper also contains a discussion of the chamber structure for 
the Seiberg-Witten invariant for rational homology 3-spheres, and 
proofs of the wall crossing formula, obtained by studying the exact 
sequences relating the equivariant and the non-equivariant Floer 
homologies and by a local model at the reducible monopole. 
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1. Introduction. 

und das hat mit ihrem Singen 
die Loreley getan. 

(H. Heine) 

The dimensional reduction of the Seiberg-Witten equations on 4- 
manifolds leads to equations on a compact oriented 3-manifold Y, obtained 
by considering translation invariant solutions of the original equations in a 
temporal gauge on an infinite cylinder Y x E with translation invariant met- 
ric. The solutions modulo gauge transformations of the reduced equations 
on Y can be regarded as the critical points of a Chern-Simons-Dirac func- 
tional, defined on the configuration space of [/'(l)-connections and spinors. 
There is an associated Floer-type homology, which depends on the choice of 
the Spin c-structure. Some of the properties of this Seiberg-Witten Floer ho- 
mology have been discussed in [11], [13], [27], [38], [40], [41], [42], [54], [63], 
[64], [65]. The properties are different according to whether the manifold 
Y is a rational homology sphere or a manifold with 61(Y) > 0. In partic- 
ular, if Y is a rational homology sphere, for any Spin c-structure there is 
always a reducible point in the moduli space, namely solutions with vanish- 
ing spinor and a non-trivial stabilizer of the gauge group action. Unlike the 
case with non-zero Betti number, the reducible cannot be perturbed away 
just by adding a co-closed 1-form to the curvature equation. This gives rise 
to an interesting metric dependence phenomenon, which has no analog in 
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the instanton case. The Seiberg-Witten Floer homology for manifolds with 
b1 (Y) > 0 presents a periodicity of the grading and is graded over the in- 
tegers only after passing to a cover. With the formulation we follow in this 
paper, it is no longer finitely generated. Unlike the case of &1(y) = 0, the 
Floer homology of 3-manifolds with ^(Y) > 1 is independent of the metric 
and perturbation, and, since we are dealing only with the case of Spinc- 
structures with ci(L) ^ 0, and with perturbations that are cohomologically 
trivial, this is true for b1 (Y) = 1 as well. 

Summarizing, there are Seiberg-Witten Floer homologies with substan- 
tially different properties depending on the underlying three-manifold Y. 
One purpose of this paper is to give a unifying approach and a construc- 
tion of Seiberg-Witten Floer homology for all 3-manifolds, which is always 
independent of metric and perturbation. 

The Floer homology always depends on a choice of the Spinc-structure, 
as does the construction of Seiberg-Witten invariants. Thus, we really ob- 
tain, over a 3-manifold F, a family of Floer homologies HF^W(Y, s), param- 
eterized by s G 5(F), with S(Y) the set of Spinc-structures on Y. We shall 
always consider a fixed Spin c-structure, hence, for simplicity of notation, we 
never explicitly mention the s dependence. 

1.1. Summary of the main results. 

We give a unifying approach to Seiberg-Witten Floer theory, by introducing 
a version of Seiberg-Witten Floer homology that is defined for all three- 
manifolds and is always metric independent. In the case of manifolds with 
61(y) > 0 we shall only consider Spinc-structures with ci(L) ^ 0. The case 
61(Y') > 0 and ci(L) = 0 has a more subtle behavior with respect to the 
choice of the perturbation and the compactification of the moduli spaces of 
flow lines (cf. Remark 2.18). Since this case arises in important problems 
connected to surgery formulae, we consider it separately in [42]. We con- 
struct an equivariant version of the Seiberg-Witten Floer homology. In the 
case of rational homology spheres, this approach counts all the contribu- 
tions, both from the reducible point and from the irreducibles. The equiv- 
ariant Floer homology also depends on the choice of the Spinc-structure. 
We prove the invariance of the equivariant Floer homology with respect to 
the metric and perturbation. The argument involves Taubes' obstruction 
bundle technique and an appropriate gluing theorem. In the two distinct 
cases of rational homology spheres and of manifolds with non-trivial Betti 
number, we compare the equivariant theory with the constructions of non- 
equivariant Seiberg-Witten Floer theories.   In the case of manifolds with 
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non-trivial Betti number, we obtain an isomorphism of the equivariant and 
the non-equivariant theories (both considered for a fixed Spin c-structure) 
and in the case of rational homology spheres we construct some exact se- 
quences that relate the equivariant and the non-equivariant theory. The 
results are obtained by means of the spectral sequences associated to a fil- 
tration of the complexes. The metric independence of the equivariant Floer 
homology together with the exact sequences lead to an algebraic proof of 
the wall crossing formula for the associated Casson-type invariant. We also 
provide a geometric proof of the same formula, through the analysis of the 
local structure of the moduli spaces. 

Main Theorem. Let Y be any closed and oriented 3-manifold with a fixed 
Spinc-structure s; with ci(s) non-torsion if bi(Y) > 0. Then there exists 
a U(i) -equivariant Seiberg-Witt en-Floer homology HF^^JY^s), which is 
a graded M[ft] -module, and is a topological invariant of (Y", s). This Floer 
homology has the following properties: 

• For bi(Y) > 0 and ci(s) non-torsion, HF^^JY^s) is finitely gener- 
ated and isomorphic to the non-equivariant Seiberg-Witten-Floer ho- 
mologyHF?w(Y,s). 

• For Y a rational homology 3-sphere, and for any fixed choice of 
metric and perturbation, there exists a long exact sequence relating 
HF^{1)(Y, s) and HF^ly, s), of the form 

HF^{1)(Y,S)^^HF^(Y>S) 

A. 

-1] 

.   .:-R[fi]"\ 

where O is a generator of degree 2, the maps i and j preserve the 
grading, and A decreases the grading by one. 

1.2. Motivation. 

Floer homology, as a gauge theoretic invariant of three-manifolds, made its 
first appearance in the seminal work of Floer [24] on what is now referred to 
as the Yang-Mills, or instanton, Floer homology. Instanton Floer homology 
came to play an essential conceptual role in Atiyah's Topological Quantum 
Field Theory formulation of Donaldson theory [1], and in the definition of 



Equivariant Seiberg-Witten Floer Homology 455 

relative Donaldson invariants of 4-manifolds with boundary and their gluing 
formulae, see for instance the work of Taubes [62]. Soon after the intro- 
duction of the new Seiberg-Witten gauge theory, it became clear that an 
analogue of Floer homology existed in the Seiberg-Witten context. Non- 
equivariant versions of Seiberg-Witten Floer theory were presented in the 
work of K. Iga, M. Marcolli, B.L. Wang, and R.G. Wang. In the last few 
years, there has been a number of significant papers using Seiberg-Witten 
Floer homology and gluing theorems for Seiberg-Witten invariants. It is now 
known (see e.g., [29]) that a good understanding of the relation between the 
instanton and the Seiberg-Witten Floer homology can lead to very striking 
topological consequences. However, in the literature (both in the instanton 
and in the Seiberg-Witten context) there seems to be a fundamental need 
for a satisfactory foundational work which presents a detailed and careful 
construction of the Floer homology. It is important to mention that, perhaps 
surprisingly, the technical aspects involved in the Seiberg-Witten gauge the- 
ory are substantially different from the Yang-Mills case and require different 
techniques. An important issue, which has no analogue in the Yang-Mills 
case and to which much of this paper is dedicated, is the metric dependence 
of the Seiberg-Witten Floer homology in the case of homology 3-spheres. 
Providing a metric independent version of Floer homology is essential in 
all the important applications which involve surgery formulae and gluing 
of relative invariants. Along the lines of the theory Austin and Braam 
[6] developed for instanton homology, we develop an equivariant version of 
Seiberg-Witten Floer homology. The main result in the paper consists of 
showing that this is precisely what is needed to the purpose of avoiding 
the metric dependence problem. The main technical issues involved center 
around the fine structure of the compactification of the moduli spaces of flow 
lines of the Chern-Simons-Dirac functional, and around the use of Taubes' 
obstruction bundles in the course of the proof of the topological invariance 
of the equivariant Seiberg-Witten Floer homology. 

It is not easy to give the skeptical reader an introduction to this paper 
that justifies the many pages to come. To be perfectly honest, it took a long 
time to convince ourselves as well of the real need to unravel all the detailed 
technical issues that appear in the corpus of this paper. Nonetheless, we 
hope the introductory paragraph above gives sufficiently clear an idea of why 
it is genuinely useful to write a paper that covers the material presented here. 
This paper has been under preparation since 1995. It circulated in preprint 
versions in 1996, 1997, and 2000. Regrettably, several years passed between 
the time when this paper was submitted and the time when the last of its 
long series of avatars would finally see the light in printed form incarnation. 
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We should signal to the reader the appearance, in the meanwhile, of other 
papers that have a more or less extended overlap with the present one, most 
notably [27] and [65]. 

We summarize, in the rest of the Introduction, the main results of the 
various sections of this paper, pointing to precise references to Theorems, 
Sections, etc. where the various statements are presented and proved. 

1.3. Outline of the paper. 

The paper is organized as follows. Section 2 presents preliminary material, 
starting, in Propositions 2.3, 2.4, and 2.5, with a brief account of Seiberg- 
Witten gauge theory on three-manifolds and a brief overview of the proper- 
ties and the local structure of the moduli space M. of critical points of the 
Chern-Simons-Dirac functional, and then continuing in Sections 2.3 and 2.4 
with an account of the properties of the moduli spaces .M(a, b) of flow lines 
connecting critical points. These are the moduli spaces that appear in the 
construction of the non-equivariant versions of Seiberg-Witten Floer theory, 
as used for instance in [13], [38], [63], [64]. The main result in Sections 2.3 
and 2.4 is the construction of a suitable class of perturbations of the flow 
lines equations, in Definition 2.10, and the proof of transversality in Propo- 
sition 2.14. We also discuss the notion of relative Morse index of critical 
points of the Chern-Simons-Dirac functional in Proposition 2.12 and the 
orientation of the moduli spaces .M(a,&) in Proposition 2.15. The construc- 
tion and properties of the non-equivariant Seiberg-Witten Floer theory are 
briefly summarized in Section 2.5, the main result being the gluing formula 
of Lemma 2.16, which is essential in establishing the property d o d — 0 for 
the boundary of the Floer complex. We do not present a complete treat- 
ment of the non-equivariant Floer homology, since all the necessary results 
follow from the equivariant case of Sections 4, 5, and 6, and the compari- 
son results of Section 7. However, we discuss some essential aspects of the 
non-equivariant theory, for instance the phenomenon of metric dependence 
in the case of homology spheres. In the proof of Theorem 3.4 it is shown 
that, in the case of homology spheres, the unique reducible point is isolated 
whenever the metric and perturbation are chosen so that the twisted Dirac 
operator has trivial kernel. This condition on the choice of metric and per- 
turbation determines a chamber structure with codimension one walls which 
is analyzed in Section 2.2. We prove in Theorem 2.7 that the condition on 
the Dirac operator is generic and that the space of metrics and perturbations 
breaks into chambers with codimension one walls. We analyze the structure 
of the walls in Theorem 2.8. 
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In Section 3 we introduce the framed moduli space A40 in the framed 
configuration space B0. The results of Lemma 3.2, Lemma 3.3, and Theorem 
3.4 can be summarized as follows: the framed moduli space M0 is a smooth 
manifold with a J7(l)-action: the action is free in the case of manifolds with 
61(y) > 0. When bl(Y) = 0, there is a unique fixed point in A40, which 
corresponds to the reducible point in M. In the case of rational homology 
spheres, the finitely many inequivalent flat £/(!) connections correspond to 
the unique fixed point in M0 for all the different possible choices of the 
Spinc-structure. In Theorem 3.4 we also show that the critical orbits are all 
isolated and the Hessian is non-degenerate in the directions orthogonal to 
the orbits. That is, the Chern-Simons-Dirac functional satisfies the Morse- 
Bott condition. 

In the remaining of Section 3 we analyze the moduli spaces .M(Oa,06) 
of gradient flow lines connecting critical orbits Oa and Ob- In Section 3.3, 
Theorem 3.8, we discuss the relative Morse index of critical orbits, which 
requires introducing the relevant Predholm theory. The analysis of Section 
3.4 is aimed at proving that all finite energy solutions of the Seiberg-Witten 
equations on the manifold Y x E decay asymptotically to critical orbits, 
with an exponential weight which is determined by the smallest absolute 
value of the non-trivial eigenvalues of the Hessian. Thus, every finite energy 
solution lies in some moduli space .M(Oa, 0&). The exponential decay to the 
endpoints of solutions in a moduli space .M(Oa,0&) is proved in Theorem 
3.12, using the result of Lemma 3.10 (a Palais-Smale condition), and the 
estimate of Lemma 3.13. The argument of Theorem 3.12 is basically a 
"finite energy implies finite length" type result (cf. [58]). Finally, we give 
the transversality result for the moduli spaces .M(Oa, Ob) in Proposition 
3.14. 

Section 4 is dedicated to the existence and properties of the compactifi- 
cation of the moduli spaces .A4(Oa,0&) of unparameterized flow lines. We 
prove that a compactification can be obtained by adding boundary strata 
of broken trajectories. The codimension k strata in the boundary are of the 
form 

(1) (J  ^(Oa,0Cl)xoCl^(Ocl,0C2)x...xoCfc7W(0Cfc)O6), 

where the union is over all possible sequences of critical points ci, • • • c^ with 
decreasing indices. We also show that the compactification has a fine struc- 
ture of a smooth manifold with corners. The analysis in Section 4.1 shows 
that a compactification exists, and that the points in the ideal boundary 
consist of a certain subset of the set (1) of broken trajectories through inter- 
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mediate critical points. This is the main result of Theorem 4.1. Unlike other 
problems of compactification in gauge theory, the construction of Floer ho- 
mology requires a more detailed analysis of the compactification. In fact, 
the property that the boundary D of the (equivariant) Floer complex sat- 
isfies D o D — 0 requires non only to know that a compactification of the 
moduli spaces jM(Oa, 0&) exists, but also that all the broken trajectories (1) 
in the ideal boundary occur in the actual boundary of the compactification. 
Moreover, since the argument in the proof of DoD = 0 is based on a version 
of Stokes' theorem for manifolds with corners, it is essential to analyze the 
fine structure of the compactification at the boundary strata (1). At the end 
of Section 4.1, in Remark 4.5 we also compare different existing definitions 
of the Seiberg-Witten Floer homology for manifolds with ^(Y) > 0. 

In Section 4.2 we prove that in fact all broken trajectories through in- 
termediate critical points listed in (1) actually occur in the compactifica- 
tion, the main result being the gluing theorem 4.9. This theorem only 
deals with the codimension one boundary, namely with the trajectories that 
break through one intermediate critical orbit. The gluing construction which 
proves Theorem 4.9 involves several technical aspects. The main idea is to 
introduce a pre-gluing procedure, in which an approximate solution to the 
Seiberg-Witten equations is obtained by splicing together with cutoff func- 
tions a pair of solutions in the fibered product 

M(Oa,Ob)xobM(Ob,Oc). 

The gluing construction then takes place by proving, via a fixed point ar- 
gument (Remark 4.20), that close enough to the approximate solution there 
is a unique actual solution in .M(0a,Oc). The central technical issues con- 
nected to this argument revolve around the analysis of the eigenspace of 
small eigenvalues of the linearization of the Seiberg-Witten equations at 
the approximate solutions. Lemma 4.7 and Lemma 4.8 deal with the slices 
of the gauge action. These are necessary in order to introduce the pre-gluing 
construction in Lemma 4.10. The analysis of the small eigenvalues is devel- 
oped essentially in Lemma 4.12, Lemma 4.13, and Lemma 4.15, and then 
recalled, in Section 6, in Lemma 6.13. In Lemma 4.15 we also provide an 
estimate of the rate of decay of the small eigenvalues. The eigenspaces of 
small eigenvalues, which give the normal bundle for the gluing construction, 
are introduced in Definition 4.16 and in Proposition 4.17, cf. also Corollary 
4.18 on the splitting of the index, and Remark 4.22. 

In Section 4.3 we extend the results of Section 4.2, in order to deal with 
the strata of higher codimension in the compactification, and to show the 
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fine structure of the compactified moduli spaces, namely the fact that the 
moduli spaces .M(Oa,0&) compactify to smooth manifolds with corners, in 
the sense of Melrose [44]. The main result on the corner structure, Theorem 
4.23, is based on Proposition 4.25, which is an inductive generalization of 
Theorem 4.9, and shows the existence of a smooth atlas of charts with 
corners. 

Throughout all the gluing construction in Section 4, we make essential 
use of the transversality result, namely of the fact that the linearizations at 
the solutions in .M(Oa,0&) and M(Ob^Oc) have trivial cokernel. We say 
in such cases that the gluing is "unobstructed". The spectral analysis in 
Lemma 4.12, Lemma 4.13, and Lemma 4.15, however, is formulated in more 
general terms that adapt to the case where cokernels are present. This gluing 
theory "with obstructions" is elaborated in Section 6, with the purpose of 
proving the topological invariance of the equivariant Floer homology. 

As we discuss in the beginning of Section 4, the fine structure of the 
compactification of the moduli spaces of flow lines is necessary in order 
to establish the existence of the Floer complex, namely the fact that the 
boundary operator D of the equivariant Floer complex satisfies D2 = 0. 

Section 5 introduces the equivariant complex, the boundary operator, 
and the equivariant Floer homology. With the essential use of the results 
of Section 4, we prove the property D2 = 0 in Theorem 5.1. We then give 
an explicit description of the boundary operator of the equivariant Floer 
complex in Proposition 5.3. 

Section 6 contains the proof of the invariance of the equivariant Seiberg- 
Witten Floer homology with respect to the choice of the metric and per- 
turbation. The proof of the invariance is obtained by defining a chain map 
/ connecting the equivariant Floer complexes associated to choices (go.^o) 
and (gi, i^i), a similar chain map J in the opposite direction, and then show- 
ing that there is a chain homotopy i?, satisfying id — JI = DH + HD, 
that induces an isomorphism on the level of cohomology. The chain map is 
constructed by means of moduli spaces .M(Oa, Oat) of solutions of Seiberg- 
Witten equations on the cylinder Y x R endowed with a metric gt + dt2 

that varies between go + dt2 and gi + eft2 along the cylinder. The main 
theorem, Theorem 6.1 is presented at the beginning of Section 6, followed 
by a "model" proof of the easiest case of metrics and perturbation in the 
same chamber. The proof of the general statement of Theorem 6.1 will 
only be given in Section 6.3, after the necessary technical tools have been 
introduced. 

The construction of the chain map, in the general case of Theorem 6.1, 
requires a careful analysis of the boundary structure of the moduli spaces 
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.A4(Oa, Oaf). In Section 6.1 we present the properties of the moduli spaces 
M.(Oa,Oa>). In Theorem 6.4, we prove the existence of a compactification 
for the moduli spaces .M(Oa,Oa/), obtained by adding fibered products of 
lower dimensional moduli spaces. This is the analogue of the results of 
Section 4.1 in the case of flow lines. We then give a transversality result, 
in Lemma 6.5 and Lemma 6.6, under the hypothesis that at least one of 
the critical orbits Oa and Oaf has a free U(l) action, or that the relative 
Morse index ^(0o) — A^i) is non-negative. In the case of the moduli space 
M(0o> 0i)> with M^o) — AK^I) 

< 0, we show in Corollary 6.7 and in Lemma 
6.8 that the transversality result fails. The moduli space M(0Q,0I) consists 
in this case of a unique reducible solution and the linearization has a non- 
trivial cokernel of dimension equal to the index |/i(0o) ~ MC^I)!- We prove 
in Theorem 6.9 the gluing theorem for all the non-singular boundary strata 
in M(Oa, Oa')*, namely those with trivial Cokernels. Similarly, we prove in 
Theorem 6.10 the gluing theorem for all the non-singular boundary strata 
mMp(Oa,Ob)*. 

Section 6.2 contains the general theory needed in order to deal with the 
gluing theorems in the presence of obstructions. It relies heavily on Taubes' 
technique developed in [60] and [59], together with Donaldson's results in 
[16]. We recall in Lemma 6.13 the necessary eigenvalue splitting for the 
Laplacians at the approximate solution, as proved in Lemma 4.12, Lemma 
4.13, and Lemma 4.15 of Section 4.2. In Proposition 6.17 we introduce the 
obstruction bundle with the canonical obstruction section. In Lemma 6.14 
we derive the fixed point argument which we use to complete the proof 
of the non-obstructed gluing of Theorem 4.9 and to formulate the gluing 
with obstruction in Proposition 6.17. In the remaining of Section 6.2 we 
analyze the modified boundary strata of M(Oa, Oa*)* and Mp(Oa, Ob)*. In 
Theorem 6.19 and Theorem 6.21 we identify the extra boundary components 
in M(Oai Oa/)* due to the zeroes of the obstruction section, and we define in 
Proposition 6.20 the additional gluing maps. Similarly, in Theorem 6.22, we 
identify the extra boundary components in A^jP(Oa, 0&)* due to the zeroes 
of the obstruction sections, and we introduce the additional gluing maps. 

In Section 6.3, we finally complete the proof of the topological invari- 
ance. The modification of the boundary structure discussed in Section 6.2 
prescribes correction terms for the maps / and H (but not J), so that the 
identities ID — DI = 0 and id — JI = DH + HD can still be satisfied. 
We first discuss, in Lemma 6.25 and Lemma 6.26, some more properties 
of the zeroes of the obstruction sections and some identities obtained by 
counting these zeroes, which are useful in checking the identities satisfied 
by the coefficients of the maps / and H. We then introduce, in Definition 
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6.27, the modified maps / and if, and we prove, in Lemma 6.28, Lemma 
6.29, Lemma 6.30, and Lemma 6.31, that the necessary identities hold, thus 
completing the proof of Theorem 6.1 on the topological invariance of the 
equivariant Seiberg-Witten Floer homology. It is clear, from the way the 
proof is structured, that the argument breaks down for the non-equivariant 
Floer homology. While the invariance within the same chamber is still ver- 
ified (nothing changes in that part of the argument), in the case of metrics 
and perturbations in different chambers we need essentially the contribu- 
tion of the reducible points in order to construct the chain map / and chain 
homotopy if, as one can see form Definition 6.27, and the Lemmata 6.28, 
6.29, 6.30, and 6.31. 

Section 7 deals with the wall crossing formula for the Casson-type invari- 
ant of homology spheres obtained as the Euler characteristic of the (non- 
equivariant) Seiberg-Witten Floer homology. In Section 7.1 we derive re- 
lations between the equivariant and the non-equivariant Floer homologies. 
We prove in Theorem 7.1 that, when we have b1(Y') > 0, the equivariant 
and the non-equivariant Floer homologies are isomorphic. This is not a 
surprising result: in fact, it is conceptually like considering the equivariant 
homology of a manifold with a free group action, for which it is well known 
that one recovers the homology of the quotient. In the case of rational ho- 
mology spheres, we prove in Theorem 7.3 that there is an exact sequence 
relating the equivariant Floer homology with the non-equivariant and with 
the polynomial algebra H^(BU(1)) M). The results of both Theorem 7.1 and 
7.3 are derived by considering filtrations of the complexes and the associ- 
ated spectral sequences, as in Lemma 7.2 and Lemma 7.4. We also give an 
explicit expression of the connecting homomorphism in the exact sequence 
in Proposition 7.5. The exact sequence that relates the metric independent 
equivariant Floer homology with the metric dependent non-equivariant one 
is the tool we exploit in Section 7.2, in order to derive, in a purely alge- 
braic way, the wall crossing formula for the Euler characteristic in Theorem 
7.7. The argument is based on the topological invariance of the equivariant 
Floer homology proved in Theorem 6.1, and the result of Proposition 7.6 
on the counting of the ranks of the equivariant Floer groups. The result 
is generalized to multiple wall crossings, and to the case of the J-invariant 
perturbations of [14], in Propositions 7.8, 7.9, and in Corollary 7.10. In 
Section 7.3 we show how the same wall crossing formula can be derived 
geometrically by considering the local model of the parameterized moduli 
space of critical points .M(g, is) along with a deformation of the metric and 
perturbation {g,v). 

Given the length of this work, we have thought it useful to add an index 
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of notation at the end of the paper. 
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2. Non-equivariant Floer theory. 

There are two disjoint situations in which the non-equivariant Seiberg- 
Witten Floer homology can be defined. They have been considered in [13], 
[38], [64]. In this section, we first recall the general setting of Seiberg- 
Witten theory on 3-manifolds, and then we summarize the construction of 
non-equivariant Floer theory. 

2.1. Three dimensional Seiberg-Witten theory. 

Any three-manifold admits a Spin-structure. A choice of the metric de- 
termines a (non-canonical) choice of a "trivial" Spin-structure with spinor 
bundle S. A Spin c-structure is therefore obtained by twisting S with a line 
bundle L. Suppose given a three-manifold Y with a Spinc structure S ® L. 
Consider the space Ak of pairs (A, ^), where A is a 17(1) connection on the 
line bundle L and I/J is a section of S ® L, endowed with a fixed L^-Sobolev 
completion. 

The group Gk+i is the gauge group of maps of Y in U(l) locally modeled 
on the Lie algebra 

Ue(gk+l) = Ll+1(n
0(Y,i11 

acting on pairs (A, ip) by 

\:(A,ilj)^(A-2\-ld\,\i}). 
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The group Gk+i is the subgroup of Gk+i of gauge transformations A satisfying 
the condition 

(2) ^-Jc1(L)A\-1d\ = 0. 

Here ci(L) represents the Chern class of the line bundle L that defines 
the Spin c-structure on Y. Clearly, the group Q coincides with the full gauge 
group Q in the case when ci(L) = 0 rationally, hence in particular for rational 
homology spheres. 

The functional 

(3) C(A^) = ^ J (A- Ao) A(FA + FAo) + ± J ^,dA^)dv 

was first introduced by Kronheimer and Mrowka in the proof of the Thorn 
conjecture [30]. It is defined on the space A of connections and sections and 
it is invariant under the action of the identity component Gk+i- Thus, it 
descends to a real-valued functional on the space Bk = Ak/Gk+i- 

The first order increment of this functional defines a 1-form on the L|- 
tangent space TA, 

(4) ? \(A,i,,p) (<*,<!>) = f -a A (FA-MM))+ f <0,0AV>>- 

Thus, the gradient flow of the functional (3), with respect to the L2-inner 
product, is given by the paths of connections and sections (A(t),ip(t)) that 
satisfy the equations 

(5) —tp^-dAip/ 

and 

(6) ^A^-^FA + a^^), 

where the 1-form a(i/j^) is given in local coordinates by ^(e^,^e1. 
These equations can be thought of as the three-dimensional reduction of 

the Seiberg-Witten equations on four-manifolds introduced in [66] (see also 
[4], [5], [13], [38], [63], [64]). In fact, we can consider the four-manifold Y x R 
with a cylindrical metric g + dt2, and with Spinc structure determined by 
the pullback of S ® L via the projection TT : Y x M -> Y. Thus we have 
5+ ® L ^ 7r*(5 ® L).   Over Y we have S+ ® L ^ 5" 0 L under Clifford 



464 Matilde Marcolli and Bai-Ling Wang 

multiplication by dt, and the identifications fi2+(Y x R, iR) ^ vr^O^y, ill 
and fi^y x R,iR) ^ 7r*(O0(y,zR) Sfi^YizR)), that is 7r*(p(t)) = *p(t) + 
p(t) A dt and 7r*(/(t), a(t)) = a(t) + f(t)dt on y x M. 

Consider a pair (A, ^r) on Y" x R, where A is a /7(1) connection on the 
determinant line bundle of 5+ <g> L and * is a section of the spinor bundle 
S+ (8> L. An element (A, $) is in a temporal gauge if the eft-component of 
A vanishes identically. Thus, a path (A(t)^(t)) corresponds to an element 
(A, \I>) in a temporal gauge. 

Lemma 2.1. The Seiberg-Witten equations (5) and (6) on Y x R are equiv- 
alent to 

(7) F+ = * • *, 

and 

(8) £>A¥ = 0, 

where ^ - ty is the self-dual two-form given in local coordinates by ^ • ^ = 
(eiCj^, ty)el A e-7 and I^A ^ ffte jDirac operator twisted with the connection 
A acting on sections of S+ ® L. 

Proof. The Dirac operator DA ' S+ ® L —> S~ ® L on the four-manifold, 
twisted with the connection A, has the form 

where OA is the self-adjoint Dirac operator on Y twisted with the time 
dependent connection A(t). For the curvature equation (7), write i^" = 
5 (-PA + *4^A)- Since F^ acts trivially on the positive spinors, the action 
of F^ corresponds precisely to the action of ^ + *3JPA- Here we have 
introduced the notation *4 and *3 to distinguish the Hodge *-operator on 
the 4-manifold Y x R and on the 3-manifold Y. In the following, we shall drop 
the subscript, since it will be clear which *-operator is being used. Thus, 
given the expression of the 2-form & • ^ and of the one form o-('0(t),'0(t)), 
we can write equation (7) as 

1(2^ + jWFjky Adt = ^{eieti/j,rfie* A dt, 

with an implicit sum over repeated indices and the symbol e denoting the 
sign of the permutation {itjk}. Upon applying the *3 operator and using the 
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identification of 5~l" <g) L and S~ (g) L on Y x R under Clifford multiplication 
by dt, we can identify this equation with the equation (6). □ 

The Seiberg-Witten equations on the 4-manifold Y x M are preserved 
by the action of the gauge group <?yxR of maps ofYrxRinJ7(l). Any 
element (A, Sfr) can be transformed into a temporal gauge by effect of a 
gauge transformation. Suitable Sobolev completions of these spaces will be 
introduced in Proposition 2.9. For a general overview of the Seiberg-Witten 
theory on four-manifold see [15], [39], [45], [56]. 

The critical points of the functional C are pairs (^4, ip) that satisfy 

(9) BA^J = 0, 

Let Aik be the moduli space of solutions of (9) in B^ and Aik be the 
moduli space of solutions in Bk = Ak/Gk+i* 

Lemma 2.2.  By elliptic regularity, Mk can be represented by smooth ele- 
ments. 

Lemma 2.2 follows from the Sobolev embedding theorems. In the fol- 
lowing we drop the subscript k and just write M for the moduli space of 
critical points. 

The deformation complex that determines the virtual dimension of A4 
is given by 

o -> o0(y,zR) e n^y^R) e r(s ® L) 

4 ft0(y,zR) © n1 (y, iR) © r(s ® L) -> o, 

with an index zero Fredholm operator 

do)        ' W) (/-,«-{^^"'^'^ 
defined between the L^ and the L^j-Sobolev completions of the spaces 
above, where the operator 

(ii) G\{A^(f) = (-df,m 

is the infinitesimal action of the gauge group and G* is the adjoint with 
respect to the L2 pairing.  The map T is the linearization of the equation 
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(9) at a pair (A,IJJ); 

(12) T\{A^(a,<t>) = {*da-2Urna^(l)) 

The Hessian of the functional C is given by a quadratic form in the 
increment (a, </>) G TA, 

(13) Vf |(A^) (a, (/)) = (a, *da - 2ilma(^) (f))) + (0, cU</> + a^)- 

This descends to the same operator T on the L^-tangent space Tj^jSfc, 
when (-A,7/*) is a solution of (9), since the condition 

G(A^)(T(A^)(a»^)) = 0 

is satisfied. The operator T is essentially self-adjoint. 
As in the case of Donaldson theory [1], the linearization is a first order 

elliptic operator, hence its spectrum is not in general bounded from below, 
and this affects the definition of the index of critical points, as we are going 
to discuss in Proposition 2.12. 

We consider the functional C perturbed with a co-closed 1-form p, 

(14) -       Cp(A^)=C(A,<iP)-2i f (A-Ao)A*p. 

We have the corresponding perturbed critical point equations 

(15) ^ = 0, 
1    ; *FA = <T{<<l>,il>) + 2ip. 

Notice that the first integral cohomology group of Y counts the homo- 
topy classes of gauge transformations, namely JH'1(Y,Z) = ^(Q) under the 
identification 

A-»/i=   — A-^A   GJJ^YJZ). 
27r J 

We denote with H the subgroup of the classes h G H1 (Y, Z) that satisfy 

(ci(L) U h, [Y]) = £- [ ci(L) A A-^A = 0. 

We have the following compactness result for the set of critical points of 
the Seiberg-Witten functional. 
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Proposition 2.3. The moduli space Mp of solutions of (15) modulo the 

action of the full gauge group Q is compact. The space M.p of solutions, 
modulo the subgroup Q C Q of gauge transformations satisfying (2), con- 
sists of a copy of Mp for each class in iJ1(y5Z)/iJ. Aip is compact iff 
if1(Y5Z)/JH

r is finite. In particular, Mp is compact ifb1(Y) = 0. 

Notice that the condition that H1(Y,Z)/H is finite corresponds to 
ci(L) = 0 rationally. 

Proposition 2.4. // the manifold Y has ^(Y) > 0, then, for an open set 
of small perturbations, the perturbed equations (15) do not admit reducible 
solutions. Moreover, by the Sard-Smale theorem, for a generic choice of p 
the corresponding moduli space Aip is a smooth manifold that is cut out 
transversely by the equations. Mp is compact and zero-dimensional, hence 
it consists of a finite set of points. 

All the moduli spaces come with a natural orientation defined by the 
determinant line bundle of the Fredholm linearization, as in [17]. 

When Y is a homology sphere the perturbation p can be written as 
p = xdv and the equations (15) admit one gauge class of reducible solutions 
M]. 

Proposition 2.5. IfY is a homology sphere, then there is a unique gauge 
class of reducible solutions 9 = [i/, 0] of (15) with p = *di;. If the metric on 
Y is such that Ker (d^) = 0, where dv is the self-adjoint Dime operator on Y 
twisted with the U(l)-connection v, then the analysis of the local Kuranishi 
model shows that the reducible point is isolated and non-degenerate. 

Propositions 2.3, 2.4, and 2.5 are proven in [64], [38], and [13] respec- 
tively. See also the more recent [35]. 

2.2. Chamber structure. 

In this subsection we prove that Ker (dt) = 0 is satisfied for generic metrics. 
The condition Ker (8%) ^ 0 defines a chamber structure in the space of met- 
rics. The walls form a stratified space with a codimension one top stratum 
and higher codimensional strata, in the sense described in Theorem 2.8. 

Notice that there is a more abstract approach [28] describing a stratifica- 
tion of the space of Fredholm operators by their index and kernel dimension. 
However, the result we are interested in does not follow directly by simply 
applying the results of [28].   In fact, we know from the general result of 
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Section 1 of [28] that the space ^(S^Y) of index zero Predholm operators, 
acting on the bundle S (or S ® L) over Y, has the structure of a real ana- 
lytic manifold, with a stratification given by the sets To^iS, Y) of Predholm 
operators of index zero with the dimension of the kernel equal to n. In our 
specific problem, however, we are considering the particular map from the 
space Met x Z1(Y',M) of metrics and perturbations (g^du) to the space 
ToiS.Y) given by 

X : Met x Z1(Y,R) -» To(S,Y) 
(16) 

{g,*dv) v^dl =: X(g,u). 

Thus, we need a specific result that shows how the image of the map X lies 
in J^oiS.Y) with respect to the stratification of [28]. This is the purpose 
of our Theorem 2.7 and Theorem 2.8. Although it is quite possible that a 
"proof by library search" of these results may be provided combining the 
circle of ideas in [28], [37], and the more recent [21], we prefer to give a direct 
proof that covers our specific case. A note should be added: during the long 
period between the initial submission of this paper and the completion of its 
publishing process, a discussion of the chamber structure has also appeared 
in [35] and [55]. 

Remark 2.6. Suppose Y is a homology sphere. There is a quaternion struc- 
ture on the spinor bundle 5, J : 5 ->■ 5 locally given by (21,22) >-> (—^2> ^i)- 
The action of J extends to the configuration space A as (^4, t/O *-+ (^4*> Jifr)- 
This means that J acts on u by Ju = — z/, hence 

In other words, the Dirac operator d9 on a three-manifold Y is quaternion 
linear, but the twisted Dirac operator 8% is only complex linear. 

A J-invariant perturbation of the Seiberg-Witten equations has been 
constructed by W. Chen [14], where the Dirac operator is perturbed with a 
smooth real function / on Y. This choice of perturbation leads to a different 
chamber structure in the space of metrics which lies inside one chamber of 
the more general perturbation 

dAlp = Mr 

*FA = cr(ip, if)) + *dv. 

In this setting, transversality can be achieved by adding a perturbation by 
a function of the holonomy. This choice of perturbations lead to a different 
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wall crossing formula. However, we are going to show in Section 7, Proposi- 
tion 7.9 and Corollary 7.10, that the wall crossing formula for the J-invariant 
perturbations can be derived with the same technique that we employ in the 
case on perturbations v. 

The following theorems discuss the chamber structure in the space of 
metrics and perturbations. 

Theorem 2.7. Let Met be the space of all Riemannian metrics on a homol- 
ogy 3-sphere Y. Consider the twisted Dirac operator dv associated with the 
chosen metric g and the connection v. The condition Ker<9^ ^ 0 determines 
a real codimension one subset in the space of Met x Z1(Y, iR). 

Proof. Let go be a metric on Y such that Ker 82% ^ 0 for the connection 
Z/Q. We can decompose the spinor space as H © K-1-, under the L2 inner 
product, where Ti = Ker5^, equipped with a Hermitian metric from the 
Spin c structure. Consider the Dirac operator 82 for Q?,^) sufficiently close 
to (^Oj^o) in the C^-topology. Under the isometry identification of the 
spinor spaces for go and g, the Dirac operator for g can be considered to act 
on the spinor space of go, still denoted by 82. 

Claim 1. 82 acting on the spinor space 5^0 is self-adjoint if and only if the 
metrics go and g define the same volume element. 

Suppose dvolg = f dvolg0 for a positive function / on y, then with a 
direct calculation we get 

Claim 1 is then immediate. Denote by Met0 the space of metrics which have 
the same volume element as the metric go- 

Claim 2. If two metrics gi and #2 are conformal, that is, gi = e2ug2 for a 
real function on Y", then the multiplication by e~u defines an isomorphism 
between Ker d21 and Ker d22. 

This is the consequence of the following relation:   under the isometry 
identification of the spinor spaces for gi and #2, we have (see [26] or [33] 
Theorem II.5.24) 

d9i =e-ud92eut 

Notice that, in the formula for the variation of the Dirac operator under con- 
formal changes in the metric, different conventions are used in the literature. 
Here we are following the convention and notation of [26]. 
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Therefore, we only need to prove that the condition Ker dZ ^ 0 deter- 
mines a real codimension one subset in the space of Met0 x Z1(Y,iE). 

We want to reduce the problem of the existence of solutions of the equa- 
tion dvtp — 0 to a finite dimensional problem onH. 

As a map from Met0 x Z1(Y, iR) x T(S) to r(5r), the linearization of the 
equation dvijj = 0 at (gcb^OjO) is invertible when restricted to H^. Thus, 
the implicit function theorem provides a unique map q : U -> H1- defined 
on a neighborhood U of (go, vo, 0) in Met0 x Z1(Y,iR) x %, such that 

(l-n)^(^ + g(^i/>^» = 0 

for all (g,v,(j)) GU, where 11 is the projection onto H. 
Therefore, the operator d^ has non-trivial kernel if and only if the equa- 

tion 
nd°(<f> + q(g,u,(t>)) = 0 

admits solutions in H. This is a finite dimensional problem. Define a map 

L : (Met0 x Z^Y.tR)) nU —»• U(H) 

by setting 
L(g,v){<l>) = nd°(<l> + q(g,v,(l>)). 

Direct calculation implies that L(g,u) is a Hermitian transformation of 
the space H, that L(g,u) G U(H), where U(H) is the Hermitian transfor- 
mation group on H. The kernel of 8% is non-trivial if and only if the kernel 
of L(#, v) is non-trivial. The determinant is a real-valued function on U(H). 
Thus, we have a real-valued function /(#, v) = det(L(g, u)) on the neighbor- 
hood of (50,^0) in Met0 x Z1(Y;iR). Those (5,1/) with non-trivial kernel 
have value 0 for this function. 

Now we only need to check that the derivative of f\g, u) at (#0,^0) is 
surjective, then the condition Ker d^ 0 determines a real codimension one 
subset in the space of Met0 x Z1(Y)iR) by Morse theory. It can be checked 
by differentiating /(fl,i/) at (#0,^0) along (0,a)-direction, for a G ^(Y^R). 
Since 

Dfho,»o)M = ^ (* ^ n Qa^)) > 

which is non-zero for suitable choice of a. 
Theorem 2.7 now follows from Claim 2 and the fact that any metric is 

conformally equivalent to a metric in Met0. 
D 
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Let W denote the wall in the space of metrics and perturbations Met x 

>V = {(p,*di/)|Ker^#0}. 

Motivated by Chen's work [14], we analyze more carefully the structure of 
W. This analysis will be useful in Section 7, in establishing the results on 
the wall crossing formulae. 

Theorem 2.8. W is a stratified space with the top stratum Wi consisting 
of those (g,v) withKerd^ = C. In general, the set of pairs (g,v) with 
Kexdl = Cn is a codimension 2n - 1 subset Wn in Met x Z1(Y,iR). 

Proof As in the proof of Theorem 2.7, we only need to prove the result for 
(5, u) in Met0 x Z1(Y^ iR) (see Claim 1 and Claim 2 in the proof of Theorem 
2.7). Consider a real Hilbert bundle £ over 

Met0 x Z^Y.iR) x(Ll(S) - {0}) 

whose fiber over (g, z/, tp) is 

■£{g„*) = {<t>eL2
1(S)\Re{il>,iiP)g = 0}- 

Define a section ( of £ by assigning to (g, 1^, -0} the element 5^. 

Claim.   ^ is transverse to the zero section of C 

We need to prove that the differential map of £ is surjective at zeroes of 
C- Suppose that (go, z^cbV'o) (with ^ 7^ 0) satisfies c^^o — 0. Differentiating 
£ with respect to the directions tangent to Z1(y, zE) x (I^*?) — {0}) only, 
we see that the differential map is 

V( :     fi^(y,iM) 0 L?(5)    —> {0 E L?(S)'|i2e<^)0 = 0} 

If 0 G ^(go^orto) is orthogonal to the image of VQ, then 0 satisfies: 

(1). Re((f),i^o)go =0, 

(2). Re{(j),vi.^)gQ = 0, for any 1/1 G fi^y^R). 

(3). ^0 = 0. 
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Prom the second equation we see that there exists a function / : Y —» R 
such that (/> = ifipo. Substitute this into equation (3), using difii/jo = 0- We 
obtain df = 0 which implies / = C is a constant function. Then 

Re{iCxpo,iiJo)g0 = Cl^ol2 

implies (7 = 0. Therefore, 0 = 0, that means, £>£ is surjective at (go, I/Q?^O)- 

It is easy to see that the index of V( is the index of c^, which is 1, since 
z^o is orthogonal to the image of d^. 

Prom the Claim, C~1(0) is a Banach manifold and the projection 

n:C"1(0)->Metoxfi1(y,i]R) 

is a Predholm operator of index 1.   Note that for any (p,i/) G Met0 x 
^(Y.iR) we have H"1^,!/) = Ker^. 

