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1. Introduction. 

This is a continuation of our paper "Boundary layer methods for Lipschitz 
domains in Riemannian manifolds," [MT]. In that paper we have initiated 
a program aimed at extending the layer potential theory for the flat-space 
Laplacian on Lipschitz domains in the Euclidean space to the setting of 
variable coefficients, and more generally to the context of Lipschitz domains 
in Riemannian manifolds. 

We recall the general setting, which will also be in effect in this pa- 
per. Let M be a smooth, compact Riemannian manifold, of real dimension 
dimM = n, with a Riemannian metric tensor, which we assume is Lipschitz. 
That is, M is covered by local coordinate charts in which the components 
gjk of the metric tensor are Lipschitz functions. (Actually, in [MT] it was 
assumed that the metric tensor was of class C1; we will extend the results of 
[MT] to the Lipschitz case in §2 of this paper.) Then the Laplace-Beltrami 
operator on M is given in local coordinates by 

(1.1) Aii:=r1/2WV/2QfetO, 
where we use the summation convention, take {g^k) to be the matrix inverse 
to (gjk)<> and set g := det(pjfc). For V G L00(M) we introduce the second 
order, elliptic differential operator 

(1.2) L:=A-V. 

We assume V > 0 on M and also V > 0 on a set of positive measure in each 
connected component of M\Q. Amongst other things, this guarantees that 

(1.3) L : Hl*{M) —> H-l*(M) 
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is an isomorphism, for each p € (l,oo), where HS>P(M) denotes the class 
of Z^-Sobolev spaces on M. Let Q, c M be a connected open set that is a 
Lipschitz domain; i.e., d£l is locally representable as the graph of a Lipschitz 
function. 

Consider the Dirichlet boundary problem 

(1.4) Lu = 0 in fi,    u|aQ = /, 

and the Neumann boundary problem 

(1.5) Lu = 0 in ft,    dvu]^ = g, 

where du = d/du is the normal derivative on dfi. Hereafter, all boundary 
traces are taken in the nontangential limit sense. More specifically, given a 
function u defined and continuous on fi, set 

(1.6) u\en(x) := fe *&)>       x e dCt> 
ye~i{x) 

when this limit exists. In (1.6), 7(x) C ft is a nontangential approach 
region with "vertex" at x; cf. [MT] for more details. Furthermore, 
^^lan :=i (^'^Idn)* Natural estimates (involving the nontangential maxi- 
mal function; cf. below) also accompany (1.4)-(1.5). 

When ft is a Lipschitz domain in the Euclidean space and L = di + 
• • • + d^ is the flat-space Laplacian, these were first treated in [Dah], [JK] 
by means of harmonic measure estimates and, shortly thereafter, in [Ver], 
[DK] using layer potential techniques. The latter papers, building on [FJR] 
where the case of C1 domains was treated, made use of boundedness prop- 
erties of Cauchy integrals on Lipschitz surfaces due to [CMM] (following the 
pioneering work of [C]). 

In [MT] we extended these operator norm estimates on Cauchy integrals 
to a variable coefficient setting, allowing for an analysis of single and double 
layer potentials in the manifold setting described above. To be explicit, 
denote by E(x, y) the integral kernel of L"1, so 

(1.7) IT^X) =  / E[x, y)u(y) dVol(y)       x e M, 

M 

where c^Vol is the volume element on M determined by its Riemannian 
metric. For a function / : dQ —► R, define the single layer potential 

(1.8) Sf(x) := J E(x, y)f(y) dcr(y),        x £ dSl, 
an 
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where da is the natural area element on dQ, and define the double layer 
potential by 

/dE 
— ^y)f(y)da(y),        xtdto. 

dQ       y 

The following results on the behavior of these potentials were demonstrated 
in [MT], extending previously known results for the flat Euclidean case. 

Define fi+ := £2 and $"2_ := M \ fi; note that Sl± are Lipschitz domains. 
Given / € 1^(90), 1 < p < oo, we have, for a.e. x 6 dSl, 

C1-10) 5/|an+(x)=5/|an_(x) = 5/(x), 

and 

(1.11) Vf\d^±{x)={±l-I + K^f{xl 

where, for a.e. x € c?£2, 

Sf(x):=jE{x,y)f(y)da(v), 

/dE 
QZ-(x,v)f(y)Mv)- 

(1.12) dQ 

y
y 

an 

Here P.V. JdQ indicates that the integral is taken in the principal value sense. 
More concretely, fix a smooth background metric which, in turn, induces a 
distance function on M. In particular, we can talk about balls and P.V. Jd^ 
is defined in the sense of removing such geodesic balls. 

Furthermore, for a.e. x e dQ, 

(1.13) 9uSf\dn± (x) = (4* +**) fix), 

where K* is the formal transpose of K. Moreover, the operators 

(1.14) K, K* : I?{<Ki) —* D>{dSi),    1< p < oo, 

and 

(i.i5) s:LP(an) —>H^idn),   i<p<oo, 
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are bounded and we have nontangential maximal function estimates 

(1.16) \\(VSfr\\LPm) < Cp\\f\\LP(da),    \\(Vfr\\LP{dQ) < Cpll/Hjxao,, 

for 1 < p < oo.  Here and in the sequel, if u is defined in Q then u* will 
denote the nontangential maximal function of u, defined at boundary points 
by 

(1.17) u*(x) := sup{My)| : y e 7(x)},        x € dQ. 

Extending results produced in the Euclidean case by [Ver], we showed in 
[MT] that the operators 

(1.18) ±1/ + K, ±±I + K* : L2(dQ) —► L2(dn) 

are Eredholm, of index zero.  In particular, if V > 0 on a set of positive 
measure in each connected component of M \ iT, then the operators 

(1.19) 1J + K,ll + K*: L2(dn) —* L2(dtt) 

are invertible. Also, if V > 0 on a set of positive measure in f2, then 

(1.20) -±J + K, -h + K* : L2(dn) —> L2(dn) 

are isomorphisms, while, if V = 0 on fi, then 

(1.21) ~I + K* : LUdty —> LUdCl) 

is an isomorphism, where L^dCl) consists of elements of L2(d£l) integrating 
to zero. 

Given these results, we can produce a solution to the Dirichlet problem 
(1.4) with / € L2(dQ), in the form 

1 N-
1
   ^ 

(1.22) u = V[[-I + K)    /|, 

and this, in turn, satisfies 

(1-23) ML^OJ) < C\\f\\LHda). 
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A solution to the Neumann problem (1.5) with g € L2(dQ) is given by 

(1.24) 

and this satisfies 

(1-25) ll(Vu)li2(an)<q|5||L2(an). 

If V = 0 on d£2, we require JdQgda = 0. Uniqueness of solutions to (1.4) 
and (1.5), satisfying (1.22) and (1.25) respectively, was also established. 

Also [MT] treated the regularity problem. Given / in the Sobolev space 
il1'2(9n), the Dirichlet problem (1.4) has a solution satisfying 

(1-26) MVunLHdQ)<C\\f\\m,2idQ). 

Regarding results with Z^-data, it was noted in [MT] that interpolation 
of (1.23) with the classical result for bounded data yields a solution to the 
Dirichlet problem (1.4), for / G 1/(80), satisfying 

(1.27) K||LP(an) < C||/||Lp(an),    2 < p < oo. 

Also it was noted in [MT] that, in view of results of [Sn], one has invertibility 
of (1.19), etc., on 1^(30), for \p — 2| < e, for some e = e(£L) > 0. Hence the 
I^-solvability for the Dirichlet and Neumann problem, and the ZAregularity 
for the Dirichlet problem, are established for \p — 2| < 6(0,) in [MT]. 

One of our primary goals in this paper is to establish the unique solv- 
ability of the Neumann problem (1.5), with data g 6 1/(80), satisfying 

(1.28) IKVu)*H^an) < Cpll^H^ao),    1< p < 2, 

and the unique solvability of the Dirichlet problem (1.4), with data / € 
H^dQ), satisfying 

(1.29) \\(Vuy\\LP{dn) < CpH/Hi^an),    1< p < 2. 

For O C Mn and L = AQ, the flat-space Laplacian, (1.29) was first estab- 
lished in [Ver], whereas a unified approach to both (1.28) and (1.29) was de- 
veloped in [DK]. The setting of Lipschitz domains in Riemannian manifolds 
introduces significant additional difficulties which require new techniques 
and ideas to overcome. For example, at small scales, one has to understand 
the structure of the singularity in the kernel E(x, y) of L"1 (cf. (1.7)) along 
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the diagonal. Also, at large scales, one has to find appropriate substitutes 
for techniques in the flat, Euclidean setting which utilize the asymptotic 
behavior at infinity for solutions of elliptic PDE's; cf. [DK]. 

In fact, we will solve the Neumann problem (1.5) with data 

(1.30) g e tfidti), 

the local Hardy space, which we define below. We will show that there is a 
unique solution (modulo an additive constant, and assuming j^gda = 0, 
if V = 0 on fi), satisfying 

(i-si) IKVuniLipo) < cMpw 

Also, we will solve the Dirichlet problem (1.4), with / satisfying 

(1.32) Vr/ € ^{jXl), 

where Vr stands for the tangential gradient, obtaining a unique solution 
satisfying 

(1.33) ||(Vu)lLi(fin) < qiVr/Hwan) + C\\f\\LHday 

The D* results mentioned above will follow from these Hardy space results 
and the previously described L2 results, by interpolation. 

By tf'ijXi) we mean the localization of the atomic Hardy space Sh\t{d£l). 
We recall some definitions. We say a function / G L00(9n) is an atom if 

(1.34) supp / C BT (xo) H an 

for some rro G <9fi, r G (0,diam fi], and 

(1.35) WfU-m < ^   Jfd* = 0. 
da 

Then g € L1(5fi) is said to belong to fil^dQ) provided it can be written in 
the form 

(1.36) g = Y^ avfvi    f" ai1 atom'    X) laz/l < 00' 

and there is the norm 

(1-37) ||plUit(an) == inf {^ 1^1 : g = ^T a^f^ U atom} . 
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This corresponds to the approach in [CW] considering dfi, equipped with 
the measure da and the geodesic distance as a space of homogeneous type. 
Then we can set 

(1.38) tfidfy-^Sii&dfy + C, 

where C consists of functions on dQ, that are constant on each connected 
component of 9fi. Equivalently, 

(1.39) ^(dQ) = i5it(0ft) + Lq(dn),    Vge(l,oo]. 