Moreover, at (go^o^o) we have 

f Ker(n*) = {0|^0 = O} 

\ dimKer (11*) - dim Coker (n*) = 1. 

Therefore, dim Coker (11*) = dimKer (11*) - 1. Then the Theorem follows, 
with the top stratum of codimension one described in Theorem 2.7, and the 
stratification given by 

Wn = X-^FoMSrfnXiMet x Z^R))), 

where X is the map of (16). Thus, the structure of stratified set on W is 
induced by the structure on Image (X) inside the stratified set FoiS^Y). D 

Notice that on any three-manifold it is possible to find special metrics 
for which the dimension of the space of harmonic spinors is arbitrarily large. 
The result for 53 was proved by Hitchin [26] and recently generalized to all 
manifolds of dimension 3 mod 4 by Bar [9]. 

2.3. Perturbation of flow lines. 

We introduce suitable moduli spaces of gradient flow lines connecting critical 
points. We prove in the Section 2.3, Proposition 2.14 that, generically, these 
are smooth manifolds that are cut out transversely, hence with the dimension 
prescribed by the index theorem. This property depends on an accurate 
choice of a class of perturbations for the gradient flow equations. 
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Consider the space of connections and spinor sections (A, \I>) on Y x R 
with the product metric g + dt2, topologized with the weighted Sobolev 
norms [24], [36]. Here we choose the weight e$(£) = eSt, where 5 is a smooth 
function with bounded derivatives, 5 : E —» [—5, S] for some fixed positive 
number 5, such that S(t) = — S for t < — 1 and 5(t) = S for t > 1. The 
L^ norm is defined as ||/||2,fc,(5 = H^/lb^j where the Sobolev norms are 
defined with respect to a fixed reference connection AQ in L| loc. By the 

Sobolev multiplication theorem of Proposition 2.9 below, the spaces LISAQ 

and L^SA are equal whenever we have AQ — Ai = ao + ai, with ao in L2
^5AQ 

and ai is C1 bounded, with I > k — 1, cf. [46]. The weight es imposes an 
exponential decay as asymptotic condition along the cylinder. A proof of 
the following Proposition can be found, for instance, in Section 9 of [20]. 

Proposition 2.9. Let Y be a compact oriented three-manifold endowed with 
a fixed Riemannian metric go. Consider the cylinder Y x M with the metric 
go + dt2. The weighted Sobolev spaces L^ on the manifold Y x M satisfy 
the following Sobolev embeddings. 

(i)   The embedding L2^^ ^l-i s ^s compact for all k > 1. 

(ii) If k > m + 2 we have a continuous embedding L| s ^ Cm. 

(iii) If k > m + 3 the embedding L^ s ^ Cm is compact. 

(iv) If 2 < kf and k < k' the multiplication map L\5 ® L\8 ^> L\25 is 
continuous. 

Consider a metric gt + dt2 on the cylinder Y x M such that for a fixed T we 
have gt = #o for t >T and gt = gi for t < —T and gt varies smoothly when 
t G [—1,1]. The same Sobolev embedding theorems hold for the L\5 spaces 
on (Y xR,gt+dt2). 

Choose smooth representatives (AQ^Q) and (Ai,ipi) of a and b in 
M. Choose a smooth path (yl(t),/0(^)) such that for t < 0 it satisfies 
(A(t),il>(t)) = (Ao,ipo) and for t > 1 it is (A(t)^(t)) = (Ai,^). The con- 
figuration space Ak,8(a,b) is given by the space of pairs (A,*) on Y x R 
satisfying 

(17) (A,*) e (A(t),m) + LlsiVHY xR) ®r(S+ ® L)). 

Consider the group Gk+i,6(ai fy of gailge transformations in GYXR, lo- 
cally modeled on L|+1(j(O0(y x R,iM)), that approach elements X±00 in 
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the stabilizers Ga and Gi of (AhV'o) and (i4i,^i) as t -» ±00. This gauge 
group acts on Akfifab) and we can form the quotient B^si0^^). There is 
an action of M by translations on jBfcj(y(a, &). 

We consider the perturbed gradient flow equations for a path (A(t), ^(t)), 

(is) ^m = -9A{t)m 

and 

(19) ^(t) = (7(^(«),^(t)) - *FA{t) + 2iP + 2qim{t). 

Equations (18) and (19) can be rewritten in terms of pairs (A, vp) in the 
form 

(20) £>A* = 0 

and 

(21) i^ = *-* + ^ + P(A>^)> 

as proved in Lemma 2.1. 
The perturbation P = *q + q A dt is a function of B(a,b) to 

7r*(fi1(y,zR)) = fi2"f(y x K,iIR), such that the corresponding equations 
in a temporal gauge (18) and (19) are preserved under the action of M by 
reparameterization of the path {A(t), ^(t)). The class of such perturbations 
is described as follows. 

Definition 2.10. The space of perturbations V is the space of maps 

P : BM(a,6) -> ^^(Y x »,tR), 

that satisfy the following conditions. 

(1) P(A^) = *9(A>^) (*) + ?(A,*) (*) A dt, where g(A^) (t) satisfies 

^(A,^)T (*) = 9(A, *) (* + T)» 

for any T G M, where (A, *)T is the T-translate of (A, *). 

(2) The L|5-norm of the perturbation P(A^) 
is bounded uniformly with 

respect to (A, $). 
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(3) The linearization PP^^) is a pseudodifferential operator of order < 1. 
In particular VP(A^ is a compact operator from the L| s to the Ll_1 5 

tangent spaces. 

(4) For all I < k — 1, we have 

II9(A,*)(*)IIL?<^IIVCP(^)^(«))||L? 

in the L^-norm on Y x {£}, where 

(22) vcp(A(t),m) = (-dA(t)m^(m,m) -*FAW+2iP) 
is the gradient flow of the functional Cp, and 0 < Ci < 1. 

(5) The inequality 

iiz>?(A,*)(a(o,M)ii ^ c(m\\vcp{A{t)Mm ■ wwimn 
holds for t > TQ. Here Vq^A^ is the linearization of the perturbation 

With a perturbation in the class V the equations (18) and (19) are 
invariant with respect to the action of M by translations along the gradient 
flow lines, that is if {A(t),ip{t)) is a solution of (18) and (19), then {A{t + 
T), V>(£ + T)) is also a solution for any T £ R 

An example of perturbation with these properties has been constructed 
by Froyshov [25]. 

Proposition 2.11.   The class of perturbations introduced by Froyshov in 
[25] is contained in our class V. 

According to Froyshov's construction, for fixed smooth compactly sup- 
ported functions 771, 772, with supp (771) C [—1,1] and r]2\i(t) = t on an inter- 
val / containing all the critical values of Cp, a function h : Sfcj(j(a, 6) —> Cm(IR) 
is defined as 

V,*)(T) = f mis - T)V2 ( [ Vi(t - s)Cp(A(t),tl>(t))dt) ds. 

Let n|(y x M) be the set of C™ 2-forms u that are compactly supported 
in Y x S, where S is the complement of a union of small intervals centered at 
the critical values of Cp. Froyshov's perturbation is constructed by setting 
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where h1A ^ (u) is the pullback of u along the map Idy x /i(A,#) : Y x R -> 
y x R. 

As shown in [25], the function /i(A,^) is bounded with all derivatives, 
uniformly with respect to (A, *&). Moreover, by the choice of S, the pertur- 
bation h1A^(u)) is smooth and compactly supported, hence in L|5. 

Condition (1) holds, since the function ^(A,^)(*) satisfies 

^(A,^) (* + T) = /l(A,^)^ (*), 

where (A, ^)r is the r-reparameterized solution represented in a temporal 
gauge by (A(t + T),ip(t + r)). In fact, 

V,*r (T) = [ m(s- T)m ( [ m(t- s)Cp(A(t + r),^(t + T))<ft ) d5 

= / 771(5 - T)772 ( / ruin -s- T)Cp(A(u)^(u))du) ds 
JR \JR / 

= / m(v - T - T)rl2 [ / r]i(u-v)Cp(A(u)^(u))du) dv 
JR \JR / 

= ^(A,^)(r + r). 

Condition (2) holds: in fact, it is shown in [25] that the function /i(A,#) is 
bounded with all derivatives, uniformly with respect to (A, *). The Sobolev 
embeddings of Proposition 2.9 provide the uniform bound in the L^ ^-norms. 

Condition (3) and (5): we can write the function h(A^ with the notation 

h(A^) = m * (m(m * cp(A^))), 

where * denotes the convolution product on R. We obtain the variation with 
respect to (A, \I/) of the form 

V(A,y)(ai<t>) = Vi * Wm* Cp(A,il>))rii * (VCp(i4,^), (a,0)» . 

Thus, as shown in Proyshov ([25], Prop.5), for u a Cm form, the linearization 
of the perturbation hl^Ju) at the point (a;,A,*) is a bounded operator 

K^v) • Ll6 -> C™ with 

supp (#(^A,*) (a, $)) C h'^ (S) x y 

Thus Condition (3) follows, since 771 and 772 are smooth compactly supported 
functions. In particular, if UJ is a smooth form, the linearization 2?JP(A,#) is a 
smoothing operator. The expression of the variation I>(A,#) also shows that 
Condition (5) holds. 
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Condition (4) follows from an estimate on ||d/i(^)||, 

wdh^m^cwvcpiAWMmi 
where the constant C only depends on the asymptotic values a and b of 
(A,*). 

Other perturbations of the functional C can be used to achieve transver- 
sality of the moduli space of flow lines. For instance see the discussion in 
[29], and the class of perturbations introduced in [11]. The perturbations 
introduced in [11] have the advantage of being defined directly as pertur- 
bations of the Chern-Simons-Dirac functional C, instead of being perturba- 
tions of the 4-dimensional Seiberg-Witten equations, as in the case of the 
class considered here. 

2.4. Transversality of .M(a,&). 

Let £(A,#) be the linearization of equations (20) and (21) on Bk,8(a,b). 
The operator C is of the form 

d+a - |/m(* • *) + ©ifotf) (a, *) 

mapping 

L2
K5(p}(Y x E, m) e r(5+ ® L)) 

-> Ll_1)5{Sf{Y x R,iR) ©02+(y x M,2M) ©r(5- (g)L)). 

The operator G* is the adjoint, in the LQ ^-pairing, of the linearization of 
the gauge group action G(A^) (/) = (-df, /*.). 

As the following proposition shows, the operator £(A,#,P) is obtained 
by adding the compact perturbation 2?P(A,^) to a Fredholm map from L| 8 

to ^|_IJ, hence it is Fredholm. Therefore we have a well defined relative 
Morse index of two critical points a and b in M.. 

Proposition 2.12. Suppose a and b are irreducible critical points for the 
functional Cp. Let {Xa} and {X^} be the eigenvalues of the Hessian T at the 
points a and b. Assume that the positive number 5 satisfies the condition 

S < min{|Aa|,|A6|}. 
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Let (A, \I/) be a solution of (20) and (21) in /?*;,<$ (a, b). Then the linearization 
£(A,#) ^ a Fredholm operator of index 

/nd(£(A)vir)) = (7(a,6). 

T/ie rip/ii /iand 5zde cr(a,b) is the spectral flow of the operator VJ7 along a 
path (A(t),?p(t)) in A that corresponds to (A,*) under TT*. The quantity 
cr(a,b) is independent of the path, hence 

cr(a, b) = /i(a) — /J,(b) 

defines a relative Morse index of a and b, where /i(a) is the spectral flow of 
VT on a path joining a to a fixed |yto, V'o] ^ M- 

Remark 2.13. In the case with Y a homology sphere, Proposition 2.12 
holds for a reducible point a = [i/,0] under the assumption that, for the 
chosen metric g on Y, the condition Ker (9^) = 0 is satisfied. 

We state and prove an analogue of Proposition 2.12 in the context of 
framed moduli spaces and equivariant theory in Theorem 3.8. We also prove, 
in Theorem 3.8, that the relative Morse index of points in M is well defined. 

Consider the moduli space .M(a, b) of solutions of the equations (20) and 
(21)inBM(a,6). 

Proposition 2.14. When a and b are irreducible critical points of Cp, for 
a generic choice of the perturbation P G V, the moduli space M(a,b) of 
gradient flow lines is a smooth oriented manifold, cut out transversely by 
the equations, of dimension 

dim(.M(a, b)) = (i(a) — n{b), 

where /x(a) — /i(fe) is the relative Morse index of the critical points. 

Proof. It is first necessary to know that there are no reducible flow lines 
connecting the critical points a and b. This fact is an easy consequence of 
the definition of the configuration space (17), since the exponential weight 
in the Sobolev norm forces elements in (17) to decay at the ends to the 
asymptotic values, which are irreducible by assumption. On the convergence 
of flow lines to the endpoints a and 6, see the results of Section 3.4. Thus, 
M(a, b) lies entirely in the irreducible component B^(a, 6), provided that 
at least one of the endpoints a and b is irreducible.   The statement then 
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follows via the implicit function theorem, upon showing that, for a generic 
choice of the perturbation P, the linearization C, is surjective. 

Consider the operator 

AA,*,P) (<*>*>£) = £(A,#,p)(a,$) +P(A,¥,p)(a,*), 

where we vary the perturbation by an element P(A,W,P) 
0f 2pP. This cor- 

responds to varying the parameter CJ G £2i(Y x R) in Froyshov's class of 
perturbations. 

The operator L is Predholm, therefore L has a closed range. We show 
that L is surjective by proving that it has dense range. 

Suppose given an element (/?,£, #) in l?_k_x _5 that is I/2-orthogonal to 

the range of the operator £. Here /? is an element in Q2+(Y x R,iR), ^ 
is a spinor, and g is a zero-form. The element (/?,£, #) is in the kernel of 
the adjoint £*, which is an elliptic operator with L2_k_5 coefficients, thus 
(/?, £) lives in I?_k _s by elliptic regularity. In fact, the perturbation satisfies 
Condition (3) of Definition 2.10. If we consider the L2-pairing of LkS and 

/3, d+a - i/m(* • *) + VP^y) (a, *) + P(A^,F) (a, *)\ 

+ (e, JDA$ + a*) + (p, G^) (a, *)) = 0. 

By varying p £ V we force /? = 0. The remaining inner product 

<£, .DA* + i*V) + (5, G^) (a, $)) = 0 

gives the following equations 
(a) (e^sdes)g = ^ * * and 
(b) JDA£ - 0* = 0. 

We assume that * is not identically zero. Applying d* to (a) and using (b) 
we obtain d*(e-sdesg) + fl^l2 = 0. Equivalently, we get 

(es/2d*e_s/2)(e_s/2des/2)es/2g + \^\2es/29 = .0. 

The equation 

with 
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implies that g = 0, since g decays at ±00 and the maximum principle applies. 
Then, by varying a alone in (£, Dpjb + a^) = 0, we force f to vanish on 
some arbitrary open set. We obtain (/?,£) = 0. 

Thus the operator C is surjective. This implies that zero is a regular 
value for the map defined by the equations (20) and (21). Therefore the 
moduli space Mod of triples ([A, $],P) in B'^   (a, 6) © V that satisfy the 

fc,<5 

equations is a smooth (infinite dimensional) manifold with tangent space 
Ker(£). 

The projection 11 : Mod —> V given by n([A,\&],P) — P linearizes to 
a surjective Predholm operator VH : Ker (C) —> TpV. The kernel of VH 
is Ker {VIi^k^^) = Ker (£(A,¥,P))- ^he infinite dimensional Sard theorem 
implies that the moduli space M(a, 6)., for a generic perturbation P G P, 
is the inverse image under the projection map from Mod to P of a regular 
value. Thus .M(a,&) is a smooth manifold which is cut out transversely by 
the equations. Equivalently, the linearization C with a fixed generic q is 
surjective. 

The virtual dimension of the moduli space .M(a, b) equals the index of 
the Predholm operator £. According to Proposition 2.12, this is the relative 
Morse index /i(a) — /i(&). 

The orientation of .M(a,&) is given by a trivialization of the determi- 
nant line bundle of the operator C This is obtained given a choice of an 
orientation of 

H$(Y x E) 0 H*+(Y x M) © H}(Y X M), 

the cohomology groups of 5-decaying forms, as discussed in the following 
Proposition. □ 

Proposition 2.15. The manifold M(ayb) is oriented by a trivialization of 
the determinant line bundle of the operator C. This is obtained from an 
orientation of 

H$(Y x R) © H*+(Y:X K) © H}(Y X R), 

the cohomology groups of S-decaying forms. 

Proof. Suppose given [x] = [A,*] E M(a,b). Let x = (A(t)^(t)) be a 
temporal gauge representative such that 

lim(A(t)^(t)) = (Ab^b), 
t—too 
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and 
lim (A(t),i>(t)) = (Aa,il>a). 

t-^-oo 

Consider the family of operators 

DA$ + a* 

acting on the space of L^ ^-decaying 1-forms and spinor sections on Y x M. 
An orientation of the moduli space .M(a, b) is determines by a trivializa- 

tion of the determinant line bundle of the family of operators Cx. We can 
separate Cx in the first order term and a perturbation, 

with 

and 

£, = 4 + 4, 

4 = ■^m(.f) 

The operators induced by Cx on the asymptotic ends are 

L(±oo) = ^(±00) + L0(±oo), 

where we have 

L^oo) = 

L^-oo) - 

and 
0 0 -2ilma(-^b) 
0 0 -2<-,^6> 

"06 ipb                0 

0 0 -2ilma(-}ipa) 

0 0      -i<->^a> 
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acting on f20(y, iR) 0 fi^Y", iR) © r(5 ® L). 
We can consider a deformation C^ of the family Cx obtained as in [45] 

Section 6.6, 
^=4 +(i-e)4. 

The deformation changes the asymptotic operators in the form 

Le(±oo) = L^ioo) + (1 - e)L0(±oo), 

We can guarantee that this is a deformation via Predholm operators provided 
that the weight 5 is chosen such that 5/2 is not in the spectrum of L€(±oo) 
for all e ([36] Theorem 6.2, and [47] Lemma 8.3.1). That is, if the spectrum 
of the operators Le(±oo) is uniformly bounded away from zero. 

If this is the case, then a trivialization of the determinant line of the 
family £| is obtained by a trivialization at e = 1. This induces a trivializa- 
tion of Cx. The trivialization at e = 1 is a trivialization of the determinant 
line of the operator d"1" + d| + -DA- 

The Dirac operator is complex linear and it preserves the orientation 
induced by the complex structure on the spinor bundle S+ ® L. Thus a 
trivialization is obtained by an orientation of 

#£(Y x E) © Hl+(Y x R) © H}(Y x R), 

the cohomology groups of ^-decaying forms, [45], [48]. 
However, the condition on the spectrum of L€(±oo) may not always be 

satisfied: the deformation £| may not be through Predholm operators. It 
is still possible to obtain an orientation of .M(a,&): the following argument 
was suggested to us by L. Nicolaescu [51]. 

We can change the family Cx by a deformation such that the new family 
Hx satisfies 

Kc|yx[-i,i] =-£X\YX[-I,I]' 

On Y x (-oo, -2] U Y x [2, oo) it satisfies 

KXIYX (-OO,-2] = d+ + dS+ DAa + 

74|yx[2,oo) = d+ + d*s + DAb + f 

-i/m("0a) 

-|/m(-06) 

A trivialization of the determinant line of Hx induces a trivialization of 
the determinant of Cx. 
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The index of the family Ind^x) on Y x R equals the index on Y x [—3,3] 
with APS boundary conditions [3], [53]. 

Now we can consider the family of operators Hx that satisfies 

?ir|yx[-3,3] = HX\YX[-3,3]' 

On Y x (—oo, -4] U Y x [4, oo) it satisfies 

^zlrx (-00,-4] = d   + ds +DAa, 

^lyx^oo) = d+ + dj + DA6. 

On the cylinder Y" x [—4,-3] and Y x [3,4] the index of the operator 
Hx can be obtained as Ind(^ + H(t)), where H(t) is independent of x (but 
depends on the asymptotic values a or b). Thus, Indfax) on Y x [—4, —3] 
and Y x [3,4] is the spectral flow SF(H(t)) of H(t). 

The indices of Tix and ?/a..are: related by the excision formula 

Jndffta.) - SF(H(t)) = Ind(Ux), 

generalizing the excision formula of [52]. 
Thus the relative orientation of %x and by i-Lx is exactly (—1)5F^. 

Notice that [52] provides examples where this spectral flow is computed 
explicitly and is odd. 

Finally we can introduce a deformation %e
x with a homotopy that shrinks 

to zero the spinor part. In this case the asymptotic operators iJ(±oo) re- 
main constant, hence the deformation is through Predholm operators. This 
implies that the orientation determined by i-Lx is the same as the one deter- 
mined by d+ + d| + DA 5 that is by an orientation of 

H0
5{Y x M) 0 H2+{Y x R) 0 Hl(Y X M). 

2.5. Floer homology. 

The Floer complex has generators 

Cq = {b e M! I /i(6) = </}, 

where .M' is the irreducible part of the moduli space of critical points. The 
Morse index /i(6) is computed with respect to a fixed element [AQ, ^0] in .A4, 
[^4o> ^0] — [^J 0] in the case of a homology sphere. 
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The boundary operator is given by 

(24) da=        J}       6(a,6)6, 
6||i(a)-M(6)=l 

where €(a, 6) is the algebraic sum over the paths joining a and b of the signs 
given by the orientation, 

€(a,6)=     ^    €7. 
7GM(a,6) 

Here ^(a, 6) is the moduli space of flow lines on Y x E with asymptotic 
values a and b. A description of M(a,b) will be given in the next section. 
The space .A4(a, b) is the quotient of .M(a, 6) by the action of R by transla- 
tions. A compactness result for A^(a,6) is needed in order to make sense of 
e(a, fr). This result will follow from the more general result proved in Section 
4 in the equivariant setup, in Theorem 4.1, Theorem 4.9, and Proposition 
4.25. 

The property that d o d = 0 relies on the gluing formula of Lemma 2.16 
that follows from an accurate analysis of the properties of the gradient flow 
moduli space jM(a, b). In our setting, again, this result will follow from the 
more general results in the equivariant context, see Theorem 4.9. 

In the case where Y is a homology sphere, we need to ensure that in 
the expression of d2 there is no contribution coming from trajectories that 
break through the unique reducible solution. In other words, no component 
of the form .M(a,#) x Ai{9^b) can appear in the boundary of jM(a,6) for 
/i(a) — /x(6) = 2. This has been proved in [13]. In fact, the following gluing 
formula holds. 

Lemma 2.16. Suppose given a, b and c in Ml', irreducible critical points 
with fi(a) > nib) > /x(c). Then, for large enough T, there is a local diffeo- 
morphism 

M{a,b) xM(b,c) x [T,oo) ->.M(a,c). 

If Y is a homology sphere and 9 = [^,0] is the unique reducible critical point, 
there is a local diffeomorphism 

M{a, 6) x M{6, c) x U{1) x [T, oo) -> M{a, c). 

In this case U(l) is the stabilizer of the reducible solution 6 = [i/,0]. 



Equivariant Seiberg-Witten Floer Homology 485 

In Theorem 4.9, we prove the gluing formula in the equivariant setup. A 
proof of Lemma 2.16 can be found in [38] and [13], and it follows from our 
equivariant result, as discussed at the end of Section 4.2. The result has an 
immediate corollary. 

Corollary 2.17. Suppose Y is a homology sphere. Let 6 be the unique 
reducible solution. If a and c are irreducible critical points such that /i(a) — 
/x(c) = 2; then generically there will be no boundary strata of the form 
.M(a, 9) x M(6) c). In fact for dimensional reasons the moduli space .M(0, c) 
of gradient flow lines is generically empty if jiiO) — /i(c) = 1. 

The property that d2 = 0 in the Floer complex follows then from the 
fact that the matrix elements 

b 

of the operator d2 are the algebraic sum of the points of the oriented zero- 
dimensional manifold 

U^M'Mia.b) x M(b,c) = dM(a,c). 

In the case with non-trivial 61(^), we construct the Floer homology 
under the assumption that ci(L) ^ 0 rationally and that the perturbation 
is restricted to the trivial cohomology class [*p] = 0. 

Remark 2.18. For a 3-manifold Y with bi > 0 and a Spin c-structure with 
ci(L) = 0 rationally, the methods discussed here do not extend directly 
to formulate the corresponding monopole homology. In fact, the Chern- 
Simons-Dirac functional is M-valued on the configuration space as long as 
the perturbation term represents a trivial de Rham cohomology class. In this 
case, however, the condition ci(L) = 0 implies the existence of a reducible 
set of critical points that is a torus Tbl^Y\ These can be degenerate, in the 
sense of Morse-Bott, even in the framed configuration space. Perturbing the 
functional with a 1-form p that is non-trivial cohomologically can destroy 
this reducible set, but the functional would no longer be R-valued. There is 
then no uniform energy bound on the space of flow lines of a fixed virtual 
dimension. This creates a problem in the compactification by broken tra- 
jectories (see Theorem 4.1 and Theorem 4.9). The right framework for this 
bad case seems to be a Novikov type complex, where trajectories with the 
same virtual dimension but with different energies are counted separately as 
coefficients of a power series. Since this case has important applications in 
the gluing formulae, we deal with it separately in [42]. 
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Under our assumptions, when we have 61(Y') > 1 and a nontrivial ci(L), 
the Floer homology groups can be proved to be independent of the metric 
and of the perturbation. In fact a chain map and a chain homotopy are con- 
structed by a cobordism argument between moduli spaces for two different 
metrics and perturbations. This result follows from the topological invari- 
ance of the equivariant Floer homology proved in Theorem 6.1, in Section 6, 
and the equivalence of equivariant and non-equivariant Floer theories in the 
case of manifolds with bl(Y) > 1 and a nontrivial ci(L), proved in Section 
7, Theorem 7.1. 

In the case with ^(Y) = 1 one expects to find a dependence on the 
choice of the perturbation, see [35], however, since we are only considering 
perturbations that are cohomologically trivial, we obtain independence of 
the metric and perturbation as in the ^(Y) > 1 case. A similar dependence 
was detected in [5] in the case of the invariant of three-manifolds obtained 
by counting points in M. with the orientation. In [38] it is proved in the 
case bl(Y) > 0 that this invariant is in fact the Euler characteristic of the 
Floer homology. The same invariant was introduced in [12] following the 
Quantum Field Theory formulation of Seiberg-Witten theory. 

In the case of a homology sphere the metric dependence problem is more 
complicated. In fact due to the reducible solution a cobordism argument 
does not work and more generally the construction of a chain homotopy can 
fail due to the presence of moduli spaces of gradient flow lines that connect 
the irreducibles to the reducible critical point. The space of metrics and 
perturbations breaks into chambers with codimension-one walls, so that the 
Floer groups are isomorphic for metrics that belong to the same chamber 
and are in general non-isomorphic when the metric crosses a wall. We shall 
discuss the wall-crossing phenomenon in Section 7. 

3. Morse-Bott theory. 

We are now going to introduce the equivariant Floer complex. This can 
be constructed for all three-manifolds. Clearly in the case of an integral 
homology sphere there will be no question of different Spinc-structures. In 
the case of a rational homology sphere, we have finitely many choices of 
Spin c-structures and there is a reducible point corresponding to each of 
these. In the case of manifolds with 61(Y') > 0 there are infinitely many 
possible choices of Spinc-structures. This gives rise to a family of Floer 
complexes corresponding to the different choices of the Spinc-structures. 
The relation between these requires further investigation and is analyzed 
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elsewhere (cf. [11]). In all the following we always assume to work with a 
fixed choice of the Spinc-structure. 

In order to consider reducible as well as irreducible generators, we intro- 
duce a framed configuration space with a Z7(l)-action, where the functional 
Cp is defined as a [/(l)-invariant real valued functional. In order to apply 
the analogue of the finite dimensional equivariant Morse theory [7], we need 
C to be a Morse-Bott function. That is, we have to ensure that the Hessian 
is non-degenerate on the normal bundle to the critical [/(l)-orbits. 

3.1. Framed moduli space. 

Definition 3.1. Let XQ be a fixed base point in Y. We define the space 23° 
to be the quotient of A with respect to the action of the subgroup Q0 C Q of 
gauge transformations A that act as the identity on the fiber of 5® L over #0 
and that satisfy the condition (2). The space B0 is the framed configuration 
space. 

The action of the group G0 on A is free, therefore the space 23° is an 
infinite dimensional Banach manifold (using a fixed L^ norm) that carries 
a residual U(l) action. There is a fibration B0 -» B over the unframed 
configuration space with fiber U(l). The solutions of the three dimensional 
Seiberg-Witten equations (5) and (6) in B0 form the framed moduli space 
M0) that is the critical set of the functional (3) modulo based gauge trans- 
formations. 

As in the case of Donaldson theory [16], an equivalent description of 
the framed configuration space can be given as the triples (A,ip,(f)) with 
(A,ip) e A and (f) a unit vector in the fiber S (g) L\XQ. The full gauge 
group acts freely on this space. Solutions of the Seiberg-Witten equations 
in this configuration space modulo the full gauge group provide another 
model of framed moduli space. This has been used in [4] and [5]. We use 
the description given in definition 3.1, since A40 has an explicit U(l) action 
which allows us to work equivariantly. 

Since the action of the base point preserving gauge transformations on A 
is free, the reducible solutions with ip = 0 now have trivial stabilizer, hence 
they are smooth points in M0. The reducible part of the unframed moduli 
space M corresponds exactly to the fixed point set for the U(l) action on 
M0. 

Lemma 3.2. Consider the unperturbed equations (9) in B0. Let [A,0] be a 
solution that is a fixed point of the U(l)-action.   Then the virtual tangent 
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space of M0 at the point [-4,0] is i?1(y)M) ©Ker (9^). Moreover, the set of 
fixed points in M0 is identified with the torus iJ1(Y,R)/jff'1(Y)Z) together 
with one point determined by the choice of the Spin c-structure, out of a 
discrete set given by the torsion part of H1 (¥,%). 

Proof Fixed points are flat f7(l)-connections modulo gauge: these are the 
representations of 7ri(Y) into U(l). The linearization T at a point [A, 0] is 
of the form (— * d, SA)- For the element in the torsion part of iJ1(y, Z) see 
Theorem 3.4 below. □ 

We need to perturb the equations in some generic way in order to have 
M0 cut out transversely. For the perturbed equations (15), the fixed point 
set is described by the equation *FA = 2ip. 

Lemma 3.3. // Y has non-trivial fc1(Y) and the functional C is perturbed 
with a generic co-closed 1-form p, then the set of critical orbits M® contains 
no fixed point and is cut out transversely by the equations. The Hessian of 
the perturbed functional Cp is non-degenerate in the directions normal to the 
critical orbits. 

Proof If the Chern class ci(L) is non-trivial, choose a perturbation p with 
[*/?] 7^ i7rci(L), or perturb with a harmonic form if ci(L) = 0. This implies 
that there are no solutions of the equation FA = 2i * p. 

Consider the linearization L^A^,p) of the equations (15), where we allow 
the perturbation to vary, 

£(ArfM(a><M) = L{A^,p){^^) - ZiV- 

The operator L hats closed range, since L is Fredholm. We show that L is 
surjective. Let (/?,£, p) be an element that is L2-orthogonal to the range of 
L. Then (/?,£, fl) is in the kernel of the adjoint, hence by elliptic regularity 
we can consider the L2 pairing of L^ and L?_kJ 

(ft - * da - df + 2a(<05 <£) - 2ir)) 

+ (^dA(t> + *Tp + m + (g,G*(chcl))) = 0. 

The argument is analogous to the proof of Proposition 2.14. By varying 
77 we force 13 = 0. The vanishing of 

(Z,dA<l> + onl> + fil>) + (g,GrM)) 
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gives an equation Ag + l/2g\il)\2 = 0 which implies g = 0 by the maximum 
principle. Then by varying (j) and a we get cti£ = 0 and 0"(f,^) = 0. The 
latter is satisfied if £ is an imaginary multiple ofip,£ = iXijj, where neither of 
the two vanishes. Both £ and if) are in the kernel of c^i, thus if either of them 
vanishes on an open set it has to vanish identically (and we know that ij) is 
not identically zero). If we have £ = iA^, we obtain that £ is identically zero 
as a consequence of the vanishing of the inner product (£, fij)) for arbitrary 
smooth compactly supported functions /. 

This is enough to show that for a generic perturbation p the moduli space 
M (and therefore also .M0) is cut out transversely, as in the analogous proof 
of Proposition 2.14. □ 

When bl (Y") = 0 the virtual tangent space at a solution of *FA = 2i * dv 
is identified with Ker(dA) and the perturbation p = *dv is not enough 
to ensure that .M0 is cut out transversely and that the fixed point set is 
separated from the other components of .M0. 

Theorem 3.4. Let Y be a rational homology sphere. Suppose we choose 
a perturbation by a co-closed 1-form p and a generic metric. Then the 
framed moduli space /A0 consists of a disjoint union of finitely many cir- 
cles (corresponding to the irreducible part of the unframed Ad) and finitely 
many points (the reducibles of M). These correspond to different choices 
of the Spin c-structure: for a fixed Spin c-structure we have a unique fixed 
point of the U(l)-action. Moreover, the Hessian of the functional Cp is non- 
degenerate in the normal directions to the critical orbits. 

Proof. The choice of a perturbation p = *dv makes the fixed point set into 
the finitely many solutions modulo gauge of 

(1) FA = dv, 

namely flat U(l) connections modulo gauge. These are representations of the 
7ri(Y) into 17(1), hence they are identified with the finitely many elements 
in the group iJ1(y, Z). Each of these elements specifies one choice of the 
Spinc-structure. Thus, for fixed Spinc-structure, there is a unique fixed 
point 6 = [AQ + v, 0] of the [/(l)-action in the moduli space .M0. If the 
metric on Y satisfies Ker (SA) = 0 at a solution [A, 0] of (1), then the virtual 
tangent space at this fixed point is zero-dimensional, hence the Hessian of Cp 
is non-degenerate at the fixed points. The condition is satisfied for a generic 
metric because of Lemma 2.7. 
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The irreducible component of M is a zero dimensional manifold if the 
perturbation p is generic. The moduli space M. is compact, since ^(Y) = 0, 
and therefore so is M®. However, we have to show that the unique fixed 
point is separated from the other components of MQ. We want to show that 
no sequence of irreducible solutions can converge to a reducible solution. 
We can apply the same perturbative argument used in [13], based on the 
local Kuranishi model. In fact if (j4,^)'.is an irreducible solution which is 
sufficiently close to a reducible solution (AQ+V, 0), then we have an expansion 

A = AQ + v + eai + e2a2 H , 

and 

i\) = e^i + e2'02 + e3V>3 + • • • • 

Using the equation (15) and the condition that Ker (pA^v) — 0 we get 
that tyi = 0 for all i, in contradiction with the assumption that (A,^) is 
an irreducible solution. Thus, for a fixed choice of the Spin c-structure, the 
framed moduli space A^0 consists of finitely many circles and a unique point 
fixed by the 17(1) action. "□ 

Corollary 3.5. Under the choice of a generic perturbation (and of a generic 
metric in the case with ^(Y) — 0), the functional Cp satisfies the Morse-Bott 
property. 

Remark 3.6. The condition that SA satisfies Ker (DA) = 0 at the reducible 
critical point breaks the space of metrics and perturbations into chambers, 
as discussed in Theorem 2.8. The Floer groups can be expected to change 
when crossing a wall corresponding to metrics with non-trivial Ker (9A)- 

The problem of possible dependence of the metric in this case was already 
addressed by Donaldson in [15]. In Section 7, we prove that indeed the 
non-equivariant Floer groups do change when crossing a wall. In fact, we 
derive explicit wall crossing formulae for the Euler characteristic of the Floer 
homology. 

3.2. Gradient flow lines. 

Denote by Oa the critical orbit in MP that corresponds to a critical point 
a G M. From Proposition 3.4 we know that M® is a 17(l)-fibration over M, 
where Oa is a circle if a is irreducible and Oa is the point a itself otherwise. 
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Let us introduce the configuration space AkjiOaiOb). Consider the 
space Ak,6((Ao, ipo), (Ai^ipi)) of elements (A,^) of the form 

(26) (A, tt) G (A{t),W)) + LisVlHY x R) © r(5+ ® L)), 

where (i4(t), V;(^)) is a smooth path such that (A(t)5 ^(t)) = (AQ, ^O) for * ^ 
0 and (i4(t),^(t)) = (Ai^i) for t > 1, with ^0-gauge classes [i4o,^o] ^ Oa 

and [A^fa] G 06. 
The space A^siOa, Ob) is given by 

(27) Akt6(Oa,Ob)=   \J   AkA^AoMtHAiM). 
\eu(i) 

The space is endowed with a [/(l)-action. 
Let jB^(Oa,06) be the quotient of Akt6(Oa^Ob) modulo the free action 

of the gauge group G^+i s(^a^ O-b) 0^ based gauge transformations, modeled 
on the Lfc+1 d completion of the Lie algebra, that decay, as t —> ±oo, to 
elements A-too in the stabilizers Ga and Gb- The quotient has an induced 
[/(l)-action and endpoint maps 

ei:B0
kS(Oa,Ob)^Oa 

and 

e-:B0
k5(Oa,Ob)^Ob. 

We denote by M.(Oa)Ob) the moduli space of solutions of equations 
(20) and (21) in jBjj^(Oa,0&). These will be our moduli spaces of flow lines 
connecting the orbits Oa and Ob- 

Remark 3.7. Suppose one of Oa and Ob is not the fixed point 8. Then no 
reducible solution arises among the flow lines M.(Oaj Ob). 

In fact, either (Aa^a) or (Ab^ipb) has non-trivial spinor. Thus ^(t) has 
to be non-trivial, in fact, the exponential weight on the Sobolev norms forces 
the elements in (26) to decay to the endpoints, at least one of which has 
non-vanishing spinor. Thus, the space .Afc>(j(Oa, Ob) only contains irreducible 
lines. The action of-Gk+i siOa, Ob) is free and B® $(Oa, Ob) is a manifold with 
a free f7(l)-action. 
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3.3. Relative Morse Index. 

We can rephrase Proposition 2.12 in the case of framed moduli spaces as 
follows. 

Theorem 3.8. Suppose Oa and Ob are critical orbits of Cp in B0.   If Y 
is a rational homology sphere, assume that the metric and perturbation are 
chosen generically so that Cp satisfies the Morse-Bott condition. Let {Aa} 
and {A5} be the eigenvalues of the Hessian operators Qa, Q^ (that is the 
Hessian in B0 restricted to the directions orthogonal to the U(l)-orbits). 

Choose a weight S satisfying 0 < S < min{|Aa|, |A&|}. Then the linearization 

£(A,#) a^ a solution [A,*] G B^^a^O^) of (20) and (21) is a Fredholm 

operator from L\5 to L\_l5. The virtual dimension of the moduli space 

.A4(Oa,Ofc) is given by the index of C^-q) and is obtained as 

dim.M(Oa, Oh) = (7(00, Oh) + 1 - dimGa, 

where cr(Oa, 0&) is the spectral flow of the operator VF on a path (.A(i), ^(i)) 
in A corresponding to (A, \I/). The quantity cr(Oa,0&) is independent of the 
path in B^; by additivity of the spectral flow, it can be written as 

v(Oa,Ob) = li(Oa) - ll(Ob), 

where //(Oa) is the flow of VJ7 on a path connecting the orbit Oa to a fixed 
orbit in jVt0. 

Proof The fact that the linearization £(A,#) on the spaces Bk,5(a^b) and 
on Bk,5(Oa,Ob) is Fredholm follows from Theorem 6.2 of [36], or Lemma 
8.3.1 of [47] (cf. the previous discussion of this point in Proposition 2.15), 
provided that the operator T has trivial kernel at the points a and b and 
the weight 5 is smaller than the least eigenvalue of T, see also [61]. 

We shall write Inde(£(A)^)) for the index formula in 13j^(Oa,0&).  The 
subscript denotes the fact that we are computing 

Indc(£(A,¥)) = dimKere(£(A,#)) - dimCoker (£(A,*)), 

where Ker e(£(A,^)) 'ls ^he extended kernel, which consists of solutions (a, $) 
of £(A,¥)(<*>*) = 0, with (a,$) — (a_,0_) in L\5, where (a_,</>_) is a 
solution of I/^a)-0a(a_,(/)_) = 0, namely a tangent vector to the orbit Oa 
in TB®. Notice that this Kere(>C(A)^)) is the correct space representing the 
tangent space of .M(0o, 0&) in /3jj^(0a, Oft)- The cokernel is simply given by 
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Ll_is solutions of £?A^\ (/,£,£) = 0, as in the setting of [3] I, p. 58. The 

formula for the index of £(A,#) on B® ^(Oa, O^) 

Inde(£(A,tf)) = o-(Oa, Ob) + 1 - dimGa, 

then follows from the splitting of the index that will be proven in Corollary 
4.18, together with the additivity of the spectral flow, and [3] III pg.95. 

Thus we obtain the virtual dimension of .M(Oa, 0&), 

dimM(Oa, Ob) = <T(Oa, Ob) + 1 - dimGa, 

where the +1 contribution depends upon the presence of the J7(l)-action 
and dim Ga is the dimension of the stabilizer of the point a. 

The relative Morse index is well defined. To see this, we have to examine 
the spectral flow of the operator V^^),^)) on a path (A(t), ^(t)) in A with 
endpoints (A,ip) and A(A,^), where A is a gauge transformation satisfying 

4- I ci(L)AA-1(iA = 0. 

According to [3] III p. 95, and [64], this spectral flow is just the index of C 
on the manifold Y x S1. The index on a closed four-manifold is 

Jnd(£)=ci(L)2-^±^ 

(cf.   Corollary 4.6.2 of [45], or Theorem 2.3.8 of [39]), and this quantity 
vanishes in the case of a manifold of the form Y x Sl. □ 

Given the relative Morse index, we can define the Morse index of a 
critical orbit up to fixing arbitrarily the index of a particular solution. In 
the case with ^(Y) > 0 there is no canonical choice, hence the grading of 
the Floer complex is only defined up to an integer. When ^(Y) = 0 we can 
remove this ambiguity by fixing the trivial solution 9 = [AQ + v, 0] to have 
index zero. 

Notice that, in the case with 61(Y") > 0, ci(L) ^ 0, and [*p] = 0, 
the relative Morse index would be defined only up to a periodicity if we 
considered solutions modulo the full gauge group Q. This is related to the 
fact that the functional C is well defined on A/Q, but is only defined as a 
circle valued functional on A/G- The relation between Z-graded and Z/- 
graded Seiberg-Witten Floer theory will be sketched briefly in Section 4.1, 
in Remark 4.5. 
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3.4. Decay estimate. 

In this subsection we introduce some analytic properties of the functional 
Cp. We show that finite energy solutions of the flow equations necessarily 
converge to asymptotic values that lie on some critical orbit. Moreover, 
we show that, if Oa or O5 is an irreducible orbit, then the flow lines in the 
moduli space M(Oa, Ob) decay exponentially towards the endpoints. Notice 
that in this case the moduli space M(Oa, Ob) only contains irreducible flow 
lines. 

We give the following preliminary definition. 