The space ^(dQ.) is "local" in the sense that, under / i—> </?/, it is a module 
over Cr(dfi), for any r > 0. 

There is also the space bmo(90) of functions of bounded mean oscilla- 
tion, localized to be a module over Cr(dfi!) for any r > 0. It is a deep result 
due to [FS] (with complements by [Sar] and by [CW] to apply to the current 
setting) that 

(1.40) ^(dQ)* = bmo(dfi),    vmo(dft)* = ifidO), 

where vmo(c?$l) is the closure of C(dQ) in bmo(d£l). 
Analogously to (1.34)-(1.35), we can also define p-atoms on dQ, for 

(n — l)/n < p < 1. The only difference is that the upper bound in the 
normalization condition is, this time, r~(n~"1)/p. We denote the £p span of 
p-atoms by Sj^dQ) and set 

(i-4i)     WgWs&pn) :=inf {(^ Mp)  P: 9 = Y, a^^ f" P-atoin} • 

Also, introduce \f(d£L) := ff^dCt) + C and endow it with the natural 
"norm". The analogue of (1.39) remains valid in this setting too. Now, 
the precise sense in which l)p(dJ]) is "local" is that, under / H-» y?/, this 
space is a module over Cr{d£i), for any r > (n — IXJT"

1
 — 1). Let us also 

point out that, if (n — l)/n < p < 1, then I)p(c?£2) is only a quasi-Banach 
space and that its dual is 

(1.42) mm)* = Ca(dn),        a := (n - l)^"1 - 1), 

i.e., the space of Holder continuous functions on dQ. 
We outline the structure of the rest of this paper. In §2 we indicate the 

modifications which are necessary in order to extend the L2 theory of [MT] 
from the context of C1 metric tensors to Lipschitz continuous metric ten- 
sors. Section 3 contains results regarding the pointwise boundary behavior 
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of null solutions of L in Lipschitz domains. In §§4-5 we tackle the Neumann 
problem (1.5). Combining techniques developed in [KP] and [MT], we esti- 
mate solutions in the case that g is an atom, in order to establish (1.31). In 
§6 we treat the regularity problem for (1.4). We estimate the solution when 
Vr/ is a vector atom and use this to establish (1.33). 

Our work in §§3-6 makes use of L2 results in [MT] which, in turn, is based 
on the L2-invertibihty results of the operators in (1.19) and (1.20). It is also 
of interest to extend these invertibility results to 1^(80.) for optimal ranges 
of p's, as well as to other function spaces such as Hardy, Holder, bmo(dft) 
and Besov spaces. We do this in §7 via an approach which emphasizes the 
inherent links between the functional analytic properties of the operators 
(1.19)-(1.20) on such spaces. 

For the purpose of this introduction, let us illustrate this point by indi- 
cating the main steps in the proof of the invertibility of^I+K on the Holder 
space Cfa(5fi) for a € (0, ao) with ao = ao(9f2) > 0 small. (This extends 
results for the ordinary Laplacian in Euclidean star-like Lipschitz domains 
given in [Br], where a structurally different approach was presented.) First, 
the atomic theory implies that 5/ + K* is invertible at the level of Hardy 
spaces t)p(dQ,) when p = 1. In turn, with operator bounds on K* in hand, 
this automatically entails the same property for p € (1 — £, 1), for some small 
s > 0. This latter fact is a consequence of rather general stability results 
on complex interpolation scales of quasi-Banach spaces established in [KM]. 
Then the desired result follows by duality. 

In §8 we show that the Helmholtz projection is bounded on L^fi) for 
3/2 — s < p < 3 + s, for some s = s(Ct) > 0. This extends to the Riemannian 
manifold setting earlier work done in the Euclidean setting in [FMM] and 
[MMP]. Finally, in Appendices A and B we collect several useful results 
about l)p(dQ) and Cauchy type operators on such spaces. 

2. Layer potentials for Lipschitz metric tensors. 

As stated in §1, [MT] studied the single layer potential (1.8) and double layer 
potential (1.9) when Cl was a Lipschitz domain in a compact manifold M 
with Cl metric tensor. Here we extend this study to the case of a Lipschitz 
metric tensor. We retain the other assumptions on fi, V, etc., made in §1. 

A good bit of the necessary work was already done in [MT]. In §3 of that 
paper it was shown that, if the metric tensor is Lipschitz, then the integral 
kernel E{x,y) of (A - V)~l has the following properties. For one, 

(2.1) E(.,y)€Cfoc(M\{y}),    V5<2, 
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and in fact, if K and K are disjoint compact subsets of M, 

(2.2) y H-> £(.,y)\g is continuous from K to CS(K),    Ws < 2. 

Furthermore, in local coordinates, in which the metric tensor is given by 
(djk), we can set 

/V^ \-(n-2)/2 
(2.3) eo(x -y,y) = C {j^QjUy)^ - yj)(xk - yfc)J 

for appropriate C = Cn, and then define the remainder ei(x,y) so that 

(2.4). E(x, y)vg(y) = eo(x -y,y) + ei(x, y). 

This remainder satisfies, for each e € (0,1), 

(2.5)    \ey{x,y)\<Ce\x-y\-(n-z+e\    \V^{x^ < Ce\x - y\-^-2^\ 

and, from (2.2) and (2.4), 
(2.6) 

ei(x, y), Va:ei(a;, y) are well defined in C0(9fi),    for each x G M \ 50. 

Note that eo(^, y) is smooth in z G Mn \ 0 and homogeneous of degree 
—{n — 2) in z, but only Lipschitz in y. (If the metric tensor is C1 then 
eo(2,2/) is C1 in y.) In particular, in (1.8), Sf{x) and VSf(x) are both well 
defined for all z G M\9£2, for any / G L1(5fi), and the limiting result (1.10) 
clearly holds. Now we can still bring to bear Propositions 1.5-1.6 of [MT] to 
deduce that the estimate on (V5/)* in (1.16) and the jump relation (1.13) 
for dySf continue to hold, even for a Lipschitz metric tensor, and we also 
have K* : 1^(80) —> LP^Q) for 1 < p < oo. Since K is simply the formal 
transpose of if*, we also have the boundedness of if, so (1.14) continues to 
hold for Lipschitz metric tensors. 

Turning attention to (1.9), let us first observe that, since E{x,y) = 
E{y,x), it follows that E(x,y) has more smoothness in y than a separate 
analysis of the terms in (2.4) would indicate. In particular, we have 

(2.7)       VyE(x, y) is well defined in C0(dn),    for each x G M \ <9£1, 

despite the fact that V2/eo(^ — y>y) is defined only a.e. on M, and is perhaps 
not well defined on 50, if the metric tensor is only Lipschitz. Hence, Vf(x) 
is well defined for any x in M \ dfi,. 

It remains to estimate (Vf)* and extend the jump relation (1.11) to the 
present setting. This requires understanding the nature of the singularity of 
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dVyE(x,y) on dQ,. Note that even though, by a variant of (2.7), dlfyE(x,y) 
makes (pointwise) sense if x E d£l\ {y} for a.e. y € dQ, the formula 
(2.4) is not suitable for the task at hand since it involves Vyeo(x — y,y). 
Thus, we need a different asymptotic expansion for J5(x, y), which avoids 
this difficulty. 

To do this, use the symmetry E(x, y) = J?(y, x) to write 

(2.8) E{x, y)y/g{x) = eo(x - y, x) + ei(y, x), 

so that 

The point is that, this time, Vyeo(x — y, x) no longer exhibits the problem 
we encountered earlier and, moreover, we are differentiating ei with respect 
to its first set of arguments, so (2.5)-(2.6) apply. 

With these identities and estimates in hand, we are again in a position 
to apply Propositions 1.5-1.6 of [MT] to justify (1.11) and the rest of (1-16) 
in the setting of Lipschitz metric tensors. Now all the results of [MT] work 
with the hypothesis that the metric tensor on M is Cl relaxed to just being 
Lipschitz. 

We mention parenthetically that some of the material of this section can 
be pushed to more singular metric tensors, using some techniques developed 
in [Tl] and in Chapter 13 of [12]. We pursue this in [MT3]. 

3. Existence and behavior of boundary values- 

We begin with a Fatou-type result for null-solutions (and their gradients) 
of the operator L = A — V. We retain the hypotheses on M, fi, L and V 
made in §1. 

Proposition 3.1. Let u e Cl0C(Vt) satisfy 

(3.1) Lu = 0 in ft,    (V?i)*(z) < +oo for a.e. x € dVt. 

Then the pointwise nontangential boundary trace Vii|^ exists at almost 
every point of dfl. Similarly, ifu£ Cfoc(fl) satisfies 

(3.2) Lu = 0 in ft,    u*(x) < +oo for a.e. x 6 5ft, 

then u\dQ exists a.e. on dQ. 
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Proof. For each k € Z+, set 

(3.3) Afc := {x e da: (Vti)*(x) < fc},    nk :=  (J 7(x). 
xGAfc 

Recall that 7(x) C fi stands for the nontangential approach region with 
vertex at x E 80, (introduced in connection with (1.6)). Note that £2* C £2 
and Afc C Silfc. Since (Vti)*(x) < +oo at a.e. x € flfi, we infer that the set 

(3.4) A-dQ\[JAk 
k>l 

has zero surface measure. Also, Qk is a Lipschitz domain and 

\\(Vu)*\\Loo{dClk) < oo 

for each fc. Now it follows from the results on the L2-regularity problem in 
§8 of [MT] that there exists Bk C dftk of zero surface measure such that 
(Vu)(x) exists in the nontangential sense at each x G Afc \ Bk- 

Thus the pointwise nontangential boundary trace {Vu) \dn exists at every 
point of 90 except perhaps those in A U (UfcSfc). Since this latter set has 
zero surface measure, the first part of Proposition 3.1 is proven. The second 
part is proven similarly, based on the solution of the L2-Dirichlet problem 
in [MT]. □ 

We next obtain conditions guaranteeing that various boundary data be- 
long to the Hardy space l)l(dQ). Let u denote the unit conormal to Q. Also, 
let d, 5 stand, respectively, for the usual exterior derivative operator and its 
adjoint, and denote by A the exterior product of forms. 

Proposition 3.2. Suppose u e C^Q) and (Vu)* e ^{dQ). Then u A 
dw|^ G tf-(dSi) and 

(3.5) II^Adti||fti(an)<C||(Vti)*||Li(an). 

Furthermore, if Au = 0 in 0, then also dyU E \}l{dVt) and 

(3-6) WdMWm < C||(Vii)lLi(fln). 

Proof As in [DK], our proof uses two ingredients: the duality result 
^{dSl) = vmo(c?0)*, and Varopoulos's extension theorem ([Var]), to the 
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effect that / e Lip(<9fi) has an extension F € Lip(O) such that |VF| dVol is 
a Carleson measure in ft with norm < C\\f\\hmo(dQy Recall that a positive 
measure /a on Q, is called Carleson if 

(3.7) [i(n n Br(p)) < Cr n-l Vp 6 d£l, r > 0. 

The least constant in (3.7) is called the Carleson norm of fi. Now Varopou- 
los's extension F also satisfies 

(3.8) Il^1l2>(ft) < Cp||/||bmo(dn)5      V p < OO. 

In particular, with p = n, this implies that \F\ <No\ is also a Carleson 
measure in Vt with norm controlled in terms of ||/||bino(an)- 

Then, with a slight change in notation, i.e., considering / to be a 2-form, 
we have 

(3.9) 
I {f,v/\du) da =    [(6F,du) dVol 

<C||/llbmo(an)ll(V^)*||L1(an), 

integrating by parts, utilizing \SF\ < C\VF\ + C\F\ and invoking the basic 
Carleson measure estimate (cf., e.g., [St]). This proves (3.5). 

The proof of (3.6) is similar. In this case, take / to be scalar and use 
the identity 

(3.10) [(&u)F dVol + ! (Vu, VF> dVol = f {duu)f da 

to obtain 

(3.11) ]{dvu)f da <C||/||bmo(an)||(V«)*||L1(an), 

provided Au = 0. This finishes the proof of the proposition. □ 

If we replace the hypothesis Au = 0 by Lu = h, then (3.11) is replaced 
by 

(3.12) f{dvu)fdx7 < C\\f\\hao{&ai\\{Vuy\\I^{m+J \h + Vu\ ■ \F\ dVol. 
an o 
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We have 

(3.13) ||tt||L»/(»-i)(n) < C|l(V«)1lLi(fln) + C||ti||Li(a), 

so, since V € L00^), (3.7) and (3.12) give 
(3.14) 

J(dvu)f 
an 

da < C||/||bmo(fin) {||(Vtt)*||Li(an) + \\u\\LHQ) + Cq\\Lu\\Lq{n)} , 

for each q > 1. Thus we can prove: 

Proposition 3.3. If u € C&c(fi), (Vti)* € L^dCl), and Lu = h € i9(fi) 
for some q> 1, then d^u € ^(dTl), and we have 

(3.15)     HMIwen) < C||(V«)*||Li(an) + C9||I«||iq(fi) + C 
/• 

dFoZ 

Proof. It only remains to note that 

(3.16) MlLi(fi) < 
/ 

wdVol +cii(vuriiLi(ai). 

4. Estimates on the Neumann kernel. 

□ 

In this section we define the Neumann kernel and establish some estimates 
that will be useful for results on the Neumann problem in §5. As in §1, 
we assume M is a compact Riemannian manifold with a Lipschitz metric 
tensor, having a Laplace-Beltrami operator A. Also, V e L00(M) satisfies 
V > 0 on M and V > 0 on some set of positive measure in each connected 
component of M\Q. Assume dimM > 2 and let Q, be a connected Lipschitz 
domain in M. 

We first treat the case when V > 0 on a set of positive measure in fi, so 

(4.1) L = A - V : H1'2^) —+ F1'2^)* 

is invertible. Then the unique solution u e H1,2(Q) to 

(4.2) (A -V)u = f   in U,    duu\dn = 0 
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is given by 

(4.3) u(x) = J N(x, y)f(y) dVol(y),        xeQ. 

In this section we produce some estimates on the Neumann kernel N(x, y). 
It is easy to see that, for each y € O, JV(-,y) 6 C^Q, \ {y}). Further local 
regularity follows from material in §3 of [MT]. Here we seek further control 
of N{x, y) as x —> dQ, and as x —> y. We begin with the following simple 
but useful estimate on solutions to (4.2). 

Proposition 4.1. Given f e L2(Q), the solution u € Hl'2{Sl) to (4.2) 
satisfies 

(4.4) IMlL2*/<«-2)(n) < C||/llz,w(n+2)(fi). 

Proof. Sobolev's inequality gives 

(4.5) IMlL2»/<»-2)(n) < c MHI-HQ)- 

The invertibihty of (4.1) gives 

(4-6) Mlrwcn) < C(V) J {|Vu|2 + V\u\2} dVol, 

and the variational characterization of u as a solution to (4.2) shows the 
right side of (4.6) is equal to C(V) fn ufdVol, so we have 

(4.7) IMl2n/<»-2>(n) < cJufdVol, 

from which (4.4) follows. □ 

Now we obtain a pointwise estimate on solutions to (4.2). 

Proposition 4.2. Suppose f e L2(Q) and u € -Hrl'2(fi) solves (4-2). As- 
sume K Cft is compact and 

(4.8) suppfcK. 

Then, forxeTL\K, 

(4.9) \u{x)\ < C ||/||tf»/<«+2>(n) dist(x,K)-^2)'2. 
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Proof. As in [DK], [KP], we can extend u by "reflection" to u on a neigh- 
borhood Q, of ft such that u € if^ (fi) satisfies 

(4.10) Lu = /, 

where / is obtained from / by such a reflection, and hence is supported on 
K, the union of K and its image under this reflection. Here L is a uniformly 
elliptic, divergence-form operator with L00 coefficients, and we have from 
Proposition 4.1 the estimate 

(4.11) INIz,2n/(n-2)(Q)  < C ||/||L2n/(n+2)(fi). 

Assume dist (rr, K) = ro, x 6 ft. Then dist (x, K) > ro/A for some A € 
(1, oo). If ro < inf {dist (y, M \ ft) : 2/6 ft}, then 

(4.12) Lfi = 0   mBro/A(x). 

If we dilate ^^/^(x) out to a ball of unit radius, we have the L2n/(n~2)-norm 
of the dilated solution bounded by 

(4.13) t7||/llLW(n+2)(Q)(r0-)
(n-2)/2n. 

The DeGiorgi-Nash-Moser estimates (cf. [Mor], [GT]) then imply (4.9).   □ 

We can now use (4.3) to estimate N(x,y). 

Proposition 4.3.   We have 

(4.14) \N{x:y)\ < C dist(x,y)-(n-2\ 

Proof. Let r := dist (x, y) > 0 and let K := ft nBr(y). Applying Proposition 
4.2 to / supported in K, we have by duality 

{\ (n-2)/2n 

[     |JV(x,y)|2"/("-2) dVol(y) i < Cr-(n-2)/2. 

nnBr(y) J 

Now N(x,y) = iV(t/,x), so iV(x,y) also solves a uniformly elliptic, 
divergence-form PDE with L00 coefficients as a function of y, for y € Br(x). 
Hence another apphcation of the DeGiorgi-Nash-Moser theory gives (4.14). 
□ 
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The DeGiorgi-Nash-Moser theory also gives Holder estimates, with an 
exponent depending on the ellipticity constant of L. Keeping in mind that 
these uniform Holder estimates apply to the dilates of functions on BT, 
dilated out to a ball of unit radius, we have: 

Proposition 4.4.  There exists s 6 (0,1) such that 

(4.16)      m*,ri-^v)i<c^;;?;,, 
for dist(x,x') < ^dist(x,y), and 

dist(y,y')s 

(4.17) mx,y)-N(xM<C-t(x^_2+t, 

for dist (y, y') < \ dist (x, y). 

Proof The estimate (4.16) follows from the discussion above, and then (4.17) 
follows from the symmetry 

(4.18) N(x,y)=N(y9x). 

□ 

We now describe the modifications for the case when V = 0 on ft. In 
that case, given / G i?1,2^)*, the problem 

(4.19) Au = / in fi,    duu\dQ = 0, 

has a solution u € iJ1,2(n) if and only if Jn f dVol = 0, and the solution is 
unique modulo an additive constant. We define 

(4.20) T : Hh2(Qy —> H1'2^) 

by Tl = 0, and, if JQfdVol = 0, Tf is the unique solution to (4.19) 
satisfying /a u dVol = 0. Then N(x1 y) is the integral kernel of this operator: 

(4.21) Tf Or) = j N{x, y)f(y) dVol(y),        x € Q. 

As before, one readily verifies that, for each y eft, iV(-, y) e Cloc(Q \ {y}). 
Also N(x,y) still has the symmetry property (4.18). As in Proposition 4.1, 
we have 

(4.22) ||r/||L2n/(n-2)(ft)  < C'||/||L2»/(n+2)(n). 

The arguments used in Propositions 4.2 and 4.3 also extend, and we see that 
the estimates (4.16)-(4.17) also hold in this case. 
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5. Hardy space and U estimates for the Neumann problem. 