Definition 3.9. A smooth path (A(t)^(t)) in A is of finite energy if the 
integral 

/oo 

\\VCp(A(t),il>m\hdt<oo 
-OO 

is finite. 

Notice that any solution of (18) and (19) with asymptotic values in Oa 

and Ob is of finite energy, in fact in this case the total variation of the 
functional Cp along the path (A(t)^(t)) is finite and (28) satisfies 

f \Vep(A(t)Mmhdt < C(Cp(a) - Cp(b)), 

because of the assumptions on the perturbation (7(A,#) • Finite energy solu- 
tions of the flow equations have nice properties: they necessarily decay to 
asymptotic values that are critical points of Cp as we prove in Corollary 3.11 
and in Theorem 3.12. We begin by introducing some analytic properties of 
the functional Cp (see also [25], [48], [13]). 

Lemma 3.10. Let Mp be the moduli space of critical points ofCp, with p a 
sufficiently small perturbation. For any e > 0 there is a A > 0 such that, if 
the L\-distance of a point [A,^] of B to all the points in Mp is at least e, 
then 

llvc^AVOIU^A. 

Proof. For a sequence [Ai, ijii] of elements of B with a distance at least e from 
all the critical points, such that 

||VCp(jli,^)||L2->0, 
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as i -» oo, we would have 

|| * FA. - atyu fa) - ip\\ + WOAM -> 0. 

Thus, there is a constant C such that 

* FAi - a^u^i) - ip\2 + IdAi^ifdv < C. X 
If the perturbation p is sufficiently small, the Weizenbock formula implies 
that 

L FAi\
2 + |<7(^i,Vi)|2 + dV^I2 + 2|VA<^|

2
^ < C. 

Y 2 

Thus we have a uniform bound on the norms H^IIIL
4
? II^AJIL

2
? 

and 
llVA^illL2- An elliptic estimate shows that there is a subsequence that 
converges in the L\ norm to a solution of the critical point equations (15), 
and this contradicts the assumption. □ 

Corollary 3.11. Let (A(t)^(t)) be a smooth finite energy solution of equa- 
tions (18) and (19) with a smooth perturbation q. Then there exist critical 
points a and b of Cp, such that the \\mt-+±0o(A(t),'il)(t)) are in the gauge 
classes of a and b. 

Proof. The finite energy condition (28) implies that 

||vc^(t),v(t))||->o 

as t —>• ±oo. The Palais-Smale condition of Lemma 3.10 implies that there 
exist T large, such that for |t| > T, [J4(£),V>(*)] lies in a very small e- 
neighborhood of critical points of Cp. The claim at the level of represen- 
tatives {A(t))il)(t)) follows from the finite energy condition and the flow 
equations. □ 

Now we prove the exponential decay property. 

Theorem 3.12. Let Oa and Oh be non-degenerate critical orbits in BQ. 

There exists a weight 5 > 0 such that the following holds. Suppose 
given any solution [A, $] of (20) and (21) that is represented by a smooth 
pair (A^),^*)) in a temporal gauge, with asymptotic values (Aa^a) and 
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(Abjipb) in Oa and 0^. Then there exists a constant K such that, for t out- 
side an interval [—T, T], the distance in any fixed Cl-topology of (A(t)^(t)) 
from the endpoints is 

distc,((A(*),^(t)),(i4i,^)<^exp(-(y|t|), 

with i = a ift< —T and i = b if t > T. 

Proof. The proof consists of a few steps. Let us consider the decaying as 
t —± oo; the other case with t —> — oo is analogous. 

For simplicity of notation we shall prove the Theorem in the case of flow 
lines in 23, with the action of the gauge group Q of gauge maps that satisfy 
(2), and perturbation p satisfying [*p] = 0 in cohomology. This ensures that 
the functional Cp is E-valued. All the claims and the proofs extend directly to 
the case of the based space with the £0-action and a non-degenerate critical 
orbit Ob in the quotient space BQ. In this case, the distance of (A, *) from 
the orbit 0& is the minimal distance from points on the orbit. 

Lemma 3.13. Suppose b is a non-degenerate critical point of Cp. Then 
there exists a constant C& such that if the L2-distance from [A,ip] to b is 
sufficiently small, then we have the following estimate of the L2-distance 
from [A, ?/;] to b: 

distL2([A,</>],&) < ailvc^AVOII^. 

Proof. Consider the Hessian operator T& acting as an unbounded operator 
on the space of L2 connections and sections. Since b is a non-degenerate 
critical point, we have that 

hi = max < -—   Xi is a eigenvalue of the Hessian operator T& at b > 

exists and is bounded. We know that [A,IJJ] \-+ VCp(i4,^) defines a L2- 
tangent section, which is smooth and transverse to zero at b. Thus, for any 
e > 0, we may choose a small neighborhood £/& of b which may be identified 
with a small neighborhood of 0 in the L2-tangent space of B at 6, such that 
for all (A, ij)) = b + (a, </>) in [/& we have 

||VCp(A^)-T6(a,0)||L2<6, 
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where we write \7Cp(A,ip) as the sum of the linear and a non-linear term, 

VCp(il,^)=r6(a>0) + JV(a,0), 

with iV(a, (j)) = (cr(</>, </>), a • (j)). 
When the neighborhood Ut, is small enough, we can ensure that 

||iV(a^)||<l/2||VC,(Am 

so that we have 

||r6(a^)||<.||VCp(AV)|| +||^(a^)|| 

<3/2||VC^,V)||. 

Thus, we get the following estimate: 

distL2([^,-0],&) 

</»6||(r6(a^))||La 

3 
< -fc6ll(VCp([A^]))||L2(y) 

The Lemma follows upon choosing the constant Cb with 

Cb > -hb. 

Claim 1.   Let (A(i),ip(t)) be a representative of a path in B, such that 

lim{A(t),tl,(t)) = (Ab)iPb) t-±oo 

where b = [A^i/jb] is a non-degenerate critical point in M.p. Then there is a 
TQ >>> 0 and a constant ii^, such that the inequality 

\Cp(A(t)Mt)) -Cp(Ab^b)\ < Kh\\VCp(A(t)Mmh 

holds for all t > T0. 

Proof of Claim 1. Choose TQ such that for all t > TQ the path (A(t), ^(t)) lies 
in a neighborhood U^ of b for which the result of Lemma 3.13 holds. Notice 
that such a TQ depends in general on which path (>l(t),^(i)) is considered. 
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With the notation of (4) and (13), we have 

Cp(i4, V) - Cp{Ab, Vt) + rb(a, </>) + V^6(a, ^), 

where (A, ip) = b + (a, 0) in [/&. Since b is a critical point, we have J^ = 0. 
Thus we get 

\Cp(A,iP) -Cp(Ab,ipb)\ < \{Th(a,4>),(a,<f>))\. 

Now applying Lemma 3.13 we obtain the estimate 

\CP(A,4>) -Cp(Ab^b)\ < ||r6(a^)||- ||(a,0)|| 

<|c6||VCp(yl,V)|||2. 

This completes the proof of Claim 1, with the constant Kb > 3C&/2. 

Claim 2.     For a finite energy solution (A(£),?/>(£)) of (18) and (19), the 
inequality 

1 r00 

-J     \\VCp{A{s)^{S))\\l2ds < Cp(A(t),i;(t))-Cp(Ab^b) 
/OO 

\\VCp(A(s),i>(smhds 
Q       POO 

<- 
2 

holds for large t. 

Proof of Claim 2.   Without loss of generality we can assume that the per- 
turbation in V satisfies Condition (4) of 2.10 with CQ < 1/2, so that 

lfc(A,*)(*)llL' < \\\VCp(A(t),m)\\Li- 

Thus, we can replace the equality 

Cp(A(t),iP(t))-Cp((Ab,ipb)) 

= 1     --Cp{A{s)^{S))ds 

= 1°°- (fs(A(SU(s)),VCp(A(s)Ms))) ds 
/OO 

||vcp(A(s),v(5))||2^, 

that holds for solutions of the unperturbed equations with the inequality of 
Claim 2 for solutions of the perturbed equations. 
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Claim 3.   Let (>!(£)), ^(t)) be a finite energy solution of the equations (18) 
and (19). The quantity 

*«./• |vc,(ii(j),iK»))|||><fa 

decays exponentially as t —> oo. 

Proof of Claim 3.   In fact, the inequality of Claim 2 gives the first inequality 
in the following estimate: 

E(t)<2(Cp(A(t),i>(t))-Cp(Ab^b)) 

< Kb\\VCp(A(t)Mm2 

= -Kh±B(t). 

The second inequality follows from Claim 1. 

Claim 4.   For large t we have the inequality 

aoo \ 1/2 

when x(t) = (A(t),il>(t)) is a finite energy solution of (18) and (19). 

Proof of Claim 4.   We can prove that the following inequality holds true for 
t>To: 

f30    d __,_,        7   ^    2Kb 

Ts
xis) ds<. 

L2 1 - Ol 
{Cp{x{t)) - Cp{b)fl\ 

where To is such that for all t > To the perturbation <7(A,#) satisfies the 
inequality 

hMQmWWv < Ci||vcp(^(t),v(t))ll^, 
with 0 < C\ < 1, as in property (4) of definition 2.10. Moreover, TQ is such 
that Lemma 3.13 holds. The proof of this inequality follows [58] Lemma 3.1, 
p. 542. We have 

-x(t) 
dt 

= M*)ll2<c? 

+ \\VCp{x{t))r + 2{-x{t),VCp{x{t)) 

d   , x <<?, 
d   ., x 
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Thus we get 

d 
dtX(t),VCp(x(t)))>{-^^ 

!*«> 

>(1-C7i) 
dt 

x(t) 

+ l|VC,(x(t))||2 

\\VCp(xm, 

for all t G [To, oo). That is, 

d 
jtCP(x(t)) > (1 - Ci) 

dt 
x(t) \\vcp(xm\- 

We obtain the inequality 

d 
jep(x(t)) - C^b))1'2 

> ±^-{Cp{X{t)) - Cp{b))-^ 

d 
> 

2 

(1-Ci) 

dt 
x(t) l|VCp(x(t))|| 

2Kb dt 
x(t) 

The last inequality follows from Claim 1. We can now integrate both sides 
to obtain 

C00 II d 
ds< 

2Kh 

2Kb 

(1 - d) 

/OO J 

--(C.ixisV-C.m^ds 

(Cp(x(t)) - Cp{b)fl\ 

Thus by Claim 2 we have 

vl/2 

disti^^t),^^)),^,^)) < K ^     \\VCp{A{s),i,{s))\\l,dsj      . 

The exponential decay of E(t) proves the claim of the Theorem for the 
case of L2-topology. Smooth estimates then follow by a bootstrapping ar- 
gument and elliptic regularity.   This completes the proof of the Theorem. 

D 

Analogous exponential decay estimates have been proven in [48], cf. [4] 
and [13]. 
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3.5. Transversality of .M(Oa,0b). 

We have the following transversality result for the moduli spaces M(Oa, Oi). 

Proposition 3.14. Suppose given two orbits Oa and Oh in JM
0
. For a 

generic choice of the perturbation P G V, the space M.(Oa,Oh) is a smooth 
M x U(I)-manifold with dimension given by //(Oa) — /i(Ofe) + 1 — dim Go. 
.M(Oa,0&) is non-empty only if fJ>(Oa) — ^(0&) > 1. There are endpoint 
maps 

eZ:M(Oa,Ob)^Oa 

and 
e;:M(Oa,Ob)-+Ob 

that are smooth U(l)-equivariant maps. 

The computation of the virtual dimension follows from Theorem 3.8. 
The transversality statement follows from Proposition 2.14, together with 
the Remark 3.7, to the effect that the smooth manifolds M(a1 b) of Propo- 
sition 2.14 are just the quotient of M(Oa, Ob) with respect to the free U(l)- 
action. The properties of the endpoint maps follow from the discussion on 
the convergence to the endpoints of Section 3.4. 

We have the analogue of Corollary 2.17 in this case. 

Corollary 3.15. Suppose 9 is the reducible critical point in M. and b any 
point in M. Then, after a generic perturbation, M(91Oi)) is a smooth R x 
U(l)-manifold with dimension {1(6) — /i(Ob). Moreover, M(6,Ob) is non- 
empty only if /i(0) — niPb) > 2. 

4. Boundary structure. 

The purpose of this part of the work is to study the compactification of the 
moduli spaces jM(Oa, Ob)- The first step consists of showing the existence of 
a compactification, obtained by adding a certain set of broken trajectories, 
namely trajectories that break through other critical orbits of intermediate 
relative Morse index. We shall introduce the notation .M(Oa,0&)* for the 
compactified moduli spaces. Proving the existence of the compactification 
by broken trajectories is dealt with in Section 4.1. Section 4.2 then deals 
with the gluing construction, and Section 4.3 analyzes the fine structure of 
the compactification. 

It is perhaps useful to recall why in Floer theory it is necessary to develop 
the full gluing construction, as in Section 4.2. The results of Section 4.1 are 
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sufficient to prove the existence of a compactification for the moduli spaces 
of flow lines, obtained by adding broken trajectories. The points of the 
ideal boundary are not completely identified, and the purpose of the gluing 
construction of Section 4.2 is precisely to identify all the broken trajectories 
that appear in the boundary. Recall also that, in the Floer complex, the 
boundary operator is obtained by counting elements in the oriented moduli 
spaces .M(a, b)* for critical points a, b of relative index one. The statement 
that this is a boundary operator, namely that d o d = 0, depends precisely 
upon having a complete description of the ideal boundary in the compactified 
moduli spaces .M(a, c)* for critical points a and c of relative index two. In 
other words, proving that all the broken trajectories 

UM(a)>M(&)>Mc)Ma> &)* X M(b, C)* 

appear in the compactification .M(a,c)* is necessary in order to have a 
chain complex. In the equivariant setting we are considering here, there are 
components of the boundary operator D which are obtained by pullback 
and push-forward of forms on compactified moduli spaces .M(Oa,06)*, for 
orbits of relative index one, and on .M(Oa, Oc)* for orbits of relative index 
two (see the explicit description of the boundary operator given in Section 
5, in (72). The proof that DoD = 0 relies upon a version of Stokes5 theorem 
for manifolds with corners (as in [7]). For this reason, it is necessary to show 
that the compactification of the moduli spaces of flow lines of Section 4.1 
has the structure of a smooth manifold with corners. This is proved in the 
case of the codimension one boundary in Section 4.2, and the generalization 
to the strata of higher codimension is considered in Section 4.3. 

Thus, in Floer theory, a very elaborate analysis of the compactification 
of the moduli spaces of flow lines is required, in order to construct the Floer 
complex. This situation is essentially different from other issues of compact- 
ification in gauge theory. For instance, in the case of Donaldson invariants 
[18], one only needs to show the existence of the Uhlenbeck compactifica- 
tion of the moduli space of anti-self-dual connections. The definition of the 
invariants and the proof of the diffeomorphism invariance do not require to 
show that every ideal anti-self-dual connection actually appears in the Uh- 
lenbeck compactification, nor they require the existence of a fine structure 
(such as that of smooth manifold with corners) on the compactification. 

To start our analysis, we fix a unique way to identify the space of unpa- 

rameterized trajectories 

■  M(Oa,Ob)=M(Oa, 
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with a subset of the space of parameterized trajectories .M(0a,Ob). It 
is sufficient to choose the parameterization x(t) of x £ MiOa^Oi) which 
satisfies the equal energy condition 

/0 noo 

\\VCp(A(t)Mmhdt=        \\VCp(A(tUm\l2dt. 
-oo JO 

This lifting of M(Oa, Ob) to M(Oa, Ob) is unique. In fact, in the family 
of gradient flows {[A, \I>]T,T G M} that represent the class x G M{Oa,Ob) 
there is a unique element which satisfies the equal energy condition (29). 

The lifting is often referred to as Mbal(Oa, Ob) C M{Oa) Ob), the balanced 
moduli space. We have M(Oa,Ob) = Mbal(Oa,Ob)- In the following, in 
order to avoid exceeding use of different notation, we shall always write 
M(Oa, Ob), unless we need to make explicit use of the equal energy condition 
(29), in which case we may recall that .A4(0a, O^) is realized by the balanced 
moduli space Mbal(Oa, Ob) C M(Oa) Ob), as in the proof of Theorem 4.9 in 
Section 4.2. 

4.1. Convergence theorem. 

The following theorem describes convergence in the moduli space 
M.(Oa,Ob), and proves the existence of a compactification, which we de- 
note .M(Oa,Ob)*, obtained by adding broken trajectories. 

Theorem 4.1. Consider the moduli space M(Oa, Ob), with /i(Oa) — /^(Ob) 

= k + 1, k >.0. The space M(Oa,Ob) is precompact. Namely, any se- 
quence [xi] of elements in .M(OO,0&) has a subsequence which either con- 
verges in norm to another solution [x] G .M(Oa,Ob); or converges to a bro- 
ken trajectory. This means that there are critical orbits 0Cl,..., 0Ck, with 

V>{Oa) > M(Oci) > > V>(0Ck) > n{Ob), trajectories [yj] G M{0Cj, 0Ci+1); 

and a sequence of real numbers Tikj G M such that the sequence of parame- 
T-    • 

terized trajectories x^'3 converges smoothly on compact sets 

xik  ->yj- 

T 
Here xi 

Xk'3 denotes the lifting ofxik to the space of parameterized trajectories 
T     ■ 

specified by the condition x^1"3 (0) = Xik{Tikj), where Xik is the equal energy 

lift of Xik. 
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Proof. The proof of Theorem 4.1 consists of several steps. Suppose that the 
perturbation -P(A,^) is smooth. Given a sequence of unparameterized trajec- 

tories [xi] in A4(Oa, Ob), choose representatives Xi of the corresponding equal 
energy lift in jM(Oa, O^). By elliptic regularity these can be represented by 
smooth solutions. 

Let (Ai(±oo)^i(±oo)) be the asymptotic values of the elements Xi at 
the ends of the cylinder Y x R. These represent elements [^(±00), ^(±00)] 
in Oa and Ob respectively. 

Claim 1. There is a subsequence {xik } that converges smoothly on compact 
sets to a solution y of the perturbed flow equations. 

Proof of Claim 1. We first show that there is a subsequence that converges 
uniformly on compact sets. By the use of a bootstrapping argument is then 
possible to improve the convergence to C00 on compact sets. 

It is useful to recall the following weak version of Arzela'-Ascoli. 

Proposition 4.2. Let K be a compact subset o/R and (X, || • ||) a normed 
metric space. S is a subset of continuous functions from K to X. Suppose 
the following conditions are satisfied 

(i) pointwise bound: 

sup||/(t)|| <oo 
fes 

for all t e K; 

(ii)  local equicontinuity: given e > 0, for all t in K there exists a neigh- 
borhood Vt such that, for all r G Vt 

||/(T)-/(t)||<e 

uniformly in f G S. 

Then the set S is uniformly bounded, that is 

sup    ||/(t).|| = M <oo. 
teKjeS 

We show that the sequence Xi satisfies properties (i) and (ii) of Proposi- 
tion 4.2. 
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Equicontinuity.   Choose t < t'. We have 

dist^Xiit)^^')) < K J    \\VCp(xi(8))\\L2d8, 

where we denote by distL2(x(t),x(t')) the quantity 

distLl(x(t),x(t')) = \J    \\-x(S)\\L2ds\. 

Since the perturbation satisfies condition (4) of Definition 2.10, we obtain 

distL2(xi(t),Xi(t')) < K\t - t'|1/2 
rt' 

1/2 

<k\t-t'\xi2 

< KE\t -1'\1/2 

f^WVCpixiisMlids 
Jt-1 

1/2 

Here the first step comes from the Holder inequality and the second step 
from Lemma 6.14 of [48]. 

Pointwise bound.   Fix to- We can assume that 

\\VCp(xi(to))\\L2>\ 

for all i ^>> 1, where A is the constant of Lemma 3.10. In fact, if there is 
a subsequence Xik such that this condition is not satisfied, then by Lemma 
3.10 the elements Xik(to) lie in an e-neighborhood of a critical point hence 
their norms are bounded. 

We can therefore choose a sequence U of real numbers such that 

and 

\VCp(xi{ti))\\L2 = \ 

\\7Cp(zi(t))\\L2 > \ 

for t G (tijto].  Lemma 3.10 then implies that there is an element (Aa,ipa) 
with [Aajipa] e Oa and there are gauge transformations A; such that 

dist L2(XiXi(ti),(Aa,ilja)) < e 
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for all i, and therefore we can write 

distL2(Aia;i(to),(Aa,^a)) 

< dist L2(XiXi(ti), (Aa^a)) + dist L2(XiXi(ti), XiXiito)) 

<e + K [ 0 WVC^XiXiim^dt. 
Ju 

Using the inequality 

«*«**«»■« <- wcA^mi£ —x—l- 
for t E [ti,'to], and Lemma 6.14 of [48], we obtain 

distL2(A^(to),(Aa^a)) < 6+ — /        ||VCp(A^(t))\\2L2 <e + KE/X. 
A Jti-i 

Now Proposition 4.2 implies that, given any compact set if C R, we 
have 

(30) sup ||A^i(t)||L2(yx{t}) = M < oo 

uniformly in i. 
For simplicity of notation we refer in the following to the gauge trans- 

formed sequence XiXi simply as Xi. 
Prom the uniform estimate (30) and from the equations (18) and (19) 

we obtain a uniform bound of the L2 norms of -^x^t) on Y x K: 

dtX*{t) 
L2(Yx{t}) 

hence the left hand side is bounded uniformly with respect to t E K and i. 
We use the fact that the perturbations P^^.) are uniformly bounded with 
respect to (Ai^i) according to condition (2) of Definition 2.10. 

In the following we shall always consider the set K to be some large 
interval [—T,T]. The previous estimates provide a uniform bound of the 

norms ||^i||L2(yx[-T,T])- ^n fact5 we ^iave 

\Xi\\2r2,v„r M\ < 2TM + 2TCM. ^llL2(yx[-T,T]) 

In order to bound the higher Sobolev norms we need the following gauge 
fixing condition. Up to gauge transformations Xi in the group Qk+i(Y x 
[—T,T]), it is possible to make A^ — AQ into a sequence of co-closed 1-forms. 
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We have elliptic estimates for the domain Y x [—T,T], 

W^i -Ao.llL2(yx[-zyr]) < C(\\{d* + d+)(Ai - Ao)||L2_i(rx[_T,}T,]) 

+ \\ki - ^WLI^IYXI-T?})) 

and 

ll*t|lL2(yx[-T,r]) < G (HVA^tllL^^yxhT',^]) + ll^llL^^yxh^T])) » 

where [-T'.T'} is any strictly smaller interval contained in [-T,T]. We also 
have an estimate given by the curvature equation: 

ll^llL2(yx[-T,T]) < ll*t * ^llL2(yx[-T,T]) + INM +-P(A<l^)ll^(yx[-T»Tl)' 

These provide a uniform bound on the L^-norms 0^ ^^e (A^, ^i) on a smaller 
Y x [—T", T"]. By the Sobolev embeddings, this implies that on a smaller Y x 
[—Tn\Tn] there is a subsequence x^ = (A^,*^) that converges uniformly 
with all derivatives. 

This completes the proof of Claim 1: there is a subsequence Xik that 
converges smoothly on compact sets to a solution y = (A,*) of (18) and 
(19) on Y x M. 

The limit y is of finite energy, hence it defines an element of some moduli 
space M{Oc,Od) according to Corollary 3.11. 

For simplicity of notation, assume that the sequence xi itself converges 
to y smoothly on compact sets. 

Claim 2. If the limit y is an element of .A4(Oa,06) then the convergence 
xi —> y is strong in the L\ s norm. 

Proof of Claim 2.   There exists a TQ such that for all t < —TQ we have 

distL2(j/(t),(i4a,^a))<c/2, 

for some element (Aa^a) with [Aa^a] G Oa• For i » 1 we also have 

distL2(xi(-ro),y(-To))<6/2, 

hence 

This implies that -(Aa^a) is the same as the element (Ai, VvO- Moreover, 
the exponential decay property ensures that we have 

(31) distL2(xi(£),(Aa,V>a))<e 



508 Matilde Marcolli and Bai-Ling Wang 

for all t < —TQ. This, together with the uniform convergence on compact 
sets, implies that the convergence is uniform on all Y x M. Thus, we have a 
uniform exponential decay towards the endpoints, hence convergence in the 
L^ s norm. 

Notice that in this case we can ensure that there is a unique TQ such 
that (31) is satisfied for all t < —TQ, whereas, in the proof of the exponential 
decay, the interval (—00, TQ] depends on the solution (A(t), ^{t)). 

To improve the convergence to L\ 5 we need to choose suitable gauge 
transformations. 

Lemma 4.3. There exist gauge transformations Xi in Q® s(Oa, Ob) such that 
the forms Xi(Ai — AQ) are co-closed, that is 

d*s\i(Ai-Ao) = 0. 

Proof of Lemma. Let c^ = A; — AQ. The element e^^*6-^ is L2- 
orthogonal to the kernel of the Laplacian A^/2- Thus we can define the 
elements 

gi = e_S/2Ajf2(es/2d*e-sai), 

with 
A"/, : Ker (AJ/2)^ Ker (A5/2)^. 

These are elements in the Lrja completion of the Lie algebra hence they 

define gauge transformations Xi G Q^siOa^Ob)- We have 

Xi(Ai - AQ) = f3i = ai - dgi. 

Thus, we can compute d$f3i as 

dfifii = d*sai - d*5de_5/2&~j2(e6/2d*e-5ai) 

= d*sOLi - e5/2(d*5i2d6/2)£^f2e5i2d*e5ai 

= dfai — d}ai = 0. 

This completes the proof of the Lemma. 

Now we can use the elliptic estimates to improve the convergence to L| S. 
This completes the proof of Claim 2. 

Thus, we see that broken trajectories arise when the limit y is in some 
.M(Oc, Od) where either Oc ^ Oa or Od ^ Ob. These are constrained by the 
condition 

cp(a)>ep(c)>ep(d)>cp(b). 
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Without loss of generality, assume that y is in .M(Oa,Od) and Cp(a)  > 
cp{d) > ep(b). 

There exists a sequence of real numbers T; such that Cp(xi(Ti)) = a, 
with a satisfying Cp(d) > a > Cp(b). Consider the reparameterization 
x^ft) — Xi(t + Ti). This is another possible lifting of Xi to the parame- 
terized trajectories (which does not satisfy the equal energy condition). We 
can apply the result of Claim 1 to the sequence xi 

i and we obtain a sub- 
sequence that converges smoothly on compact sets to a solution y of the 
equations (18) and (19) on Y x R. Now the asymptotic values y(±oo) are 
constrained by 

Cp(d) > Cp(y(-oo)) > Cp(y(oo)) > Cp(b). 

The process can be repeated: at each step we either get strong conver- 
gence or another broken trajectory. If we start with relative index k + 1, the 
process ends at most at the order fc, in fact the condition 

KOa) > n(Oc) > i*(Od) > n(Ob) 

has to be satisfied for dimensional reasons. □ 

Corollary 4.4. Notice that, in particular, if n(Oa) - ^{Qb) = 1 with Oa a 
free orbit, or if jiiOa) — M(0&) = 2, with Oa = 6 the unique fixed point, the 
previous argument shows that M{Oa,Ob) is already compact, M(Oa,Ob)■ = 
M(Oa,oby. 

A brief notational remark about the case 61(y) > 0: 

Remark 4.5. In the case of a three-manifold with 61(Y') > 0, the Seiberg- 
Witten Floer homology considered in this paper differs from the construction 
of [38], where the connected component of the full gauge group G(Y) is 
considered. The relation is illustrated in the following. 

With our notation, we have G(Y), the full gauge group on Y, and </(Y), 
the group of gauge transformations on Y satisfying the condition (2). We 
have another possible choice of an even smaller subgroup, the identity com- 
ponent Gc(Y) of the gauge group. These all have subgroups of base point 
preserving gauge transformations, <?0(Y), <70(Y), (/*?(Y). 

Thus, we have configuration spaces 23°, 23°, and B®. The map B® -> 23° 
has fiber if1(Y, Z), and the map B0 -> B0 has fiber the group H 

H = {he H^Y^KaiL) U h, [Y]) = 0}. 
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The group H is the kernel of the morphism 

^) = (Cl(L)Uh,[y]>. 

The quotient Hl(Y, Z)/lf is either trivial or Z. It is trivial only when 
ci(L) = 0 rationally, that is in the case of Remark 2.18 which will be con- 
sidered separately in [42]. Thus we have the following diagram 

£C
0(Y) = A{Y)/G»{Y) 

H 

B°(y)=AY)/s°(Y)z^Y:Z)/H 
^{Y.Z) 

&{y) = A{Y)iQ*{y) 

As we are about to see, the choice of B®(Y) gives rise to a periodic Floer 
homology of periodicity 

I = g.c.dHdiL) U h, [Y]), h e H^Y, Z)}. 

The choice of B0(Y), that was suggested to us by R.G. Wang, represents 
the minimal cover of B0(Y) that gives rise to a Z-graded Floer homology. 
The choice of B^(Y) also gives rise to a Z-graded complex. 

In [38] the Floer homology is constructed using the group Gc(Y). The 
relation to our construction here is as follows. Let {0^}heH be the family 
of distinct critical orbits in B® that correspond to a critical orbit Oa in B0. 
Notice that in B® the relative Morse index satisfies 

n(Oa)-l*(O*) = Jc1(L)Ah = 0, 

We have the configuration space of flow lines 

Ak,s(0^0^)=   (J   ^M(A(Aa,^a),A(^6,^)), 
\eu(i) 

with (Aaiipa) anci (Afai/jb) representatives of elements [i4a,^0] and [Afaipb] 
in 0% and O^ respectively, in the space B°(Y). The space Ak^(O^O^) is 
acted upon by the gauge group of gauge transformations in Q(Y x R) that 
decay to elements of Ga and Gb respectively. We can form the quotient 
space B0

c(Oh
a,O^). 
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We can consider the moduli spaces of flow lines .M(0£, O^) in the space 
Bc(Oai Ob)- In the analysis of the boundary structure of A4(Oj, 0% ), there 
may be a question of whether a sequence of elements [xi] of M(0^0^ ) 
can converge to a solution y that lives in another M(0^ O^') (for different 
h and h'). Claim 2 of Theorem 4.1 rules out this possibility. Thus, a nice 
compactification of the moduli spaces ^4(0^,0^) can be achieved in this 
setting as well, for all manifolds with &1(lr) > 0 and ci(L) ^ 0. There is, 
therefore, a well defined associated Seiberg-Witten Floer homology which is 
finer than the one we are considering here. 

On the other hand we can also consider critical orbits Oa in the configu- 
ration space 23° (y). In this case the relative Morse index is not well defined, 
in fact the spectral flow between two gauge equivalent orbits satisfies 

/i(AOa) - /i(Oa) = I ci(L) A MA), 

with h{\), = A 1d\. Thus the grading of the Floer complex is defined only 
up to a periodicity of 

Z = (/.c.d{(ci(L)uMA),[r]>}. 

Therefore in the configuration space /3(Oa, O^) obtained as a quotient of 

\eu(i) 

with (Aa^a) and (A&,^) representatives of elements [Aa^a} and [J4&,^>] 

in Oa and O^ respectively, in the space BQ{Y). The space AkjiOatOb) is 
acted upon by the gauge group (7fc+i,$('Oa,dfc) of gauge transformations in 
Q(Y x R) that decay to elements of Ga and G^. 

Now the space .A4(Oa,0&) has infinitely many components of virtual 
dimensions 

li{pa) - n(Ob) + fcZ, 

with k G Z. Each component has uniformly bounded energy, hence it has a 
compactification by boundary strata of broken trajectories. 

The Floer homology defined this way, namely with generators in Ai and 
with the boundary operator defined by counting the components of minimal 
energy in .M(0a,O&), is finitely generated and Zj-graded. There are various 
other ways of defining the Floer homology for ^(Y) > 0. For instance, a 
way of obtaining a Z-graded Floer homology which is also finitely generated 
(again for ci(L) ^ 0) is by a filtration as in [23] or [34].  The comparison 
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between these different versions will be discussed in [42]. For the purpose of 
this paper we shall only consider the Seiberg-Witten Floer homology defined 
by the choice of the gauge group Q. 

4.2. Gluing theorem. 

Theorem 4.1 proves that lower dimensional moduli spaces appear naturally 
in the compactification of the spaces jM(Oa, 0&). In the rest of this section 
we describe a gluing formula, thus proving that all the broken trajectories in 
the ideal boundary which break through one intermediate critical point ac- 
tually occur as codimension one strata in A^(Oa, 0&)*. The case of multiply 
broken trajectories is analyzed in Section 4.3. 

In order to show that the gluing construction is well defined over the 
gauge classes, we need a preliminary discussion of slices of the gauge action. 

Definition 4.6. Let T = (A, *) be an element in A^siOa, Ob). The slice <Sr 
at T for the action of the gauge group ^+1 ^(Y" x M), is the set of elements 
(A, ^r) + (a,</>) in the configuration space Ak^siOa^Ob) with the following 
properties. The element (a, </>) satisfies 

(a^jGKerCG^)), 

where G/A ^ is the adjoint with respect to the L| norm of the linearization 
of the gauge group action. There is a To >> 0, such that, on Y x [To,oo) 
we have 

(a,(/)) = (a,^) + (e-)*(^i,^i), 

and on Y x (—oo, — TQ] we have 

(a,^) = (d,^) + (e+)*(A),^o), 

with (a,</>) is in Lj^ on Y x M. The elements (^o^o) and (^.ij^i) are 
representatives in the configuration space A over Y of elements in the orbits 
Oa and Ob. 

The following Lemma shows that there is a uniform choice of slices for 
the gluing construction, cf. Lemma 2.1.4 and 2.1.5 of [46]. 

Lemma 4.7. Given T — (A, \[/) in the space Ak,5(Oa, Ob), consider /i(A,#), 
the first positive eigenvalue of the operator G*,A ^ G(A,#) • There is a ball of 
radius r(fi) around T in the configuration space Ak^iOa^Ob) such that the 
intersection of the ball with the slice SY embeds into B^s(Oa^Ob)- 
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Moreover, there is a radius r such that we have an embedding 

5(A|*)nSr(A,$)^B2^(Oa>06) 

for all [A,*] inM(Oa,Ob). 

Proof. The claim that the radius can be taken to be r = r(^) follows from 
Lemma 10.3.1 of [47] (cf. similar arguments in Lemma 2.1.5 of [46]). We 
need to show that there is a uniform lower bound for ^(A,#) 

as [A, *&] varies 
in .M(Oa, Ob)- Consider a sequence of elements Xi in M(Oa, Ob)- Theorem 
4.1 implies that a subsequence converges smoothly on compact sets to a limit 
y that defines an element in some M(OCJ Od)> Since we are considering the 
adjoint operator GJA^ with respect to the L^ norm, for a generic choice of 
metric and perturbation, we have /iy > 0, as discussed in Lemma 3.13. We 
also have /j,Xi —> jiy, and this provides the uniform bound. In fact, according 
to Theorem 4.1, only finitely many different components .M((9c,0d) can 
appear in the boundary of jM(Oa, O^). □ 

The following result is also useful in constructing a gluing map at the 
level of gauge classes, cf. Lemma 2.1.8 of [46]. 

Lemma 4.8. Consider a compact subset K C .A4(Oa,0&). Then there is a 
radius r, such that, for every [F] € K, there is a 17(1)-invariant submanifold 
VY C AkjiOaiOb) with the following properties. Suppose given any solution 
(A,*) of equations (20) and (21) that is in the ball of radius r around F. 
Then VY contains an element gauge equivalent to (A, \I/). Moreover, the 
quotient by the action of the gauge group ^_|_1 ^(Y" x R) induces a map 

VT->M{Oa>Oh) 

that is a diffeomorphism on a neighborhood of [F]. Moreover, there is a TQ 

such that, for all T > TQ we can find families of gauge transformations 

{A± | x e Vr] 

such that the elements in the set 

W± = {\±(x) \xeVr} 

are in a temporal gauge on (—oo, —T] in the case of Wf and on [T, oo) in 
the case of Wp". The set Wf^ has the same properties ofVY, namely the 
quotient with respect to the gauge action induces a diffeomorphism 

W±-+M(Oa,Ob) 
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on a neighborhood of T. 

Proof. It is sufficient to take Vv to be the intersection of the space of solutions 
to (20) and (21) in Ak,5{Oa) Oh) with the slice Sr- According to Lemma 4.7, 
there is a radius n such that the intersection of this set with the ball of radius 
r\ around F embeds in .M(Oa,06). In general, elements of Vp are not in 
a temporal gauge, however, following Corollary 3.1.7 of [47], there exists a 
constant C independent of x G Vp such that we obtain HA^o;)!! < C||;c||, 
and the elements in the set 

W£ = {A^(x) | x G VT] 

are in a temporal gauge on (—oo,—T] and on [T,oo), respectively. This 
follows from the exponential decay of solutions towards the endpoints. Upon 
rescaling the radius r to r/C the properties stated for Vj- hold for Wr . The 
constant C depends only on the set if, cf. Lemma 2.1.8 and Proposition 
2.6.4 of [46]. □ 

Now we can introduce the gluing construction. This identifies the codi- 
rnension one boundary in the compactification .M(0a, 0&)*. 

Theorem 4.9. Suppose given Oa; O^ and Oc in M® with fi(Oa) > /J,(Ob) > 
fi(Oc)' Assume that b is irreducible. Then, given a compact set 

KcM{Oa,Ob)xobM(Ob,Oc), 

there are a lower bound To(K) > 0 and a smooth map 

#:ifx[To,oo)->.M(Oa,Oc) 

((Ai,*i),(A2,*2),r) ■-> (AI#TA2,^1#T*2), 

such that#T is an embedding for allT > TQ(K). The gluing map # induces 
a smooth embedding 

#:Kx[To,eo)-+M(Oa,Oc), 

where 
K c M(Oa, Oh) xo6 M{pb, Oe). 

This local diffeomorphism is compatible with the orientation, luhere the ori- 
entation on K x [To,oo) is induced by the product orientation on 

M(Oa,Ob) xMx M(Ob,Oc). 
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If b is reducible, then O^ is just a point and there is a similar orientation 
preserving local diffeomorphism 

# : M{Oa,b) x M(b, Oc) x [To,oo) -> M{Oa,Oc). 

Moreover, any sequence of trajectories in M.{Oa,Oc) converging to a broken 
trajectory in .M(Oa,0&) Xo6 .A4(Ob,Oc) lies eventually in the image of the 
gluing map. 

In order to prove Theorem 4.9, we first define a pre-gluing map #^. 
This provides an approximate solution via the following construction. Con- 
sider classes [x] = [Ai,*i] and [y] = [A2,*2] in M(Oa,Ob) and M(Ob,Oc) 
respectively. Let 

(Ai(<),Vi(t)) € AkAOaM,   (A2(t)\Mt)) e Akts(ObiOc) 

be temporal gauge representatives of [x] and [y]. 
Choose slices 

(32) SrabC Ak,s(Oa,Ob) 

and 

(33) Srbc C Aki5(Ob,Oc), 

determined respectively by the elements 

Tafc e Ak,6((AaM, (Ah,ll>b)) 

and 
rbc e AkA(Ab^b)AAc^c))- 

We choose them so that there is a representative x in the ball of radius r 
in Ak,s(Oa> Ob) centered at Yab and a representative y in the ball of radius 
r in Ak,5{Ob,Oc) centered at Tbc. According to Lemma 4.8, there are gauge 
transformations A^ and A^T such that we have 

(34) ^EWrV   A2-yEWr-6c. 

Thus, for |t| > To and for all T > To, we can write \fx(t) = \b(Ab,ipb) + 
(ai(t),(f>i(t)) and X^yit) = Xb(Ab^b) + (a2(t),02(*))- Here we have A^ € 
G{Y) and \b(Abli/;b) is a representative of an element in the orbit Ob that 
satisfies 

lim(j4i(i),^i(i)) = Xb(Ab^b) -   lim (i42(t),^2(t)). 
t—too t—>—oo 
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The elements (a^^) have exponentially decaying behavior, as in Proposi- 
tion 3.12. 

We construct an approximate solution x^y = (Ai#^A2,^fi#^2) of 
the form 

(35)    x#0
Ty 

'A+(Af,*f) t<_i 

Xb(Ab, i)b) + p-(i)(ai(t + 27), ^(t + 2T)) 

+P
+(t){a2{t - 2T), Mt - 2T)) -1 < t < 1 

X^(^2T,%2T) t>l. 

Here p±(t) are smooth cutoff functions with bounded derivative, such that 
p~(t) is equal to one for t < —1 and to zero for t > 0 and p+(t) is equal to 
zero for t < 0 and to one for t > 1. 

Lemma 4.10. The pre-gluing map ^T descends to a map at the level of 
gauge classes. Namely, it is well defined with respect to the choice of slices 
of the gauge action. 

Proof. Consider a different choice of slices 

Stab CAk,6(0a,Ob) 

f ab £ Ak,6{(AaM, Afo)) 

stbc cAk40h,Oc) 

determined by 

and 

determined by 

Suppose that x and y are now in balls of radius r' <r centered at Yah and 
ffcc respectively. Then, according to Lemma 4.8, there are gauge transfor- 
mations A^" and A^ that conjugate x and y so that we get 

A+z G Wf ,    A2-y e wr . 
1 i ab i be 

Consider the pre-glued element of the form 

'A+(Af,tff) t<-l 

0 . = I \b{Ab^b) + p-(t)(ai(t + 2r)>0i(t + 2T)) 
x*Ty     Vp+(i)(a2(t-2T)^2(i-2T)) -l<t<l 

A2-(A2-2r,*2-2r) t>l. 
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The temporal gauge representatives are defined up to an ambiguity given 
by the action gauge transformations that are constant in the M direction, 
that is by the action of G(Y). Thus, on the interval [—1,1], the gauge 
transformations Xf o Xf      are constant with respect to t, 

\ 0\    |yx[-i,i] = ^bK • 

Thus Xf o Aj" and A^" o A^" define a gauge transformation A in Q(Y x R) 
(depending on T) such that 

5#o y = X(x#0
Ty) 

is satisfied. Thus, Lemma 4.7 and Lemma 4.8 imply that the pre-gluing map 
induces a well defined map #^ on compact subsets of broken trajectories, 

#§■ : K C M(Oa,Ob) xob M(Ob,Oc) ^ BPk%s(Oa,Oc). 

D 

The proof of Theorem 4.9 will consist of showing that the pre-glued 
approximate solution a;#j.y can be perturbed to an actual solution of the 
flow equations by a small perturbation. 

We need a preliminary discussion of some properties of the linearization 
of the Seiberg-Witten equations at the pre-glued solution. 