We retain the hypotheses on M, A, V and ft made in §4. Here we examine 
the Neumann problem 

(5.1) (A - V)u = 0   in ft,    $,ti|an = g- 

In the setting of a Riemannian manifold with C1 metric tensor, this problem 
was studied in [MT]. Furthermore, as explained in §2, the same results 
continue to hold when the metric tensor has only Lipschitz components. 
What we shall need here is the fact that, if g € L2(dft), then (5.1) has a 
unique solution u G Cf'^ft), V e > 0, satisfying 

(5.2) II(Vu)*^(an) < C\\g\\&(en). 

The solution is given by 

(5.3) u = S 

where 

(5.4) -\l + K* : L2(dft) — L2(dn) 

is shown to be invertible. All this holds if V > 0 on a set of positive 
measure in ft. If V = 0 on ft, we assume Jdagda = 0 in (5.1), the solution 
u satisfying (5.2) is unique up to an additive constant, etc. 

Here we aim to estimate the I^-norm of (Vu)* when g belongs to the 
Hardy space Fj^dft). This can be done once we estimate (Vu)* when g is 
an atom. Recall that an atom on dft is a function g € L00(5ft) satisfying 

(5.5) supp g C Br(x0) n 5ft, 

for some xo € 5ft, 0 < r < diamM, and 

(5.6) IMIL^O,) < -^i>    Jgdv = o. 
ao. 

The following is a key estimate. A result of this sort was first given in [KP]; 
our proof is closer in spirit to an argument in [Sh]. For now, assume V > 0 
on a set of positive measure in ft. 
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Proposition 5.1. If g G L0O(5n) is an atom, then the solution u to (5.1) 
satisfies 

(5.7) IKVtOlLipo) < a 

In the proof of this proposition, the following pointwise estimate is useful. 
Recall that we are assuming V > 0 on a set of positive measure in Q. 

Lemma 5.2. If u is as in Proposition 5.1, we have 

for x G O, dist(x, XQ) > 4r; where s G (0,1) is as in (4-17)- 

Proof. The solution u to the Neumann problem (5.1) can be written 

(5.9) u(x) =  I Nix, y)g(y) da{y),        xeft, 

en 
where N(x, y) is the Neumann kernel, studied in §4. Since jda g da = 0, we 
can write 

(5.10) u(x) =  [{N(x,y)-N{x,xo)}g(y)d*{y),        xett. 

Then the estimate (5.8) follows from (4.17). □ 

We now present the 

Proof of Proposition 5.1.   Given (5.5)-(5.6), let Si := i?4r(:ro) n<9f2, and for 
& > 2 (and 2er < diamfi), set 

(5.11) Be := B2e+ir(xo) \ B2er(xo),    S£ := Be n dQ. 

We will estimate (Vtz)* on each set S^. First 

[(Vuyda < Cr^-W |  / |(Vu)*|2<Z<7 i 

5i Ui J 
(5.12) f ^ ^ 

<Cr(n-i)/2 J  h(yuyfd(7 

^Cr^'^M^e^ 
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where the last inequality follows by (5.2). By (5.6), HpHx^an) < Cr"^-1)/2 

so the contribution coming from Si has the proper control. 
Estimates on St for £ > 2 will involve several ingredients, including (5.8) 

and Caccioppoli estimates. To proceed, we introduce 

(5.13) 

for £ > 2, and set 

:=  [(Vu)*da, 
St 

(5.14) fyt := tt \ B^rtixo),    2 - * - L 

Notice that all domains (5.14) have a uniformly bounded Lipschitz constant 
(at least if 2er is not large; say 2er < A). Also, pick A so that there is a set 
Q of positive measure in Cl, disjoint from all the sets Be with 2ir < A, such 
that V > 0 on Q. 

Now, we have 

It < C(2V)(7l~1)/2 < 
Se 

da 

1/2 

(5.15) KCtfr^-wl    f \(Vuy\2<kr 

\ 1/2 

> 

< C(2V)("-1)/2 < 

1/2 

/ '^ 
\dae>t 

\2da 

The last inequality holds by the analogue of (5.2) for this family of Lipschitz 
domains. 

Note that, in the last integral in (5.15), dyU is supported on dB2trt(xo)r\ 
Q,. Integrating over t € [1/2,1] gives 

(5.16) Ie < C(2V)(n-2)/2 |      f    |Vw|2(fVoli     . 

Using the fact that — Au + Vu — 0 on Bt-\ n fi and keeping in mind the 
reflection argument mentioned in §4, we now apply Caccioppoli's inequality 
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(cf., e.g., Lemma 1.1.5 in [Ke]) to this last integral; we arrive at 

1/2 

(5.17) It < C{2er)^^'2 \    f  \u\2dVol 

[finBe 

with Bt := S^-2 U Be-i U Be U U^+i. Now we apply the estimate (5.8) on u 
to deduce 

(5.18) le < C(2M(n-4)/2(2Mn/2
(2V)

r
n

S-2+, = C?2-^l 

for some s € (0,1). Note that all the r's cancel in (5.18). 
We have from (5.18) that 

AT 

where N is chosen so that 2Nr « A. The estimate of (Vu)* on the remainder 
of dfl follows from the same analysis as that for (Vu)* on SJST just done. Thus 
Proposition 5.1 is proven. □ 

Given the characterization (1.37)-(1.38) of the Hardy space fj^Sft), we 
have: 

Proposition 5.3. The solution operator g *-+ u for the Neumann boundary 
problem (5.1) has a unique continuous extension from L2(dQ) to i)1(dQ)J 

with 

(5.19) IWWiHKD^CMvw 

The modifications needed for the case when V = 0 on Q follow a well- 
worn path so, below, we no longer insist that V > 0 on a set of positive 
measure in Q. We state the result for the Neumann problem. 

Theorem 5.4. Let g € ^(dSl); ifV = 0 on Q assume also J^gdcF = 0. 
Then the Neumann problem (5.1) has a solution u satisfying (5.19), and 
also u G Cfo^iSl), Ws > 0. If V > 0 on a set of positive measure on Q, 
then such u is unique. IfV = 0 on Q, then u is unique up to an additive 
constant. 

It remains to prove uniqueness, which we now do. 
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Proposition 5.5. Let u € Cj^fi) satisfy (Vu)* 6 L^Sft). Then 

(5.20) Lu = 0 in f2,    ^^I^Q 
== ^ ::=:^ u   constant in £1. 

The constant is zero ifV>0 on a set of positive measure in Q,. 

Proof. Let 9 be a smooth vector field on M that is everywhere transverse 
to df2, pointing into £1. Denote by Tt the flow on M generated by 0. Let 
9t = Ft 9 denote the metric tensor on M that is the pull-back of the original 
metric g under ^ Also, let At denote the Laplace operator on M for the 
metric gt and dat the surface measure on dQ, induced by this metric tensor. 
Set vt(x) = ^^{x) = viTtx) and Lt = -At + Vt. Finally, denote the 
Neumann kernel on Q for Lt by iV^x,?/). 

By the hypotheses on u, for each t > 0, LtUt = 0 on fi, and ut\^ is 
regular enough that we can write (modulo constants if V = 0 on Q) 

Nt(xiv) -Q-^{y)pt{y)<My)>   for each z e fi, 

where pt := dat/da is the Radon-Nikodym derivative of dcrt with respect to 
the original surface measure da. In the light of the discussion in §3 and our 
hypotheses, we see that 

(5.22) |^_>|^    mLl{Xl)   as t \ 0. 

Also, by the results in §4, we have 

(5.23) |JV*(x, y)| < C(x),    uniformly for t G (0, A) and y e dtt. 

If V > 0 on a set of positive measure in £2, pick A so this holds on ^(fi)? 
forte [0,A]. 

The hypothesis that du/dv = 0 on dVL then yields that, as t \ 0, the 
integral on the right side of (5.21) vanishes, and the proposition is proven. 
□ 

We now have the following result on the Neumann problem with L9 data. 

Theorem 5.6. There is an e = e{Si) > 0 with the following property. Take 
p e (1,2 + e). Let g e 1^(80,). IfV = 0 on Q, assume also JdQgda — 0. 
Then the Neumann problem (5.1) has a solution satisfying 

(5-24) IKVuni^oD^Cpiy^sn). 
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If V > 0 on a set of positive measure in £2; then such u is unique. IfV = 0 
on fi; then u is unique up to an additive constant. 

Proof. As discussed at the beginning of this section, the case p = 2 was 
treated in [MT]. The existence of a solution satisfying (5.24) for p € (1,2] 
then follows from Theorem 5.4 by interpolation. The result for \p — 2| < e 
was also treated in [MT]. Finally, uniqueness follows from Proposition 5.5. 
□ 

6. The Dirichlet regularity problem. 

We retain the hypotheses on M, A, V and fi made in §1. Here we wish to 
examine the Dirichlet problem 

(6.1) (A - V> = 0 in fl,    u\dQ = /. 

In the setting of a Riemannian manifold with a C1 metric tensor this was 
studied in [MT]. There it was shown that, if Vr/ € L2(dSl), then (6.1) has 
a unique solution u G CjQ~e(f)), Me > 0, satisfying 

(6.2) IKb'Ofi) + IKVurn^o,) < CHVT/II^OJ) + CII/IILW- 

The solution is given by 

(6.3) u = S(S-1f), 

where 

(6.4) S : L2(dn) —> Hlfi(dQ) 

is shown to be invertible. Again we recall that the extension of this material 
to the setting of Lipschitz metric tensors follows from the material of §2. 

Here we aim to estimate the L1-norm of (Vu)* when Vr/, the tangential 
gradient of /, belongs to the (vector) Hardy space ^(dQ). This can be done 
once we estimate (Vu)* when Vr/ is a vector atom. That is, we assume 
/ e Lip(dfl) satisfies 

(6.5) suppfcBr(xo)nd£l 

for some XQ € dQ, 0 < r < diamM, and 

(6.6) I|VT/||L~(«I) < zki- 
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For now we merely note that (6.5)-(6.6) imply 

(6.7) l|/|lL~(ttJ) < -^=2- 

Proposition 6.1. /// 6 Lip(d£l) satisfies (6.5)-(6.6), then the solution u 
to (6.1) satisfies 

(6.8) ll(V«)*|Ui(ai)<C. 

Proof. Define 5^ and Bi as in the proof of Proposition 5.1. As in that case 
we will estimate (Viz)* on each set 5^. First, parallel to (5.12), we have 

\ 1/2 

(6.9) 
/(Vu) 
Si 

*d(T<cAn-1v2 < da 

< Cr^2 {\\f\\L2m) + HVT/IIIW . 

where the last inequality is a consequence of the estimate (6.2). Since, by 
(6-6), ||/||L*(an) + ^TfU^m ^ C^"(ri~1)/2

5 we have the right bound for 
this piece. 

As in the proof of Proposition 5.1, we will need a (pointwise) decay 
estimate on u. We claim that, under the current hypotheses, 

(6.10) Hx)\<C- 
dist^xo)71-2"^' 

for x G fi, for some a € (0,1) independent of the atomic data; we will 
establish this result below. Armed with (6.10) we now proceed to estimate 

(6.ii) u = j(yuy 
Se 

'da 

for £ > 2. Define Q^t as in (5.9), again for 2£r < A. Now, parallel to (5.15), 
we have 

(6.12) 

1/2 

It < C(2<r)(B~1)/2 I    f  |(Viz)*|2d<7 

< Ctfr^-W \    f  [\VTu\2 + M2] da 

1/2 
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The last inequality in (6.12) holds by the analogue of (6.2) for this family of 
Lipschitz domains. The integrand in the last integral in (6.12) is supported 
in dB2trt(xo) Pi £1. Integrating over t e [1/2,1] gives 

|1/2 

(6.13) % < C(2V)^-2)/2 \     f    [\Vu\2 + M2] cZVol |    J    [\Vuf + \u\ 

which is the analogue of (5.16) in the present context. Since the reflection 
argument from §4 is no longer available, this time we invoke a boundary 
Caccioppoli estimate in order to obtain 

(6.14) I£ < C(2V)(n-4)/2 |    /  H2dVoll     , 

\pnBe J 

with Be := 3^2 U Be-i U Bt U JB^+I. That this works is guaranteed by 
the fact that u\ennBe = 0; see Lemma 1.1.21 in [Ke] for details in similar 
circumstances. Now, as in (5.18), an application of the estimate (6.10) yields 

(6.15) I£<C2-a£, 

and hence 
N 

£=1 

where iV is chosen so that 2Nr w A. The estimate of (Vu)* on the remainder 
of dCt follows by the same sort of analysis as that for (Vu)* on SN just done. 
Thus Proposition 6.1 is proven, modulo the task of establishing (6.10).    D 

By (6.7), the estimate (6.10) is an obvious consequence of the following 
more general result. 

Proposition 6.2. There exists a € (0,1) and C G (0, oo) with the following 
property. Given p £ 90, r € (0, diamCl), and f 6 L00(9fi) with support in 
Br(p) H dQ, let u solve the Dirichlet problem 

(6.16) Lu = 0 in fi,    u\dn = /. 

Then 

(6.17) \u(x)\ < C H/lboojan) r^"2 dirt(s,p)2-*-*, 

for all x G fi. 
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Proof. It suffices to show that, given supp / C BT (p) fl 3fi, 

(6.18) ||/||Loo(an) < r2—" =» |u(a:)| < Cdist (x,p)2-n-«,    Vx G H. 

To do this, we will show that there exist constants C e (0, oo), a e (0,1) 
and, for each p € c?Q, a function (pp G C(fi \ p) such that 

(6.19) dist (x, p)2-n-a < ^(x) < C dist (x, p)2"71-"   on H, 

and 

(6.20) (A - V)tpp < 0,    in fi. 

Granted this, we establish (6.18) as follows. There is no loss of generality 
in assuming / > 0. Then the hypotheses on / imply 

(6.21) 0 < / < (pp on dQ,    (A - V)<pp < (A - V)u in Q. 

Consequently, the maximum principle implies 

(6.22) 0 < u < ipp on H, 

which yields (6.18). 
It remains to construct the functions <Pp(x). We begin with the case 

where Q is a Lipschitz domain in Rn and A = AQ is the flat-space Laplacian, 
AQ = <92 H h 52. Given p G dQ, let Tp be a truncated circular cone in 
Rn \ fi, with vertex at p. Extend Tp to an infinite cone Cp with vertex at p. 
We will construct a function.^p on the complementary cone Kp = Rn \ Cp, 
from which <£>p will in turn be constructed. 

Translate p to the origin and use spherical polar coordinates (r,a;) on 
Rn; LJ E S71-1, r = |x| = \x - p\. Say S71"1 fl Kp = Op, so Xp is the cone 
over C?p. We produce ^p in the form 

(6.23) ^M=^n-Q/3pH, 

for some f3p to be specified shortly. In spherical polar coordinates we have 

(6.24) Ao^p = ^ + -7—^ + ^ As^, 

where As is the Laplace-Beltrami operator on the unit sphere Sn~l. Hence 
(6.23) yields 

(6.25) AoV'pM = {As/3pH + a(n - 2 + a)/3p(cc;)} r""-0. 
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We specify (3p as the solution to 

(6.26) As/SpM + *{n - 2 + a)/3p(u;) = -ai in Op,    pp\d0p = 6^ 

for certain positive constants ai and bi to be described below. 
Note that if a € (0,1) is small enough then a(n — 2 + a) (which is 

positive) is smaller than the smallest eigenvalue of — As on L2(Op), with 
the Dirichlet boundary condition. The sets Op belong to a family of circular 
caps in 5n"~1 with radii bounded away from 0 and TT. Hence we can take 
bi > 0 large enough and a > 0, ai > 0 small enough to guarantee 

(6.27) l<Pp(v)<A,    |V/?p(u;)|<j4,    VU; 6 0Pi 

for some A € (0, oo). Then we have 

(6.28) \x - p\2-n-a < il;p(x) < A \x - p|2-n-Q in Kp, 

and 

(6.29) AoMx) = -ai ^ -P\~n~a i11 ^P- 

Let us move back to 0 C M, with a Lipschitz metric tensor. Given 
p € dfl, pick a coordinate system centered at p such that gjk(p) = ^fc- In 
this coordinate system 

(6.30) A = Ao + Ap(x, D) + Bp(x, D) 

where Ap(x, D) is a second-order differential operator with Lipschitz coeffi- 
cients, vanishing at x = p, and Bp(x, D) is a first-order differential operator 
with L00 coefficients. Then, with il)p as above, we have 

(6.31) (A - V)il>p(x) < -02 dist (x,p)~n-a,    Vx G Bp{p) n i^, 

for some a2 > 0, p > 0. Pick a cutoff function x € CffiBpip)) such ^^ 
X = 1 on Bp/2(p), and set ^J = x^p- We have 

(6.32) (A - V)il>f{x) <ci-a2 dist (a:,p)"n"a on H, 

and (possibly increasing A) 

(6.33) A"1 dist (x,p)2-n-a - C2 < ^(x) < Adist (x,p)2~n-a on H, 

for some constants ci, C2 € (0, oo). Now, for some 7 > 0, take 

(6.34) ipp:=Ail>* + v/>\ 



Potential theory on Lipschitz domains in Riemann manifolds        395 

where ?/>6 solves 

(6.35) (A - V)7pb = -1 on H,    ^|an = 1. 

The L00 theory of the Dirichlet problem gives V6 € L00^) and the maxi- 
mum principle implies ipb(x) > 1 for all x € fi. Taking 7 € (0,00) sufficiently 
large, we have a function satisfying (6.19)-(6.20)? and the proof of Proposi- 
tion 6.2 is complete. □ 

Again using the atomic decomposition of ^(dQ), we have: 

Theorem 6.3. Given f e ^(dQ) with VT/ € l)l(dQ!), the Dirichlet prob- 
lem (6.1) has a unique solution u, satisfying u 6 C^~£{p), Vs > 0; and 

(6.36) ||ti*||Li(Sn) + ||(Vn)*||il(an) < C||VT/||„i(8n) + C||/||Li(8n), 

for some C > 0 independent of f. 

It remains only to establish uniqueness, which we now do. 

Proposition 6.4. Assume that u 6 Cl0C(Q) satisfies (Vu)* e L1^). Then 

(6.37) Lu = 0 in f2,    u\dn = 0 =^ u = 0 in Q. 

Proof Take two sequences of approximating domains: 

(6.38) fy/ft,    ^\a 

Let 6 e C00(M) be given. For each k, let vk denote the unique solution to 
the Dirichlet problem 

(6.39) Lvk = 0mttk,    ^ = tf^- 

In particular, vk € C^iT) for each k. Then, for each pair j,/c, Green's 
formula in £lj gives 

(6.40) Z-*^-/-^- 

For fixed fc, as j -> 00, the right side of (6.40) vanishes, while the left 
side converges to Jdnvk(du/di/)da.    Letting then k  ->  00, we obtain 
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fdQ6(du/di/)dcT = 0. Since 0 is arbitrary, this gives dujdv = 0. With 
this in hand, we obtain from Green's integral representation formula that 
u = 0 in £1 □ 

We have the following Z^-regularity result. 

Theorem 6.5. There is an s = s(f2) > 0 with the following property. Take 
p e (1,2 + e). Let f e ^(dQ) and assume VTf € If(dQ). Then the 
Dirichlet problem (6.1) has a unique solution, satisfying 

(6.41)       KH^an, + IKVu)*H^an) < CHVr/H^an) + C\\f\\LP{dny 

Proof The existence follows for 1 < p < 2 by interpolating the L2 result 
(6.2) and the result of Theorem 6.3. The result for \p — 2| < £ was treated 
in [MT]. Finally, uniqueness follows from Proposition 6.4. □ 

7. Invertibility properties for layer potential operators. 

Once again, retain the hypotheses on M, A, V and Q which have been made 
in §1. In this section we study invertibility properties for layer potential 
operators on several function spaces of interest. We debut with: 

Theorem 7.1.  Under our standard hypotheses, 

(7.1) -7 + K : Lq(dQ) —> Lq(dQ) is invertible, 2-e<q<oo. 