Consider the weight function eST(t) = e5 W, with 5T(t) a function that 
satisfies eST(t) = e^t+T)for t < 0 and e^T(t) = e*(*-T) for t > 0. Here 
e8(t) — e^1' is the usual weight function introduced in Proposition 2.9. We 
define the norm L^ 6,T. as \\f\\L2       = \\feST\\L2. We can choose the weight 

function eST (t) as above, so that the weighted norms satisfy the estimates 

(36) Cx^H/H^ < ||/||LW) < C2e^mLls, 

with constants Ci and C2 independent of T. 
Suppose given classes [x] — [Ai, *i] and [y] — [A2, #2] in M(Oa, Ob) and 

At (Oft, Oc) respectively. We can consider the operator 

(37) Cx{a,$) 
'd+a - i/m(*i • $) + 2?P(Al>Sl)(a,*) 



518 Matilde Marcolli and Bai-Ling Wang 

acting on the space of L^ ^-decaying 1-forms and spinor sections on Y x M. 
Analogously we have 

'd+a - |/m(*2 • *) + VP{A2^2)(a, $) 

(38) ^y(a,*) = <I>A3* + a*2 

acting on L^ s 1-forms and spinor sections on Y x R. We also consider 
(39) 

^X#0,V(Q;>*)=   < 

acting on L^ S,T^ 1-forms and spinor sections on Y x M. Moreover, if (>!{„ tpf,) 
is a representative of a point on Ob, with Oj, a free C/(l)-orbit, consider the 
operator 

(40) £&(<*,*) = < 

d+a - jlm(ipb • $) 

G- (^^6) 
(a,*) 

acting on Lf 1-forms and spinor sections on Y x M. If O^ = 6 is fixed by the 
[/(l)-action, consider the operator 

(41) £b(a,$)={DAb$ 

(a,*) 

acting on Lf 1-forms and spinor sections on Y x R. 
The central technique in the gluing construction is the study of the be- 

havior of the eigenspaces of small eigenvalues of the Laplacians £* 0 £x#o y 

and C^JJ.0 0lC*„n of the linearization of the Seiberg-Witten equations at the 

approximate solutions. The general philosophy can be summarized as fol- 
lows: we are trying to paste together solutions of a system of non-linear 
elliptic equations. If the equations were linear, we would simply encounter 
the obstruction to inverting the operator C* „0 . This obstruction is rep- 

resented by Coker(£x#oy). However, the equations being non-linear, the 
presence of eigenvectors with small eigenvalues of Cx^oyC*o also rep- 

resents obstructions,   (cf.   the discussion of this phenomenon in [60], pg. 



Equivariant Seiberg-Witten Floer Homology 519 

169). For this reason, we introduce the notation "approximate cokernel", 
ApprCoker(Cx#o ) (cf. Definition 4.16) to denote this eigenspace of small 
eigenvalues. The notation may be slightly confusing, as it may suggest a 
space of approximate eigenvectors, whereas it simply denotes the eigenspace 
of small eigenvalues, as explained in Definition 4.16. We trust that the 
reader will not be confused by our, perhaps unorthodox, choice of notation. 

So the central technical issue in the gluing construction becomes relating 
the small eigenvalues eigenspace of the Laplacian £x#o y£xno (we call this 

space ApprCoker(Cx:^o y)) to the kernels of the Laplacians CXC*, CyCy, and 
CbCt' and similarly for the other Laplacians CICX and £*£y and the small 
eigenvalues eigenspace of £*no  ^x#0y (which we call ApprKer{Cxz^o y)). 

First of all we can identify explicitly the kernel and cokernel of the op- 
erator Cb as in (40) and (41). 

Lemma 4.11. The operator Cb defined as in (4:1), that is, for Ob = b 
the fixed point of the U(l)-action, has trivial L\5-kernel and trivial I/Q^

- 

cokernel The operator Cb defined as in (40), with Ob a free U(l)-orbit, also 
has trivial kernel in 1%$, and trivial cokernel in LQS. 

Proof We prove the case of (41), where the critical orbit Ob = b is the 
unique fixed point of the U(l) action b = 6.  The irreducible case, with a 
free U(l) orbit Ob follows by an analogous argument. 

Let (a, $) satisfy 
rd+a = 0 

DA** = 0 
Gi6>o(a,*) = 0> 

where the operator G\ 0 is the adjoint of the infinitesimal gauge group 
action with respect to the LQS inner product. In this case, this is sim- 
ply given by the operator esd^e^s- The Dirac equation DAb$ = 0 can be 
rewritten in terms of the 3-dimensional Dirac operator, (dt + dAb)& = 0. 
Upon expanding the spinor on a basis of eigenvectors for the 3-dimensional 
Dirac operator 5A6, we obtain $ = ^a^t)^ and the equation has solu- 
tions $(£) = ^A,afc(0)eAfc<^. Since none of these solutions is in L\8, we 
have obtained $ = 0. Now we consider the curvature equation. This gives 
d+a = 0 and esd*e-sa — 0. These two conditions imply that e_s/2a is 
a harmonic representative in H^f2(Y x R), with respect to the Laplacian 

A§/2 = es/2^-s/2' For a rational homology sphere Y (the only case where 
we have to consider the presence of the reducible point 0), this is necessarily 
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trivial. The argument for the cokernel is similar. Consider an element in 
the cokernel, namely, suppose given a triple (/3, /,£) of a self-dual 2-form, a 
0-form, and a spinor section of the bundle of negative spinors over Y x R, 
such that we have 

(f3,d+a) + (/,ejef e^a) + {Z,DAb$) = 0 

in the L2 pairing. We then have DA^ = 0 which implies ^ = 0 by the 
previous argument, and d*LJ = esdesf. This equation implies d*u = 0 
and esdesf = 0. The first equation then implies that u is a harmonic 
representative in i?2"1" (Y x R). Again, this is trivial since the only case 
where the reducible 8 appears is when Y is a rational homology sphere. The 
remaining equation gives / = ce_£. The condition /(#o) = 0 at the base 
point XQ = (yo,to) implies c = 0, hence / = 0. □ 

The following Lemma, together with Lemma 4.13 and Lemma 4.15, con- 
tains the key argument that will be used in Proposition 4.17 to relate the 
spaces ApprCoker (£x#o y) and ApprKer (£x#o y) of eigenvectors of small 
eigenvalues to the kernels and cokernels of Cx and Cy and in Corollary 4.18 
for the formula on the splitting of the index. 

Lemma 4.12. Let x and y be elements in A4(Oa,Ob) and M.(Ob^Oc) re- 
spectively. Suppose given a sequence £& of L\5 1-forms and spinor sections 
on YxR. Assume these elements live in the tangent space7 in the L\ ^-norm, 
to the fiber (e^)~1(xa) of the endpoint map 

4 ■■ <5rac -> Oa, 

with xa the asymptotic value at t —> —oo of x G .M (Oa, Ofr), and for a given 
choice of slices Srab and Srbc as in (32) and (33), and 

SVacCAuiOatOc). 

Suppose given a corresponding sequence of gluing parameters Tk with 
Tk   ->   oo.     We assume that £&   and Tk  satisfy e6Tk\\€k\\L2     ~   ^  anc^ 

1,<5 

||^#0 y^fclL2 "^ 0, with Cx^o y as in (?>§).   We have L\ convergence 
e<5Tfc6c|yx[-Tfc,Tfc] ""^ 0. Then there exist L\ 5-elements u and v in KeT(Cx) 
and Ker (Cy) respectively, with Cx and Cy as in (37) and (38), such that we 
have convergence 

\\Pl-TktkTk-U\\Lls^0 
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and 

\PU+Tk€
k -Mlq, -► o. 

Here we have pl1+Tfc(t) = p+(t — 1 + Tk) and p1_Tk(t) = p  (t + 1 — T^). 

Proof. We first want to prove that the supports of the £& become more and 
more concentrated at the asymptotic ends as k —> oo. Consider the operator 
Cb as in (40) or (41). If £ : Y x M —»> [0,1] is a smooth function which is equal 
to 1 on Y x [—1/2,1/2] and equal to zero outside Y x (—1,1). Moreover 
suppose that, for any fixed £, the function £ is constant on Y x {£}. Let 

(k{t) = C(^~)- Then, using the pointwise estimate |^| < 1, we have 

114, tke5TkZk\\Ll5 

<KkeSTkZk\\Lls + \\(keSTk£btk\\Lls 

< ^max|C'| + ||Cfc(^#^tf - Cb)e
ST^k 

'■Th1 L0,S 

+ e5Tk^rT,y^ 
L0,5 

1 
< — max IC'I +     sup       Cx#o     - Cb    ||e

OTfc&||L2   +   Cx#o yCk 
Tk te[-Tk,Tk} 

The first and last term tend to zero as k - 

£b 

T2 

0,6{Tk) 

sup 
t6[-Tfc,Tfc] 

£x#0   y 

oo. The remaining term 

11^11,3 J1,S 

is bounded by 

:x#0
T] y 

sup 
te[-i,i] 

Cb +     sup     ||£2Tfc-£6||+   sup   ||£ -2Tfc-All- 
te[-Tk-i] te[i,Tk] 

All these terms tend to zero because of the exponential decay to the critical 

point b of the trajectories (Ai(4),^i(t)) and (^(t), V^OO)? ancl because of 
condition (5) of Definition 2.10.  Thus, we have \\Cb Ck^6TkCk\\L2    -> 0 as 

0,6 

k -> oo. 

Lemma 4.11 shows that the condition ||£& (keSTk€k\\L2   "^ 0 implies the 
0,5 

convergence (keSTk£k -> 0 in the L^-norm, and therefore we have 

ll^Tfc^|lLf(yx[-Tfc,Tfc])^0- 

In other words, the £*. get localized at the asymptotic ends exponentially 
fast. 
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This    result    allows    us    to    rephrase    the   convergence    condition 
\\£x#o y£k\\ —> 0 in terms of the Predholm operators Cx and Cy-. 

£x\Pl-Tk£k     ) T2 

< 

<c 

P l-TkSk 

p'ie5nZk 

LI, 

%., 

+ 

+ 

P   £x#%kyZk 

P~Cx#0   ytk 

T2 

T2 

0,i(Tfc) 

Lf(yx[-i,i]) 
+ £X#0   ytk 

TkL Lh(.Tk) 
0, 

where-pi_Tk(t) = p(t + 1 - Tk) and ^Tk(t) = &(t - Tk). 

The linearization £x is a Predholm operator. The sequence Pi_T ^Th is 

uniformly bounded in the L^ s norm: in fact, by the estimate (36) we have 

PI-TJ, Tk<ik 
-Tk <c 

Ji,s 

PTeST^k 
Lls 

<c. 

This implies the existence of an Z^ ^-element u in Ker (Cx) such that, upon 

passing to a subsequence, we obtain the Lf s convergence 

—        £~~Tkt 
Pl-Tu^k1 U 

Lb 
o. 

This implies the convergence 

(42) Pi^'^k' - p~e5T^uT^ 
r2 

0. 

Similarly we obtain an L\ ^-element v in Ker (Cy) and a subsequence such 
that 

r2 
->0. 

and 

(43) p1:ie5Tk'Ck' -p+e5TK'v-T'°' Lh 
Here we have pt.i(t) = p+(t — 1) and p1 (t) = p  (t + 1). □ 

Thus, by Lemma 4.12 we have identified the eigenspace of small eigen- 
values of £*   o  Ar#0 y "with a subspace of Ker (Cx) x Ker (Cy). Lemma 4.15 
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will prove the reverse inclusion. The next Lemma proves a stronger re- 
sult, namely that the operator £*  0  £x#oy is uniformly invertible, in the 

rescaled norm L^ S,T^ on the complement of the eigenspace of small eigen- 
values. This is the essential result on the eigenvalue splitting which we are 
going to use in Section 6, in Lemma 6.13. 

Let us introduce the following notation. Let F#T be the linearization of 
the pre-gluing map (35). Thus, F#r is a map 

(44) F#T\{Xty) : Ker (Cx) x Ker^) -> Titte+rVa)) C ri(B^(Oa,06)). 

Here Xa is the asymptotic value as t -> — oo of x and ej is the endpoint map 
ea : ^Tac ~* Oa- Since the pre-glued solution (35) involves translations, the 
map F#T in (44) has operator norm bounded by CT ~ Ce~ST, namely, we 
have 

(45) ll^#rl(*,y)Mlli,* < Ce-'fWMhj. 

We may also consider the same map acting as 

(46) F^l^rKer^xKer^) 

-> TipUetrHxa)) C Ti,T(&kMT)(0«,Ob)), 

with 7I,T the virtual tangent space in the L^ s^ norm. In this case F#T is 
bounded in the operator norm uniformly in T, given the estimate (36) for 
the rescaled norms. 

Lemma 4.13.  There exist TQ such that 

II^#^IIL^(T) > CrUhiy 

for all T > TQ and for all £ in the orthogonal complement 

T± = (F#T(Kev(£x)xKeT(£y)))± 

in the space of L^ $-connections and sections. With this choice of norms, 

the constant CT grows like Ce5T. If we consider the rescaled norms L^(T\ 

or the original norms L| $ on both the source and target space, the constant 
is bounded uniformly in T, given the estimate (36) for the rescaled norms. 
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Proof. Suppose there is a sequence of parameters T*. and elements £& in the 
orthogonal complement 

^(^(Ker^xKerCA,))^ 

in the space of L^ ^-connections and sections, such that eSTk ||6:||L
2
   = 1 and 

II/L./10 (fl£jfel|r2 —> 0.   We use the estimates of Lemma 4.12 to derive a 
11     x:rrTky^   M^0,(5(Tfc) 

contradiction with the assumption £& G T-1. We have 

k 1,8 k 1'd 1»d 

since the remaining term satisfies 

lim((l - pj" - p+^e^^fc, e^Ck) = 0. 
k 

This follows from Lemma 4.12, since (1 — p^ — pti) is supported in [—2,2], 
and we are considering the case where Ker (£5) = 0 in L^ s. 

Moreover, we know from Lemma 4.12 that, upon passing to a subse- 
quence we have convergence as in (42) and (43). This implies that, upon 
passing to a subsequence, we obtain 

]im(p^e6T^k,e
5T^k)L2   = lime2^-^,^ 

k M k M 

and correspondingly 

lim<p;VT*&, e5T^k)Ll   = lime2^<p+trr«', ^)L2  . 
k 1'<5 k M 

The sum of these two terms therefore gives 

\ime2dT*(F#Tk(u,v),Zk)Lls. 

But this term is zero since we are assuming that the elements £& are in the 
orthogonal complement 

& e (F#Tk (Ker (£*) x Ker (£1/)))
± . 

D 
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Remark 4.14. The results of Lemma 4.12 and Lemma 4.13 can be refor- 
mulated and proved, with minor modifications, for the operator £*   0    and 

elements 
(u,v)eKer{Cl)xKer(Cl). 

Namely, suppose given a sequence & in 7o(<Srac), bounded uniformly in the 
£n xfrr \-norms, such that £* „o    £k -> 0 as k -> oo. Then we have conver- 

gence ||£JCA;^A; IIL
2
 "^ 0, which implies LQ ^-convergence of the elements (k£k 

to zero. Moreover, there exist elements u G Coker (£x) and v G Coker (£y) 
satisfying 

iipr-Tfc^
Tfc- ^iio,*-^o 

and 
llpii+r^?-«llo,*-^0. 

Thus, for all T > TQ, there is an estimate 

II^^IIM > CMw, 

for all ^ in 

(F#T(Coker (£„) x Coker (/:y)))x C ro(<Srac). 

The constant C is independent of T > TQ. 

Thus, in Lemma 4.13 and Remark 4.14, we have obtained invertibility 
of the linearization of the pre-glued solution on the orthogonal complement 
of the linearization of the pre-gluing map. The norm of the inverse operator 
grows exponentially with the gluing parameter T. This is an effect of using 
the weighted Sobolev norms that are not translation invariant. If we use the 
rescaled norm 5(T), or the original 5-norm on both the source and target 
space, we obtain uniform invertibility, with the norm of the inverse operator 
uniformly bounded in T. 

Consider the two Laplacians of the gluing construction, namely, the self- 
adjoint operators 

HxrTy = Cx#0
Ty£*x#°Ty 

and 
HlrTy = C*x#0

Tv
C*#lv 

acting on Loam (or ^QS) and on Ll6,T} (or L^j), respectively. 
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Lemma 4.15.  The operator H1^    has at least 

dimKer (Cx) + dimKer (Cy) 

independent eigenvectors with small eigenvalues ^T satisfying /ij- —>• 0 as 
T —> oo. All these eigenvectors have fast decaying eigenvalues, namely fix 
satisfying JIT < Ce~5T'.  The operator H®0    has at least 

dim Coker (Cx) + dim Coker (Cy) 

independent eigenvectors with small eigenvalues, namely with eigenvalues 
HT satisfying the property that fix —> 0 as T —> oo. Again, these have fast 
decaying eigenvalues, namely with JIT satisfying ^T < Ce~5T. 

Proof Let us prove the case of H1^    first. Suppose given an element u in 
X:rrTy 

the Z^j-kernel Ker(£a;). Consider the element £T = p~uT. We obtain the 
following estimate 

llAr^yter)!!^^  < \\£xU\\L25 + \\Cx#%yeSTZT\\LltS(Yx[-ltl])- 

The first term on the right vanishes, and the second term can be estimated 
as 

\\£x#°,ye     £r||L2)5(Yx[-l,l]) < C\\esu\\L2(Y.x[T-ltT+l])> 

by the effect of time translations on the norms. This last term is certainly 
bounded by 

C'UT\\LI^ 

Thus, using the relation (36), we obtain 

(47) ll^#^(^)||^<C7e-^||^||Ll4. 

The same argument can be repeated starting with elements v G Ker (Cy) 
and constructing £r = p+v~T. Notice moreover that if u and w are two in- 
dependent vectors in Ker (Cx)^ then the corresponding elements ^ — p~uT 

and £j! = p~wT are independent vectors in ApprCoker (£a,^oy), since we 
have 

This proves the statement for H1 „<>   • The argument for H0 ^o   is analogous. 
D 

Thus we can give the following definition. 



Equivariant Seiberg-Witten Floer Homology 527 

Definition 4.16. We define the approximate kernel and cokernel 

ApprKer (£^0 y)    ApprCoker (£^0 y) 

of the linearization at the pre-glued solution as the span of the eigenvec- 
tors of i?1

4,o    and H0 „o    respectively, with s 
xtTTy EftTy 

eigenvalues /JLT satisfying HT -* 0 as T —> 00. 

tors of i?1
4,o    and JET

0
 „o    respectively, with small eigenvalues, namely with 

XfFTV XftTy 

Lemma 4.12 and Lemma 4.13, together with Remark 4.14, and Lemma 
4.15 give the following result. 

Proposition 4.17.   We have isomorphisms 

(48) ApprKer (£^0 y) 4 Ker (Cx) x Ker (Cy) 

and 

(49) ApprCoker (^o^) 4 Coker (Cx) x Coker (£y), 

given by the projections. Moreover, we obtain constraints on the dimensions 
of the actual kernel and cokernel of the linearization at the pre-glued solution: 

dim Ker (Cx#o y) < dim Ker (Cx) + dim Ker (Cy) 

and 

dim Coker (£x#o y) < dim Coker (£x) + dim Coker (Cy). 

Proof. We have proved in Lemma 4.12 and Lemma 4.13 that 

dim ApprKer (C^o y) < dim Ker (Cx) + dim Ker (Cy), 

and in Lemma 4.15 we have proved the reverse estimate, namely that 

dim ApprKer (C^o y) > dim Ker (Cx) + dim Ker (Cy). 

This, together with the result of Lemma 4.13 shows that the linearization 
of the gluing map F# gives the isomorphism of the Proposition. The result 
for the cokernels is analogous, by Remark 4.14 and Lemma 4.15. □ 
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Corollary 4.18. A direct consequence of Proposition 4.17 is the splitting 
of the index: 

(50) Ind(Cx^Ty) = Ind{Cx) + Ind(Cy). 

This can be rephrased as 

Inde{Cx#QTy) = Inde(£x) + Inde{Cy) - 1, 

in the case of gluing across a free orbit Ob, or as 

Inde(Cx^y) = Inde(Cx) + Inde{Cy) 

in the case of the fixed point b = 6, with Inde as in Theorem 3.8, satisfying 

Inde(CA,*) = KOa) - V(0b) + 1 - dim(Gfl). 

Proof The index of the linearization £x#o y can be computed as 

Ind(Cx#oTy) = dim(ApprKer (C^y)) - dim(ApprCoker (C^y)). 

This can be seen, for instance, by the supertrace formula for the index. 
Proposition 4.17 then gives the result. The statement for Inde follows from 
the relation 

Ker (£*) = KeTe(Cx)/R and Kev(Cy) ^ Kere(Cy)/R, 

with Ker g the space of extended Lf 5 solutions as described in Theorem 3.8. 
□ 

All the previous discussion makes no assumption on the cokernels of 
the linearizations Cx and Cyy so it applies equally to the unobstructed case 
analyzed in the rest of this section (the case of the moduli spaces .M(Oa, Ob) 
of flow lines), and to the obstructed case of the moduli spaces M(Oa,Oat) 
and Mp(Oa, Ob) introduced in Section 6, Theorem 6.1. The obstructed case 
is discussed in Lemma 6.14 and Proposition 6.17. 

For the remaining of this section we assume that Coker (Cx) = 0 and 
Coker (£y) = 0. When these conditions are satisfied, we say that our gluing 
theory is unobstructed. In this case, we obtain the following result. 
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Proposition 4.19. Let K be a compact set 

KcM(Oa,Ob)xobM(Ob,Oc). 

There exist a bound To(K) > 0 such that, for all T > TQ{K) and for all 
broken trajectories 

the Fredholm operator Cx#o y 

is surjective. We are also assuming that Coker (Cx) = 0 and Coker (Cy) — 0. 
Then the composition of the pre-gluing map #T 

W
^ ^he orthogonal projec- 

tion on the actual kernel Ker (JC^O  ) gives an isomorphism 

(51) Ker {C^ x Ker (£„■) 4 Ker (>C£C#oi2/). 

Proof. We know that Cxz^oy is Fredholm of index ^(Oa) — //(Oc). We also 
know that dim Ker e(Cx) — ^(Oa) — ^(O^) + dim(Oa) and dimKere(>C3/) = 
M(06)-MOc) + dim(06). 

We need to know that for any pair x — (Ai, ^i) and y — (A2, ^2) there 
is a bound TQ — T(x,y) such that £x#oy is surjective for T > TQ. The 
compactness of K will ensure that there is a uniform such bound T(K). 

Lemma 4.13 provides the crucial step in the argument: the lineariza- 
tion £x#o y has a bounded right inverse when restricted to the orthogonal 
complement of F#(Ker (£x) x Ker (Cy)). 

Now Proposition 4.19 follows form the splitting of the index 4.18, since 
we obtain the estimate 

dim Ker (C^o  ) < dim Ker (Cx) + dim Ker (Cy) 

= Ind(Cx) + Ind(Cy) = Ind(Cx#o y) 

< dim Ker (C^y), 

hence 
dimKer (C^o  ) = dimKer (Cx) + dimKer (Cy). 

D 
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In terms of the extended kernels, the isomorphism (51) gives rise to the 
isomorphism 

(52) KereOC^oJ ^ KeieC^) xR Kere^). 

The space on the right hand side is the tangent space to the fibered product 

M(Oa,Ob)xobM(Ob,Oc). 

Now we can proceed to give a proof of Theorem 4.9. 

Proof of Theorem 4.9. Given the approximate solution obtained via the pre- 
gluing map #!p, we prove that this can be perturbed to an actual solution. 
Similar arguments are presented in [18], [57]. 

In order to deform a pre-glued approximate solution to an actual solution 
we need to construct a projection of pre-glued solutions onto .M(Oa,Oc). 
Thus we need a normal bundle to jM(Oa, Oc) inside B^6(Oa, Oc). We proceed 
according to the following construction. Let U(OaiOc) be the image in 
B0(Oa> Oc) of the pre-gluing map #^ defined on M(Oa, Oh) xob M(Ob, Oc). 
Consider the Hilbert bundles 7i and To given by the L^ s and LQ S tangent 
bundles of A(Oaj Oc)- Choose a slice 

SracC-4(Oa,Oc), 

such that the pre-glued element ^#^y lies in a ball of radius r in *A(Oa, Oc) 
centered at rac. The flow equation 
(53) 

f(x#0Ty) = { 
Ftn^'" ^l#^2) • (*i#^2) -ifi- ^w^,*!*^) 

induces a bundle map / : 7i -> To-   The linearization C^o y is the fiber 
derivative of /. 

We assume here that the linearizations Cx and Cy are surjective. Thus, 
consider the space 

K =      U     Kere^) xE Keve{Cy). 
tf:x[To,oo) 

The image of /C under the linearization F# of the pre-gluing map defines a 
sub-bundle of 71. We consider the space T^o    of elements of the tangent 

xirTy 
space 7i at the point x^f^y that are orthogonal to 

7;#oy = ^(Kere^) xR Kere(/:y)). 
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The space T-1 gives the normal bundle of the gluing construction. In the 
case of the fixed point b = 6, we have 

£ = U|Cx[To>oo)Kere(£a.) x Ker (£y) 

and the normal bundle of the gluing construction given by 

Tx%%y = (F#T{Kne{Cx) x KerOC,)))-1. 

Now we want to define the actual gluing map # that provides a solution 
of the flow equations in .M(0a,0c). This means that we want to obtain a 
section a of 71 such that the image under the bundle homomorphism given 
by the flow equation is zero in To- Moreover, we want this element 

a(^y,T) = <7(Ai,#i,A2,#2,T) 

to converge to zero sufficiently rapidly as T —> oo, so that the glued solution 
will converge to the broken trajectory in the limit T —> oo. 

The perturbation of the approximate solution to an actual solution can 
be obtained as a fixed point theorem in Banach spaces, via the following 
contraction principle. 

Remark 4.20. Suppose given a smooth map / : E —> F between Banach 
spaces of the form 

f(x) = m+Dmx+N(x)t 

with Ker (Df(0)) finite dimensional, with a right inverse Df(0) o G = I dp, 
and with the nonlinear part N(x) satisfying the estimate 

(54) \\GN(x) - GN(y)\\ < C(\\x\\ + ||y||)||a - y\\ 

for some constant C > 0 and x and y in a small neighborhood Berc\(0). 
Then, with the initial condition ||G(/(0))|| < e/2, there is a unique zero XQ 

of the map / in Be(0) R G(F). This satisfies ||xo|| < c 

The map / is given in our case by the flow equation, viewed as a bundle 
homomorphism 7i >-* To- 

Proposition 4.21. Lemma 4.13 and Proposition 4.19 imply that the lin- 
earization £x#oy is uniformly invertible on the orthogonal complement of 
the actual kernel 

Tx%oTy - KereOC^o,,)-1^ (F#T(Kere(/:x) xRKere{Cy)))L, 
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Consider the right inverse map of C = ^x^o    restricted to T-1, 

G : % -> rx. 

T/iere is a T(K) and a constant C > 0 independent ofT, such that we have 

for x—{x^y->T)£Kx ^(JPC), oo). Moreover, we can write f as a sum of a 
linear and a non-linear term, where the linear term is C and the nonlinear 
term is 

N(A(t),T/,(t))(a,(/>) = (<7(0,0) +J\/'q(A(t),l>(t))(<x></>)><* * (t))' 

Here we write the perturbation q of equation (19) as sum of a linear and a 
non-linear term, 2q = Vq + J\fq. Then the conditions of Remark 4.20 are 
satisfied.  This provides the existence of a unique correction term 

(7(Ai,*i,A2,*2,T)GJBe(0)nr± 

satisfying f(a) = 0. This element a is smooth and it decays to zero when T 
is very large, as proved in Section 6, using the estimate (103). This means 
that the glued solution converges to the broken trajectory (x,y) for T —> oo. 
The gluing map is given by 

(55) (A1#TA2^I#TTP2) = (Ai#^2^l#T^2) + ^(Ai,*1,A2,*2,T), 

with a rate of decay 

(56) MAi,tfi,A2,tf2,r)||i?   < Ce-ST 

l,o 

as T —> oo. 

In Section 6, in Lemma 6.14 and Proposition 6.17, we shall consider 
a similar fixed point problem in the presence of obstructions coming form 
non-vanishing cokernels. The proof of Proposition 4.21 is given in Section 
6, after Lemma 6.14, since it follows from the more general case discussed 
there. The rate of decay ||a(Ai, *i, A2, *2,T)||M < Ce~5T as T -» 00 is 
derived in Lemma 6.14 in Section 6.2. 

Remark 4.22. Notice that, if we have a nontrivial cokernel of Cx or £y, 
then not only T"1 is not be a bundle, but in general £x#oy may not be 
invertible on all of the orthogonal complement of the actual kernel. We still 
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know that Cx#n y is uniformly invertible on the orthogonal complement of 
the approximate kernel, but in this case the kernel is only a proper subspace 
of the approximate kernel. Thus there may be elements x = (xiy>T) in 
K x [TQ, oo) that cannot be perturbed to an actual solution. In fact, as seen 
in the proof of Lemma 4.13, the condition that the composition F#T of the 
linearization F#T of the pre-gluing map #j, with the orthogonal projection 
onto Ker (Cx#o y) gives an isomorphism 

Kere(£x) xRKere(£y) -^ Kere^^) 

is equivalent to the condition that 

Coker (Cx) x Coker (A,) 4 Coker (4^). 

However, in the general case, where we may have non-trivial Coker (Cx) 
and Coker (£y) we expect to have the isomorphism only at the level of the 
approximate kernel and cokernel, whereas the actual kernel and cokernel 
satisfy the weaker condition 

dim Ker (JC,X#O y) = dim Ker (£x) + dim Ker (£y) — fc, 

for some k > 0, and 

dim Coker (Cx#o y) = dim Coker (£x) + dim Coker (£y) — k, 

according to the computation of Lemma 4.13. This case occurs for instance 
in the case discussed in Section 6, Theorem 6.21 and Theorem 6.22. 

To continue with the proof of Theorem 4.9, we now look at the induced 
map 

#:kx[To,oo)->M(Oa,Oc). 

Recall that we have an identification of the moduli spaces .M(Oa, O^) with 
the balanced moduli spaces Aibal(Oaj 0&) of classes in -M(Oa, 0&) that sat- 
isfy the equal energy condition (29). Thus, we can define the induced gluing 
map # by restricting the gluing map # of (55) to the subspace 

Mbal(Oa,Ob) x0b M
bal(Ob,Oc) C M(Oa,Ob) xob M(Ob,Oc), 

and then composing the image X^TV € <M.(Oa, Oc) with a time translation 

that determines an element X^TV £ A16aZ(Oa,Oc). We define X^TU = 
x#Ty. 
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The identification .M(Oa,0&) = A^6a/(Oa,05) determines an identifica- 
tion of the tangent spaces 

(57) TxM(OayOb)^TxM(Oa,Ob)@R-Ux 

for x e Mbal(Oa> 0h). Here we have 

Ux = UsVCp{\+x{t)), 

where the gauge transformation A^ is as in (34) and IIs is the projection 
on the tangent space to the slice T(Srab)' Here T denotes the L^ s tangent 
space. 

In order to prove that # is a local diffeomorphism, we first prove that the 
linearization F?,    is an isomorphism. Then we prove that the linearization 

of the gluing map is sufficiently close to FT,   , by estimating the variation of 
the error term with respect to parameters (the solutions in the component 
spaces A^(Oa, 0&), .M(Oa, Oc), and T). Finally, we prove injectivity of #T- 

Recall that we have tangent spaces 

TxM{Oa,Ob) ^ Kere(£x) and TyM{Oa,Oh) ^ Kere(£y). 

We have a decomposition as in (57) with an element Uy defined analogously. 
Moreover, we have the isomorphism of Proposition 4.19, cf. Remark 4.22, 
which gives an isomorphism 

(58) F#T : T^iMiOa, Ob) xob M(Oh} Oc)) 4 Tx#TyM{Oa, Oc), 

where F#T is the composition of the linearization F#T of the pre-gluing map 
with the projection onto the kernel Kere(>Ca;^Ty). 

We can consider the subspace 

(59) T^iMiOa, Ob) xob M(Oh, Oc)) 0 R • {Ux, -Uy) 

inside the space 

r{Xty)(M(Oa,Ob) xob M(Ob,Oc)) **   Tix,y)(M(Oa,Ob) xob M(Ob,Oe)) 

R-ux®m-Uy. 

Here we have x and y in Mbal(Oa, Ob) and Mbal(Ob, Oc)), respectively. 

Claim. For all T > TQ, sufficiently large, the restriction of the isomorphism 
(58) to the subspace (59) gives the desired isomorphism 

F#T--r(Xjy)(M(Oa,Ob)xobM(Ob,Oc))®R-(Ux,-Uy)^Tx^TyM(Oa,Oc). 
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Proof of Claim. Suppose there exist a sequence Tn —> oo such that there 
exist (£n,VmTn) in the space (59), with the property that 

F#rn(£n,77n,Tn) eR-[/Tn, 

where UTn is defined as 

UTn=UsVCp(Xn(x#Tny)(t)), 

with gauge transformations An as in (34) and the projection IIs on the slice 
<Srac • We are using the identification 

Tx#TnyM(Oa,Oc)^Tx#TnyM(Oa,Oc)®R.UTn. 

We have 
F#Tn (£n, 7]n, Tn) = fnUTn ,' 

for some fn G M. We can normalize the elements (^n^Vn^n) so that fn = 1 
for all n. By the result of Proposition 4.21, this implies that the pre-glued 
elements satisfy 

ll*#o  (^Vn)+rnFn (Ux,-Uy)-F#o  (Ux,Uy)\\L* -4 0 

as n -> oo. We are using the fact that the error term in the gluing map (55) 
decays to zero as Tn -> oo as in Proposition 4.21 and in (103). This then 
implies the following convergence 

||fn + (Tn - l)^llz/2>(5(yx(-oo,Tn-l]) "^ 0 

and 

\\rin - (1 + rn)Uy\\L2^Yx[-hl-Tnioo)) -> 0> 

where we use the norm estimate for the map (46). 
This gives a contradiction, according to the decomposition (57), which 

prescribes that £n _L Ux and r]n ± Uy) cf. Proposition 2.56 of [57]. 
We can estimate explicitly the norm of the isomorphism F% . This is 

bounded by the product of the norm of the linearization F#T at the pre-glued 
solution (44), the norm of the isomorphism Ker (C^o y) = KeT(Cx#Ty), 
and the norm of the isomorphism Ker {Cx^Ty) = Ker (C>X4L ) given by time 
translation. The first norm is bounded uniformly in T, if we use the rescaled 
norms L\6,T N on the tangent space of M{Oa,Oc). The second norm is 
bounded by a constant C2 — C2{K) over the compact set K because of 
the decay of the error term in the gluing map (55), cf.   (103).   The third 
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norm is bounded by Ce5r(x#Ty\ where T(x#Ty) is the unique time shift 

that maps ##T2/ to the element x#Ty satisfying the equal energy condition 
(29). Thus, on the compact set K this norm is also bounded by a term 
Ces'T(K\ Summarizing, we have obtained the estimate ||F^  || < C, on the 

operator norm of FT,  , uniformly in T, for 

% : Ti,s(M(Oa,Ob)) x Ths(M(Ob,Oc)) -»■ TlAT)M(Oa,Oc), 

OTWFfoWKCe-STjoT 

F#T ■ Ti4M(0a,0b)) x Ti4M(0b,0e)) -»• TijM(Oa,Oe). 

The linearization F?, is an approximation to the linearization of the 
gluing map. In order to show that the latter is an isomorphism, we consider 
derivatives of the correction term, and show that they are small compared 
to F#T. Similar arguments are given in [18] §7.2.4-7.2.6. 

We have the correction term a(x)y,T) = (a, $), as in (55), such that 
[x#^y + (a, $)] G .M(Oa, Oc). This term satisfies (99), which we write here 
simply as 

(60) f + Ca+Na = 0. 

We write a = £*<T, with a = (/?,£)> as i*1 Lemma 6.14. If we denote by 
D differentiation with respect to parameters, we obtain from (60) 

(ZX* + ATC*) Da = - (Df + D(££* + MC*)a). 

We denote the right hand side with Q(Df,cr). In the contraction neigh- 
borhood of Lemma 6.14 and Proposition 4.21, we can estimate, for some 
C>0, 

(61) IISP/,a)||L^<C||F#T||e-^. 

Here Hl^ll is the operator norm of F#T acting between L\s spaces. The 
estimate (61) is obtained by combining the estimate Hall < Ce~5T for the 
correction term, as in Proposition 4.21, and the estimate ||D(>C>C*+A/'>C*)|| < 
CHi^rll, together with an estimate for the derivative Df of the error term 
/ = f(x#0

Ty): 

\\Dfkz%y)MK6 

< II%TI(^)II (ll>c,#oT2/(p-^T)l|i^ + \\cx#oTy(p+v-T)\\hs), 
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which gives, by estimates like (45) and (47), \\Df\\L2   < C\\FA  \\e~5T. 
1,5 rrT 

Thus, from the identity 

Da - -OCr)-1^ -n)(Af£*Da+Q(Df,a))y 

with 11 = n(/i, x#jiy) as ^n Lemma 6.14, we obtain, for some C > 0, 

\\Da\\Lls<C\\F#T\\e-ST. 

We still have to prove the injectivity of the map #T for all sufficiently 
large T > TQ. Suppose there exist a sequence Tk -> oo and elements 
{xi,k,Vi,k) ^ (x2,k,V2,k) in Mbal(Oa)Ob) Xob M

bal(ObjOc), such that 

Xitk#Tkyi,k = ^2,fc#Tfcy2,/c 

for all fc. Then, there exist a based L^ $ gauge transformation A on Y x R 
such that we have 

lim ||zi3fc#£,ylik - \(x2,k#Tky2,k)\\L* x = 0- 

We are using here the fact that the time shifts agree as Tk —> oo. Upon 
passing to a subsequence, we know that there are limits Xi = lim^ x^k and 
yi = limk yifi, for i = 1, 2, by the assumed compactness of K. We obtain 

xi#Tkyi = xi#Tky2, 

for all T^, but for Tk —> oo we have convergence of Xi#Tkyi to the broken 
trajectory (aj^jft). We obtain (xi,j/i) = (#252/2) = (^J/)- Now consider 
the elements (u^k.v^k) = (^,A; - ^,y*,ife - J/), for i = 1,2. They satisfy 
fai,*,^) 7^ (u2,k,V2,k) and 

for all fc, which contradicts the fact that the map F# is a local diffeomor- 
phism, as we just proved. Notice that it is also possible to give an alternate 
proof of this fact by direct estimates, along the lines of [18], replacing our 
proof by contradiction: some may find that more appealing. 

Now a comment about orientations. Notice that the isomorphism of 
Proposition 4.19 induces an isomorphism 

AmaxKer e(Cx) ® AmaxKere(/:y) -* A^KereOC,^). 
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Thus, in the unobstructed case we are considering, where all the cokernels 
are trivial, we obtain that the gluing map #7- is compatible with the ori- 
entations. Using the decompositions (57) we obtain that the gluing map 
#T is also compatible with the induced orientations on the moduli spaces 
M>(Oa,Ob), cf. Proposition 3.6 of [57]. Notice that the orientation on 

(M(Oa,Ob) xob M(ObjOc)) xM 

induced, under the decomposition (57), by the product orientation on 

■M(Oa,Ob)xobM(Ob,Oc) 

agrees with the pullback of the product orientation of 

M(Oa,Ob)xRxM(Ob,Oc) 

under the map (x,y,r) —> (x,T,y). 
We now come to the last statement in Theorem 4.9. We prove that any 

sequence of trajectories in .M(Oa,Oc) converging to a broken trajectory in 
.M(Oa, Ob) Xob M(Ob, Oc) lies eventually in the image of the gluing map. 

This requires a preliminary statement about the endpoint maps 

e^ :M(Oa,Ob)->Ob  and  e+ : M(ObyOc) -+ Ob. 

Claim.   Suppose given a sequence (xn,yn) in 

Kt x K2 C M{Pa, Ob) x M(Ob, Oc), 

with Ki and K2 compact sets in the L^ ^-topology. Suppose that the 

endpoints e^(xn) and e^(yn) converge to the same element xb on the 
critical orbit Ob, in the Z^-topology on B0. Then there is a subse- 
quence (a4,y^) converging to an element (x',yf) in the fibered product 
M{Oa,Ob)xobM{Ob,Oc). 

Proof of Claim. The compactness of Ki x K2 ensures the existence of 
a convergent subsequence {x'^y^) with limit (x'^y1). Moreover, we can 
estimate the distance 

KOO - ettiM < KM - e^(x')\\Ll 

+ HiVn) - et(y')\\L2 + \\e^(xn) - e+(yn)||L2. 
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The last term goes to zero by hypothesis, and the first and second term on 
the right hand side go to zero by the continuity of the endpoint maps. Thus, 
we have e^(xf) .= e£(yf) = xb. 

Now we return to the statement on the range of the gluing map. This is 
the analogue in our setting of the method of continuity used in Section 7.3 
of [18], and of the arguments of Lemma 4.5.1 and Section 4.6 of [46]. 

Suppose given a sequence X^ of elements in M(Oa, Oc) which converges 
smoothly on compact sets (as in Theorem 4.1) to a broken trajectory (x^y) 
in the fibered product M(Oa, Ob) Xo6 M(Ob^ Oc). 

For a sequence of gluing parameters T^ -» oo, let (xk,yk) be the projec- 
tion onto the slices Srab x Srbc) 

Srab C Akl6(Oa,Oh) and Srbc C Ak,s(Ob,Oc), 

of the cut off elements (Pi_T X^1*, p^i+^X^). The elements Xk and y^ are 
no longer solutions of the Seiberg-Witten equations. However, we can choose 
the sequence Tk —> oo such that the elements Xk and yk lie respectively 
within neighborhoods of radius e/4 of the solutions x and y, in the £% s- 
norm. We choose e so that it satisfies 

e < min{eac,ea&,e6c}. 

Here we have ea& and e^ determined as in Lemma 6.14, for the contrac- 
tion principle for the fixed point problem (102) in B2,8{Oa,Ob) and in 
B2,6(ObiOc), respectively. Similarly, the constant eac is the constant for 
the contraction principle of Lemma 6.14 in B2ls(Oa)Oc). (cf. Proposition 
4.21 and Remark 4.20.) By applying the result of Proposition 4.21, there 
are then unique elements x^ and y^ in a e/2-neighborhood of x^ and y^, re- 
spectively, which satisfy the equations. Notice that these elements (xk^yk) 
will in general have e^(xk) ^ e^(yfc), hence they do not define an element 
in the fibered product. However, we can estimate that the distance between 
the endpoints goes to zero. In fact, we have 

\K^k)-e^(yk)\\L2 

< C(distL2(A-^(t),e^(^)) + distL2(A^(t),e+(yfc))) 

+ C(\\xk-x\\L2s + \\yk-y\\L2s) 

+ C(distL2(A-x(^),e6-(x)) + distL2(A+y(t),e+(2/))). 

The first two terms and last two terms on the right hand side decay expo- 
nentially like Ce"5^ by the results of Section 3.4, Theorem 3.12. The gauge 
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elements A^, AjJ", A-, and A+ are as in (34), cf. Lemma 4.8. The remaining 
term is bounded by e. 

Since in the statement of Theorem 4.9 we are only interested in the 
codimension one boundary, we may as well assume that, upon passing to 
a subsequence, the sequence (xk^yk) converges in the strong topology to a 
pair (a/, yf). By the result of the previous Claim, we know that this element 
(xi\yf) is in the fibered product M(Oa,Ob) Xob M{Ob,Oc). 

Now consider the pre-glued solutions x'jftp y1. By our construction, the 
original elements X^ lie within neighborhoods of radius e of x'^j, y' in the 
L^-norms. By Lemma 6.14, and Remark 4.20 there is a unique zero of 
the map / in this neighborhood, that is, a unique solution of the Seiberg- 
Witten equations, obtained as a small deformation of the approximate so- 
lution X'^T v'- This implies the desired equality Xj^ = x'#Tky

f• 
This completes the proof of Theorem 4.9. □ 

Before discussing the fine structure of the compactification, we can add 
a brief comment about the gluing result in the non-equivariant setting, as 
stated in Lemma 2.16. The difference in the non-equivariant setting is the 
presence of the extra [/(l)-gluing parameter, in gluing across the reducible 
6. Namely, the gluing map is of the form 

# : M{a,6) x M{6,c) x U{1) x [To,oo) -> M{a,c). 

The reason for the presence of the extra [/(I) gluing parameter is the 
fact that the reducible point 9 is not a smooth point in the non-equivariant 
moduli space, hence, in order to formulate the pre-gluing and gluing con- 
struction, it is necessary to lift the pre-gluing to the framed moduli space, 
in the proximity of the reducible point. More explicitly, we define the pre- 
gluing map as 

fA^Af.^f) 

(62)   x#%uy={ 

Ao(Ao + i/,0) 

+ exp(iu(i + 2)){a1(t + 2T), 0i(t + 2T)) 

AO(J4O + v, 0) + exp(m)- 

(p-(t)(ai(t + 2r),0i(t + 2r)) 
+p+{t)(a2{t-2T),4>2{t-2T))) 

{\\^{Pq2T^2T) t>l 

with the extra gluing parameter A = exp(m) in U{1). 

t<-2 

-2<t< -1 

-l<t< 1 
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This pre-gluing map gives a choice of a lift of 

Mia,9) xM(Orc) x C/(l) 

to M(Oa, 0) x M{6, Oc), then the gluing construction works as in the equiv- 
ariant case and composition with the projection onto the quotient by the 
U{1) action then provides the resulting gluing map with values in M{a,c). 

4.3. Multiple gluing theorem and corner structure. 

We now generalize the result of Theorem 4.9 of the previous subsection to 
the case of multiple gluings of broken trajectories in boundary strata of 
higher codimension. The purpose is to identify the fine structure of the 
compactification, namely to show that the spaces .M(Oa,Ob) of flow lines 
compactify to a C00 manifold with corners, in the sense of [44]. We shall 
follow the notation .M(Oa, O^)* to distinguish the compactification from the 
original space .M(Oa,0&). 

Theorem 4.23. The compactification .M(Oa,06)* has the structure of a 
smooth manifold with corners, with codimension k boundary faces of the 
form 

(63) U   -M(Oa,0Cl)*xoclM(Oc1,Oca)*x...xoCfc^(0Cfc,06)*. 

Here the union is over all possible sequences of critical orbits Od, • • * , 0Cfc 

with decreasing indices. 

We also have the following. 

Corollary 4.24. The endpoint maps e+ and e^ and their derivatives extend 
continuously over the boundary and on the boundary they coincide with ej 
ande^ on M(Oa, 0Cl) and M{0Ck,Ob) respectively. Thus, the maps e+ and 
e^ are fibrations with compact fibers in the category of smooth manifolds with 
corners. 

Proof of Theorem 4.23. We proceed as follows. First we prove that 
MiOaiOb)* is a t-manifold (has a C00 structure with corners) in the sense 
of Definition 1.6.1 of [44]. This amounts to showing that the multiple gluing 
maps define a compatible set of charts in the sense of Section 1.6 of [44] 
on open sets in .M(Oa,Ofc) near the boundary. We then show that this t- 
manifold has the structure of a smooth manifold with corners, in the sense of 
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Section 1.8 of [44], by showing that the boundary faces satisfy the condition 
(1.8.7) of [44]. 

Consider broken trajectories (XQ, XI, ..., Xk) in a compact subset 

K C M(OaiOCl) xocl M(0C1,0C2) x ... xoCfc MiOc^Ob), 

where 0Cl,..., Ock are the critical points with decreasing indices 

fx(Oa) > fz(Oci) > V(0c2) >•-> KOck) > l*(Ob)> 

We introduce multiple gluing maps 

#;lv..)ifc : K x [To, oc)k -> M{pa, Oh). 

Here (Ti,...,^) G [Tcoo)'2 are gluing parameters, and the indices 
{ii,..., i^} are a permutation of the set {1,..., k} which specifies in which 
order the multiple gluing is performed as a sequence of k gluings as in The- 
orem 4.9. For instance, we have 

^IX'*'?^0'^1' • • • >**) = (" " • (((x0#T1Xl)#T2X2)#T3X4) • • ' )#TkXk, 

or 

#Jli£ife(^0,^11 • • • , &*) = (' • • (X0#T1(X1#
T2X2))#T3XS) • • • )#Tfca*, 

etc. 
The gluing construction is non-canonical, in the sense that the identifi- 

cation of the normal bundle T"1 in the pre-gluing construction, as in Lemma 
4.13, is dependent on the order of the gluing, hence there is no obvious as- 
sociativity law for multiple gluings. However, we are going to show that the 
maps #,-1,""l- ki or rather their inverses, to be consistent with the notation 
of (1.6.1) of [44], define a system of charts of a C00 structure with corners, or 
t-manifold. We prove the following i 
are local diffeomorphisms as needed. 
i-manifold. We prove the following result, which ensures that the #^"2 * 

Proposition 4.25. Suppose given Oa; 0Cl, • • • 0Ck and Ob in M0 with de- 

creasing indices.  Then, given a compact set K in 

M{Oa,Ocl) xoclM(Ocl,0C2) x ... xoCfc M(0Ck,Ob), 

there is a lower bound TQ(K) > 0 such that the gluing maps ^^"'J fc define 
local diffeomorphisms 

#ilv..tik : K x [T0(K),<x>)k —)■ M(Oa,Ob). 
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where the orientation on the left hand side is the one induced by the product 
orientation on 

(((.M(Oa,0Cl) x R x M(0C1,0C2)) x R) x ... x R) x M(0Ck,Ob). 

Proof. We want to generalize the analogous statement proved in Theorem 
4.9 for the case of one intermediate critical point. 

First, we need to show the analogue of the error estimate (56), which 
shows that the glued solutions #il

1'"^ ^(^o, • • • ,#&) converge to broken tra- 
jectories in the limit when a certain subset {T^,... Iim} of the gluing pa- 
rameters satisfies Tit -> oo. 

We then need to show that a sequence of solutions in-.M(Oa,0&)- that 
converges to a broken trajectory (XQ, • • •, Xk) in the boundary 

M(Oa,Ocl) xocl ••• x0cfc M(0Ck,Ob) 

lies eventually in the range of a gluing map #i 
ll"''i 

k. We first prove that, 
when the gluing parameters {Ti,..., T^} satisfy T; -» oo, for alH = 1,..., fe, 
we have an estimate 

(64) \\(Tk(xQ,. ..,xk,Tu...,Tk)\\L2<Ce -ST 
1,5 

with T = mm{ri,... ,Tfc}.  This is the analogue of the estimate (103) for 
multiple gluing. Here ak is the error term 

ak(xo, ...,xk,T1,...,Tk) = #£;;;f* (x0, ...,xk)- #0 J;/.f* (ZQ, ..., xk), 

with #0
ii

1
)'"^fc

fc the pre-gluing map, namely the composite of k pre-gluing 
maps as in (35), in the order specified by (ii,... ,^). 

We prove the estimate (64) for the case of the gluing map #^1'^'Tfc. The 
same procedure works with a permutation of the order of gluing. We proceed 
by induction on k.  The case k = 1 follows from Theorem 4.9.  Assume as 

rp rp 

induction hypothesis that the gluing map #1
1'"j!_fc

1~
1 can be written as 

#i,!.'.'^~1(a;o,...^/c-i) 

— # i^-fci~10ro, • • • ,.aA._i) + o-fc-iOro,... ,2;fc_i,Ti,... ,TA._I), 
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with ft0^1'''^7}-1 the pre-gluing map (i.e., the composition oik-1 pre-gluing 
maps (35), and with the error term ak-i satisfying the estimate 

||<7fc_i(zo,...,Zfc-i,Ti,...,Tfc_i)||L2   < Ce 
1,0 

-ST 

with T =  min{Ti,...,rjfe1}.    We can then form the pre-glued solution 

y = ^IZ'k^i1^ - • • ^-i). 

By Proposition 4.21 this approximate solution can be deformed to an actual 
solution y#TkZk, which by definition is the same as 

y#Tkxk = #^:fk(xo^.^xk). 

We need to estimate the difference y#TkXk - yo#Tk
xki where yo is the ap- 

proximate solution 

lv..,fc-l    (SO, •••,&*-!)• 

We have 

(65)    \\y#Tkxk - yo#TkXk\\Ll5 

< \\y#Tkxk - y#Tk
xk\\Li5 + lly#Tfczfc - yo#rfc^|lL^- 

Now we can estimate the second term on the right hand side by 

l|y#^ -yz#Tk
xk\\Li5 < \\F#Tk\\ • lly-wdllL^- 

We know that (44) has norm bounded by Ce"*7*. Moreover, the quantity 

||y-yo|| is given by 

HcTfc-iOro, • • • ,Zfc_i,Ti,... ,Tfc_i)||L2^. 

Using the induction hypothesis, we obtain 

\\y#0Tkxk-yo#0Tkxk\\Li5<Ce-5T. 

The first term in the right hand side of (65), on the other hand, is given by 

\\y#Tkxk - y#Tk
xk\\Lis = \W(y>zk,Tk)\\L2y 
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By the estimate (103) (cf. Proposition 4.21, Lemma 6.14, Remark 4.20, and 
Proposition 4.21), this satisfies the estimate 

IWfaxkMWx   <Ce-5T*. 
1,0 

Thus, we have the next step of the induction, namely we have obtained 

||<7fc(xo, • • • .a*,!1!, • • ■ ,rfc)||L?   < Ce-d-min{T^>, 
1,0 

for 

crfc(xo,..., Xk,Ti,...,Tk) = y#TkXk - yo#Tk
xk' 

Now consider a sequence Xi in M(Oa,Ob) that converges smoothly on 
compact sets, in the sense of Theorem 4.9, to a broken trajectory (XQ, ..., Xk) 
in the fibered product 

M(Oa,0Cl) xocl ••• xoCfc M(0Ck,Ob). 

We need to show that these Xi belong eventually to the range of at least 
one of the multiple gluing maps ifciu...j,k- We proceed as in the analogous 
argument in Theorem 4.9, for a single gluing. Convergence in the sense of 
Theorem 4.9 implies that there exist time shifts {Ti^,... ,7^} with T^ -> 
oo for i = 1,... &, and combinatorial data which describe the order in which 
successive limits on compact sets and reparameterizations are considered in 
Theorem 4.9. These data determine which gluing maps #2!,...,^ have the 
points X£ in the range. These combinatorial data can be described as the 
set of binary trees with k+ 1 leaves, one root, and k — 1 intermediate nodes. 
To one such tree we associate a cutoff element 

(66) (»Jb,1'<"-^M,...>^-"-^M) 

rp rp 

where the r^ M''"' M act as a composition of time shifts and cutoff functions, 
as specified by the combinatorics of the tree. 

x^   '-^y 
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For instance, the two trees of the figure correspond respectively to the 
elements 

P-l+T2^Pl-TwXl   3' )-2,*> 

P-l+T3,,X/,£) 

and 

(pr-TM(pr-T3^7T3>£)-ri^ 

These correspond to cases where a sequence of solutions X^ in, say, 
.M(Oa,0&) converges smoothly on compact sets, after the different repa- 
rameterizations specified above, to elements in .M(Oa,t)Cl), .M(0Cl,0C2), 
M(Oc2, Oc3), and M (Oc3,06), respectively. 

We denote by (xi^,..., Xk/) the projection onto the slices of the cutoff el- 
ements (66). The elements x^ are no longer solutions of the Seiberg-Witten 
equations, however, by hypothesis, for £ large enough, they are contained in 
6/2/c+1-neighborhoods of the solutions #$, for i = 0,..., k. Pick e satisfying 

e<    max   {ec.c.+1}, 
0<j<k+l     J 3+ 

where the ec.c.+1 is the constant for the contraction principle, as in Lemma 
6.14 in B2f{0Cj, 0Cj+1), and we take CQ = a and c^+i ="6. Then, proceeding 
as in the proof of Theorem 4.9, we find elements i^, for i — 0,— k that sat- 
isfy the Seiberg-Witten equations and are contained in e/2^neighborhoods 
of the elements £». The elements (5o^,... ,£&,*) are not necessarily in the 
fibered product, however, by the same argument used in the proof of The- 
orem 4.9, we obtain convergence of the elements (£o,£, • • • V^M) *0 a 1™^ 
(^Q, ..., x'k) in the fibered product 

M{Oa,Ocl) xocl ••• xoCfc M(0Ck,Ob). 

By construction, the approximate solution 

it ti,...tfc       \
x&--xk)> 
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with the order (ii,.-. .ifc) of gluing specified by the combinatorial data, is 
contained in an e-neighborhood of JQ in the L\ j-norm. By the contraction 
argument of Lemma 6.14 together with the first part of the proof of this 
Proposition, we know that we must then have 

This completes the proof. D 

Thus, the changes of coordinates 

7iTu...,Tk     /JiTiv..,m-l 

are local diffeomorphisms between open subsets of 

and 

with n = dimM(Oa) O5), as prescribed in Section 1.6 of [44]. 
Notice, in particular, that given two multiple gluing maps #i1

1,.7.'iA;
fc and 

#Ju'".j'kk> for two different orders of gluing (ii, ...,ik)^ (ji,. ..jk), we ob- 
tain an estimate 

(67)     #£:::;?(*<>, •. • ,xk) - #J;:.f'(^o, ...,**) Lls 
<Ce -ST 

for T = min{Ti,..., T*.}. The proof of this estimate is completely analogous 
to the argument used in the proof of Proposition 4.25. For instance, we can 
estimate 

MxO#TiXl)#TiX2 - X0#T1(XI#T2X2)\\ 

< \\(xo#T1Xl)#T2X2 - 0co#TiSl)#7!,S2|| 

+ Uxott^xi)^^ - xo#^a:i#§bS2|| 

+ Hxo^an#§5,2:2 - xo#h(x1#T2X2)\\ 

+ \\X0#T1(
X^#T2X2) - X0#T1(X1#T2X2)\\ 

< Ce-5T2 + Ce-m+T2 + Ce-m+T2 + Ce-5TK 

The estimate (67) implies that, when all the Tj go to infinity, the glued 
elements #J*tZ'£k(xo,■■ ■ ,xk) and #J^t'^

k(xo,■ ■ ■ >xk) end up in the same 
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coordinate patch. This may not be the case if only some of the Ti tend to 
infinity and other remain bounded. 

We have shown, as a result of Proposition 4.25, and by Lemma 1.7.1 of 
[44], that the strata 

MOaM* xocl x ... xoCfc M(0Ch,Oh)* 

inherit   the  structure  of smooth  t-sub-manifolds  of codimension  k  in 
M(oa)oby. 

The codimension one boundary strata described in Theorem 4.8, com- 
pactified to smooth t-manifolds, define the boundary hypersurfaces of 
M(OaiOb)\ as in (1.8.3) and (1.8.4) of [44]. 

Let us recall that a C00 manifold with corners is a i-manifold where all 
the boundary faces are C00 embedded sub-manifolds. According to Section 
1.8 of [44], to ensure that this is the case, namely that the compactification 
jCt(Oa, Oh)* has the structure of a C00 manifold with corners, one only needs 
to check the following fact. 

Lemma 4.26. Every compactified codimension k boundary face 

M(Oa,0Ciy xocl x ... xoCk M(0Ck,Oby 

o/.A4(Oa,0&)* is a component of (precisely) one intersection of k boundary 
hypersurfaces 

Hi1n...nHik. 

Proof of Lemma 4.26.     All the boundary hypersurfaces are identified by 
Theorem 4.9. Thus, we see that the Lemma is verified by setting 

Hh       =   M(Oa,0Cl)*xoclM(0Cl,Ob)* 

Hi2      =   M{Oa,0C2yxoC2M(0C2,Oby 

H^ = MOa.Oc^y xo^MOc^o.y 

Hik      =   M(Oa,0CkyxoCkM(0Ck,Oby. 

D 

This completes the proof of Theorem 4.23. □ 
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Corollary 4.24 now follows, by considering the restriction of the asymp- 
totic value maps e J and e^ to the range of the gluing maps. By the conver- 
gence property, when a subset of the gluing parameters goes to infinity, we 
obtain that the asymptotic value maps restrict to the corresponding maps 
on the boundary strata. 

5. Equivariant Homology. 

Let us recall briefly the construction of the de Rham model for 17(1)- 
equivariant cohomology (and homology) on a finite dimensional manifold 
with a 17(1) action. The main reference is [2]. 

Let W be the Weil algebra of the Lie algebra iR of U{1). This is a 
free commutative graded algebra in one generator 9 of degree 1 and one 
generator 0 of degree 2, with differential 5 that satisfies 

86 = 9,   SQ = 0. 

Let M be a manifold with a U(l) action. Consider the complex 

C* = W<g)fi*(M), 

with differential 
dm=d-nc(T). 

Here T is the vector field on M generated by the infinitesimal U(l) action 
and c is the unique derivation in W that satisfies 

c(0) = l   c(f2) = 0. 

We choose a sub-complex of C* by taking the cochains on which c+c(T) 
and C(T) vanish, where C(T) is the Lie derivative. Let us call this sub- 
complex Qy^JM). An alternative description of the complex Cly^JM) 
is 

fi^(1)(M) = R[ft]®ft5(M), 

where QQ(M) are de Rham forms that are annihilated by the Lie differ- 
entiation C(T). The cohomology H*(Q^^JM)^ djj^) is isomorphic to the 
equivariant cohomology with real coefficients, 

ir(^(1)(M),da(1)) ^(1)(M,M). 

In order to compute equivariant homology with real coefficients a de 
Rham complex can be constructed as in [8] by considering differential forms 
graded by the dimension of M minus the degree, 

n^(1)(Af) - R[fi] ® ^im(M)-*(M), 
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with boundary operator cV(i) = d — c{6) ® c(T). 
Austin and Braam [8] proved that this complex computes the same ho- 

mology as the equivariant complex of currents introduced by Duflo and 
Vergne [19] and studied by Kumar and Vergne [32]. With this understood, 
we can consider the complex fi*c/(i)(0o) associated to each critical orbit Oa 
in .MQ. This will be a copy of the polynomial algebra R[0] for the fixed 
point and a complex of lR[Q]-modules with de Rham forms in degree zero 
and one in the case of orbits that come from irreducibles. 

We can give a more explicit description of the boundary operator #17(1) 
in this case. Let Oa be a critical orbit with a free U(l) action. Then, the 
generators of fiJ~*(Oa) are a 1-form ria that generates Hl(Sl), in degree 
zero, and a zero-form la (the constant function equal to one on Oa), in 
degree one. Thus we have 

and 
^(i)(nn®rj0) = -nn-1®la. 

5.1. The equivariant complex. 

We can form the bigraded complex that computes equivariant Floer homol- 
ogy as in [6], defined by 

(68) Cku(X)(X)= ©        fij^Oa), 
At(Oa)=2fi+j=fc 

with differentials 

{d[/(i)7? Oa = Ob 

(-l)1-W(6-)*(6+)*r?   M(Ofl) > M(06) 
0 otherwise. 

Here rj is an equivariant differential form on the orbit Oa, that is, an 
element of f^t/^^Oa). The number r(ri) is the de Rham degree of 77, that is, 
the maximum degree of the elements of OQ(Oa) that appear in the expression 
of 77. Recall that fi*c/(i)(^a) is the dual of the de Rham complex, and the 
forms are graded by dim(Oa) — * = 1 — *. 

The analogous complex that computes equivariant Floer cohomology is 
given by 

(70) ck
u{1)(Y)=     ©     nV(i)(o«), 
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with coboundaries 

(71) 6a,bV 

' du(i)V Oa = Ob 

0 otherwise. 

Here rj is an equivariant form, that is an element of O5 and r(r)) is the de 
Rham degree of 77, i.e. the maximum degree of the elements of Oj^Ofc) that 
appear in the expression of 77. 

The boundary map is well defined, since the endpoint maps are compat- 
ible with the boundary strata as stated in 4.24. Notice that, as pointed 
out in [6], for dimensional reasons the maps £^5 are trivial whenever 
^{Oa) > ^(Ofc) + 3. A more explicit description of the boundary map will 
be given in the following. 

5.2. Equivariant Floer Homology. 

We can prove that the composites D2 and S2 are zero. Moreover we can see 
that there is a duality at the level of forms that induces a duality between 
equivariant Floer homology and cohomology as in [6] and [8]. 

Theorem 5.1. The composite maps D2 and S2 are zero, this means that 
the identities 

Dlc = J2DatDbiC = 0, 
b 

b 

hold, with Oh that ranges among critical orbits satisfying n{Oa) > ££(0&) > 
[JL(OC). Moreover there is a pairing (,} of forms in C*^) and in Cf*C/(1) that 
satisfies 

(Dr)n) = fa, fry). 

Proof. The statement is true for Oa = Oc. Given critical orbits with ^(Oa) > 
/i(Oc), we have the expression 

DlcV - (-i)r(77) E (-iy(KUeirv) 
{Ob\fl(Oa)>^(Ob)>fl(Oc)} 

(ec-)*«)*(e6-)*(e+)*77 + (e-)*(e+)*^(1)7? + %(i)(0,(e+) V 
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This expression vanishes since the co-dimension 1 boundary of .M(Oa, O&)* 
is the union of the components .M(Oa,0&)* xob .M(0&,OC)*, as in 4.9. 
Thus, if we use Stokes theorem applied to the fibration with boundary 
e~ : MiOa, Ocy -> Oc, we obtain [6] that 

^(i)(e-)*7 = (e-)*^(1)7 - (-l)r(7)-dimF(e-)a,*7. 

Here 7 is an equivariant form on .M(Oa,Oc)* and the map (e")^* is the 
push-forward map induced by the restriction of the bundle to the boundary 
of each fiber F. If we choose 7 of the form 7 = (e^)*?7 where 77 is an 
equivariant form on the orbit Oa, then the map (e~)d?* can be written as 

(Oe,.7 = E(ec")*«)*(e6")*(ea )% 
b 

for all the b that satisfy /x(Oa) > ^(Oj,) > ^(Oc), as shown in the diagram. 
Notice that the sign (_l)r((erMc«)*'») is exactly the sign (_i)'-((et)*'?)-dimF 

M(Oa,Oc)* 
t 

-A4(Oa,06)*x06.M(06,Oc)* 

Oa-^MiO^Ob)* ^Ob- ■M(ob,ocy 

The statement about the pairing follows from the identity 

/ (e6-)*(4)^A7= / (^rr?A(e6-)*7. 

D 

Definition 5.2. We define the equivariant Floer homology and cohomology 
to be 

HF*    u{i) = H*{C*u{i),D) 

and 
HF sw* 

U{1) H*{C*U{1),5). 

We now give a more detailed description of the equivariant Floer com- 
plex, which will be useful in Section 6 and Section 7. 
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Proposition 5.3. Let£ln®r)a an<iOn(g)la be the generators of the equivari- 
ant Floer complex. The only possibly non-trivial coefficients of the boundary 
map D are those of the form 

<fin-1®la,I>(nn®»7a)>, 

or of the form 
(Qn®l6,D(Qn(g)la)), 

■(fin®r/6,£>(fin®T7a)>, 

when niOa) — M(0&) = 1, and 

(fin®lc,I>(nn®r/a)), 

when iJi{Oa) — /i(Oc) = 2. In the case of the critical orbit 6, we obtain the 
boundary component 

(nn®lc,D(Ctn®9)) 

when n(9) — fi(Oc) = 2, where we consider the one-dimensional space 
M(0,Oc) fibering over Oc with zero-dimensional fiber. We also have the 
component 

(fln®0,I>(fin®T7a)), 

when fJb(Oa) — ^{0) = 1, where the space M(Oa,0) is one-dimensional. In 
this case the coefficient is obtained by integrating the 1-form r]a over the 
1-dimensional fiber of the endpoint map CQ : M{Oa,6) -¥ 9. 

Proof. For a given orbit Oa the complex of equivariant forms is given by 

^*,[/(l)(Oa), 

with the total grading 

*W)(0a)= 0 Rn*®n5"'(Oa). 
2k+l=3 

Here Vt is of degree 2 and I is the grading in the dual de Rham complex 
where forms are graded by dim(Oa) — *. 

Thus we have 

fio,tf(i)(Oa) = ]R(l®r7a), 

fil>C/(l)(Oa)=K(l®.la>, 

fi2^(l)(Oa)=K<fi®r?a>, 
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fi3,tf(i)(Oa)=R<n®la>, 

and so on, where rja is the one form that generates H1^1) and la is the 
constant function equal to 1 on Oa. 

The differential is given by dg = d—fic(T)', where f2 is the element in the 
dual of the Lie algebra iM. such that (fi, 0) = 1 under the trace pairing, and 
c(T) is the contraction with the vector field T generated by the infinitesimal 
action of 17(1). 

As we have already discussed at the beginning of Section 5, the differen- 
tial <9[/(i) of the equivariant complex fi*,(7(i)(Oa) acts as 

D(nn ® la) = 0 

and 
D(nn®r]a) = -nn-1i®ia. 

The homology of this complex (for a fixed irreducible orbit Oa) is there- 
fore one copy of M (corresponding to the generator 1®%) in degree zero and 
zero in all other degrees. This is just the usual result that the equivariant 
homology of Oa with a free action of £7(1) is isomorphic to the ordinary 
homology (with real coefficients) of the quotient, that is of a point. 

Now let us consider the bigraded complex where several orbits are con- 
sidered. The bigraded complex is of the form 

©       %/(l)(Oa). 
lJ>(Oa)+j=* 

The equivariant boundary operator can be written explicitly in compo- 
nents of the form 

On (g) la   h-> -na60
n ® lb 

(72) D:   QU^^   ^    (na6fin®776)e(macOn®lc) 

In the case of the generator 0, there are extra components as in the 
statement of the Proposition. Here na6 = #.M(Oa,0&)*, where the rel- 
ative index is iJi(Oa) — ^(Ob) = 1, so that — (e^)*(e+)*la = — n0&l& and 
(e^)*(e^")*77a = nab?7&- The coefficient mac comes from the integration of the 
one-form r]a over the one-dimensional fiber of the moduli space Al(Oa, Oc)* 
with /i(Oa) - /i(Oc) = 2, namely (e~)*(e+)*r}a = maclc. The components of 
D are represented in the following diagram. 
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' ftk ® Tja -^ & ® Vb > & ® ^ 

^n^1®^ • O^"1 ® 16 —^ fi*-i ® ic 

Remark 5.4. In view of the result of Proposition 5.3, we notice that the 
full strength of Theorem 4.23 is in fact more than what is strictly necessary 
in order to prove that the boundary D of the equivariant Floer complex 
satisfies D2 = 0, In fact, knowing that the boundary operator only depends 
on the moduli spaces M(Oa,Ob) of dimension at most two, makes it only 
necessary, strictly speaking, to know the properties of the compactification 
for moduli spaces .M(06> Oc) of dimension at most three. 

Clearly, it does not make any substantial difference to derive the proper- 
ties of the fine structure of the compactification A^(Oa, O&)* in this reduced 
case or in the general case proved in Theorem 4.23. However, both here and 
in Section 6, where we analyze the case of obstructed gluing, it seems useful 
to identify explicitly what is the minimum requirement on the fine structure 
of the compactification that is needed in the arguments, cf. Remark 6.2 and 
Remark 6.3. 

5.3. Intermezzo: the coefficient mar. 

We now give a topological description of the coefficient mac that appears in 
the component 

(D(nn®r)a),n
n®lc)=mac 

of the boundary operator, for n(Oa) — ^{Oc) = 2. This coefficient is defined 
as the pullback and pushforward of the 1-form 7?a along the f/(l)-equivariant 
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endpoint fibrations 
e+:M(Oa,Ocy^Oa 

and 
e-: M(Oa,Oey ^ 0Ct 

that is, 
mac = (0*(ea )*%• 

The 2-dimensional J7(l)-manifold A^(Oa,Oc)* fibers over the circles Oa 

and Oc with 1-dimensional fibers. Topologically, .M(Oa,Oc)* consists of a 
collection of finitely many cylinders and finitely many tori. 

Lemma 5.5.  The pullback I-form (e+)*r?a defines a Cartan connection on 

the principal U(l)-bundle M(Oa,Oc) -> M(a,c). 

Proof. We want to obtain a splitting of the exact sequence 

0 -> r(J7(l)) -> TM(Oa,Oc) -+ TM(Oa,Oc)/T(U(l)) & TM(a,c) -> 0. 

Since the endpoint map e+ is [/(l)-equivariant, and 77a is the gener- 
ator of Jff^Oa), the kernel Ker ((e+)*r?a) defines a horizontal subspace of 
TM(Oa,Oc). □ 

Lemma 5.6. OT;er eac/i component of M(Oa,Oc), the pushforward 

computes the winding number W(j) of the 1-dimensional 7 = (e~)-1(xc); 

for a point xc G Oc, around the fiber of the U(l)-fibration TT : jM(Oa, Oc) -> 
A^(a,c). 

Proo/. Consider a connected component X of M(a, c). For ii{Oa)-ii{Oc) = 
2, the component 

is a cylinder or a torus. Choosing a point xc £ Oc, one can identify the fiber 

with a lift 7 of the path X C 7W(a,c) to M(Oa,Oc). In fact, the end- 
point fibration e~ is compatible with the boundary strata MiOa.Ob) xo6 
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.M(06,Oc).   Since the 1-form r]a is the generator of Hl(Oa), the pullback 
(ea )*77a integrated along the path 

7 = (e-)-1(^)n7r-1(X) 

measures precisely the number of times this path winds around the fibers of 
the map TT, 

J(e-)-l(xc)n7r-i(X) 

D 

Notice that in jM(Oa,Oc) we have a choice of a horizontal direction 
l(xa), given by the integral lines of Ker ((e^)*^), for any initial condition 
Xa € 0a> and a direction given by the path (ej)~1(xc) for fixed xc in Oc. 
The horizontal line £(xa) can be identified with the fiber of the other end- 
point map (e+)_1(xa). Both the lines (e~)~1(xc) and (e+)~l(xa) represent 
a homeomorphic lift of .M(a, c) to A^(Oa,Oc), however, in general, an el- 
ement [A, VP] G (e~)~1(a;c) has a limit at £ -» —oo which is some Xxa in 
Oa, not equal to a;a, and similarly an element [A, \I>] G (e^)_1(a;a) has a 
limit at t —t +00 which is some Xxc in Oc not equal to xc. Different el- 
ements in (e^)~1(xa) have different Axc limits in Oc and similarly for the 
other endpoint fibration. The intersection between the two lines then con- 
sists of finitely many points. By our identification of £(xa) = (ej)~1(a;a) 
with the horizontal direction, this number is equal to the winding num- 
ber of the path (e~)~1(xc). This intersection number counts the solutions 
[A,^] G M(Oa)Oc) that actually have prescribed endpoints xa and xc at 
both ends. 

Now consider the [/(l)-bundle jM(Oa,Oc) -» M(a,c) over the param- 
eterized moduli space. Connected components X of M(a,c) are infinite 
cylinders or strips of the form X = [0,1] x R. Consider a choice of a base 
point (yo> to) on Y x M, and a complex line £y0 in the fiber WyQ of the spinor 
bundle W = S®L over yo G Y. We choose £yQ so that it does not contain the 
spinor part if) of any irreducible critical point. Since there are only finitely 
many critical points we can guarantee such choice exists. We consider the 
line bundle 

(73) Cac = M(Oa,Oc) xu{1) (Wyo/£yo) ^ M(a,c) 

with a section given by 

(74) S([A)*]) = ([A,*],*(yo,to)). 
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Lemma 5.7. For a generic choice of (yo^o) ^e section s of (74) has no 

zeroes on the boundary strata .M(a, b) x jCi(b, c). This determines a trivi- 
alization of Cac away from a compact set in At (a, c). The line bundle £ac 
over .M(a,c); with the trivialization cp specified above, has relative Euler 
class satisfying 

e(£ac, <p) = mac. 

Proof. The section s induces a trivialization of the line bundle Cac away 
from a compact set in jM(a, c). In fact, for T —> oo, we have 

and 
5((A,*)T)^5((^c^c))/0. 

This corresponds to trivializing the fibration A^(Oa,Oc) x {T} with the 
horizontal lines £(xa,\) = (e^)~1(Xxa), for T < -TQ and with the lines 
£(xc, A) = (e~)~1(Xxc) for T > TQ. The obstruction to extending the trivial- 
ization over all of jM(a, c) is then measured precisely by the winding number 
rriac- This is therefore the relative Euler class of £ac, which can also be com- 
puted as 

e(£flC,V) = #5-1(0). 

□ 

In particular, this implies that the coefficient mac can be computed by 
counting zeroes of any transverse section 

5 : M(a,c) -* Cac 

which is non-vanishing away from a compact set, and induces the same 
trivialization cp, 

mac = #s-1(0). 

We discuss some identities satisfied by the coefficients mac. 

Remark 5.8. Let a and d be two irreducible critical points with fi(a) — 
^[d) = 3. Assume that all the critical points Q with /i(a) > /x(c;) > n(d) 
are irreducible. Then we have the identity 

^ na,ci ™>ci 4- 5Z ma'C2 nc2 >d = 0- 
ci:/x(a)-/x(ci)=l C2:M(C2)-M(^)=

1 
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When the reducible critical point 6 has index between (/i(a),/i(c)), with 
^(a) = 1 and n{d) = — 2, we have the identity 

(75) ^2     na,c1mCl4 + naened -      ^      rna,C2nC2,d = 0. 
ci:/i(ci)=0 C2:M(C2)=-1 

This identity follows directly from the definition of the invariant mac 

as pullback and pushforward of the 1-form %, using Stokes' theorem for 
fibrations with boundary on the compactified moduli space .M(Oa,Od)*. 
The sign comes from the orientations in the gluing theorem. However, the 
identity (75) also has a topological interpretation in terms of relative Euler 
classes. In fact, the counting above is the counting of the boundary points 
of the zero set of a strata transverse section of the line bundle Cad over 
the unparameterized moduli space .M(a, d). For such section, s_1(0) is a 
1-dimensional manifold with boundary. The counting above corresponds to 
a section that has 

ds-\fS) = U A4(a,ci) x (^(OjnM^i,^)) 
ci:jj(a)-iJ,(ci)=l 

U U'        (-s-1(0)nM(a)C2)) xMfad). 
C2:/i(c2)-/i(d)=l 

The other identity can be proved by the similar methods, with an extra U(l) 
gluing parameter when gluing along 0y as in Lemma 2.16. 

Now consider the case of the 2-dimensional moduli spaces jM(Oa, 0), for 
fi(Oa) - n(0) = 2, and M(6,Oc) for /z(0) - /i(Oc) = 3, with 6 the unique 
reducible (the C/(l)-fixed point in M0). 

The moduli spaces .M(0a, 0), with /i(Oa) — /x(0.) = 2, do not contribute 
components to the boundary operator D of the Floer complex, because we 
have 

(e*)*(e+)*77a = 0, 

since the fibers of the endpoint map 

ee:M(Oa,e)-+6 

are 2-dimensional. 
It is still true that (e^)*^ defines a connection on the principal £7(1)- 

bundle over .M(a,0). Moreover, a component X C .M(a, 0) is again topo- 
logically a circle or a line segment. Given a choice of a lift 7 of X inside the 



560 Matilde Marcolli and Bai-Ling Wang 

component 7r_1(X) C .M(Oa,0), we can still compute its winding number 
and follow the same construction given above. However, now the choice of 
the lift 7 is no longer determined by the endpoint fibration 

eo:M(Oa,0)->e. 

Different possible choices of the lift 7 can have different winding numbers 

Wfr). 
Similarly, we can still construct the bundle C^e over .M(a,0). However, 

the Section (74), in this case, does not give a trivialization away from a 
compact set. Similarly, the fibers of the endpoint map ee do not provide 
a trivialization at the T —> 00 end, since they do not determine a lift of 
.M(a,0). 

However, we claim that it is still possible to associate an invariant maQ 
to the moduli space M(a, 6), which can be interpreted topologically as a 
relative Euler class. We briefly illustrate here why this should be the case, 
then in Section 6.3, in Remark 6.24, we give a definition of the invariant 
maQ as counting of the zeroes of a particular section of Cafi, the obstruction 

section. 
The choice of the base point (yo^o) determines a trivialization of the 

[/'(l)-fibration 23° over the configuration space 23, in a small neighborhood 
of each irreducible critical point. If we think of parameterized flow lines 
between two critical points a and c as embedded in the irreducible part 
B* of 23, then the [/(l)-fibration .M(Oa,Oc) has an induced trivialization 

away from a compact set in .M(a, c), which agrees with the trivialization y? 
given by the cross section (74) of the associated line bundle £ac. We can 
choose a small neighborhood UQ of the reducible critical point 6 such that 
JJ* = JJe fl 23* is 1-connected, hence there is also a unique trivialization of 
23° over UQ. We assume that this trivialization is given by a constant cross 
section. Thus, there is an induced trivialization away from a compact set in 
M(a,0) (where'/x(0o) - ^{6) = 2) or M(0,Oc) (where /x(0) - /i(Oc) = 3). 
Using this trivialization, we can define mao and mQc to be the relative Euler 
class of the corresponding associated line bundles Cao and CQC, respectively. 

We return to the description of the invariant mac for the case of Oa and 
Oc free orbits of relative index two, in order to illustrate the point of view 
we shall adopt in Remark 6.24 in describing the invariant maQ. 

In general, we can construct the relative Euler class which is a cycle 
defined by the zeros of the transverse section as follows. Over the unparam- 
eterized moduli space M(a, c), consider the line bundle 

£ac = M(Oa,Oc)xu{1)C, 
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associated to the principal [/(l)-fibration 

7r:M(Oa,Oc)-^M{a,c). 

The pullback under the quotient map M(a, c) -> M(a, c) induces a pullback 
line bundle, which we still denote £ac, over the parameterized moduli space 
M(a,c). 

Lemma 5.9.  Over the boundary strata 

M(a,b) x M(b,c) 

of A^(a, c); the line bundle >Cac has the form 

Proof. The result follows by showing that, for all critical orbits Op and Oq 

with /i(Op) > fJi(Oq), the principal ?7(l)-bundles 

7r:M(0P)Oq)-±M(p,q) 

are compatible with the gluing maps, namely they define a line bundle 

Cpq = M(Op,Oqy xu(1) C -> M(p,q)* 

in the category of manifolds with corners. The compatibility of the U(l)- 
fibration with the gluing maps follows from our proof of Theorem 4.9.      □ 

We now specify a choice of a class of transverse sections of £ac over 
M,(a,c). We prescribe a choice of non-zero complex numbers sa for each 
critical point a. For each pair of critical points a, 6 of relative index 1, we 
choose a path of non-zero complex numbers sab : R —>• C — {0} connecting sa 

and Sb, which is contractible in C—{0} and is constant outside a compact set 
in E. Over the 1-dimensional M(a)b) we define nowhere vanishing sections 
of Cab as pullbacks of the sa6 on .M(a, b). We still denote these sections over 
jM(a, b) by sa6. Over the 2-dimensional .M(a, c) we consider the class of all 
transverse sections sac of Cac that satisfy 

Sac = ^l^ab ®^2sbc 

over the product submanifolds 

M(a,b) xM(b,c) x [0,e) xE 



562 Matilde Marcolli and Bai-Ling Wang 

where [0,6) is the gluing parameter, and such that, for a sufficiently large 
T, sac is the constant section sa over 

M{a,c) x (-00,-T] 

and the constant section sc over 

M{a,c) x [T,oo). 

Clearly, any such section sac gives the same trivialization ip of Cac away from 
a compact set in M{a, c). We can therefore compute the relative Euler class 
by counting the zeros of this transverse section, that is, 

e(£ac,p) = #5-1(0). 

For higher dimensional moduli spaces .M(a, c), we proceed analogously, 
by inductively defining the class of transverse sections of Cac which are 
compatible with the boundary strata of jM(a,c), that is, we require that 

Sac = KlSab ® ^2sbc 

over all the product submanifolds 

M{a, b) x M(b, c) x [0, e) x R 

and that sac agrees with the constant section sa over 

M{a,c) x (-00,-T] 

and with the constant section sc over 

M{a,c) x [T,oo). 

Lemma 5.10. Consider the line bundle Cac over a parameterized moduli 
space jM(a,c); where /x(a) — //(c) = 3 and a is irreducible or where a is re- 
ducible and //(c) = — 4, with the cross section sac as above. Then the zero set 
s~c(Q) is a co-dimension 2 submanifold ofM(a,c) which can be compactified 
by adding lower dimensional boundary strata such that the codimension one 
boundary strata are given by 

d'£(0)=       U       s-b
l(0)xM(b,c) 

M(6)-/i(c)=l 
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U       IJ      M(a,b)xs£(0), 
H{b)-n(c)=2 

for ii(a) ^ 1; 

^(0)=       IJ       s£(0)xM(b,c) 
fj,(b)-fj,(c)=l 

U       U      ■^(o>6)x^1(0) 
fj,(a)-n(b)=l 

Us-c
l(0) n (M(a, 9) x M{0, c) x ^(1)) 

for 12(a) = 1 and /i(c) = —2. 

Proof, The result follows from the choice of the class of sections sac, together 
with the result of Lemma 5.9. □ 

If we compare the results of Lemma 5.9 and Lemma 5.10, with Lemma 
5.7, we see that our previous definitions of the invariant 

mac = e(£ac, tp) = #s~£(0) 

are a particular case of the procedure illustrated here. In particular, the 
identities of Remark 5.8 are then the direct consequences of Lemma 5.10. 

6. Topological invariance. 

In the present section we show that the equivariant Floer groups, defined 
as in Definition 5.2, are topological invariants, in the sense that they are 
independent of the choice of the metric and of the perturbation. 

Throughout all this discussion, recall that the Floer groups depend on 
the choice of a Spin c-structure. We always assume to work with a fixed 
Spinc-structure, so we never mention explicitly this dependence. 

The easiest case, for the proof of topological invariance, is under the 
assumption that ^(Y) > 2. In fact, in this case there are no reducible 
solutions, hence a cobordism argument can be used to construct a morphism 
of the chain complexes that gives an isomorphism of the cohomology groups. 
In the case when bl(Y) = 1, the metric and the perturbation cannot be 
chosen arbitrarily. This was already noticed in [5] in the case of the invariant 
associated to the moduli space vW (which is the Euler characteristic of the 
Floer homology, [38]).   However, given two generic metrics, it is possible 
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to find a path of metrics joining them and an open set of sufficiently small 
perturbations p such that the invariant does not change. The dependence 
which is introduced in this case is rather mild and it amounts to a choice 
of a homology class in ^(Y'^Z). Thus, the 61(Y") > 1 case will follow by 
exactly the same argument that we present below in our simple model case 
of same chamber metrics and perturbations. 