If, in addition, V — 0 on SI, then 

(7.2) -\l + K* : Ll{dQ.) —> Zg(0J2) is invertible,      1< p < 2 + e. 

If, on the other hand, it is also assumed that V > 0 on a set of positive 
measure in ft then 

(7.3) -Jj + K* : 2?(0n) —> Lp(dn) is invertible,      l<p<2 + s. 

Proof. The first step is to show that 

(7.4)       ±-I + K* : Lp(dn) —► 1/(80,) are Fredhlom with index zero 
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for any p e (1,2+e). Once this is proved, the theorem follows from (7.4) and 
the fact that the operators in (7.1)-(7.3) are isomorphisms for p = q = 2 
(a proof of which is contained in [MT]), via a general functional analytic 
argument. 

To proceed in this direction, let / e D>{dSl), 1 < p < 2 + e, and set 
u± := Sf in fi±. Based on the estimates derived in §§5-6, we may write: 

(7.5) 

LP(dQ) < 
/l        \ 

V2          / 
+ 

(>*•)/ 

+ 
i,p(afi) Hi+K')f 

Lp(an) 

Lp(an) 

<C7||(VtfcF)lL,(«1) + ||(47 + ir)/ 

< C ||Vr^||LP(an) + C\\Sf\\LP{dn) + 

= C||VTii±||Lp(8n) + C\\Sf\\LPm + 

LP(dQ:) 

< C IKVtii)*!!^^) + C||5/||LP(an) + 

du± 

(4' + **)/ 
^C1 

= c 

dl/ ip(an) 
+ C||5/||LP(an) + ^I + K*)f 

LP{dn) 

LP(dQ.) 

LP(dSl) 

LP(dQ) 

T^I + K^f 
Lp(dn) 

+ ^115/11^(0,). 

That is, for each p € (1,2 + e) there exists a constant C = C(p, to) > 0 so 
that 

(7.6)        ll/HiPcao) < <?   (^I + K*) + C,||5/||Lp(8n), 
Lp(da) 

uniformly for / € 1^(50). In particular, T^ + iir* are semi-Fredholm on 
D>(dn) for each p 6 (1,2 + e). The fact that (7.4) is valid for 1< p < 2 + s 
now follows from this, the fact that (7.4) holds when p = 2 (cf. [MT]) and 
Lemma 7.2 below. d 

Here is the lemma that finishes the proof of Theorem 7.1. 

Lemma 7.2. Assume that (Eo,Ei), (Fo,Fi) are two compatible couples of 
reflexive Banach spaces and fix T € £(^0,^0) H £(Ei,Fi).    Let Eg  := 
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[Eo,Ei]$,  FQ   :=   [JPOJ^I]^  be defined by complex interpolation,  so T  6 
C{Eo,Fe)forO<0<i: 

Then the set of points 6 € (0,1) at which T : EQ-> FQ is semi-Fredholm 
is open and the index is locally constant on this set 

Proof This is a version of Theorem 2.9 in [KM]. D 

Theorem 7.3.  The operators 

(7.7) S : Z7(3Q) —+ Hl*{dSl),    l<p.<2 + e, 

and 

(7.8) 1/ + if : tf^dQ) —► ^(dO),     1< p < 2 + e, 

are well-defined, bounded and invertible. 

Proof Let / € 1^(3^), 1 < p < 2 + e, and again set u± := 5/ in f2±. We 
have 

ll/lll,p(dfi) < ^ + ^*)/ + 

(7.9) 

cfo_ 

5i/ 
+ 

.-1 + K* f 
Lp(da) 

LP{dQ) dv LP{dQ) 

< C\\(Vu-y\\LP(dQ) + C||(V^)*||xP(an) 

< CWVTU-WLPW) + CIIVrw+llLP^n) + C\\Sf\\LP{da) 

< C\\Sf\\Hi,p(da). 

With this in hand, the conclusion about the operator (7.7) follows as in the 
proof of Theorem 7.1. All the other points in the theorem also follow from 
this, Theorem 7.1 and the intertwining property S(±±I+K*) = (±%I+K)S. 
D 

An immediate consequence of Theorems 7.1-7.2 is that the solutions to 
the L? Neumann, Dirichlet and Regularity problems have natural integral 
representation formulas. The specifics are contained in the next corollary. 

Corollary 7.4. The solution to the Neumann problem (5.1) with g in 
LP(dn) (or L^(dQ) if V = 0 on Q), 1 < p < 2 + e, is representable in 
the form (5.3), 
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The solution to the Dirichlet problem (1.4) with f G LP^Cl), 2 — s < 
p < oo, can be expressed in the form (1.22). Finally, the solution to the 
regularity problem (6.1) with f G H1,p(dQ)j 1 < p < 2 + £; has the integral 
representation formula (6.3). 

In order to state our next result, we recall that B^{dQ) = BsP(dCl) is the 
usual scale of Besov spaces on dQ. Also, denote by Bf (dfl) the subspace of 
Bs (dtt) consisting of distributions that annihilate constants. 

Proposition 7.5.  There exists e = e(Q,) > 0 such that 
(7.10) 

-I + K : Bl_1/p(dQ) -» Bl_1/p(dn) is invertible,    Vp G (3/2 - e, 3 + e). 

Also, ifV = 0inQ,) 

(7.11) 

-h + K* : Bq_x/q(dSi) -> Bq_l/q{dSl) is invertible,    Vg € (3/2 - e, 3 + e). 

In the Euclidean case, such a result has been obtained in [FMM]. 

Proof. If we denote by Tq the operators in (7.1) and by Tij, the operators 
in (7.8), then obvious inclusions show that 

T"1 = T^1 on I9V2(afi),    V9 € (2 - e, oo), 

(7.12) Tjf1 = T^1 on H1'2^), 

Ki = TiT2  on ^1'pV2(^),    Vp €(1,2 + 6). 

It follows that all these operators agree on Lip(9f2), and hence 

(7.13) T-1 = T^ on Lq(dQ)r\Hl*{dSl),    Vp € (1,2+0, 9 € (2-£,oo). 

Thus we can apply ^/ + K and (^1 + if)"1 to various spaces obtained 
from those in (7.1) and (7.8) via real and complex interpolation. Complex 
interpolation yields 

(7.14) \l + K : Hs>p(d{l) —> Hs>p(dn) is invertible,    V(5,1/p) € 7^, 

where the region 7?.e is the interior of the parallelogram with vertices at the 
points (0,0), (0,1/(2-e)), (1,1), and (1/(2+ e), 1) in R2. Now we have the 
real interpolation result (cf. [BL]) 

(7.15) (tfS0'p, iTSl'p)e,p = 5?,    a = (1 - 6)so + Osi, for 0 < 0 < 1. 
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Hence we have 

1 
(7.16)        -I + K : B*(m)—* &£(&&) invertible,    V (s, 1/p) € n£ 

Taking (s, 1/p) € fte for which 5 + 1/p = 1 yields (7.10). Finally, (7.11) 
follows via a similar argument, plus duality. D 

We next establish invertibility results on tf-(dVl) and bmo(9i7). 

Theorem 7.6.  The operators 

(7.17) \l+K* : tfidQ) —* tfidQ)   and h+K : bmo(dQ) —» bmo(dQ) 

are invertible. If, in addition, V = 0 on fi; £/ien 

(7.18) -1/ + JT : fiUdUL) —> &JKI) 

is also invertible. 

Proof. The boundedness of the operators under discussion follows from (1.40) 
and Proposition B.6. Next, paralleling the estimate (7.5) in the present 
context we arrive at 

WfhHKi) < C||(±|j + ir)/||6i(M) + C\\Sf\\Lim +C7||5/||Li(n). 

It is elementary to check that S is compact on Ll(dSl) (using, e.g., the 
compactness criterion in [Ed]). Furthermore, S maps I}1 (9ft) boundedly 
into il1'1^) and, hence, S : tf-{dQ) -> Lq(Q) is also compact for 1 < q < 
n/(n-l).. 

In particular, the operators in (7.17)-(7.18) have closed ranges. Since 
L2(dQ), Lo(dSi) embed densely in ^(dQ) and i3^t(5ft), respectively, we 
conclude that the operators ±5/ + K* also have dense ranges and, hence, 
are onto. The fact that they are one-to-one follows from the uniqueness in 
the atomic Neumann and Dirichlet problems via a familiar reasoning based 
on jump relations. Note that Proposition B.5 is used here. This takes care 
of ±iJ + if*. Finally, the claim about |J + K follows by duality. □ 

We now discuss the issue of invertibility on local Hardy spaces with 
subunitary index and Holder spaces with small exponent. 
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Theorem 7.7.  There exist OLQ > 0 and e > 0 so that 

(7.19) h + K : Ca{dQ) —> Ca(dQ)  is invertible Va € (0, c*o) 

and 

(7.20) \l + K* : t)p(dn) —> i)p(dn)  is invertible Vp € (1 - e, 1). 

Proo/. We begin with (7.20). Indeed, the family {f)p(d£2)}><i continued 
with {1^(80.) }p>i is a complex interpolation scale (cf. the discussion in 
[KM]). Also, the operator |/ + K* maps this scale boundedly into itself for 
(n- l)/n < p < oo. This follows from [MT] and Proposition B.6. Returning 
to the original claim made regarding the operator (7.20), we have this result 
based on the fact that the first operator in (7.17) is an isomorphism and 
the stability results on complex interpolation scales of quasi-Banach spaces 
in [KM]. Dualizing (7.20) gives (7.19) for some small ao > 0. The proof of 
Theorem 7.7 is therefore finished. □ 

Remark. Note that, occasionally, we are led to considering quasi-Banach 
spaces, such as l)p(dQ,) for p < 1. The same applies to f)^.p(dfi) for p < 1, the 
inhomogeneous version of the ^-span of regular atoms (these are functions 
satisfying (6.5) and a version of (6.6) adapted to LP). It is also implicit in 
our work so far that ^I + K is an isomorphism of F)af (dQ) for p < 1, p close 
to 1. 