The case of a homology sphere [13] is rather different. In fact in this 
case there is an explicit dependence on the metric ([15], [31]). The interest- 
ing fact about the equivariant Floer homology is that it is instead metric 
independent. This means that, in this case, though we still have a condition 
on the kernel of the Dirac operator (Ker (c?^) trivial at the reducible solu- 
tion) that breaks the space of metrics and perturbations into chambers with 
co-dimension one walls, it is however possible to construct a chain homo- 
morphism between the Floer complexes that correspond to different metrics, 
and a chain homotopy. That is, for the equivariant Floer homology the wall 
crossing consists only of a global grade shift. 

The main theorem of this section is the following. 

Theorem 6.1. Let Y be a rational homology sphere with fixed Spinc- 
structure. Suppose given two metrics go and gi on Y and perturbations UQ 

and vi. Then there exist a chain homomorphism I between the equivariant 
Floer complexes (C,*c/(i)(p0,i^),-D) and (C*C/(I)(^I,I/I)J&)> defined by consid- 
ering a generic path (gt,vt) and moduli spaces M(OaiOai) of solutions of 
the flow equations on (Y x M, <ft + eft2). This chain homomorphism induces 
an isomorphism in homology up to an index shift given by the spectral flow 
of the Dirac operator d^.. The analogous construction works for cohomology 
groups. 

We first give a "model proof" in the much simpler case of two metrics 
and perturbations (goj^o) and (#1,^1) that are in the same chamber. The 
proof in this case is obviously much simpler than the general statement 
of Theorem 6.1. In fact, the interesting part of the statement is only for 
different chambers. The reason why we present explicitly the proof of this 
case is because, once we know that all the HF^Jj^JY, (5,^)), for (5,^) 
in the same chamber, are isomorphic, we can prove the general case just 
by analyzing the case of two sufficiently close metrics and perturbations 
(90,VQ) and (pi,^i) in two different chambers, across a codimension one 
wall. Moreover, having the model case presented explicitly, we can discuss 
the case of different chambers by pointing out the various points in the 
proof where the original argument has to be modified. We prove the general 
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statement of Theorem 6.1 in Section 6.3. 

Proof, Part I: the same chamber case. 
Choose a path of metrics and perturbations (gt^t) with t G [0,1] that 

interpolates between (go^o) and (<7i,^i). Consider the manifold Y x K 
endowed with the metric gt + dt2 on Y x {t} extended as the product metric 
outside Yx [0,1]. Consider on YxR the perturbed "gradient flow" equations 
with respect to the metric gt. Denote {Oa, 06, • • • } the critical orbits for the 
metric go and {Oa/, Oy, • • • } the critical orbits for the metric gi. 

We adopt the convention of fixing the absolute grading of the Floer 
complex to be the relative grading with respect to the reducible solution 
fi>(Oa) - M(0O), and /i(Oa/) - /x(0i), where 6o = [i/o,0] and 0i = [^i,0]. 
We perform a shift of grading in the complex Cku(i)(Y,gi,vi) by setting 
M(0i) = -SFffil), where SF(d^t

t) is the spectral flow of the Dirac operator 
along the path of reducible solutions [i/t,0]. In the same chamber case this 
shift is irrelevant, since the spectral flow is trivial, but it will be relevant in 
the general case we prove in Section 6.3. 

We have moduli spaces .M(Oa, Oa/) of solutions modulo gauge transfor- 
mations of suitably perturbed Seiberg-Witten equations on the manifold 
(Y xR,gt+ dt2), as specified in (87) and (88). 

We need an analogue of Proposition 2.14 which ensures that, under a 
generic choice of the perturbation, the moduli spaces .M(Oa, Oa/) are smooth 
manifolds of dimension /i(Oa) -/i(Oa/) + dim(Oa), where /z(Oa/) denotes the 
shifted grading. In Lemma 6.5, Lemma 6.6, Corollary 6.7, and Lemma 6.8 
we deal with these transversality issues. 

We construct a degree zero homomorphism of the Floer complexes 

1 '- Cku{i)(Y,9o,VQ) -+ Cku(i)(Y,gui/i). 

We define the homomorphism / as 

/76) j i^aMetTv    /i(O„)-M(Oa')>0 
a' 10 /i(Oo)-/i(Oa0<0> 

with rj G ^jt-/Lt(Oa),t/(i)(Oa). The maps e~, and e+ are the end point maps 
for M(Oa,Oa'). Clearly, such / commutes with flc(T). 

Requiring that the expression (76) is well defined, that is, that we have 
a well defined push-forward map (e",)*, implies checking some properties 
of the compactification of the moduli spaces M(OajOa'). For the same 
chamber case, the analysis of the boundary structure of .M(Oa, 0o/) follows 
closely the model developed in Section 4 for the compactification of the 
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moduli spaces of flow lines. However, when adapting this argument to the 
general case of different chambers, this compactification will require a much 
more delicate analysis. 

The next step is then to prove that the map / is a chain homomorphism. 
We want the relation / o D - D o I = 0 to be satisfied. This corresponds to 
the expression 
(77) 

(ID - DI)(V)a,b, 

' (eyMe+)*%(i)?7-d<7(1)(e^)*(e+)*?7 

for 0& = Oa and /i(0&) > ii(Oy) 

or Oai — Oy and /Li(Oa) > //(0&') 

<   -(-irWE{6|M06)<M(Oa)}K-)*K+)*(e6-)*(e+)*r? 

for /i(Oa) > /i(06) > /x(06/) and M(Oa) > /x(Oa0 > /i(06/) 

where the first line in the right hand side of (77) corresponds to Oh — Oa 
and /i(Ofc) > ii{pb>) or Oa/ = Oy and /i(Oa) > V>{Ov), and the other terms 
correspond to ^(Oa) > ^(O^) > ^(O^) and /x(Oa) > i^(Oa/) > /i(O^). 

In order to show that the right hand side is zero, we consider components 
of the form 

r78,        {J{a'Moal)>»(obl)}(M(oa, oa,y xoa, M(Oa>,ob,y) 

\JiMO>)<«oa)}(-MOa, 0,)* xob M(Ob, OvY), 

We want to show that these are precisely all the components of the ideal 
boundary that appear in the actual boundary of the compactification 
M{Oa,Obi)*. We need Stokes' theorem to apply, hence we need to prove 
that the compactification .M(Oa,Oa/)* with boundary strata (78) has the 
structure of a smooth manifold with corners. We also need an analogue of 
Corollary 4.24, which shows that the endpoint maps 

e+:M(Oa,0^)*^Oa 

and 
e", :.M(Oa, 60*^0^ 

are fibrations compatible with the boundary strata and with compact fibers, 
as in Theorem 6.9. Thus, using Stokes' theorem again, we write the ex- 
pression (e+)*77 in terms of the push-forward map on the co-dimension one 
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boundary strata.   This proves that (77) vanishes identically, as expected. 
Notice that the sign (-l)^')*^)**?) is just (-l)rW. 

Now consider another path of metrics and perturbations (guPt) that 
connects (#1, i/i) to (go, Z/Q). We construct the corresponding homomorphism 

J : Cku(i)(Y>9irVi) -> Cku(i)(Y>9o>vo), 

as in the previous case, 

(7Q) r ,   _ _ / (er)*(ej)*»7    /i(Oa/) - ^(0o) > 0 

with T? € ^A;-M(oa,),t/(i)(OaO- The maps ej and e~ are the end point maps 
for the moduli space M(Oai, Oa) of solutions on (Y x %gt + dt2). 

The statement of the theorem now follows if we show that there is a 
chain homotopy H such that 

(80) idk - (JI)k = £>*+!#* + Hk^Dk. 

In order to define H let us consider the manifold Y x M endowed with 
the metric 71 which is 

r go + dt2 t< -2 
gt+2+dt2    tG[-2,-l] 

(81) 71 = < gi + dt2        te [-1,1] 
h-t + dt2 *G[1,2] 

^ go + dt2 t> 2. 

Consider a path of metrics 70- with a G [0,1] that connects 70 = go + eft2 

to 71, such that for all a the metric 7^ is the product metric go + dt2 outside 
a fixed large interval |—T,T]. 

Let Mp(Oa,Ob) be the parameterized moduli space of (>1(£),V>(*),<7), 
solutions of the perturbed gradient flow equations with respect to the metric 
7c-, modulo gauge transformations. Lemma 6.5, with minor modifications 
to accommodate the presence of parameters, can be employed to show that, 
under a generic choice of the perturbation, the moduli spaces Mp(Oa,Oi)) 
are smooth manifolds of dimension //(Oa) - ^(0&) + 2 - dimGa, cut out 
transversely by the equations. Denote by ej and e^ the end point maps 
from Mp(Oa) Ob) to Oa and 06 respectively. 

Now we can define the degree-one map H to be 

H '• CkUil)^ 90^o) -+ Cfc-Htf(l)0/iffO>*'o) 
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(82) Haib:     ^(-^-^(e-Uetr^ 

with ry G ttk-ii(Oa),U(l)(Oa). 
Again we need to verify some properties of the compactified moduli 

spaces Mp(Oa, Ob)*, which ensure that the map H is well defined and has 
the desired properties. 

The identity (80) which proves that if is a chain homotopy can be rewrit- 
ten as the following two identities: 

=     E{6|M(06)<M(Oa)} Da,bHb,a + E{%(Ob)>MOa)} H",bDb,a 

and, for a^b, 

=     E{c|M(Oc)</x(Oa)} Da,cHc,b + E{c|M(Oc)>M(Oa)} Ha,cDCib. 

The identities (83) and (84) can be proved by applying Stokes theo- 
rem again, in the way we discussed already. To this purpose, consider the 
components 

dWMp(oa,oay = [ja,(M(oa,oa,y xoal M(oal,oay) u {-oa} 
(85)   U{bHob)>,(oa)}((-^dim^0b'0a)Mp(oa, oby xob M(Ob, oar) 

U{%(o,)<,(o0)}((-i)dimMP(06'0o)-A;f(0-^)* xob M
p(Ob,Oay) 

and, for a ^ &, 
(86) 

dWMp(Oa,ohy = [ja'(M(oa,oaly xoa, M(oa,,oby) 
[J{cMoc)>,(oa)}((-^

mXi{0-0b)Mp(oa,ocy xoc M(Oc>Oby) 
[J{CHoc)<,{oa)}((-^

mMPioMMoa,ocy xoc M
p(Oc,Oay). 

We need to know that these components are precisely the actual co-dimen- 
sion one boundary in the compactifications Mp(Oa, Oa)* and Mp(Oa, Ob)* 
respectively. If we prove that the compactification Mp(Oa,Ob)* has the 
structure of a smooth manifold with corners, with the actual boundary strata 
in the codimension one boundary consisting precisely of the components of 
(85) and (86), then the argument is complete. 

Again, since we are dealing only with the model case of same chamber 
metrics and perturbations, the necessary properties of the compactification 
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Mp(Oa, Ob)* follow from the analysis introduced in Section 4, as in the case 
of moduli spaces of flow lines. This is another crucial point that requires a 
much more accurate analysis in the general case of different chambers. The 
signs in the formulae (78), (85), and (86) denote the difference of orientation, 
as in Theorem 6.9 and Theorem 6.10. □ 

In particular, we can describe more explicitly the components of the 
maps / and H. This identifies what are, in fact, the minimal requirements 
on the compactifications of the moduli spaces M(Oa, Oat) and Mp(Oa) Ob) 
that are necessary for the argument given above to work. 

Let r]a be the one-form that generates H1^1) and la be the constant 
function equal to 1 on Oa, so that we can write the generators of the equiv- 
ariant complex in the form Q,n ® ria and Cln ® la. We have the following 
explicit description of the maps / and H. 

Remark 6.2. The components of the map I vanish whenever we have 
fji(Oa) — ^{Oai) > 2. Moreover, the only possibly non-trivial components 
of the chain map / are 

naa' = (f^ (8) r)a,,I{nn ® Tfo)), 

and 

naa/ = (ftn® W(nn®ia)), 

when /i(00) - /i(Oa/) = 0, with Oa and Oai free [/(l)-orbits. In this case we 
need to know that the moduli space M{Oa, Oaf) has a nice compactification 
M(Oa) Oa')* analogous to the compactification of the moduli spaces of flow 
lines analyzed in Sections 4.2 and 4.3. We then have 

We also have 

rw = # {M(a,af) = M(Oa,Oaf)/U(l)) 

may = (nn ®l6/,/(fi
n ®77a)), 

when fJb(Oa) - niQv) = 1 and with Oa and 0&/ free [/(l)-orbits. In this 
case we need to know that the compactification M(Oa, Oy)* is obtained by 
adding the co-dimension one boundary strata (89) and satisfies the analogue 
of Theorem 4.9, hence the push-forward map (e^)* is well defined. Moreover, 
in the case of the critical points #o and 6\ we have 

naft1 = (ton®01,HSln®ria)), 
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when ii(Oa) — [i,(0i) — 0. The coefficient in this case is obtained by integrat- 
ing along the 1-dimensional fibers of the map e^ : .M(0a,0i) —> 0\. Thus, 
we need to know that the moduli space .M(Oa,0i) is compact. This gives 

We also have the component 

n^Of6/ = (nn®iy,/(nn®0o)>, 

when /i(^o) — ^{Oy) — 1- Here we have a 1-dimensional space M^OiOu) 
fibering over Oy with zero-dimensional fiber, and again we need to know 
that we have M(6o^ Oy)* = M(9o, Oy) in this case, which gives 

Remark 6.3. The components of the map H vanish whenever we have 
/i(Oa) — /i(Ofo) > 1. Moreover, the only possibly non-trivial components of 
the chain homotopy H are 

and 
n^ = <ftn®l6,ir(ftn(8)lfl)>l 

when fJL(Oa) - li(Ob) = —1, with Oa and Ob free J7(l)-orbits. In this case 
we need to know that the one-dimensional moduli space .Mp(Qa,0&) is 
compact. This gives 

nP
ab = # {Mp{a, b) = Mp(Oa, Ob)/U{l)) . 

We also have 
mfc-(Ori®lc,i?((Ori®77a)), 

when /i(Oa) — M(OC) = 0 and with Oa and Oc free [/(l)-orbits. 
In this case we need to know that the compactification Mp(Oa, Oc)* of 

the 2-dimensional moduli space Mp(pa,Oc) is obtained by adding the co- 
dimension one boundary strata (86) and satisfies the analogue of Theorem 
4.9, hence the push-forward map (e~)* used in the definition of H is well 
defined. Moreover, in the case of the critical point 0o 
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when /i(Oa) - /i(#o) = -I- In this case the moduli space Mp(Oa,9o) is 
one-dimensional. 

Thus, in this case, the coefficient of H is obtained by integrating along 
the 1-dimensional fibers of the map ee0 : Mp(Oa,9o)* -> ^o- Thus, we 
need to know that the 1-dimensional moduli space Mp(Oa,Qo) has a nice 
compactification .Mp(Oa,0o)*- This gives 

n^0 = #Mp(a,eo). 

We also have the component 

n£i6 = <fin®l6,jy(fin®«o)), 

when /z(0o) — /^(Ob) = 0. Here we have a one-dimensional space A4p(0o, Ob) 
fibering over Ob with zero-dimensional fiber, and again we need to know 
that Aip(Oo,Ob)* is a nice compactification. This gives 

n£i6 = #.MF(0o,6). 

This gives a fair description of the model argument in the easy case of 
metric and perturbations in the same chamber, and of the minimal require- 
ments on the compactifications, in order to extend the argument to the more 
general case. Now we can begin to analyze the general case. 

6.1. The boundary structure of .M(0a,Oa/). 

In this section we analyze some properties of the moduli spaces .A4(Oa, Oat) 
that are needed in the proof of Theorem 6.1. Here we make no assumption 
about the metrics and perturbations (go, VQ), (gi,^i). We shall soon restrict 
our attention to the case of two sufficiently close metrics and perturbations 
on opposite sides of a codimension one wall, which is the only case we need 
to complete the proof of Theorem 6.1. 

Let us first give a more precise account of the construction of the moduli 
spaces M.(Oa, Oat). On (Y x R,gt + dt2) we consider the equations 

(87) DA*+/>*==.0. 

and 

(88) F+ = *,f+^ + P(A|W). 

Here the form // is determined by the path vt of perturbations, and the 
additional perturbation P satisfies conditions (2)-(5) of Definition 2,1.0 and 
the modified version of condition (1): 
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(I') the perturbation P(A,#) restricted to the interval (l,oo) can be written 
as ^(A,^) — *9(A,^) (*) + Q(A,y) (*) A dt with respect to the constant metric 51, 
where ^(A,^) (*) satisfies 

9(A,^)|5i00) (*) = ^(A,*) (* + T)7 

for any T > 0 and for any t > 1. Correspondingly, when restricted to 
the interval (—00,0) the perturbation ^(A,*)^)* defined with respect to the 
constant metric go, satisfies 

^A>*)lf-oo,0) ^  = ^^ ^ + T^ 

for all T < 0 and t < 0. 
In the Dirac equation (87), we add the perturbation term given by a 1- 

form p on Y x M that is supported on some compact set Y x [—To, Ti], with 
To > 0 and T\ > 1. Notice that, according to condition (!'), the equations 
(87) and (88) are translation invariant outside the interval [—To,Ti]. The 
moduli space .M(Oa,Oa/) is defined as the set of gauge equivalence classes 
of solutions of (87) and (88) in Bg^(Oa, Oa/). 

Now, we first proceed as in Section 4.1 and prove the existence of a com- 
pactification for M{Oa,Oai). Theorem 6.4 (the analogue of Theorem 4.1) 
shows the existence of a compactification and identifies the ideal boundary 
with fibered products of lower dimensional moduli spaces, as in (89) and 
(90). This convergence argument follows very closely the argument for The- 
orem 4.1, whereas the gluing arguments will require a more sophisticated 
analysis. 

Theorem 6.4. Suppose either Oa or Oai is an irreducible critical orbit 
Consider the moduli space .M(0a,0o/), with /x(Oa) -/i(Oa>) + dim(Oa) > 1. 
The codimension-one boundary of M(Oa,Oa') is a subset of the space 

(89) \jM(Oa,Oh) xobM(Ob,Oaf)u}jM{Oa,Obf) xob, M(0VlOal). 
ob ob, 

Similarly, the components of higher codimension in the ideal boundary 
consist of fibered products of the form 

Uc1,..,cJt,6MC,a,0Cl)XoCl--- 

xoCkM{Ock,Ob) xobM(Ob,Oal) 
(90) Uv;,-.,4 M(Oa,Ov) xob, M{0V,04) XQ^ ■ ■ ■ 

xo,M(Oc,,Oal). ct e 
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Proof. As in the proof of Theorem 4.1, we want to show that the space is pre- 
compact. Namely, any sequence Xi of elements in M(Oa,Oai) has a subse- 
quence which either converges in norm to another solution x G A^(Oa, Oa/), 
or converges to a broken trajectory. 

Given a sequence xi in .M(Oa, Oa/), we can follow the steps of the argu- 
ment given in Theorem 4.1. 

Claim 1. There is a subsequence {xik} that converges smoothly on compact 
sets to a finite energy solution y of the perturbed equations (87) and (88) 
on {Y x%gt+dt2). 

The proof of Claim 1 can be divided in the two cases of a compact set 
contained in the complement of Y x [0,1], where the metric is constant, 
and of the set Y x [0,1] where the metric changes. The first case is a 
direct application of the proof given in Theorem 4.1. In the second case, 
we obtain convergence as in [31], Lemma 3.19. We can find a sequence of 
gauge transformations A; such that the forms A; (A; — AQ) are co-closed and 
annihilate normal vectors at the boundary. Lemma 4 of [30] then shows 
that the sequence Ai(A;, ^i) has a subsequence that converges smoothly on 
yx[o,i]. 

Notice that the notion of finite energy, as well as the results of Corollary 
3.11 and Theorem 3.12, extend to the case of solutions on {Y x E, gt + dt2), 
since the metric is constant outside the compact set Y x [0,1]. This implies 
that the argument given in Theorem 4.1 proves the following claim as well. 

Claim 2. If the limit y is an element of M(Oa, Oat) then the convergence 
Xi —¥ y is strong in the L| s norm. 

Thus we need to check whether there are obstructions to the convergence 
in norm, that is, whether broken trajectories arise as limits. 

Suppose the element y is a limit smoothly on compact sets, but is not a 
limit in norm. Again, since the result of Corollary 3.11 holds, the solution 
y defines an element in some moduli space .M(Ob, O^). 

Since the metric is translation invariant only outside the interval [0,1], 
consider the restriction of the sequence Xi and of the limit y to the interval 
(1, oo) with the constant metric gi. We can choose a value a satisfying 

Cp(Ov)>a>Cp(Oaf). 

We can find times T; > 1 such that Cp(xi(Ti)) = a. The restriction to (1, oo) 
of the reparameterized sequence a^i is again a sequence of solutions of the 
flow equations with the constant metric gi on Y x (l,oo).  A subsequence 
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converges smoothly on compact sets to a solution y. This defines an element 
in some .M(0c/,Od')> subject to the constraint 

Cp{Pv) > Cp(Od) > Cp{Od.) > Cp{Oa,). 

Notice that the proof of Theorem 6.4 is essentially along the same lines 
as the proof of the analogous result, Theorem 4.1, for the moduli spaces 
of flow lines M{Oa,Ob)> If. we could guarantee that the cokernels of the 
linearizations are always trivial, then we could also extend the results of 
Section 4.2 and 4.3 to this case, showing that the same properties of the 
compactification hold true. However, the essential new feature which ap- 
pears in dealing with the moduli spaces M(pa, Oai) is precisely that not all 
the cokernels are trivial. Thus, we need a much more accurate analysis of 
the fine structure of the compactification. 

The strategy we follow is to restrict our attention to just the cases which 
are needed for the proof of Theorem 6.4, and show that, in those cases, we 
obtain the desired properties of the compactification. The purpose of the 
rest of Section 6 is to deal with these issues in detail. 

In order to identify where the problem of cokernels may arise, we study 
the transversality issue for the moduli spaces A4(Oa,Oa). The following 
Lemma shows that the appearance of non-trivial cokernels is confined to the 
case of the moduli space M(6Q, 9I) with /i(#o) — M(^I) < 0. 

Lemma 6.5. Suppose given (go, VQ), (giyVi) and a generic path (gt, vt) con- 
necting them. Consider the manifold Y x E with the metric gt+dt2, constant 
outside the interval [0,1]. Suppose given x, a solution of equations (87) and 
(88), with asymptotic values on the critical orbits Oa and Oai. Consider the 
linearization Cx of equations (87) and (88). Under a generic choice of the 
metric and of the perturbations P and p, we have the following result If 
the solution x = (A, \]/) satisfies ^ ^ 0; then the linearization Cx is surjec- 
tive. If we have Oa = 9Q and Oai — Q\ and the solution x is of the form 
x — (A, 0), then the linearization Cx is surjective, provided that the relative 
Morse index satisfies /i(#o) ~ M(^I) ^ 0- 

The result of Lemma 6.5 can be rephrased as the following transversality 
statement for the moduli spaces M.(Oa, O^). 

Lemma 6.6.  Consider the following cases: 

(a)  at least one of the asymptotic critical orbits Oa and Oai has a free 
17(1)-action. 
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(b)   We have Oa = 6Q and Oaf = 61 under the condition that ^(OQ)—/i(^i) > 
0. 

Then, for a generic choice of the metric and perturbations, the moduli 
space jM(Oa, Oa/) is a smooth oriented manifold that is cut out transversely 
by the equations, of dimension /i(Oa) — /x(Oa/) + dim(Oa). In particular, in 
case (a) the moduli space is generically empty when the virtual dimension 
^(Oa) — fJ,(Oar) + dim(Oa) is negative. 

Proof of Lemma 6.5 and 6.6. No solution with ^ = 0 arises under the hy- 
pothesis of case (a). Thus the argument of Proposition 2.14 and Proposition 
3.14, applied to the linearization 

£(A,¥fP,p) (a> $) d+a - i/m(* • $) + X>P(A,tf) (a, *) 
G(A^)(a^) 

gives the desired transversality result. In case (b), we can find solutions in 
M(0o, 9i) with ^ 7^ 0, as well as a solution with * = 0. The linearization is 
surjective at solutions with ^ ^ 0 because of the argument of Proposition 
2.14 and Proposition 3.14. Consider the linearization Cx at a solution of the 
form x = (A, 0). We have 

DA$ + p$ 
d+a + VP{m(a^) 

Consider the operator 

ClAflj*) ("• *vP. *) = £(A,0,P) («. *) + { p(A>0>p) (aj $) 

where we vary the perturbation of the curvature equation by an element 
P(A,0,P) ofTpV, and the perturbation of the Dirac equation by a compactly 
supported l-form'77. We follow the analogous argument of Proposition 2.14. 
Suppose (/?,£) is an element orthogonal to the range of JC(A,O,P,P)- We have 
terms of the form 

(/?, d+a + VPim (a, $) + p(Ajo,P) (a, $)) 

+(f, 23A*+ */•*}=(). 

By varying p eV we force /? = 0. If ^(^0) — M^i) — 0, then the condition 

■(^£>A* + r7-*)=0 
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implies that £ is in the kernel of D^-rj, but for a generic choice of rj this 
operator has trivial kernel. If ^(0o) — M(^I) > 0? the argument is similar: 
choose $ to be a non-trivial element in Ker (DA)- This is possible since we 
are assuming that /x(0o) — K^i) > 0> hence that dim Ker (£x) > 0. We show 
that, by varying 77 we force £ to vanish. In fact, suppose 

is satisfied for all possible compactly supported 1-forms 77, and for a non- 
trivial £. Then we can follow the argument of [45] 6.2.1: choose some small 
open set where both $ and £ are non-trivial and approximately constant. 
The isomorphism 

M4®MC^#orac(£+,S~) 

induced by Clifford multiplication implies that there exist 77 G R4 such that 

Re((£9ri-$))>0 

at some point in the small open set U. By a trivialization of T*(Y x R) on 
U the vector 77 can be extended to a 1-form 77 on U. This 1-form can be 
extended to a compactly supported 1-form in a neighborhood of J7, so that 
we get 

JYxR 

which contradicts the initial assumption. 
Notice that, since we consider the gauge group </o(0a,0a/) of gauge 

transformations that decay to elements A(±oo) in the stabilizers Ga and 
Gar, a constant element g is necessarily trivial, hence the element x — (A, 0) 
is a manifold point in #o(Oa,0a'), fixed by the [/(l)-action. Thus, the 
operator£(A,#,P,p) is surjective, for a generic choice of the perturbations P 
and p. This proves that in case (a) or case (b) the moduli space jM(Oa, 0o/) 
is cut out transversely by the equations and of dimension equal to the virtual 
dimension prescribed by the index theorem. The orientation of the moduli 
spaces M{Oa,Oai) is obtained as in Proposition 2.15, from an orientation 
of the homology groups 

H%(Y x R) 0 #|+(Y x R) 0 H}(Y x R). 

□ 

Notice that, since we are dealing with the case of homology spheres, we 
have only finitely many critical orbits Oa and Oai. Thus we can assume that 
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there is a fixed compact set Y x [—TcTi], with TQ > 0 and Ti > 1, such 
that transversality of all the moduli spaces of case (a) and (b) of Lemma 6.6 
can be achieved by a perturbation p supported on Y x [—To,Ti], together 
with the perturbation P of the curvature equation. 

Notice that outside [—To,Ti] the metric is translation invariant and the 
equations coincide with the gradient flow equations. For simplicity of no- 
tation in the following we shall assume that [-To,Ti] is just the interval 

[0,1]- 
We have the following result. 

Corollary 6.7. If either Ob orOy is a critical orbit with a free U(l)-action, 
then there are no reducible flow lines in the moduli space .M(0&,O&'), and 
the moduli space is generically empty if the virtual dimension is negative. 

Consider instead the case Oa = OQ and Oa> = #i with ^(OQ) — p(9i) < 0. 
In this case no solution with ^ ^ 0 appears in the moduli space .M(0o>0i)- 

Both statements are consequences of Lemma 6.5. In fact, if there were 
any solution, then by argument of Lemma 6.6 the linearization ought to be 
surjective for a generic choice of the perturbations, and this is incompatible 
with the value of the index. 

This result shows that reducible solutions (non-smooth points) in 
M(OajOai) may appear only in the moduli spaces M(9o,9i), with fi(9o) — 
l^(9i) < 0, which is in fact the only case not covered by the transversality 
result of Lemma 6.5. 

We can give a more precise description of this moduli spaces as follows. 

Lemma 6.8. Consider a choice of metrics and perturbations (go^o) and 
{gi,vi) in different chambers, with a negative spectral flow SF(d^t

t) < 0. In 
this case, the moduli space AA(9Q1 9I) consists of a unique reducible class x = 
[A, 0]. In particular, M.(9o,9i) is non-empty, though the virtual dimension 
M(^o) — M(0I) < 0 is negative.  Thus, we have 

dimCoker (Cx) = |/z(0o) - /x(0i)| = -SF{d%). 

Proof. Lemma 6.6 shows that .M(0o> 0i) can only contain reducible solutions. 
In particular, x = [A, 0] is obtained as the unique solution of the equations 

d+A = /x  and  d*A == 0. 

Here d* is the operator on the four-manifold Y x M, with *4 the Hodge 
operator with respect to the metric gt + dt2, and the perturbation form /z is 
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of the form /JL = dut + ^sd^t A dt) with the *3 operator with respect to the 
metric gt- 

This solution of the four-dimensional Seiberg-Witten equations gives an 
element x — [A, 0] which is a fixed point of the [/'(l)-action on the con- 
figuration space B0(0o,6i). Notice that, though the point x = [A, 0] is a 
smooth point in B0

(6QJ9I) (fixed by the [/(l)-action), it is a singular point 
in .M(0o>0i)> due to the lack of transversality, that is, the presence of a 
non-trivial Cokernel. □ 

We see, from the previous discussion, that one first problem we encounter 
in extending the proof of the easy case of Theorem 6.1 to the harder case 
is the compactification of the moduli spaces .M(Oa, Oa/). In fact, consider 
the case of the compactification of a moduli space .M(0o>C)a/), under the 
assumption that /i(0o) — M^i) < 0. 

For instance, in the case ^(#o) — /^(^i) — ~2, by the result of Theorem 
6.4, we know that the product 

(91) M0oA)x.M(0i,Oa/) 

is a possible component of the ideal boundary. The counting of the virtual 
dimensions is correct as prescribed by Theorem 6.4 for components of co- 
dimension one in the ideal boundary. In fact, we have 

virtdim(.M(0o,0i) x M(9uOai)) = /x(^o) - AW +M(^I) --XOa') - 1 

= /z(0o) - M(Oa') - 1 = dimtM^o, Oa')) - 1. 

However, from the result of Lemma 6.8, we know that the actual dimen- 
sion of .M(0o>0i) is zero, since it consists of the unique solution x = (A, 0), 
hence the actual dimension of (91) is equal to /i(0i) — fj,(Oat). This gives 

dim(.M(0oA) x MiOuOa')) = M^i) " M^a') - 1 

= fiiOo) + 2 - /i(Oa0 - 1 = dimCM(0o, Oa')) + 1- 

Clearly, this implies that, if an entire component of the form (91) actu- 
ally appears in the compactification (that is, if they can be spliced together 
and deformed to actual solutions as described in Section 4.2), then the re- 
sulting compactification M(0o') Oa')* does not have the structure of smooth 
manifold with corners described in Section 4.3. This could cause problems 
in applying the arguments based on Stokes' theorem in the proof of Theo- 
rem 6.1. Section 6.2 deals with this problem. The main result is stated in 
Theorem 6.21. 
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We now proceed with general properties of the compactification of the 
moduli spaces A^(Oa, Oat) and .Mp(0a, Ob) which we can derive in general, 
regardless of the behavior of the singular components of the ideal boundary. 

We have the following gluing theorem. 

Theorem 6.9. For Oa and Oai irreducible, given a compact set 

KcM(Oa)Oh)xobM{Oh)Oa,) 

or 
KcM(Oa,Obf) xob, M{Ov,Oaf), 

there is a lower bound TQ(K) > 0 and gluing maps 

(92) #:^x[r,oo)^A4(Oa,Oa/)5 

such that #T is a smooth embedding for all T > To(K). The gluing maps 
have the property that any sequence of solutions in .M(Oa,Oa/) that con- 
verges to an element in the boundary is eventually contained in the range 
of the gluing map. The map # is orientation preserving with respect to the 
orientation given by 

and 

Similarly, for 

(M(Oa,Ob) x E+) xob M{Oh,Oal) 

M{Pa,'Ov) xo6, {M{Ov,Oa>) x M+). 

KcM(Oa,6z)xM{6z,Oal) 

or 
KcM(Oa,e1)xM(01,Oal), 

there is a To(K) > 0 and gluing maps 

(93) #:Kx[T,oo)^M(Oa,Oal), 

which are smooth embeddings forT > TQ(K), and with the same properties 
on the range and on the orientation. 

Proof. We know from the results of Lemma 6.6 that all the moduli spaces 
involved are smooth manifolds, cut out transversely by the equations. In 
particular, for any element (#, y) in a fibered product as above, the coker- 
nels Coker(Cx) and Coker(Cy) are trivial.   Thus, we can adapt the same 
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argument used in Section 4.2 for the gluing construction, using the result of 
Proposition 4.21. 

Namely, we proceed as follows. We show that all broken trajecto- 
ries of the form Ai^OaiOv) Xob -M-iO^^Oai) are indeed contained in the 
boundary of .M(0a,Oa/). The argument for the components of the form 
M(Oa,Ob) xob MftbiOai) is analogous. We need to show that, given x 
and y in M(Oa, Oy) and .M(0&/, Oa/) respectively, we can form a pre-glued 
approximate solution and perturb it to an actual solution as in Theorem 
4.9. We have temporal gauge representatives 

(^1(t),^i(t))G^M(oa,o6o 

and 

(A2(t)Mt))£Akt6(Ov,Oa>). 

The solution y is translation invariant, but the solution x is not, since the 
metric is constant only outside the interval [0,1]. Thus we have to modify 
slightly the definition of the pre-gluing map. Choose slices 

Srabf cAkj(Oa,Ov) 

and 

<Sr6/a/ C Ak,5(Ov,Oaf), 

determined by the elements 

ra6/ G Ak,6((AaM, (Avtfo)) 

and 

IVo' € Aki6((AV9'll>v),{Aa','<l>a'))> 

We choose them in such a way that we have representatives x and y in a ball 
of radius r centered at ra&/ and IVa/ respectively. Then, according to Lemma 
4.8, there are gauge transformations Xf and A^" that conjugate x and y into 
Wp"    and Wf     respectively.  For t > T, there is a gauge transformation 

1 ab' b' a' 

A&/ € G(Y) such that we can write X^xit) = Xi/(A^i^) + (ai(t)i^>i(t)) and 
A^y(t) == Xv(Ah>,ipbr) + (a2(t),02(*))> where [A^^y] is a point on the orbit 
Ob' and we have 

lim(i4i(t),^i(t)) = Ay(i4yl^) = 4lim (^(t),^*)). 
t—too t->—oo 
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The (right) pre-glued approximate solution is given as follows: 

{X^x t<T-l 

h>(Abl^bl) + p-(t)(a1(t),(l)1(
t))+ 

pJWM* - 2T), M* - 2T)) T - 1 < t < T + 1 
A^y-2r "    t>r+l. 

Here pT(t) are smooth cutoff functions with bounded derivative, such that 
Px(t) is equal to one for t < T - 1 and to zero for t > T and pj(t) is equal 
to zero for t < T and to one for t > T + 1. Lemma 4.10 shows that #51 

descends to a well defined pre-gluing 

#§. : M(Oa,Ov) xobf MiQvtO*,) -±B\Oa,Oa,). 

We are assuming that Oa and Oai have a free (7(1) action, thus, according 
to Lemma 6.6, Corollary 6.7, and Proposition 2.12, we can ensure that, for 
a generic choice of the metric and perturbation we have Coker(Cx) = 0 
and Coker(Cy) = 0. Lemma 4.13 and Proposition 4.19 show that we have 
an isomorphism at the level of the actual kernel of the linearization of the 
pre-glued solution: 

Ker (Cx#oTy) S Ker (Cx) x Ker (£y). 

This implies that we have Coker(jCx#oy) = 0 We proceed as in Proposition 
4.21 and we are able to perturb the approximate solutions to an actual 
solutions by the fixed point argument of Theorem 4.9. 

In the case of pre-gluing broken trajectories in the components 

M(Oa,Oh)xobM(Ob,Oa>) 

we need to consider the (left) pre-gluing map 
(95) 

' \fx2T t<-T-l 

Xb(Ab,tpb) + ptT(t)(a2(t),Mt)+ 
pZT(t)(ai(t + 2T), Mt + 2T))        -T - 1 < t < -T + 1 

I ^V t>-T + l. 

x#0_Ty= < 

Here p_T(t) are smooth cutoff functions with bounded derivative, such that 
/oIT(i) is equal to one for t < -T - 1 and to zero for t > -T and plT(t) 
is equal to zero for t < —T and to one for t > —T + 1. The rest of the 
argument is analogous. We have 

Ker (£,#0 tf) £ Ker (Cx) x Ker (Cy) 
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and Coker (Cx#o y) = 0. We then proceed as in the previous case. □ 

We have a similar result for the moduli spaces Mp(Oa, Oc). 

Theorem 6.10. For Oa and Oc free orbits, consider a compact set 

KcMp(Oa,Ob)xobM(Ob,Oc) 

or 
KcM(Oa,Ob)xobM

p(Ob,Oc). 

There is a bound To(K) and gluing maps 

#:Kx[To,oo)^Mp(Oa,Oc) 

that are smooth embeddings, compatible with the orientation induced by the 
product orientation of 

Mp{Oa,Oh)xRxM{Oh,Oc) 

and 
M(OajOb)xRxMp(Ob,Oc). 

Similarly, for a compact set 

K C M(Oa,OaO XOa, M{pa^Oc), 

there is a TQ{K) and an orientation preserving gluing map 

(96) # : K C M(Oa,Oa,) xoa, M{Oa,yOc) -» Mp{Oa,Oc) C\{CJ = 1}, 

that is  a smooth  embedding.     Since  by  construction the  moduli space 
Mp(Oa,Oc) satisfies 

Mp(Oa, Oc) H {a e (1 - e, 1]} £* (Mp(Oa, Oc) r){a = 1}) x (1 - e, 1], 

this provides the necessary collar structure at the boundary components 

(97) .M(Oa,Oa,)xoa,M(Oa>,Oc). 

Moreover, any sequence of solutions in Mp(Oaj Oc) converging to the bound- 
ary lies eventually in the range of the gluing map. 
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Proof. The proof of the first two cases is analogous to the case of flow lines 
analyzed in Section 4, therefore we concentrate on the case of the gluing 
map (96). 

Consider the moduli space 

Mj;=1(Oa, Oe) = Mp(Oa, Oc) n{a = 1}, 

with the metric 71 = gt#gt, as in (81). We define the metric 71 (R) — gt#Rgt, 
for sufficiently large R > RQ, as 

50 + dt2 t<-2-R 
gt+2 + dt2 t€[-2-R,-l-R] 
gi+dt2 te[-l-R,l + R] 
fo-t + dt2 t G [1 + R, 2 + R] 
go + dt2 t>2 + R. 

(98) 7l(i2) = 

Correspondingly, we have metrics 7cr(i2), for a G [0,1]. We consider 
the moduli spaces A/(jP(Oa,Oc) as before, defined with respect to the met- 
rics 70- (R). All the properties of these moduli spaces discussed so far, are 
independent of the choice of a fixed R. However, to describe in detail the ap- 
pearance of strata of the form (97) in the compactification, and their gluing 
properties, we need to work with a large R. This correspond to stretching 
a long cylinder Y x [—1 - i?, 1 + R] with the constant metric gi + dt2 inside 
the manifold Y x M. The proof is obtained via the following argument. 

Proposition 6.11. Consider a solution x = [A, \I>] in M^=1(OayOc) on 
the manifold (Y x M,7i(JR)). For every e > 0; there exists RQ, such that, 
if R > RQ, the restriction of x to Y x [—2,2] is sufficiently close to a solu- 
tion [Aat,ipat] £ Oai, for some critical orbit Oat. Moreover, given a pair of 
solutions (x,y) in the fibered product (97), for R sufficiently large, we can 
consider the pre-glued solution obtained by splicing together the solutions 
x and y cut off by functions p_ and p+ supported in Y x (—oo, — 1] and 
Y x [l,oo), respectively. For R sufficiently large, these approximate solu- 
tions can be deformed to actual solutions. Thus, we obtain the gluing map 
(96) with the desired properties. 

Proof of Proposition 6.11. The proof of the first statement follows closely 
the argument of Proposition 8 of [30]. The gluing argument again follows 
very closely the argument illustrated in Section 4.2, Theorem 4.9 in the case 
of the moduli spaces of flow lines. Again, the key feature is the fact that 
the cokernels Coker (Cx) and Coker (£y) vanish, hence the gluing argument 
presents no surprise with respect to the case of gluing flow lines. □ 



584 Matilde Marcolli and Bai-Ling Wang 

All the remaining statements of Theorem 6.10 are proved by the same 
techniques developed in Section 4. □ 

The main problem now is to extend these gluing theorems to the case 
of strata involving a contribution from the singular moduli space Ai(9o,0i). 
The strategy we develop in the rest of Section 6.1 and in Section 6.2 is 
to identify precisely the contribution of these singular components (91) to 
the compactification of the moduli spaces M(9o, Oa7)* and to the analogous 
case for .Mp(0a,O6)*. The main technique we employ is the obstruction 
bundle for the gluing construction and a direct analysis of the zero set of 
the canonical obstruction section. We aim at showing that all the compo- 
nents of the actual boundary in the compactification M(Oa,Oar)* behave 
according to the picture described in Section 4.3, hence the arguments of the 
easy case of Theorem 6.1 involving the properties of the compactifications 
moduli spaces .M(Oa,Oa/)* and Mp(OaiOb)* can be extended to the case 
of different chambers as well. 

Remark 6.12. Recall that, in the proof of Theorem 6.1, we need only con- 
sider the case of two sufficiently close metrics and perturbations (go? ^o) and 
(<7i, vi) in two different chambers. Thus, we can assume that the path (gt, Vt) 
satisfies SF(d%) = -2 and the path (&,£*) satisfies SF(<9?f) = +2. Thus, 
the compactified moduli spaces .M(Oa',0o)* used in the definition of the 
map J and in the proof of DJ — JD = 0 all satisfy the properties of Section 
4.2 and 4.3, by simply rephrasing the same arguments. The only problem 
then remains in the analysis of the moduli spaces needed in the definition 
of /, in the proof of ID — DI = 0 and in the construction of the chain 
homotopy. 

6.2. Obstruction bundle and gluing theorems. 

The obstruction bundle technique we discuss in this Section will both com- 
plete the proof of the unobstructed gluing theorems, as stated in Proposition 
4.21, and identify the precise boundary structure in the gluing with obstruc- 
tions. 

Let U(Oa, Ob) be the image of .M(Oa, Oc) Xoc M(Oc, Ob) under the pre- 
gluing map #0, for a large gluing parameter T >> 0. In the case of a 
translation invariant metric, analyzed in Section 4, the statement of the 
gluing theorem 4.9 is equivalent to the statement that the subset 

U{Oa,Ob)cBl5{Oa,Ob) 
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can be deformed to .M(Oa,0&), whenever U^a^Ot) is obtained by pasting 
together solutions along Ob with /x(Oa) > //(Oc) > /^(O^). It is this equiva- 
lent statement which we are going to verify in the proof of Proposition 4.21 
given in this Section, following Lemma 6.14. 

However, if we consider the moduli spaces M(Oai Oai) with the metric gt 
that varies along the cylinder, there might be topological obstructions that 
make it impossible to deform the set of pre-glued trajectories to actual so- 
lutions of (18) and (19). In other words, given a point [x#j^y] G U(Oa, Oat) 
there might be an obstruction to pushing that point onto M(Oa, Oa/). Typ- 
ically obstructions may arise either because of the presence of non-trivial 
cokernels of the linearizations Cx and Cy, or because Sard's theorem is not 
available. In the problem we are considering the obstruction originates in 
the presence of the non-trivial cokernel of Lemma 6.8. Similar topological 
obstructions to gluing solutions arise in other gauge theory problems [59], 
[60]. Following Taubes' construction of the obstruction bundle, it is pos- 
sible to describe the obstruction completely in terms of the vanishing of a 
canonical section. 

We maintain the notation (53) as in the proof of the gluing theorem: for 
an element x^^y, with x = (Ai, ^i) and y = (A2, ^2)1 we write 

'   ^A1#0Aa(*l#§-*2)+p(*l#§^2) 

k GJaQ,(A1#OA2,*1#oi*2)) 

for a fixed choice of a slice <Sraa/ in ^4(Oa, Oa/), such that x^j^y is in a ball 
of radius r in A(Oa,Oai) centered at Yaai. If the pre-glued element x#^y 
can be deformed to an actual solution, then there exists a small (a, $) € 
Ker {Cx^ y)1- such that we have 

[xi&y + {a,*)]eMipa,Oa>), 

that is, the following equation is satisfied 

(99) /(x#0y) + A.tfo „(<*,#) + A4#o „(<*,*) = 0. 

Here M denotes the nonlinear term in the equation, as in Proposition 4.21. 

K#°Ty(<x,'*) = (* • * + MPx#°Ty(a, *),« • *), 

where the perturbation P of equation (88) is written as sum of a linear and 
a non-linear term, P = VP + J\fP. 
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The presence of a non-trival approximate kernel of £*   o    can generate 

obstructions to solving equation (99) for (a, $). In fact, the hypothesis that 
C>x#o y has a trivial approximate cokernel is essential in the proof of the 

gluing theorem (see Lemma 4.13 and Proposition 4.19): the same argument 
cannot be extended to a case with a non-trivial cokernel. 

We follow [60] and introduce open sets ZY(/x) of elements [xifyy]   E 
U(Pa<> Oa>) such that JJL > 0 is not an eigenvalue of the operator £x#o y>C*  o 

acting on ^QtfCn connections and sections. There are projection maps 

n(/i, x#j,y) onto the span of the eigenvectors of £>x#o y^^o with eigen- 

value smaller than /J,. These are smooth maps of [^#^y] G W(/z). 
We have the following result, which gives the necessary eigenvalue split- 

ting for the operators C^C^ and C^C^y. 

Lemma 6.13. There exists a /JLQ — /x(To) > 0, such that, for allT > To, all 

the small eigenvalues VT of Cl#^yCx#^y (or £x#£y£*#<^), satisfy HT < Mo 

and JIT -> 0, and all the other eigenvalues are bounded below by JJLQ. 

Proof. Recall that, from Lemma 4.12 we know that the number of inde- 

pendent eigenvectors of £*#o C-xtf* y or Cx#o y^no with small eigenvalue 

fix —^0 is at most 
dimKer (Cx) + dimKer (Cy) 

or at most 

dim Coker (Cx) + dim Coker (£y), 

respectively. Moreover, by Lemma 4.15, we know that the spans of the eigen- 
vectors of the small eigenvalues have exactly these dimensions, cf. Proposi- 
tion 4.17. So there exists a JJLQ such that, for T > TQ, there is exactly this 
number of independent eigenvectors with eigenvalues HT < Ho anci HT —> 0. 
In fact, we also know more precise estimates on the rate of decay of these 
small eigenvalues, as specified in Lemma 4.15. 

It remains to be shown that such fio can be chosen so that all the re- 
maining eigenvalues are bounded below by /io- In other words, we have to 
show that we cannot have other sequences of eigenvalues /iT(&) satisfying 

Mr(^) —^ Hk > 0? as T -> 00i but with the limits //& —> 0 as k -> oo. 
This follows from Lemma 4.13. In fact, we have proved that the opera- 
tor £* o £x#o,y (or £a.#oiy£*#o ) is uniformly invertible on the orthogonal 

complement of the small eigenvalues eigenspace.  Notice that Lemma 4.15 
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and Lemma 4.13 give norms for the operator £x#oy (and by similar argu- 
ments for the operator ^C*»o ) which are uniformly bounded in T, when the 

operators are considered as acting between Sobolev spaces with the same S 
weight on source and target space (or with the same rescaled weight S(T) 
on both source and target space). In other words we have 

for 

inside 

and 

for 

^(^(Ker^xKer^))^ 

rM((e+)-1K))crM(5raa/)5 

II^#^:#^II^ > emits 

i e (F#T(Cokei(Cx) x CokerOCy)))1- 

inside To^(Sr ,)• With this choices of norms, the constants are all indepen- 
dent of T. Here Xa £ Oa is the asymptotic value as t —^ —oo of the solution 
x G Mr(Oa,Oa'), and e+ : Sraa, —>• Oa is the endpoint map, for the fixed 
choice of slices. □ 

It is important to notice that the difference between using the rescaled 
(J(T)-norms or the original J-norms in the previous Lemma is reflected in 
the different norm bound on the gluing map F#T, as explained in the proof 
of Theorem 4.9. 

The kind of analysis of the behavior of small eigenvalues described in 
Lemma 6.13 has been used in similar context in [59], [60], with a fuller 
account in [49], and in [10]. A similar analysis has also been used, more 
recently, in [11], [22]. 

By Lemma 6.13, we now know that there exist TQ >> 0 and ^(TQ) > 
0, such that, for T > To and 0 < fi < fJ>(To), we can identify the 
projection map Il(iJ,,x#j,y) with projection on the approximate cokernel 
ApprCoker^^Oy), as defined in Definition 4.16. 

Consider a compact set K C W(Oa, Oa/). Suppose it can be covered with 
one open set U(IJL). If not, we can paste together the projections correspond- 
ing to the finitely many open sets that cover if, using a suitable partition 
of unity as in [60], pg. 193 and slightly modifying the argument that follows 
in [60]. 
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Since the element (a, $) is in Ker {C^o  J-1, we have 

(«.*) = ^vOW 

Suppose that [xjj^y + (a7 $)] is a solution, for a non-trivial element (a, $). 
For /i small enough, we can assume that (/?,£) satisfies 

(^OeKer^^x^y)). 

Then (/?,£) solves the equations 

(100) C^^fri) 

+ (1 - n^^^y)) (A^o^^^.O + f{?H&y)) = o. 

and 

(101) n(M,x#°y) (^#oy£;#oy(i8,0 + /(x#^)) = 0. 

Lemma 6.14 below ensures that it is always possible to find a small 
solution of equation (100), hence the problem of deforming an approximate 
solution to an actual solution depends on whether equation (101) can also 
be solved. The latter has a geometric interpretation as the section of an 
obstruction bundle, as described in the following (see [16] Section 4, [59] 
Section 3 and 5, [60] Section 6). 

Lemma 6.14. There is an e > 0 and a constant C > 0 such that, for any /i 
with Ce < ji < /iQ; with /IQ the least eigenvalue of H0„0 on the complement 

of ApprCoker (Cx#0y), the equation (100) has a unique solution 

(AOeKer(n(M,x#0y)) 

with ||(/?,OIL2    ^ e; Provided the error term ||/(a:#^y)|| satisfies an esti- 
2,5 

mate 

ll/(*#8-v)ll < ^ 

Proof For /J, > 0 and any (A, \I>), the operator 

rrO     /» /»* 
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has a bounded inverse, when restricted to the image of (1 — n(^, (A, \I/)), in 
the space of L| connections and sections, as discussed in Lemma 4.13. 

Thus, the equation (100) can be rephrased as a fixed point problem 

(102) (0,0 = -Jff^y-
1(i-n(/x,x#^))(A4#o2/£;#^(0,O+/(x#^)). 

We need to prove that the right hand side is a contraction. For all (/3, £) 
and (/3/,£/), we have an estimate 

^ 
Hlny  \l - IlOz, xifty)) (Af£*(P, 0 - Af£*(/3't $')) 

< i||(i -n)(^r(/3,o -A/-£*(/3',0)IIL| 
fj, s 

<-\\AfC*(/3,C)-AfC*(l3',a\\Lj- 

The quadratic form ((f) ■ <f>, a ■ 4>) satisfies an estimate of the form 

\\N{x)-N{y)\\<C(\\x\\ + \\y\\)\\x-y\\ 

as required for the contraction method 4.20. 
The perturbation term also satisfies a similar estimate for large enough 

T because of the assumptions on the perturbation space V. Thus we can 
improve the last estimate to get 

n .    * ■ 

< £(||r(/u)|| + \\£*((3',m\\£*((P,0 - (PJMLU 

< ^(\mo\\ + ii(/?',oii)ii(/u) - (/3',oib,- ^2,5 

Thus, we have 

<^ll(AOII + ^ll/(^y)ll- 

Suppose given e and fi satisfying 

max{2Ce, e} < ^ < /io, 
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and assume the the error term also satisfies 

\\f{x#Q
Ty)\\ < £. 

Then the map is a contraction on the ball || (/?,£) Ill,2 — e- ^ 

Remark 6.15. Lemma 6.14 relies on the identification of the image of 1 — 
Il(tJ,,x#j,y)i that is, the complement of the small eigenvalues eigenspace for 
the Laplacian H0 „0  , with the space 

^(CokerOCs) x Coker^)). 

This identification is obtained from Lemma 4.13 together with Remark 4.14. 
In particular, recall that, by Lemma 4.13 and Remark 4.14, the isomorphism 

F#T : CokerZ^ x Coker£y ^ Image (1 — n(/i, x#^y)) 

has norm bounded uniformly in T if we use weighted norms with rescaled 
weight 5(T) on the target space and the 5-norms on the source spaces. It 
has norm bounded by Ce~ST if the target space is also endowed with the 
5-norm. 

Remark 6.16. In the case of the gluing theorem for flow lines, with approx- 

imate solutions x#j,y in ZY(Oa, Oc), obtained from elements x G M(Oa, Ob) 
and y € M.(Ob,Oc), it is possible to choose the constant e in Lemma 6.14 
independent of T > TQ. In fact, in this case it is possible to choose /J, < /IQ, 

the least eigenvalue of H0„0 , which in this case is independent of T, cf. the 

spectral decomposition of Lemma 6.13. The constant C is also independent 
of T > TQ, cf. Lemma 6.13. Thus, in this case, the projection n(/i, x#j,y) 'ls 

trivial, hence the gluing result reduces to the following argument that proves 
Proposition 4.21. 

A proof of Proposition 4.21 follows from Lemma 6.14 in the case the 
cylindrical metric on Y x M, and under the assumptions that Coker (Cx) = 0 
and Coker(Cy) = 0. 

Proof of Proposition 4.21. Let us consider the space Ti^^i^J, endowed 
with the Lf ^-norm. The initial condition of Remark 4.20 is provided by the 
exponential decay. In fact, we have 

ll/CA!^,*!^)!!^ 
1,0 

< II^TII * (ll(al^l)lyx[-l+T,r]llL^ + \\(a2,(f>2)\Yx[-T-T+l]\\Lls)' 
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The operator norm ||F#r||, for F#T acting on the L\6 spaces, is bounded 

by Ce-*T, as in (45). The terms 

jl(«lJ^l)|yx[-l+r>T]llLj|,-   aild    11(^2,</>2)|rx[-T-T-|-l]llL2)<5 

are bounded by a constant, uniformly in T > TQ, because of the exponential 
decay of (^4i(t),'0i(t)) and (^(i), ^(i)) to the endpoints. 

Thus, for all T > TQ, we have obtained an estimate 

(103) H/CA^S-Aa,*!^^)!!!,* < Ce-ST. 

D 

This result can be adapted to prove all the unobstructed gluing results, 
such as the ones stated in Theorems 6.9 and 6.10. Now we turn to the more 
interesting case with obstructions. 

Using the result of Lemma 6.14, we can construct the obstruction bundle 
and the canonical section, in the case with non-trivial approximate cokernel 
(i.e., non-trivial small eigenvalue eigenspace of H®0  ). 

Proposition 6.17. There is a local bundle £ overU{Oa,Oai) and a section 
SJJ, such that the following property holds. A point x^f^y inU(Oa,Oai) can 
be deformed to a solution of the flow equations (18) and (19) iff 

Proof. Consider the section 

spixl&y) = II^, x#0
Ty) (Nx#%yCl#0Ty{f3,0 + f(x#0

Ty)) 

of the vector bundle over U{Oa,Oai) with fiber ApprGoker (Cx:^oy).  Here 
(/?,£) is the unique solution of (100). 

Since (/?,£) satisfies (100), we have 

.l^y + cirTy(M]GM(oatoa,) 

iff 
s^x^y) = 0. 

D 
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In the case of moduli spaces of solutions of the Seiberg-Witten equations 
on Y x R with the changing metric gt + dt2, as in the construction of the 
map / and the subsequent arguments, Proposition 6.17 characterizes which 
points of U{pa,Oai) can be deformed to actual solutions. We need a more 
explicit description of this obstruction bundle in the specific problem at 
hand, namely in the case of approximate solutions W(0o> Oai), with the pre- 
gluing map 

#0 : -M(0o,0i) x .M(0i,Ofli) x [To,oo) -> U%,Oa,) 

or U(Oay9i) with the pre-gluing map 

#0 : M(Oa, 0o) x M(6o, 0i) x [To, oo) -^ W(Oa, ^i). 

We first need to derive the equivalent of Remark 6.16. Namely, we need 
a suitable choice of JJ, and e, so that the map in the fixed point problem 
(102) is a contraction. This choice depends upon estimating the error term 
||/(^#yy)||.-We have the following result. 

Lemma 6.18. Let x — [A, 0] be the unique reducible in M(9o,0i), with 
IJ>(9o) — M(#I) = —2. Consider (right)pre-glued solutions x#^y in W(0o> Oar), 
with y G .M(0i,Oa/). We have an estimate on the error term ||/(^#yy)|| of 
the form 

ll/O*!/)!!^, < c, 
for some constant independent of T > To, satisfying C < yo- Moreover, 
choose C < fji < no, independent ofT, with C as above, and with fio the lower 
bound on the spectrum of the Laplacian H0j,0    acting on the complement of 

the space of small eigenvalues, as in Lemma 6.13. Then for max{2Ce,e} < 
fji, we obtain that the map of (102) is a contraction, and the fixed point 
problem has a unique solution as in Lemma 6.14. The case of the other 
pre-gluing maps is completely analogous. 

Proof Recall that (A, 0) is the unique solution to d+A = // and d*A = 0. 
Here we have the 4-dimensional cT, with *4 with respect to the metric gt+dt2, 
and // of the form /i = dft + *sdvt A dt, with *3 with respect to the metric 
gt. We have 

\\f(x#0
Ty)\\ < C\\F#T\\. 

(ll(aii0i)llLji4(yx[-T-i,-T+i]) + llA _ AillLji,(yx[r-i,T+i]))- 
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Here Ai is the solution of d+A = fii and d*A = 0, with /ii = dui + *^duiAdt. 
Here we have the 4-dimensional rf*, with *4 with respect to the metric gi+dt2 

and *3 with respect to the metric gi. In the rest of the proof we write d*9t 

and d*9i and *gt and *^1 for the 4-dimensional *-operators with respect 
to the two different metrics. (We hope this will not cause confusion with 
our previous notation *4 and *3.) The norm ||i?^T|| is exponentially small 

||-F#TII ^ Ce-6T. The term ||(ai,0i)||jr2^(yx[_T_1 _T+I]) 
is bounded by 

a constant because of the exponential decay of (ai,^i), where we write 
y — Xi(Ai + i/i,0) + (ai,0i), as t —> — oo. The estimate for the remaining 
term is obtained as follows. We write 

A - Ai = d*9* (fit - Mi) + (d*gt - d*91 )ni. 

Thus, we have 

llA - AillL2(yx[T-i,T+i]) ^ \\d*gt(v>t - Ml)|lL2(Fx[T-l,T+l]) 

+ II^ - ^1)MillL?(yx[T-ifr+i])- 

The first term in the right hand side goes to zero for T sufficiently large, 
because the path i/t ends at i/i. Upon writing 

d*gt - <r*i =*gtodo (^ - *^) + (*^ - *^) o d o * 0i 

we estimate the second term by a constant times the norm || *gt — *g1 ||, using 
the fact that d is invertible on Ker (d*), since Y" is a rational homology sphere. 
The difference of the *-operators is controlled by the difference |v/1ptl — 
\/|5i||, with \g\ the absolute value of the determinant of the metric. For 

(fl'Oj^o) an(i (gi^i) two sufficiently close points in two different chambers, 
the path (gt, Vt) can be chosen so that this term is small enough, so that we 
obtain an estimate 

II^#TII • llA- AlllL^(yx[T-l,T+l]) < C> 

with C < Mo> after combining the resulting estimate 

||A- Al\\L2(Yx[T-ltT+l]) ^ Cl> 

which gives 

llA - M \\L2
1S(YX[-T-I -T+1]) ^ cieST 

with the estimate Hi^H < Ce~5T. 
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This gives the required estimate for the error term. We then have the 
estimate 

Hl#°Ty~\l - no*,*#$.y).) (KrTy
clrTy^^) + /(*#§*)) 

<^liO?.0'll + ^||/(x#Si/)|| 
'c    c 

/i     /i 

With the choice of /x and e as indicated, the map is a contraction. The case 
of (right)pre-gluing maps is completely analogous. □ 

For T > TQ sufficiently large, the projection n(//, x#^y) is identified 
with the projection on the approximate cokernel 

ApprCoker (£^0 y) = Coker (Cy) S G. 

Thus, the construction of the obstruction bundle in [59] can be rephrased 
as in Theorem 4.53 of [16]. Namely, we obtain the following description of 
the obstruction. 

Theorem 6.19. Consider the space U(0Q,Oa>), obtained by gluing x = 

(A,0) in -M^o^i) 'with y E .M(0i,Oa/). There exists a bundle £ over 
■M(0i,Oa>)/U(l) with fiber 

Coker (Cx) = C, 

with the following property. The set of pre-glued elements x^j^y in 
U(6o,Oa') that can be deformed to an actual solution in .M(0o>Oa') form 
a codimension 2 submanifold of 

M(9ua')^M(euOaf)/U(l), 

given by the zero set of a transverse section of £. The case ofU{Oa,6i) is 
analogous. 

Proof. As a result of Lemma 6.18, we know that, in the case of U{8o, Oa/), 
the obstruction bundle described in Proposition 6.17 is a bundle £ over 
M{6o, 9\) x M(6i, Oai) with fiber ApprCoker (Cx^o y). Since we are consid- 

ering the case with /i(0o) — M(^I) < 0, according to Lemma 6.6, the moduli 
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space A4(9Q,0I) consists of a unique gauge class [A, 0]. Thus we have a 
diffeomorphism 

*:M{9uOa')%U(Oo,Oa>) 

induced by the pre-gluing map. According to Corollary 4.17, since we can 
restrict our attention to the case /i(0o) — M(^I) = ""2, we have 

ApprCoker (JC^O y) £ Coker (Cx) ^ C. 

Consider the bundle £ over M(0i,Oar) with fiber 

Coker (CX)^C, 

obtained as pullback of the obstruction bundle £ via the diffeomorphism TT 

of the base spaces. There is a section s = 7r*5M of £ that corresponds to the 
canonical section s^ of Proposition 6.17. Recall that there is a free U(l)- 
action over the moduli space .M(0i, Oa/), hence there is a smooth projection 
to the quotient 

M(0i,Oa,)/U(l)<*M(0lyq'). 

The bundle-£ can be regarded as the pullback, under this quotient map, of 
a bundle £ over M(0i, Oa>)/U{l), with fiber 

Coker (Cx) £* C. 

The section s is the pullback of a corresponding section s of £. We are going 
to proceed as follows. We show that, for a generic choice of the perturbations 
p and P of equations (87) and (88), this section s is a generic section of £. 

Consider the universal pre-glued space 

U(0uOa.) = {(p,P,xi&y)} 

with p a compactly supported form in Al(Y x E), P a perturbation of 
V as in Definition 2.10 (with the modified property (!') specified at the 
beginning of Section 6.1). The pre-glued element x#j,y is obtained from 
x and y, solutions respectively of the equations (87), (88) and (20), (21), 
with the perturbations p and P. We can extend the bundle £ to a local 
bundle over ZY(#i,Oa/) with fiber Coker(£x). We can still identify this as 
the pullback of a local bundle £ on the quotient U(0i, Oai)/U{l). There is 
an induced section s of £ whose pull-back agrees with the section TT*^ for 
fixed perturbations (p,P). 
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We prove that this section s over U(6i,Oai)/U{l) is transverse to the 
zero section, hence the restriction to a generic (p, P) gives a generic section 
overW(0i,OaOMl). 

The section 5 is given by 

S(P>P>*#TV) = nCoker(Z:,) (^.P^OyJ^P^Jy)^^) + /(p.P)(^#Tl/)) ■ 

Suppose given a point {p^P^xjj^y) in 5-1(0). Consider a small variation of 
the perturbation p + erj. The variation of the term f(p+er} P)(x#Ty) ^s givei1 

by 

Let $1 and $2 in Ker(DA-p) be the generators of the 2-dimensional 
space Coker (Cx). Consider a small open sets Ui where $i and PT^2 

are 

non-vanishing, and almost constant. There exist 1-forms rji supported in 
small neighborhoods of the open sets Ui such that 

is non-zero on Ui. Thus, we obtain 

{Qi^i-p+V^dv^O. / 

Thus, by varying the perturbation p alone, it is possible to achieve sur- 
jectivity of the linearization of the section 5 onto Coker (Cx). 

There is a free J7(l)-action on the space .M(0i, Oa/), whereas the element 
[x] — [A, 0] in M(9Q,9I) is fixed by the U(l) action. The section 

S = 7r*s/x:M(0i,OoO->£ 

is invariant under the C/(l)-action, being the pullback of s. We have seen 
that, for a generic choice of the perturbation (p, P), the section s is a generic 
section. Thus, the approximate solutions in W(#o> Oa7) that can be glued to 
actual solutions in M(9o,Oaf) are identified with the co-dimension 2 t/(l)- 
submanifold 

s-^cMiOuOa,). 

In other words, we have then proved that the bundle £ over the moduli 
space.M(0i, Oai)/U(l) is a model of the obstruction. □ 

We have the following consequence of Theorem 6.19 and Lemma 6.18. 
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Proposition 6.20. For any compact set 

KcM^e^xr1^), 

with 5~1(0) C M(6i,Oa>) the zeroes of the obstruction section 

8-1(0)/U(i) = r1(0)cM(9i,a'), 

there is an orientation preserving gluing map 

#:Kc M(eo, 61) x S-^O) -»• Mtfo, Oa,) 

that is a smooth embedding. There is a similar gluing map for any compact 
set 

ircr-1(o)x.M(0o,0i), 

with 5~1(0) C .M(Oa,0o) the zeroes of the obstruction section 

5-1(0)/U(l) = s-1(0)cM(a,eo). 

Finally, we have the following result on the singular components in the 
ideal boundary of the moduli spaces .M(Oa, Oai). 

Theorem 6.21. Assume that //(a) - /z(0o) > 2 and (ifti) - n{a') > 3, then 
the contributions of the singular strata 

(104) .M(0o,0i)xM(0i,Oa') 

and 

(105) M(Oa,0o)xM{eo,91) 

to the actual boundary of the compactified moduli spaces 

M{e^Oaly    and   MiOaJx)* 

are given by the terms 

(106) M{d0M)^d{1){s-\Q) nM(eltoa,)) 

and 

(107) d^ (5-i(o) n M(Oa, 0O)) x Mtfo, 0!), 



598 Matilde Marcolli and Bai-Ling Wang 

respectively, where s are the obstruction sections. Thus, the compactification 
of the moduli spaces .M(Oa, Oa/) has the structure of a smooth manifold with 
corners, but in addition to the strata of the form (78), we also have the strata 
(106) and (107).  Thus, we obtain 
(108) 

d^M(eo,Oalr   =   U{aiMO6,)>M(oa0}(-M^'^')*xo(),^(O6SOa0*) 
U{6KO6)<M*o)}(-M0o,C>6)* xo6 M{Ob,Ovy) 

UM(0o,9i) x 0(1) (S-^O) nM(9i,Oa.)*) 

and 
(109) 

d^MiOa^y = {J{a>Moa,)>^)}(M(0">0°'y xoal M(Oa',eiy) 
{J{bMob)<»(oa)}(-MOa,Oby xob M{OM*) 

u^1) (s-^o) r\M{OaM) x M(6Q,9i). 

Proof. By the results of Proposition 6.20, we have gluing maps 

.M(0o,0i)x <r1(O)-->.M(0o,a') 

and 
a-^O) x MtfoJi) -»• M{a, 9i) 

that axe smooth embeddings. The dimension count then implies that these 
gluing maps are diffeomorphisms of s_1(0) to a union of connected com- 
ponents of .M(0O)a') or M.(a, 9i). Similarly, we have diffeomorphisms of 
[/(l)-manifolds between s_1(0) and a union of connected components of 
M.(9Q,Oa>) or M.{Oa, 9i), induced by the gluing maps 

(110) # : M{90,91) x rHO) -»• M{9Q,Oal) 

and 

(111) # : S-^O) x M^o.^i) -»• M(Oo,0i). 

Under the gluing maps, the image of 

A^Oa^nS-^O)   or   M^ieuOa^ns-1^) 

is a co-dimension 1 submanifold of M(9o, Oa>) or M{Oa, 9i). This subman- 
ifold actually lies in the interior of .M(005 0a') or «A4(Oa,fli), and is not 
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part of its boundary strata. This can be seen from the fact that the glu- 
ing maps (110) and (111) provide the collar structure around these smooth 
codimension one embedded submanifolds. In other words, this means that 
any sequence of solutions in M(6o,Oai) or .A4(Oa,0i) that converges to an 
element in the ideal boundary components (104) and (105) is in fact already 
convergent in the interior (top stratum) of MiOo^Oa') or .M(0a,0i). The 
only contribution of (104) and (105) to the actual boundary of the compact- 
ification then comes from the boundary points of 

M(oa,eo)ns-1(o) 

and 
M(0i\oaf)nr

l(o). 

This gives the formulae (108) and (109). □ 

Similarly, we can analyze the boundary structure of Mp(9oi Oa), in the 
presence of obstructions. We have the following result. 

Theorem 6.22. For a generic choice of perturbation, the obstruction sec- 
tion 

s:M(eua)->£o1,a = M(e1,Oa)xu(1)C 

defines a codimension 2 submanifold 5~1(0) C .M(0i,a); which corresponds 
to a U(l)-submanifold of co-dimension 2, 5~1(0) C M,(9i,Oa), such that the 
gluing map 

#:Kc M(Oo,Oi) x f-^O) -> M^=1(eo;Oa) 

is a smooth embedding, for any compact set K C M.(0Q,9I) X 5_1(0). Thus, 
the co-dimension one boundary strata of the compactification Ai   (9o)Oa)* 
are given by 
(112) 

dMMp{d0,Oay =   \Ja,(M(0o,Oa,)* xoal M(,Oa.,Ob)*) 

U-M^o.flOxts-HojnMCfli.Oa)). 
U{CKOC)>M0O)}(^P(0O, ocy xoc M(Oc, oby) 
^{cMo^ieo)}^^ Oc)* xoc M

p(Oc,, Oa)*) 

with the orientations given by the gluing theorem. 

The proof follows from the analysis of the obstruction bundles and sec- 
tions, as in the case of Proposition 6.20 and Theorem 6.21. 
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6.3. Proof of topological invariance. 

We gave an argument for the easy case of theorem 6.1, with maps 7, J, and 
H as in (76), (79), and (82). This gives us an isomorphism between the 
equivariant Floer homologies for any two choices (go^o) and (gi,vi) within 
the same chamber. Now we prove the general case 

Proof of Theorem 6.1, Part II: the general case. In Section 6.1 and Section 
6.2, we analysed the boundary structure of the moduli spaces .A4(Oa,Oa/)* 
and Mp(Oa,Oby, in the case of two metrics and perturbations (tftb^o) 
and (51,^1) in different chambers, connected by a path (gt^t) satisfying 
SF(d?,l) = -2, and a path (gt^t), in the opposite direction, satisfying 
SFid^) = -SFffil) = 2. We assume throughout the discussion that the 
metrics (go, VQ) and (pi, ^1) are "close enough", on the two sides of the wall. 
We can assume, similarly, that the paths (gt^t) and (gt^t) are also close 
enough. 

Recall that we perform a shift of grading in the complex Cku(i) (^ QiiVi) 
by setting fi(9i) = —SF(dltt), where SF(dlt

t) is the spectral flow of the Dirac 
operator along the path of reducible solutions [^,0]. 

The analysis of the obstruction bundles in Section 6.2 implies that the 
boundary structure of the moduli spaces M{Oa,Oai) and Mp(Oa,Ob) is 
modified by the presence of the zeroes of the obstruction sections. This 
difference determines suitable correction terms for the maps I and H, so 
that the argument of Theorem 6.1 can be adapted to this general case. 

Remark 6.23. The moduli space .M(0I,0O)J as a [/(l)-manifold, consists 
of a disk, containing the fixed point xi = [Ai,0] (the unique solution of 
d * Ai =0 and d+Ai = /}$), and with boundary a circle, given either by a 
component 

M(OuOa)xoaM(Oa,Oo) 

with /i(Oa) - M(0O) — 1? or by a component 

with fJi(Of
a) - /i(#o) = 0. Thus, we have the following identity that counts 

the boundary components of the framed monopole moduli space M(9i, 0Q): 

(113) ]C"0ia(1)rca(1)0o + Sn*i«{o)%)'° === ^ 
a(i) a,(o) 

The sum is over all Oa(1) in M0(Y,go,uo), and O0/ in M0(Y,guui) of 

(shifted) index n(Oa{1)) - ntfo) = 1 and KOa'{0)) - M(eo) = 0, respectively. 
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In particular, notice that we can derive the observation of Remark 6.23 
if we make explicit use here of the information on the local structure of the 
moduli space A40(Y, gt, Vt) of critical orbits, as the metric (gt>Vt) approaches 
the wall, This is derived in Section 7.3. 

We know that two possibilities arise: either an irreducible orbit Oa, 
with /i(Oa) — /i(0o) = 1? disappears into the reducible as the metric and 
perturbation (gt^t) hits the wall, or an irreducible orbit Oa/ with /i(Oa/) — 
^(0O) = 0 arises from the reducible, as (gt, vt) hits the wall. In the first case, 
the disk of Remark 6.23 has boundary the circle 

M(euoa)xoaM(Oa,eo) 

and in the second case it has boundary the circle 

MieuO'Jxo^MiO^eo). 

The relation (113) then yields the separate identities 

(114) #M(6i,Oa) = n$ia = l    and    #M(Oa,Oo) = nag0 = 1, 

for Oa the unique orbit that hits the reducible, and 

for /i(Oa(1)) - /i(0o) — 1 and M(0O/ ) — M(0O) = 0. The case of Oat is 
analogous. 

The moduli space .M(0i, 0o)> containing this separate component with a 
fixed point, is one of the differences with respect to the picture for metrics 
and perturbations within the same chamber. Another essential difference 
is, of course, the presence of the singular moduli space M(9o,6i). We have 
already seen, in the analysis of the obtructions how this moduli space plays 
an essential role. However, what we wish to point out here is that the basic 
asymmetry between the moduli spaces .M(0o> 0i) and M.(9i,6o) is what calls 
for correction terms in the maps / and i?, but not in the map J. 

In fact, consider first the action of the map J, defined as in (79) on the 
generator fin <8> !#! in the Floer complex for (gi, z/i). We have 

j(nn ® I0J - ]£n01O(1)n
n ® ia(1), 

a(i) 

with the sum over all Oa(1) with /i(Oa(1)) — /i(0o) — !• 
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Notice that the existence of the extra disk component in the boundary 
of M(9i, 0o)> as in remark 6.23, does not affect the identity JD — DJ = 0, 
in fact, even though now the count of boundary terms in M^Q^ 0I) satisfies 
(113), we still do get 

(Qn ® 10O, JD - DJ(nn ® 1^)) = 0. 

In fact, the fibrations 
M(Oa[o),eo)^9o, 

M(Oa(1),6o)->e0, 

have 1-dimensional fibers, and the pushforward of a zero-form is trivial. The 
identity JD—DJ = 0 at all the other components follows the argument given 
in the proof of the easy case of Theorem 6.1, without any modification. 

Now, instead, consider the case of the map I acting on fin®l0o. The first 
difference we notice, with respect to the model case of metrics and perturba- 
tions in the same chamber, is that the moduli space M.(9o, Oi) consisting of 
the unique point #0 = [AQ , 0] defines a non-trivial "pull-back push-forward" 
acting on the zero form IQQ. TO account for this moduli space, we have to 
assume the existence here of an extra component of the map / connecting 
Qn ® le0 to fi71-1 ® 1(91, where the drop of degree in ft accounts for the change 
of grading of the reducible point, so that the map I can be of degree zero. 
Thus, we have a new component 

(115) (nn-1®i*,i(nn®i*o)> = i. 

Notice that the necessity of the additional term (115) in the map / can 
be made clear by looking at the following example. 

Example. Consider a model case where the moduli space M0(go,i/o) 
consists solely of the fixed point 0o and of an irreducible orbit Oa in degree 
one. The Floer complex for (go^o) then has generators On ® le0 in even 
degrees p = 2n> 0, On ® r]a in odd degrees p = 2n + 1 > 1, and ft71"1 ®. 10 

in even degrees p = 2n > 2. The boundary operator D has a component 

ft71 ® Va »-> -W1 ® la + naonn ® lo0. 

In the wall crossing with /i(0o) - M#i) = -2? the orbit Oa disappears into 
the reducible, and the Floer complex for (gi,vi) only has the fixed point as 
generator. In this case, we have the equivariant Floer homology 

HFp%1)(Y,(g(hvo)) = { 
^OlJ   P = 2n>2 

0 otherwise, 
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with [nn-1 ® la} = [Q71 ® l9o] for all n > 1, and [1 ® 1^0] = 0. The Floer 
complex for (51,1/1) has fin ® l01 as unique generators, and no boundary- 
components, hence the Floer homology is 

HFSW   lv (n   ^ _ / mn ®.l«i]   P = 2n + 2 > 2 
pSKl)(^ (01, "0) = { 0 otherwise, 

after degree shift. The map / that maps fin ® l6>0 -> Q71-1 ® l^j gives 
the desired isomorphism. Notice that such examples can in fact be real- 
ized geometrically, for instance when considering a metric of positive scalar 
curvature on S'3 as gi. □ 

It becomes then clear that, if we change the map / with an extra com- 
ponent as in (115), to account for the moduli space M(6Q,6I), we need 
to add further correction terms to the original map / on other generators, 
so that the identity ID — DI = 0 continues to be satisfied. In assigning 
the necessary correction terms, we need to take into account the different 
structure of the compactification of the moduli spaces A^(Oa, Oa/), with the 
boundary strata (108) and (109). Studying the boundary information of 
«M(^05af_2))) we know that there is a contribution of the singular gluing 
from the monopoles in 

s-l{o)nM{ex,a'{_2)), 

which contributes to the expression 

(JZ>-.DJ)(fin®lfl0), 

in addition to the ordinary components n^oa/ On ® la/ , where n^oa/ 

effectively counts the monopoles from the zeros of the obstruction section 
over MiOiiO,1,^). This is precisely the correction term which is needed in 
order to obtain the identity ID — DI = 0 once we take into account the 
presence of the component (115) originates from the presence of the moduli 
space M{6o,6i) consisting of the unique point XQ = [Ao,0]. 

Similarly, we need to introduce correction terms to the map H so that 
it continues to be a chain homotopy, satisfying id — JI = DH + HD, with 
respect to the modified map / and with the modified structure of the com- 
pactification of A/lp(Oa, Ob). 

In order to introduce the correction terms for the maps / and i?, we 
need a preliminary discussion on some identities derived from the counting 
of zeroes of the obstruction sections. 
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Consider the case of the 2-dimensional moduli space .M(a,0o)> with a 
an irreducible critical point of index 2 and #o the unique reducible point. 

In Section 5.3, in Lemma 5.7, we described the invariant mac as the rel- 
ative Euler class of the complex line bundle £ac over .M(a, c). Consider now 
the case of the 2-dimensional moduli space .M(a,0o)> with Oa a free orbit 
of index 2 and 0o the fixed point in .M0(Y", po^o)- We also introduced the 
invariant mao0 in Section 5.3, as as the relative Euler class of the associated 
complex line bundle over M(a,9o), according to Lemma 5.9 and Lemma 
5.10. As we point out in the following Remark, we can use the obstruction 
section to obtain the necessary trivialization and compute the invariant mae0 

as relative Euler class of Cag0. 

Remark 6.24. We use the same choice of trivialization sa& over .M(a, 6), 
for all the free orbits Oa and Ob of relative index 1, as determined by the 
trivialization cp of Lemma 5.7. For M(b, 9Q) with ^(C^) — /i(0o) = 1? we set 
sbeQ r^ 0 to be the obstruction section 

8bf0o = 8 : .M(Mo) -> M(Oh,Oo) xC/(i) Coker (£,) £ £be0. 

We then set sa^Q over .M(a,0o)> with K^a) - AK^O) > 2 to be the 
obstruction section 

(116) sai0o = s : M(a, OQ) -> M(Oa) OQ) XU{1) Coker (Cx) ^ Cae0. 

This choice satisfies the requirement of the class of sections specified above. 
Over a moduli spaces .M(a, OQ), with /i(Oa) -/i(0o) > 2, then the obstruction 
section 

Safio = s : M(a, 0Q) -> M(Oa, OQ) xu(i) Coker (Cx) ^ >Ca0o 

is homotopic to 

over all the submanifolds 

M(a,b) xM(b,eo) 

of M(a, 0O)J where we identify 

£a,0o = ^l^afe ® ^Cbfio, 

with TTI and 7r2 the projections on the two factors in 

M(a,6) xA^(6,0o), 
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with /i(Oa) > lJ,(Ob) > /i(0o)> and section Sbfio is the obstruction section 
over ^(6,0o)> and the section 5ab is a transverse section of the line bundle 

Cab = M(Oa,Ob)xu{1)C 

over M(a, b) as discussed in Section 5.3. 

In summary, we have obtained the following lemma which claims that 
the relative Euler class ma,2)0o and meiat can be calculated by count- 

ing the zeros of the obstruction section over .M(a(2),#o) aiul Al(^i,a/_1N) 
respectively. 

Lemma 6.25. For ^(a^)) ~ M(^O) — 2, the relative Euler class rna,2)Q0 is 
given by 

#<2)eo(0) 

where sa   Q0   is  the  obstruction section over jM(a(2),^o);   similarly,  for 
M^i) — ^{.a'(-i)) — 3; the relative Euler class mQiai      is given by 

where SQQa>      is the obstruction section over .M^ija'/^). 

As a consequence of Remark 6.24 and Lemma 6.25, we have the following 
identities. 

Lemma 6.26. Let   Oa, )    denote   a   free   orbit   in   the   moduli   space 

M0(Y^gQ1UQ)f of index /i(Oa, J — ^(#0) = P>   Let Oa'     denote a free or- 
KP) (q) 

bit in the moduli space M0(Y, pi, vi), of (shifted) index /x(Oa/   ) — /x(0o) = Q- 
(q) 

We have the following properties. 

1. Consider the obstruction bundle over .M(a(2),0o)- The counting of the 
zeroes of the obstruction, that is, of the flowlines in M(a^2)^o) glued 
to the singular reducible x = [A0,0] in M(0oj0i), is given by 

ma{2)eo=#(s-1(0)nM(a{2),e0)). 

This satisfies 

(117) / jma(3)a(i)na'(i)0o ~ / jna(3)a(2)ma>(2)0o == ^, 

a(i) a(2) 
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2. The counting of the zeroes of the obstruction section s of the obstruc- 
tion bundle over M^iid',^), which counts the gluing of the singular 

reducible x = [A0,0] in M(9o, 6i) to flowlines in .M(0i, aC^), is given 
by 

"M-D =#{s-1(0)nM(61,a{_l))). 

This satisfies 

(118) ^ me^na'^a'^ ' E ^iaj0)^(0)a'(.a) = 0. 
al-i) a{o) 

Proof In this case, we know that, for dimensional reasons, we have 

s-1{o)nM(a(1),eo) = t 
Thus, by the previous discussion, and the results of Lemma 5.9, Lemma 
5.10, and Remark 6.24, we know that the boundary of the 1-dimensional 
manifold (5_1(0) fl A^a^flo)) consists of the set 

[JM(ais),ai2)) x (5-1(0)nyW(a(2),^o)) 
a(2) 

u UH"(Ui)(0) n (M(am>aw)x ^(a(i)^o))). 
a(i) 

This implies that we have the identity 

2_-,ma(3)cl(i)na(1)0o " / .na(3)a>(2)ma'(2)0o = ^j 
a(i) a(2) 

with the sign denoting the different orientation. The remaining case is anal- 
ogous. □ 

Now we define the necessary modifications to the maps / and H. 

Definition 6.27. We modify the maps /, H on Qn ® le0 and O71-1 ® la(1) 

as follows: 

(119) +^a[_1)neoa[_in
n®K[_1) 

+ Saio)^iaj0)n
n®%); 
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2. 

(120) 

3. 

(121) 

+ E.'1n-(1K1)n
n-1®i.;1); 

i?(O"®l,0)=     Ea(0) <a(0^
n ® la(0) 

+ Y,am
neiawnn®Va(1). 

In order to show that the relations ID — DI and id — JI = DH + HD 
are still satisfied, we only need to check explicitly all the terms that are 
directly affected by the presence of the correction terms. 

Lemma 6.28.   We have 

1. ID = DI on nn ® l0o and O71-1 ® 10(1); 

2. ID = DI onnn<g>rta(3); 

3. ID = DI onfin®7?a(1); 

Proof. We prove the claim by direct analysis of the boundary strata of the 
various moduli spaces involved. We have 

ID(nn ® le0) = 2 ^oa(_2)na(_2)a^2)fin ® l0i(_a) 
a(-2) 

and 

i?/(nn ® 1,0) = - 2 nOoa^na'^a'^n71 ® la'(_2) 

a(-i) 

Z—/     ^"(O)      a(0)a(-2) a(-2) 
a(0) 

The first claim then follows, since we know that the co-dimension one 
'00 > Oai     ) consists of 

(—2) 

U M(eo,Oai_2)) xoa(_2) M(Oa{_2)JOa[_2)) 
2(-2) 

boundary of M(9oJ Oa'     ) consists of 
(—2) 
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U (J M(eo>Oa/(_i))xJM(0„(_1),Oa{_2)) 
a(-i) 

UA4(0o,0i) x (s-Ho) n (^(ei,Oajo)) xo .   M(Oa,m,Oa,{_2))). 