Now, generally speaking, for a linear and bounded operator T on some 
quasi-Banach space X, the property of being an isomorphism is preserved by 
passing to the "minimal enlargement" of X to a Banach space X, its so called 
Banach envelope. Quite recently, in [MM], the Banach envelopes of all Besov 
and Triebel-Lizorkin spaces have been identified. The relevance of this result 
in the present context is that atomic Hardy spaces fit in the scale of Triebel- 

Lizorkin spaces. In particular, it is proved in [MM] that ^(dCt) = Bhl(dQ) 

and t)i*(dn) = Sji(an), where s = (n - l)(i - 1). Thus, in particular, 

^I+K continues to be an isomorphism of Bl^s(dfl) for each s € (0, so) with 
so = so(dO,) > 0 small. In turn, results as such can be used to solve the 
general Poisson problem (with Dirichlet and Neumann boundary conditions) 
for the Laplace-Beltrami operator in Lipschitz domains for optimal ranges of 
indices. We will address this topic in detail in a separate paper; cf. [MT2]. 

Continuing our discussion along the lines of Theorem 7.7 we note the 
following. 
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Corollary 7.8. Assume that the metric tensor on M is of class C1+r for 
some r > 0. Then there exists ao > 0 with the following property. For any 
a 6 (0, ao) and g G Ca(dCl), the L2-solution of the Dirichlet problem 

(7.21) Lu = 0 in ft,  u* 6 L2(dn),  u\da = g, 

has the property that 

(7.22) u € Ca(U)   and   ||«||Ca(n) < C|b||CQ(3fi). 

Furthermore, u = Vh in ft for some h G Ca(d£l) with HfoHc^dft) ~ 

IMIo(n)' 

Proof In the light of Theorem 7.7, we only need to check that 

(7.23) V : Ca(dn) —► Ca(ft)    is bounded for any a e (0,1). 

As is well known, this will follow from the estimate 

(7.24) dist (z, dft^lV©/^)! < C||/||Ca(aa),    uniformly for x € ft. 

To see this, fix a function / E Ca(<?ft), a point x £ ft and select p e <9ft so 
that d := dist (x, 5ft) = dist (x,p). Since V£>1 e ^^(ft), there is no loss of 
generality in assuming that f(p) = 0. 

Next, for a large constant C, split the domain of integration in Vf into 
{y e <9ft : dist(t/,p) < Cd} and Vf into {y 6 <9ft : dist(y,^) > Cd}. 
In the first resulting integral majorize the kernel of V£> by Cd~n, while in 
the second one by Cdist (y.p)"71. That this works, is guaranteed by the 
expansion (2.4) and the estimates that eo, ei satisfy in the present context, 
i.e., when the metric tensor is C1+r, r > 0. In this case, it has been proved 
in [MMT] that ei(x, y) satisfies (for any e > 0) 

(7.25) IV.Vyei^y)! < C£\x - y^1^). 

Also, from (2.3), it is clear that 

(V2
2eo)(z,y) = ^d^r71)     as z -* 0 uniformly in y, 

" (VzVyCo)(^, V) = Od^r^"1^    as z -^ 0 uniformly in y. 

These suffice to justify the aforementioned estimates for the kernel of W. 
Finally, on account of \f(y)\ < C&ist{y,p)a, the desired estimate, (7.24), 
follows. n 
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Next we discuss the Neumann problem with data in l)p(dft) for l—p > 0, 
small. To set the stage, let 9 be a smooth vector field on M which is 
transversal to dCt and points into Q. Denote by Ft the flow generated by 
0 on M and introduce gt, dat, ^u etc., as in the proof of Proposition 5.5. 
If u 6 C1(f2), we say that dvu = g € tyidSl) for some (n — l)/n < p < 1 
provided 

(7.27) lim I   ^V^= /   9^ da,        Vip € CQ(dfi), 
*\0 Jan wt Jda 

where a := (n — l)^-1 — 1) > 0. An important observation is that the jump 
formula 

(7.28) dvSf=^-±l + irJf,        V/€fjp(^), 

continues to hold in this context since, by Propositions B.5-B.6 both sides 
depend continously on / G f}p(c?Q) and (7.28) is valid for p-atoms, in which 
case the L2 theory applies. 

Theorem 7.9.   There exists e > 0 with the following significance. Fix p € 
(1 — s, 1).  If V > 0 on a set of positive measure in J7; then the Neumann 
boundary problem 
(7.29) 

u e C1^),     Lu = 0 in Q,     d^u = g 6 l)p(dn),     (Vu)* 6 Lp(afi), 

/ia5 a unique solution, which satisfies 

(7-30) ll(V«)'||iP(an)<C||<7l|ftP(an). 

//, on t/ie other hand, V = 0 on &, then the same is true for data in Sy^^dCl), 
except that uniqueness is now valid only modulo an additive constant. 

This extends results for star-like Lipschitz domains in the flat Euclidean 
setting from [Br]. 

Proof Let us assume first that V = 0 on Cl. Recall pt = dat/da. With a 
self explanatory piece of notation which emphasizes the dependence on the 
metric tensor, we claim that 

(7.31) ^erjP(an,dTt), hence  -^pt e l)p(dn,d<7),    Vt>0, 
OUt out 
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and 

(7.32) 

dut 
dvi Pt <C 

dut 
dvt 

< CIKgrad^t)*!!^^^^) 
<c\\(Vuy\\LP{dn), 

uniformly for t > 0. The first membership in (7.31) together with the 
second estimate in (7.32) follow from the constructive approach to atomic 
decompositions in Rn developed in [Wi] (building on some earlier work in 
[Co] and [La]). Wilson's approach is rather flexible and extends to the 
setting of Lipschitz domains on manifolds since it only employs the ordinary 
nontangential maximal operator and cancellations based on integrations by 
parts. A typical example of the latter phenomenon is fdD d^ut dat = 0, for 
any subdomain D of fi (here is where we need V = 0 in £}). 

Going further, the second membership in (7.31) together with the first 
inequality in (7.32) are discussed in Appendix A, whereas the third estimate 
in (7.32) is clear. Thus, (7.31)-(7.32) are taken care of. In the case when 
V is not necessarily zero in Cl we use the previous results for u := u — 
Jn E{', y)V(y)u(y) dVol and we obtain similar conclusions. Let us point out 
that all arguments so far work for (n — l)/n < p < 1. 

Turning attention to the Neumann problem (7.29), assume first that 
V > 0 on a set of positive measure in Cl. Existence and estimates follow 
from (7.28), the fact that 

(7.33) .Ij + ir:f>^)—*^(cto) 

is invertible (which, in turn, is dealt with much as (7.21)) and Proposition 
B.5. As for uniqueness, let us first show that, for each 0 < a < s with s as 
in Proposition 4.4, 

(7.34) JV'(x, •) —-> N(x, •),    in Ca{dn) as t \ 0, 

provided x e Q is fixed. Indeed, since Cs(dQ) «-> Ca(dfi) compactly and 
since, by the results in §4, {iV*(x, •)}«><> is bounded in Cs(<9f2), it follows that 
there exists N(x, -) so that N^x, •) —> N(x, •) in Ca(<9ft) as t \ 0. Now, 
if u e C£c(fi) is such that (Vzx)* G L2{dQ) and Lu = 0 on ft, reasoning as 
in (5.21)-(5.22) and then letting t \ 0 gives 

N(x, y) jr-iy) d(j{y),    for each x e ft. 
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This, the L2 theory for the Neumann problem and (5.9) then yield that 
N(x,y) = N(x,y). Thus, (7.34) is proved. 

Returning to the task of proving uniqueness in (7.29), note that (5.21), 
(7.27), (7.34) and (7.32) easily give the desired conclusion when V > 0 on a 
set of positive measure in Q. The case when V = 0 on Q is similar and we 
omit it. □ 

We conclude this section with a discussion of the Dirichlet problem (7.21) 
with boundary data in bmo(d£2)(c L2(dQ)). 

Proposition 7.10. Assume that the metric tensor on M is of class C1+r 

for some r > 0. Then for any g € bmo(dQ), the L2 solution of the Dirichlet 
problem (7.21) has the property that 

dzs£(•,#£})|Vi^2dVol is a Carleson measure 

in ft with norm < C\\g\\2hmo{d^y 

Proof. Since the second operator in (7.17) is an isomorphism, u has the 
form Vh for some h e bmo(<9fi) with ||fc||bmo($n) ^ HpllbmoCan)- Therefore, it 
sufl&ces to show that if h G bmo(<?£}) is arbitrary then dist (•, 5fi)|VI?/i|2 cTVbl 
is a Carleson measure in ft whose norm is controlled by IMIbmo(dny 

Given the estimates on the kernel of V in [MT], [MMT], this follows with 
minor modifications from the corresponding flat, Euclidean result in [FK] 
as soon as the square-function estimate 

(7.37) f\u\2dVo\+ fdistfadtylVu^fdVolix) < C I \u\2da, 

uniformly for u so that Lu = 0 in ft, u* € L2(c?ft), is available. In the 
present context, this estimate is a consequence of results in [MT] and §§1-2 
of [MMT]. □ 

Remark. It is also possible to show that the estimate obtained by re- 
versing the inequality in (7.37) remains valid. In the present context, a 
natural proof can be obtained by adapting the approach in [M]. See also, 
e.g., [DJK], [DKPV] for more on related topics. In turn, such an esti- 
mate allows one to show (much as in [FN]) that if u is so that Lu = 0 in 
ft and <Hst(-,dft)|Vw|2c£Vol is a Carleson measure in ft, then S^Q and 
u\dn ^ bmo(9ft). Also, a naturally accompanying estimate holds. However, 
we shall not develop this point here any further. 