In fact, according to Theorem 6.21, we have boundary strata as in (108), 

MWM x dW (5-1(0) nM(0i,oa/_a))*). 

Here s is the obstruction section. By Remark 6.24, we have 

^(s-^nA^.O^)*) 
=   SrH0)n ([Ja[o)M(Oi,Oa[o)y xoa,o) M(OaWOa[_2)r) 

us-^niij^MeuO^r xoaU) M{oaU),oa[_2)y). 

Note that the coefficient n^0O/ effectively counts the monopoles from the 

zeros of the obstruction section over MiO^a'^^), so we are left with the 
remaining counting, 

^ia(0)       a(0)a(-2) (-2)' 
a(o) 

'(0) 

which proves the claim. 
In order to prove Claim (2), we compute 

ID(Qn ® la(1)) = -E^D-CONO)^)"" ® Mo) 
a(o) 

and 

DI{nn ® la(1)) = - E n«(i)«{i)%)-io)nn ® ^(O) + ^(D^^^n11 ® la 
a(i) 

Then the claim follows from the boundary structure of M(a^i^a'^). The 
zeroes of the obstruction section contribute the term 

™a(1)0on0ia'(o) 

in the counting of the boundary points. 
The argument for Claims (3) and (4) is analogous. □ 

Now we need to check the effect of the correction terms on the identity 

1-JI = HD + HD. 
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Lemma 6.29.   We have the identity 1 - JI = DH + HD on Qn ® 10O. 

Proof. By direct calculation, we obtain 

(1 - JI)(Qn ® 1,0) 

=  nn ® i^ - Jin™-1 ® iei + E^^ n^a^^fi" ® i,,.^ 

+ Ea'(0)%1a'(0)^
n®%)) 

=     ^Olflb-Ea^^iad)"""1 »!«(!) 

"(!)»'(_,, ^a^,,^.,,^.,, + Ea'(0) ^lajo^a^at.,))^ ® VD 

" Ea'(0) 
n»i«'(0)%)«(0)fin ® ^(0, - Ea'(0) ne^Ua'^n- ® 1,0 

We also get 

(i>£r + fri>)((nn®iflb) 

=     £(Ea(0) <a(0^
n ® 1«(0) + Ea(1) ^a^ ® ^J 

+tf(Ea(_2)^a(_2)ttn®la(_2)) 

-     Eat.!) vEa(1) ^lojij^ijoj.!) - Ea(0) 
neoa(o)na(0)«(-l) 

- Ea(_2) "«o«(-a,«?_,,«(_!,)"" ® ^(-l) 

+ Ea(1))a(0) "«!»(!,"-(Da^Ji" ® »7a(0) " Ea(1) ^ia(1)ftn_1 ® la(1) 

+ Ea(1)
n01a(1)«a(1)0ofin®1eo- 

Let us first check the coefficient of Cln ® lg0. Equating the coefficients of 
fjn ® lg0 in the two expressions above yields the identity 

am o'(1) 

This identity is satisfied, since it is exactly the counting of (113). 
We then check the coefficient of 0,n ® ?7a,0). We need to prove the identity 

En^«(i)n«(i)«(o)+ErMo)%)«(o) =0- 
aW a'(0) 

This follows from the boundary structure of M.(9i,Oa(0))*, given by 

\jM(0uOawr x0a(i) A4(O«(1)>Oa(0))* 
a(i) 
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UU^'%)*X%)^(%)'^(0))*- 
a(o) 

In order to compare the coefficients of fin ® la(-i)) we need to prove the 
identity 

(122) -     Z-/a(_2) 
n^oa(-2)na(_2)a(_1) 

+     Ea'(0) 
n^ia'(0)ma(0)o(-i) + ^(D n^a(i)ma(i)a(-i) = 0 

Among these terms we can isolate a contribution 

Z-, n0Oa[-i)na{-i)a{-i) "~Z^n0oa(o)na(o)a(-i) -  2^ n^oa(-2)na(-2)0(-i)J 

a^^ a(0) a(-2) 

which is the contribution of the boundary terms in Mp(0o, Oa^^)* obtained 
by gluing co-dimension one boundary strata along irreducible critical orbits. 
The term 

counts the contribution of the special gluing 

.M(0o,0i) x Miei.a^) x Mia'^^a^)), 

where the coefficient 
nfloa^1)=#5"1(0) 

counts the zeroes of the obstruction section in A/I(0i,a|_1j). 
According to Theorem 6.22, the counting of the remaining boundary 

components for .Mp(0o,a(-i)) is given by the gluing 

with 

Recall that, in this case, 5~1(0) is zero-dimensional. 
We claim that the zeroes of this obstruction section are counted precisely 

by the expression 

XNi^o)™^-!)+Y,n0^(i)rria(i)a(-i)' 
alo) aM 
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In fact, we can describe the obstruction bundle as the line bundle 

over A^(^i5«(_!))*, with x = [Ao,0] the singular reducible in .M(0o>0i)) 
and Coker (Cx) = C. With the choice of trivilizations, the zeros of the 
obstruction section are localized in some compact set in 

\jM(ei,a[Q)) x Mia'^ya^)) 
alo) 

U (J M(eua{1)) x .M(a(i),«(_!)). 
a(i) 

Thus, counting the zeros of this obstruction section, which gives the 
relative Euler class of the associated complex line bundle over .M(0i,a(i)), 
contributes 

#--1(0)=       Eafonft^"^.^, 

Then the vanishing condition of (122) follows from #(dM.p(0O) &(-i))) = 
0. Thus, we have completed the proof of the identity 1 — JI = DH + HD 
on the generator ft71 ®lo0. □ 

We proceed to check the remaining identities. 

Lemma 6.30.  We have the identity 1 — JI = DH + HD on Qn ® la(1). 

Proof. We compute 

(l-J/)(^®la(1)) 

= n» ® ifl(1) - J^^ft^-1 ® h, + Ea'(1) na{1)a[i)w-1 ® ifli(i)) 

=     nn ® la(1) - Ea(1) (Ea'(1) 
na(i)fl(i)na(i)a(i) + ^(D'o^ifia))^ ® ^(x) 

(DH + HD)(nn®la{1)) 

=     (Ea(2) 
na(1)a(2)

na(2)a(1) + Ea(0) 
n«(i)«(o)na(0)a(1))

fin ® ^(i) • 

If we compare the coefficient of each term in DH + HD — 1 + J/, we see 
that the coefficient of Ctn ® la(1) is given by 

Z^na(i)«(2)na(2)a(i) + Z^na(i)a(o)na(o)a(i) 
a(2) ^(O) 
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a(i) 

Notice that the sum 

2^ na(1)a(2)
na(2)a(1) + /^ n°>(i)a(o)na(0)a{1) + /^ ^(i)^!)77^!)^!)       1 

a
(2) a(0) • a'(1) 

is the algebraic counting of the boundary points in A4jP(a(1),a(1))* that 
correspond to boundary components of the form 

U Mp(a{1),a{2)) x -M(a(2),a(i)) U (J A^(a(1),a(o)) x A^p(a(o),a(1)) 
0(2) a(0) 

u|jA4(a(1),a
,
(1)) x A4(a/

(1),a(1))U{-a}. 
a,(i) 

Similarly, for d^ ^ a(1), the coefficient of Q71 ® la(1) is given by 

/ vnan^a^na(2)Q(i) + 2^ n«(i)a(o)na(o)a(i) 

a(2) a(o) 

+ Z)n«(i)0(i)nfl(i)a(i) + ND^^iad)' 
a'(i) 

Again, notice that the sum 

a(2) O(o) a'^j 

is the algebraic counting of the boundary points of Xp(a(1),a(1))* which 
correspond to boundary components of the form 

U MP(a{1),ai2)) x .M(a(2),a(1)) U (J .M(a(1),a(o)) x Mp(a{0),a{1)) 
0(2) a(0) 

UJjMCa^),^!)) x^Ca^Ofi)). 
a,(l) 

We only need to prove that the counting of the remaining boundary 
components of Mp(a^1),d^) is given by 

na(i)0on0ia(i)> 
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which counts the contribution of the zeros of the obstruction section, that 
is, of those monopoles of Mp(a^)d^1)) which are obtained by gluing the 
singular reducible x e M(9o,9i) with 

M(a{1)l0o)xU{l)xM(0ua{1)). 

Recall that the non-equivariant gluing 

# : ff-^O) C .M(a(1),0o) x J7(l) x M(Ol9a(1)j-> MP(a(1),a(1)) 

corresponds to the equivariant gluing in the framed moduli spaces 

# : S-^O) C M(Oa(lveo) x M(euOa{1)) -> Mp(Oa{lvOa{1)). 

The pull-back and push-forward map 

(ea(1))*(e«(i))*Ki)) 

defines the relative Euler characteristic number on the associated line bundle 
of 

£a<i).a(i) = (.M(Oa(1),0o) x -M(fli,Oa(1))) x^(1) C. 

This gives 

Consider the obstruction bundle 

(M(Oaw,e0) x M(6o,ei) x MiOuO^)) xm Coker(Cx) 

over the space 

M(a(1),0o)xM(0ua(1))xU(l), 

with CokerOC,.) = C, for x € M(Oo,9i) the singular point x = [AQ.O]. 

Counting the zeros of the obstruction section 

#{s-1(O)n(M(a(1),9o)xM(01,a{1))xU(l))) 

gives another computation of the same relative Euler class above, that is, 

#(5-1(0) n (.M(a(1),0o) x JW(0i,a(1)) x C/(l))) 

Thus, the components of the boundary of Mp(a^,d^)* which come 
from the gluing with the singular x £ M{6o,9i) contribute a term 

na(l)0on0ia(i) 
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to the counting of the boundary points. This completes the proof of the 
Lemma. □ 

Finally, we have to check the following. 

Lemma 6.31.   We have the identity 1 — JI = DH + HD on fin ® r]a{1). 

Proof. Direct calculation of the terms (1 — JI)(ftn ® Va^) and (DH + 
HD)(Ql

n ® Varu) shows that the conditions required in order to have the 
same coefficients on all the generators are precisely the conditions already 
verified in the case of Lemma 6.30. □ 

Notice how clearly this argument of topological invariance breaks down 
for the non-equivariant Floer homology. The invariance within the same 
chamber is still verified: in fact, no substantial changes are necessary in that 
first part of the proof, in order to adapt it to the case of the non-equivariant 
Floer homology. However, as wee see clearly from the structure of this 
second part of the proof, the general argument for the proof of Theorem 6.1, 
for metrics and perturbations in two different chambers, relies essentially 
on the contribution of the reducible points, in order to construct the chain 
map / and chain homotopy J?, as discussed in Definition 6.27, Lemma 6.28, 
Lemma 6.29, Lemma 6.30, and Lemma 6.31. The example presented at the 
beginning of Section 6.3 also clarifies why the argument cannot be adapted 
to the non-equivariant Floer homology. 

7. Wall crossing formula for the Casson-type invariant. 

We want to compare the equivariant Floer homology with the ordinary Floer 
homology in the cases where the latter is defined, i.e. when 61(lr) is non- 
trivial [38] or when Y is a homology sphere, [13]. 

In the case when &1(lr) is non-trivial, we expect to find that the equiv- 
ariant Floer homology, which is computed by considering framed moduli 
spaces, is isomorphic to the ordinary Floer homology computed in the un- 
framed space. In fact this is the analogue of the well known result for equiv- 
ariant cohomology of a finite dimensional manifold, where, if the action of 
the group is free, then the equivariant cohomology is just the ordinary coho- 
mology of the quotient, iI£(M;R) ^ H*(M/G',R) as if*(BG;R)-modules. 

In the case of a homology sphere, instead, we expect to find an exact 
sequence that connects the equivariant Floer homology with the ordinary 
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Floer homology and an extra copy of M.[ft] that corresponds to the unique 
reducible solution that has been removed in the computation of the non- 
equivariant Floer homology. 

Recall that we have the explicit description of the boundary operator 
in the equivariant Floer complex, as analyzed in Section 5, Proposition 5.3, 
which gives the formula (72), 

nn®ia ^ -nabn
n®ib 

nn®rja   f->   (nabn
n ® 7ib) e {macn

n <g> lc) 
e(-on-1 ® ia) 

with the extra components in the case of the generator 0. 

7.1. Comparison with the non-equivariant Floer Homology. 

Now we can define a chain homomorphism that maps the equivariant to the 
non-equivariant complex. 

Let us first work in the case with no reducible solution (i.e. with ^(Y) > 
0). In this case for each Oa that appears in the equivariant complex we have 
a generator Ma that appears in the non-equivariant complex (coefficients in 
R). 

Now we define the chain map 

ik:Ck>u(1)(X)^Ck(Y)t 

so that it satisfies dkik — ^fc-i-Ofe- Let i^ act on the generators as follows 

(123) ik:     0    %,(i)(0o)-»-    Y,    Ma' 
lJ>{a)+j=k iJ,(Oa)=k 

^(On®la) = 0, 

for all values of n and /i(0a)> 

ik(l ® ria) = a, 

if /i(Oa) = fc, and in all other cases 

ik(nn®Va) = 0. 

This means that the map ik kills all the generators in degree k that are 
not the generator of the equivariant homology of some orbit Oa of degree k. 

With this definition it is clear that i* is a chain map. Thus it defines a 
sub-complex of C^u^i^Y) given by Q* = Ker (i*) with the restriction of the 
boundary operator D. 
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Theorem 7.1. If there are no reducible solutions (i.e., ^(Y) > 0) the map 
i* defined in (123) induces an isomorphism in cohomology, 

HF^(l){Y) = HF^w{Y). 

Proof. The complexes C^JJ^, Qk, and Ck all have a filtration by index. For 
Ck,u(i) the filtration is given by 

(124) CktUW(n)= 0 fi^djCOa). 
lJ>(Oa)+j=k,lJL(Oa)<n 

The complex Q* is written as 

(125) Qk=     0    njm)(oa). 
fJ'(0')+3=k,j>l 

It has a filtration by index of the form 

(126) Qk(n)= 0 <V(i)(Oa). 

On the other hand also the non-equivariant complex has a filtration by 
index of the form 

(127) Ck(n)=     0    Ra. 
fj,(a)=k<n 

Thus we can look at the spectral sequences associated to the filtrations 
and prove that i induces a map of spectral sequences and an isomorphism of 
the E^-terms of the spectral sequences associated to the filtration of C#jj/(i) 
and of C*. Thus we get the resulting isomorphism of the E00 terms, i.e. of 
the homology of C^uii) aild of C*- 

Lemma 7.2. Let Eu^, EQ, and E be the spectral sequences associated to 
the filtration of the complexes CJJ^, Q and C respectively. The chain map i* 
induces a map of spectral sequences. Moreover, in the case whenb1(Y) > 0 
the map i* induces an isomorphism of the E1-terms 
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Proof. Consider the filtration of C*^^). The E^ terms of the spectral 
sequence are given by 

EkUU{l) = Ck+l,U(\){k)lCk+l,U{l){k - l)' 

Prom (124) we get 

Ekim)=  © nwi)(Oa), 
tl(Oa)=k 

and the differentials E^ y,^ —> E®^ JJ,^ are just given by the differential 

of the equivariant complex on each fixed orbit Oa. Thus the £,1-term of this 
spectral sequence is given by 

Ekl,U(l) = Hk+i(Ek*,u(i))> 

Ekl,U(l) =      0     Hk+l,U(l)(Oa)> 
^{Oa)=k 

But since the Oa are irreducible orbits, with a free U(l) action, the equiv- 
ariant homology is concentrated in degree zero, 

^o,^(i) =    ©    Ma' 
fi(Oa)=k 

Ekl,u{i) = 0 

for I ^ 0. 
Now let us consider the filtration of the non-equivariant complex C*. 

Prom (127) we get 
E0

k0=    ©    Ma 
V(Oa)=k 

and EM = 0 for I ^ 0. Thus in this case the only terms that survive in the 
E1 is in degree I = 0 and is 

^o=    ©    Ha- 
fi(Oa)=k 

D 

Thus the map i* induces an isomorphism on the i^-terms of the two 
spectral sequences, hence on the i^-terms, namely on the homology 

H*(Cmi)(Y),Dk) * H*(Ck(Y),dk). 
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This completes the proof of Theorem 7.1. D 

Now let us consider the case when the manifold Y is a rational homology 
sphere. In this case there are also terms in the equivariant complex that 
come from the reducible solution 8 = [^, 0]. We assume that 9 has index 
zero, /i(0) = 0. 

Theorem 7.3. Let Y be a rational homology sphere. Then there is an exact 
sequence 

• ■ ■ -► Bkmi)(0) -► HF™(1){Y) A HF£W{Y) A Hk_w{1){e) ■... 

In the equivariant complex in degree k we have an extra generator f2fc®0. 
The boundary maps that come from the equivariant complex associated to 
the degenerate orbit u with the trivial action of 17(1) are trivial: in fact the 
equivariant homology of a point is 

H^U{1)(8) = M[0] = H*(BU(1),R). 

However, there are non-trivial boundary maps that hit the generators fin(g>0. 
These can be described as follows. Suppose Oa is the orbit of an irreducible 
solution with index /i(Oa) = 1. Then we have a moduli space M(Oaj 6) that 
is 1-dimensional and that fibers over 0 with a 1-dimensional fiber. Thus the 
pullback-pushforward map acts as 

% ^ (e^)*(e+)*7/0 = maQ, 

where mae is the integration along the 1-dimensional fiber of the 1-form 
(ea )*r7a- Th^ gives rise to a component of the boundary map of the form 

1® r)a i-> mael® 6. 

Moreover, there is a non-trivial boundary map that comes from the moduli 
spaces that connect the reducible to generators with the orbits with /i(Oa) = 
-2. 

Now the map ik is defined as before with the additional condition that 
it kills the extra generator Ofc ® 6. 

Lemma 7.4. Let Y be a homology sphere. Then the homology of the com- 
plex Q* is just the equivariant homology of the point 6, 
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Proof. The complex Q* contains the extra generator VLk ® 6 in degree k and 
this generator appears in all levels of the filtration Qk(n) for any n > 0, 
since 6 is of degree zero. 

Thus if we look at the spectral sequence associated to the filtration of 
the complex Q* we find 

E0ki,Q = Qk+i(k)/Qk+i(k - 1), 

that is, for k > 0 and I > 0, 

Ekia =      (B     ^z+i,£/(i)(06). 
lj,(Ob)=k-l 

This complex is clearly acyclic because the differentials are just the equiv- 
ariant differentials for each orbit and no generator survives in homology 
because we are counting only I + 1 > 1, hence the terms 1 ® % are sup- 
pressed (in fact they are not in Ker (i*)). On the other hand for k = 0 we 
get 

with trivial differentials, so that the £J1-terms are 

Ekl,Q = Hk+i,u(i)(0)' 

This means that the homology of the complex Q* is actually H^^j^{9) — 
E[Q]. ' □ 

Thus if we consider the long exact sequence induced by the short se- 
quence 

0 -> Qk -> Cfc,[/(i) 4 Ck -> 0 

we have 

• • • -> iikm) (9) -»Ff)gr(1)(y) A i7F^(y) ^ • • • 

This proves Theorem 7.3. □ 

Remark. Notice that, in the case where the spectral flow SFc(dut) is 
zero, we obtain an isomorphism HFtW(Y,s,gQ) = HF^w(Y^s)gi) by the 
five-lemma applied to the exact sequence relating equivariant and non- 
equivariant Floer homologies. 

The connecting homomorphism A in the above long exact sequences is 
particularly interesting. 
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Proposition 7.5. Suppose given a representative Y^axaa ^n -^-^ih+iO^)- 
We assume that Y is a homology sphere. Then the connecting homomor- 
phism in the long exact sequence is 

?sw 

where 

(128) 

A,: HF$&1^H2kmi){0) = Mlk, 

A*. ( ^2 Xad J = ^2 Xamacmce • • • ma>ana0ttk ® 9. 

Here the sum is understood over all the repeated indices, that is over all 
critical points with indices /x(Oa) = 2k + 1, /i(Oc) = 2fc — 1, fJ>(Oai) = 3; 

Proof. The map is defined by the standard diagram chase and by adding 
boundary terms in order to find a representative of the form (128), as illus- 
trated in the following diagram. Sums over repeated indices are understood. 

0 -*- Q2k+1 

0-^Q2k 

a 2AH-1,[/(1) 

T 

• C2k,U(l) 

Ak(Xa a) 

-\Xa a 

'C2k 

H xamac 1 ® lc 

For a cycle Ea:/x(Oa)=2fc+i x*a we have Ea:M(a)=2fc+i x^ab = 0 for any b 
with ji{Ob) = 2k. The element Ylaxaa kas a preimage E^al ® Va under 
*2fc+i-  The image of this element under the equivariant boundary is given 

by 
^ xaD(l <g> r/a) = ^T xanabl <g) % + ^ xamacl ® lc, 
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where the first term is zero due to our assumption on Y, xaa- The element 
Ak{xaa) is unchanged if we add to X>al ® % an element in the kernel of 
t2fc+i. Adding the element ^a.c Xamacn ® r)c, which is in the kernel of *, we 
get the following diagram 

0 -*" Q2k+l 

Q2k 

->C« 2fc+l,C/(l) 

Xa 1 ® r/o 
+^a^ac O ® ^c 

T 

-*■ C2k+1 ■>0 

■ a 2ib,t/(l) 

Afe(a:a a)- H Xamacmce Q, ® le 

- n^a a 

-^G 2A; 

where we have 

JD(a;al ® ^ + xamacQ, ® rye) = a;ama lc+ 

Xamac(-l ® 1c + nedft ® 7?d + mCefi ® le) = av™acraCeft ® lc 

with sums over repeated indices. The last equality follows from the identities 
X) ^acncd + na6m6d = 0 and £ xanabmbd = 0. We can iterate the procedure. 
In the following step we add a term X) ^a^ac^ce^2 ® % to the preimage 
of ^ xaa. The corresponding image under the boundary of the equivariant 
complex isJ^Xamacmcemeg^^lg, where fi(Oc)-ii(Oe) = n(Oe)-fj,{Og) = 
2. The procedure can be iterated until the reducible point 0 is hit. Con- 
tributions from other irreducible critical orbits Op with //(Op) - ^(6) = 0 
are killed in finitely many steps, iterating the same procedure, since the 
complex is finitely generated and they eventually hit the lowest index criti- 
cal points. Thus, the resulting image under the connecting homomorphism 
Afc(£a:Ma=2fc+l X"a) iS given ^ 

y^ xamacmce ' • • rnaiamae^l . 

a 
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As in the case of instanton Floer theory [62], one expects Ker(Afc) = 
Imfok+i) to be the part of the Floer homology where the relative invariants 
of four-manifolds with boundary live. 

7.2. Wall-crossing formula: the algebraic picture. 

In this section, we will apply the equivariant Seiberg-Witten-Floer homology 
theory to study the dependence of the metric for the Casson-type invariant 
[12], [13] of a rational homology sphere. In order to define the Casson- 
type invariant, we choose a metric whose ordinary Dirac operator has trivial 
kernel. The metrics whose ordinary Dirac operator has non-trivial kernel 
form a chamber structure as proven in Theorem 2.7 and Theorem 2.8. The 
usual cobordism argument can be adopted to prove that the Casson-type 
invariant is constant in each chamber. The aim of this section is to get a 
wall-crossing formula for a path of metrics and perturbations that crosses 
the wall. 

Denote by A,sw(Y,g, u) the Casson-type invariant for the metric and 
perturbation (g,^): ^sw(Y, 9<>v) is the Euler characteristic of the non- 
equivariant Seiberg-Witten-Floer homology. Recall that this Floer homology 
[13] is defined by removing the reducible critical point, the trivial solution 
9 = [i/,0]. We have 

(129) \sw(Y,g,v) = J](-l)fcdimifF^(y,5,z/). 
k 

In this Section 7.2 we derive the wall crossing formula under the following 
assumption. Fix metrics and perturbations (gcb^o)) (gi^i) in two different 
chambers, with the property that there exists an open set of paths (gt,Vt) 
connecting (go^o) to (51,^1) such that (gt,vt) hits a co-dimension one wall 
only once, transversely. 

This situation is certainly verified if the two points (go^o) and (51,1/1) 
are close enough points on either side of a wall Wi, in the notation of Theo- 
rem 2.8, that is, a wall of metrics and perturbations satisfying Ker (9£) = C. 
We also assume that, along the path (gt^t) we have SF{df,tt) = 2, that is, 
that we have //(0o) — M(^I) — -2 in the notation used in Section 6, which 
determines a global grade shift between the equivariant Floer complexes for 
(50,^0) and for (51,1/1). 

Using the topological invariance of the equivariant Seiberg-Witten-Floer 
homology, we obtain the following isomorphism: 
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In fact, the necessary degree shift is computed as follows: if we set /x(#o) = 0) 
hence /i(#i) = —2, and the map / has degree zero, we obtain that the 
generators fin (g) 1^0 and fi71"**1 0-1^ have the same degree. 

First of all, we express the Casson-type invariant (129) in terms of some 
alternating sum of the equivariant Seiberg-Witten-Floer homology groups. 
We consider the Casson-type invariant for metric an perturbation (^Qj^o)- 
The exact sequences given in Theorem 7.3, relating the equivariant to the 
non-equivariant Seiberg-Witten-Floer homology, and the fact that we have 
H*,U{1){6) — K[fi] give us the following result. 

Proposition 7.6.     (1) For k <0, 

HF^w(Y,g0^o) = HF^frgotUo). 

(2) For k >0, we have the following exact sequences 

"»• HF2
s

k
w

uw(Y,go,vo) -»■ HFik
w(Y,go,vo) -»• 0. 

r/i^5 tte dimensions are related by 

dimHFik
w - dimtfif^ = dimHJFgj;(1) - dimHF™^ - 1. 

This gives the wall-crossing formula for the Casson-type invariant. 

Theorem 7.7. Suppose given two metrics and perturbations (go, UQ) and 
(flljZ'i) ^n two different chambers and a generic path (gt,vt) that connects 
them and that crosses the wall W once. Assume that the crossing happens 
at a generic point of W, so that the relative Morse index with respect to the 
reducible solution decreases by 2 across the wall, i.e., that we have //(0o) — 
fjb(0i) = 2. Then the Casson-type invariant changes by 

Asw(F,#i,z/i) = \sw(Y,9o,i/o) - 1- 

Proof. We can assume that we are in one of the following two cases for the 
non-equivariant Floer homology group. 

Case 1. There exists an integer N such that HFpW(Y}goii/Q) = 0 for all 
p>2NbntHFi^_1(Y,go,uo)^0. 
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Case 2     Here exists an integer JV such that HF^fY an v \      n f      „ 
P > 2iV + 1 but HF^tY, go, ^0) ^o P ^  o) = 0 ** a11 

^zr^:::i:zi^-0^
otWise tiie -^^^ ^ 

by ProposLn 7.6  TCS from h! ^T^ ^ ^^ ^UPS 

we get e' fr0m the exact sequences in Proposition 7.6, 

•HF$%i)(Y,9o,i*) = l0 P>™, Pi* odd 
{ mm p = 2m>2N. 

_   dim^^2(F,5o,,o) - <limHF™_i(Y>90)„Q) 

= T7Z-2'm(Y,9o,Uo)" dhaHF^-m^^o) -1 
-   d™»FiZmi)(Y,9o,»o) - ^HFSZW){Y^VQ) _ 1 

^HF^{Y,gQ,Vo)^dimHFsW{YigQVQ) 

•For'<0'^^^,o) = i7^1)(r,5o,,o). 

^(y)5o^o)  = Efc(-i)fcdimiyifW(r)PO)J/o) 

=   ^<iv(dim^F2^(1)(y)50)I,o) 

-dim^if^(i)(r)50)l/o))_^ 

FVom the isomorphism HF*%   (y j ^ 
have *,£/(i)\  'yi>  i;      '"^-^(ijl^o^o), we 

^^1)^51,^) = ( 0 ^ > 2iV + 2, p is odd 

type invariant tor metric and perturbation 
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(fl,i)i/i) can be rewritten as 

=   Ek<N+MiraHF2
s

k
w

u{1)(Y,gl,u1) 

-dunHFg^^gu^)) -(N + l) 

=   ^sw(Y,go,uo) - 1 

For case 2, similarly, we have 

cw   , f 0 p>2N, pis odd 
P'  [) { Mtt™ p = 2m>2N + 2 

dimHFi^(Y,go, m) = dimHF^U{1)(Y,go, VQ) - 1 

dimHF$w_2(Y, go, VQ) - dimHFf^Y, go, VQ) 

=   dimHF^_2im(Y,go,u0) - dimFif^^y,^,^) - 1 

dimHF$w_A(Y,go, VQ) - dimHF$w_3(Y,go, VQ) 

=   dimHF^_mi)(Y,go,uo) - ^mHF^^Y^uo) - 1 

dimHF0
SW(Y,go,vo) - d\mHF?w(Y,go,vo) 

=   dimHF^il)(Y,go,uo)-dimHF1
s^1)(Y,go,uo) - 1 

. For k < 0, HFiw{Y,go,vo) = HF^{1)(Y,go,uo). 

Then the Casson-type invariant for (50,^0) is 

)<Sw(Y,go,vo)   =   ^k(-l)kdimHFiw(Y,go^o) 

-dimHFi^ltUil)(Y,go,^o))-N 

+ dimHF$Wu{1)(Y,go,vo)-l. 

From the isomorphism HF^^gu^) = HF^U(1)(Y,go,vo), we 
know that 

HFW   (Yn   u)      1° P>2N + 2, pisodd 
P' K ' I   mnm p = 2m>2N + 2. 
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If we apply the above isomorphisms to the exact sequences in Propo- 
sition 7.6 again, we can see that the Casson-type invariant for metric and 
perturbation (51,^1) is 

^sw(Y,gi,vi) 

- Efc(-l)fcdimFF^(y^1,z,1) 

- E^N+M^HF^^g^) - dimHF^lu{1)(Y}g1^1)) 

-(N + 1) + dimFF2^2.u{1)(Y,gu 1^) - 1 

=   \sw(Y,go,i/Q)-l 

Thus, we have proven the wall-crossing formula: 

*sw(Y,gui>i) = \sw(Y, go.uo) - 1. 

□ 
Now we are interested in generalizing the argument of Theorem 7.7 to 

the case of a path (gt, vt) that crosses the wall structure W at a point which 
lies in a stratum Wn of higher codimension. 

If we know that a stratum Wn of metrics and perturbations satisfying 
Ker (5^) = Cn is obtained as the transverse intersection of n strata Wj1 fl 
• • • fl W^, where every Wj* consists of metrics with Ker (8%) = C, then a 
path (#£, ut) that crosses W at a point in Wn can be deformed to a path that 
crosses each >V|fc once transversely. In this case, the wall crossing formula 
simply follows by applying repeatedly Theorem 7.7. However, we do not 
really need the assumption on the structure of W near a stratum of higher 
codimension. In fact, it is enough to know that the complex spectral flow 
SFc(dul) = ^SFffil) is equal to ±n along the path (gt^t) that crosses a 
point on Wn. In that case, we can follow the same argument in the proof of 
Theorem 7.7, but starting with a grade shift of 2n between the equivariant 
Floer complexes for (go^o) and (#1,^1). We obtain the following result. 

Proposition 7.8. Let (50^0) and (giy^i) be two metrics and perturbations 
in two different chambers. Suppose given a path (gt^t) joining them that 
crosses the wall W once transversely at a point of a stratum Wn of codimen- 
sion 2n — 1. The relative Morse index with respect to the reducible solution 
decreases by 2n across the wall, that is, that we have /i(0o) — M(^I) — 2n. 
Then the Casson-type invariant changes by 

^sw{Y,gi,vi) = Asjy(Y,#o,^o) -n. 
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Since the argument of Theorem 7.7 depends only on the counting of the 
grade shift between the Floer complexes for (go? ^o) aiicl (gi, z/i) given by the 
spectral flow SFipll) r together with the proof of topological invariance of 
the equivariant Floer homology (up to this grade shift), we can formulate 
the result under these more general hypothesis. 

Proposition 7.9. Let (poj^o) and (di^i) be two metrics and perturbations 
in two different chambers. Suppose given a path (gt,vt) joining them that 
crosses the wall W transversely in finitely many points. Then the Casson 
invariant changes by 

(130) \sw{Y,gi,vi) = \sw{Y,gQ,vQ) - SFc(d*), 

where SFcffil) — \SF(dlX) ^ ^e complex spectral flow of the Dirac oper- 
ator along the path of reducible solutions [vt, 0]. 

Proof. If the spectral flow along the path (gt^t) is given by SFffil), the 
topological invariance of the equivariant Floer homology gives 

ffF®i)(r>0o,^o) = #^^ 

We can then follow the steps of the proof of Theorem 7.7 and compare the 
ranks of the Floer groups and the counting of the Euler characteristic. This 
can be done by induction on \SF{dttt)\^ The result is the formula (130).   □ 

The wall crossing formula in the case of J-invariant perturbations con- 
structed by W. Chen [14] can also be derived with the same method. This 
gives rise to the following wall crossing result. 

Corollary 7.10. Consider the invariant Xsw(Yi9i f) where f is the J- 
invariant perturbation of [14] Prop. 2.6. 

Given two metrics and perturbations (<7o>/o) and (<7i>/i) in two differ- 
ent chambers and a generic path (gt,ft) that crosses the wall once with 
Ker(<9?) = EL The relative Morse index with respect to the reducible so- 
lution decreases by 4 across the wall, namely, we have ^(OQ) — M(^I) — 4. 
Then the 

Casson-type invariant changes by 
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Proof. Again the main issue is the change of grading of the equivariant Floer 
homology induced by the spectral flow of the Dirac operator along the path 
(gtift)- This time, since we are using J-invariant perturbations, the Dirac 
operator 5? is quaternion linear, hence, for the chosen path the spectral flow 
satisfies SF(dft) = 4. This implies that there is a degree shift 

HF^{1)(Y,goJo) = HFfZfrm(X,9iJi). 

By applying the previous Proposition 7.9, we obtain the result. □ 

7.3. Wall-crossing formula: the geometric picture. 

In this section we re-derive, in a more geometric way, the wall crossing 
formula for a homology three-sphere Y that we proved algebraically in the 
previous section. We analyze the local structure of the parameterized moduli 
space. A geometric proof of the wall-crossing formula has been also worked 
out by [35]. 

Let .M*((7, v) denote the irreducible part of the moduli space M. for the 
metric and perturbation (5, v). Given a family of metrics and perturbation 
(gtjVt) with (t £ [—1,1]), the moduli spaces M*(g-i,i'-i) and M*(gi,iyi) 
are cobordant as long as the path (gt, vt) does not cross the wall, that is the 
co-dimension one subspace W in the space of metrics and perturbations 

W = {(9,v)\Ker (dD^O}. 

Suppose the path (g*, i/t) crosses the wall W just once at t = 0. Generi- 
cally, Ker (8%%) = C. We want to analyze the local structure of the parame- 
terized moduli space 

M = {M(guVt)x{t}\te[-lA}} 

at the reducible point #0 = (#0,0), where 0o = N),0] is the class of the 
reducible solution of (15) with the metric and perturbation (go^o)- There 
is a family of reducibles fit in M. Let M* be the irreducible set in Al, U 
be a sufficiently small neighborhood of QQ in M, and U* be the irreducible 
part oiU. 

We construct a bundle over neighborhood of $0 in A x [—1,1], together 
with a section q such that 

w* = (r1^) - {(<M)})/a- 
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Lemma 7.11.     (1)  The slice of the Q/U(l)-action at a point (AQ^O) is 
V(j4oi0) = Ker(d*)xri2(S), 

(2) The slice of the Q/U(l)-action at a point (A^ip) is 

V(A,ip) = {(QO^)!^*^) ~ 2ilm((f),ip)is a constant function on Y.} 

(3) For (A,ip) close to (^4OJO) there is an isomorphism 

Proof. Properties (1) and (2) follow by direct computation. For (3), choose 
(a,</>) in V(A^ and define A(^)(a,(/>) to be 

(a - 2df (ai^), ^(a,^)^ + 0) 

where ^(a,^) is the unique solution of the following equations: 

r 2<rdf(affl - d*a 

/ ^)dv = 0 

Direct computation shows that \A,IP) is an isomorphism. D 

The above Lemma shows that we obtain a locally trivial vector bundle 
V over the space of connections and sections A endowed with a £/(l)-action. 

Define the section <; 

<;:Ax [-1,1] -> F 

to be 

<;(A^,t) = \(A,i,)(*gt(FA - dvt) - (r(il>,r/>),dA4>)- 

Near 0o> we know that U = ^~1(0)/^. Therefore, the local structure of 
U* at OQ is given by the Kuranishi model of <;~l(0)/G at 0o- 

Suppose (At,ipt) is an element in U*. Consider a formal expansion at tfo 
of the form 

At = ut + tax + t2a2 H , 

fa = tipi +12V>2 + • • • . 
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The section £ is approximated by 

*<7o d(ut + tai + t2a2 H ) - tgodvt 

- <T(tll)i + t21p2 + ' • •' , tyi + t21p2 + •■•)> 

^(#1 + t27p2 + '••) + (*«1 + *2tt2 + •••)• (t^l + *2V>2 + •••)» 

where we are perturbing in a neighborhood of the wall W just by changing 
the perturbation and fixing the metric go. 

The zero set of the section therefore determines the conditions *dai = 0 
and d*ai = 0, which imply ai = 0 on a homology sphere. Moreover, we 
have d*Q>2 = 0 and 

*da2 = a(^i,^i). 

On the kernel of d* the operator *d is invertible, hence we have 

012 = (*d)~1cr('01,'0l)- 

The Kuranishi model near i9o is given by a t/(l)-equivariant map 

S : R x Ker (0%) -> CoKer (ag), 

where U(l) acts on Ker (flgg) ^ CoKer (^) = C by the natural multiplica- 
tion on C. 

There exists a sufficiently small S > 0 such that, for t G [—5, (5], we have 
that 8$% has exactly one small eigenvalue X(t) with eigenvector ^ and with 
A(0) = 0, that is 

This implies that, if A^O) > 0, then the spectral flow of d^t for (t E 
[-1,1]) is 1 and, if A^O) < 0, the spectral flow of d% for (t G [-1,1]) is -1. 

The map S is given by 

S : R x C -> C, 

Here we assume that 0 is a spinor in Ker (5^) with ||</>||  =  1, so that 
Ker (dv®) = C0. Consider the expression 

{d%<i>,<f>) = z(t). 

Notice that we have ^(O) = A^O), in fact, we write formally X(t) ~ tA^O), 
(f>t ~ (t> + t(j)i and the Dirac operator d^ ~ d^ +tC, where ut ~ uo + tui and 
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C acts as Clifford multiplication by vi. We can write the first order term in 
the relation dj^cfrt = ^(t)4>t as 

*(^J^i^>+*(C,^^>=tA,(0) + A(0). 

Here the term (S^J^i, </)) = (0i, d^cf)) vanishes, and also A(0) = 0. Thus, we 
have the relation 

(C<t>,<P) = \'(0). 

On the other hand, we have 

(C4>,<t>) = z'(o) 

from the expansion of d^cj) — z{t)(j). 
Thus the map S can be rewritten as 

Sit, wcj)) = z(t)w<f> + t2(a2(f)i <f>)w.</> + 0(ts) 

= wcl> (z(t) + t2r2((*drl<j(<f>, (/>), a(0, ((>))) + 0(t3). 

Here we use the fact that the first order term of the Dirac equation gives 
dvQipi = 0, therefore ipi = reie<J) and cr^i^i)■= r2cr(</>, </>). 

The term 
'Y(Y,go,vo) = ((*d)~1a-(^,(/)),(j(0,^)) 

is a constant that only depends on the manifold and on #o- An inductive 
argument shows that, if 7(1^,^0,^0) vanishes, then all the forms a; in the 
formal expansion of At must also vanish identically.  Thus, we can assume 

that 7(y,po,^0) 7^ 0- 
Notice that we have 

R x (Ker (0%) - {0})/J7(l) = R x M+. 

The irreducible part of <;~1(0)/^ is tangent to {0} x R+ as t approaches 0, 
as we see in the following. 

The difference A between the Casson-type invariant at t = ±5 can be 
evaluated by counting the number (with sign) of oriented lines in <;~1(0)/Q, 
with t £ [-S,S], that are tangent to {0} x M4" x {0}. Here we identify U* 
with the set (<S_1(0) — {w = 0})/Z7(l). The sign of the wall crossing term 
is determined by the section <S, as follows. The zero set (<S~1(0) — {w = 
0})/C/(l) is given by the condition 

t-  
A
'
(O

> 
r2lf{Y,go,v0)' 
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Thus, we have one line in W which is counted with the orientation deter- 
mined by the sign of —7(Y,go>^o) and the spectral flow. Suppose that we 
have A^O) > 0, then the spectral flow is SFcid^l) = 1 on the path t E [— 1,1]. 
If we have 7(Y, go, I/Q) > 0, then there is a unique irreducible solution, which 
contributes a +1 to the invariant, that flows into the reducible as t —> 0, with 
t < 0. If we have 7(7", go, vo) < 0, then a unique irreducible that contributes 
a —1 to the invariant approaches the reducible as t —> 0, t > 0. This gives 
the wall crossing term 

\(y,g1) = \(y,g-1)-SFc(.d*). 

This provides a geometric interpretation of the wall-crossing formula that 
we derived algebraically in the previous section from the exact sequences. 

Remark. With the metric dependence of X(Y,s,g) understood, we can 
modify this quantity by introducing a correction term as follows. Choose 
any four manifold X with boundary Y, such that X is endowed with a 
cylindrical-end metric modeled on (Y^g). Choose a Spinc structure Sx on 
X, which over the end is the pullback of s on Y, and choose a connection A 
on (X, sx), which extends the unique reducible 0S on (Y, s). Then we set 

(131) £y(s,5) = InddD*) - ^(sx)2 - a(X)), 

where Indc(D^) is the complex index of the Dirac operator on (X, sx), 
twisted with the chosen Spinc connection A, and cr(X) is the signature of 
X. By the Atiyah-Patodi-Singer index theorem, £y(s,5) is independent of 
the choice of (X, sx) and A. Actually, £Y(S,(7) can be expressed as a com- 
bination of the Atiyah-Patodi-Singer eta invariants for the Dirac operator 
and signature operator on (Y, s). Prom the definition (131), we see that 

Ms^i^i) -Ms,<7-i, iz-i) = SFcid*), 

where {gt^t) is a family of metrics and imaginary-valued 1-forms on Y. 
Then the modified SW invariant 

X{Y,g)-^{B,g) 

is a topological invariant of (Y, s). In [43], we show that the averaged version 
of these modified Seiberg-Witten invariants agrees with the Casson-Walker 
invariant for any rational homology sphere. 
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