406 Marius Mitrea and Michael Taylor 

8. Helmholtz type decompositions. 

Assume that Q is a connected Lipschitz domain in a Riemannian manifold 
M equipped with 

(8.1) a metric with iJ2'r coefficients, r > max{3, dimM}. 

The goal is to establish LP based Helmholtz type decompositions for vector 
fields (or, equivalently, 1-forms) in £1 We shall do this in a constructive 
fashion and for an optimal range of p's. The main results are contained in 
Propositions 8.1 and 8.3. 

To get started, we denote by A1rM the first exterior power bundle 
of the manifold M and by d the usual exterior differential operator. The 
Riemannian metric naturally extends to the fibers of AlTM and we let S 
stand for the adjoint operator of d. Finally, let V be the interior product 
of forms. As is well known, there is a canonical isomorphism between 1- 
forms and vector fields on M. Under this isometrical correspondence, d 
and 6 become, respectively, the gradient and divergence operators, whereas 
the interior multiplication by v (the outward conormal to dQ) becomes the 
scalar product with the unit normal to dtt. 

Going further, if u e L^fi, A1rM) is so that Su 6 L1(n) then we can 
define the scalar distribution u V u on M (actually supported on dCt) by 

(8.2) (i/Vu,<p):= I (p6udVol+ f (u,dtp) dVol,        V^eC^Af). 

Recall the scale B$(dQ) = B%p(dQ) of Besov spaces on dQ. Then, (cf., e.g., 
[MMT]), the mapping 

(8.3) {u e I? (SI, KlTM) : Su € Lp(n)} Bu^uVue Bp__1/p(dn) 

is well defined and bounded for 1 < p < oo, in the sense that 

(8.4) ||i/ Vu\\BP_i/p{dQ) < C{n,p) (|Mxp(n) + \\5u\\LPm). 

Let us point out that if u G 1^(1}, A1TM) has 5u = 0 then v V-u, regarded as 

a functional in (^^ / (d£2) J , ^ + | = 1, annihilates constants, by Stokes' 

theorem. We denote the collection of all such functional by S^1/ (dVt). 

For 1 < p < oo, introduce the closed subspace of Z^ft, A1rM) 

(8.5) £%o(fi) := {u e Vfa ^TM) : Su = 0 and u V u = 0} 
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and denote by P the orthogonal projection of L2(Q, A1TM) onto L|0(fi). 
Analogously, dHl>p(Q) is a closed subspace of ^(£2, A1rM) for 1 < p < 
oo and we denote by Q the orthogonal projection of L2(r2, A1rM) onto 
dH^iQ). 

Proposition 8.1. For each Lipschitz domain Q in M, with arbitrary topol- 
ogy, there exists a positive number e depending on SI such that P and Q 
extend to bounded operators from LPfo, A1TM) onto L^^Cl) anddH1^^), 

respectively, for each p6(|~s, 3 + s). Hence, in this range, 

(8.6) Lp(ft, A^M) = dH^iSl) 0 L£0(ft) 

where the direct sum is topological 
In the class of Lipschitz domains, this result is sharp. If, however, dCl € 

C1 and r = oo then we may take 1 < p < oo. 

Of course, we will assume without loss of generality that £1 is connected. 
To begin the proof, we need a preliminary result. 

Lemma 8.2. Let 0 be a Lipschitz domain in M. Then there exists s = 
e(VL) > 0 50 that the Neumann boundary problem 

Av = 0 in Sly 

(8-7) ilH^-v^)- 
has a unique (modulo constants) solution for each p € (| — e, 3 + e). Each 
solution satisfies 

(8-8) IH|i>(n)<qM|BPi/p(an). 

Note that in (8.7), the normal derivative of v is to be interpreted as 1/ V dv, 
in the sense of (8.2). 

Proof. If s > 0 is so that — ^1 + K* is an isomorphism of JB^1/ (dQ) for 

| - e < p <3 + s then, so we claim, v := S((-±I + K*)-lg) solves (8.7) 
and satisfies (8.8). Indeed, due to Proposition 7.5, we only need to prove 
that the operator 

(8.9) S : Bp_1/p(da) -> H1*^) 
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is bounded for r/(r — 1) < p < oo. 

To this end, let 11 stand for the Newtonian potential in Q at the level 
of l-fbrms. That is, H is the integral operator in Ct whose kernel is the 
Schwartz kernel of (-dS-Sd-V)'1 : H^2(M,I^TM) -* Hl2(M, ^TM) 
for some V as in §1 with V = 0 on $1 Given our assumption on the 
metric, H : L*(fi) -> H2«{Sl) for 1 < q < r; see [MMT]. In particular, 
<Jn : L*(«) -> iJ1'^^), Vg e (l,r). Recall that TV : #**(«) -> ^_1/g(afi), 
1/? < 5 < 1 + 1/g, 1 < 5 < oo, is the usual trace operator. 

For any reasonable function / on dQ and 1-form g in fi, we have 

(8.10) J (dSf, g) rfVol = J (TV(m5), f) da+ f (Rf, g) dVol, 

where R is an integral operator with a weakly singular kernel (cf. (6.17) 
of [MMT]). In particular, R : H-^dfy -> If^l^TM) is bounded for 
1 < p < oo. Prom this and (8.10) we deduce that 

(8.11) j {dSf,g)<No\ 
si 

< CIMIL^AITMJII/IIS*    (an) i/pv 

with l/p+ 1/q = 1. Now, the fact that the operator (8.9) is bounded readily 
follows from this. 

Finally, there remains the issue of uniqueness (modulo constants) for 
(8.7). This can be done in several ways. For instance, if v is a null- 
solution then, from Green's representation formula, Trv e B^_1/ (dQ) sat- 

isfies (-%I + K)(Trv) = 0. Consequently, by the dual of (7.11), Trv must 
be a constant on dfl and, further, v = const, in SI □ 

We are now ready to present the 

Proof of Proposition 8.1. We follow the approach in [FMM] with natural 
alterations. Specifically, recall the Newtonian potential 11 and define P : 
If^A^TM) -> L£0(n) -> LP^^TM) by setting 

(8.12) Pu:=u- dSILu - dv,        W € &(&, KlTM), 
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where v is the unique solution to the (scalar) Neumann boundary problem 

(8.13) 

'Av = 0 in fl, 

^ = v v (u - dSUu) e Bp_1/p(dn), 

0. 

Note that u - dSUu = ScKlu on fi. As we have commented, u V SdHu 
integrates to zero over dQ. The range p € (§ -e, 3 + e), with £ small ensures 
the solvability of the boundary problem (8.13). By construction, P is well- 
defined, linear and bounded and, moreover, / — P maps IPfa) boundedly 
intodlT1*^). 

Next, we aim at proving that P is onto Z£0(ft). Indeed, so we claim, 

(8.14) P(u) = u       Vu€Lp
60(n). 

To see this, note that if u € I%fl(n) then (A - V)5nu = 8(A - VJIIu - 
[V,$]ntJ = Su = 0 on Q. Hence, if v solves (8.13), then the function v + 
Sliu is harmonic, belongs to iJ1'p(f2) and has vanishing normal derivative. 
Invoking uniqueness for the Neumann problem (cf. Lemma 8.2), it follows 
that P(u) = u — dSUu — dv = u as claimed. 

The fact that on L2(Q) fl 1^(0.) the operator P acts as the orthogonal 
projection onto L^0(Q) is easily seen from (8.12). Thus, P extends to a 
bounded mapping of 1^(0) onto I$0(fl), as desired. Prom this, the state- 
ment about Q = / — P follows as well. 

That we may take p € (1, oo) when dQ € C1 is due to the fact that, in 
this context, the problem (8.13) is uniquely solvable in this range. Finally, 
the optimality of the range p 6 (| — e, 3+e) in the class of Lipschitz domains 
follows from the counterexamples in [FMM]. □ 

For each 1 < p < oo, let us now consider 

(8.15) LP
S{Q) := {u e 17(Q, klTM) : Su = 0} . 

Proposition 8,3. Let fi be an arbitrary connected Lipschitz domain in M. 
Then there exists s = £(£1) > 0 such that 

(8.16) L^fi, A^M) = dH^p(n) ®Lp
s{n),    for each p e Q - e,3 + ej , 
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where the direct sum is topological. 
Once again, in the class of Lipschitz domains, this result is sharp.   If, 

however, dCl E C1 and r = oo then we may take 1 < p < oo. 

Again, we need a preliminary result. 

Lemma 8.4. Let Q be a Lipschitz domain in M.   Then there exists s = 
£{Q) > 0 so that the Dirichlet boundary problem 

{Av = 0 in ft, 

Trv = / € J??_1/p(0n), 

v e Hl*(n), 

has a unique solution for each p € (§ — £, 3 + s). This solution satisfies 

(8.18) \\v\\H^(n)<C\\f\\BLi/p{dny 

Proof If e is so that ±1 + K is invertible on B*_1/p(dn) for | - £ < p < 

3 + £ (cf. Proposition 7.5), then we may take v := V((%I + iT)""1/) in fi- 
Accepting that 

(8.19) V-.B^idty^H1'^) 

is a bounded operator when 1 < p < r, we deduce that v solves (8.17) and 
satisfies (8.18). In turn, the claim about (8.19) is readily seen from the 
identity 

(8.20) V(Trw) = w + 5U(dw) + R(dw), 

valid for any scalar w € iJ1'p(f2), and Gagliardo's trace lemma. Here R 
is an integral operator with a weakly singular kernel; cf. [MMT]. For our 
purposes, we only need to know that R maps 1^(0, KlTM) boundedly into 
Hl*{Sl). Based on these, (8.19) follows. 

Thus, we are left with proving the uniqueness of the solution of (8.17). 
However, this can be done in a similar manner to the uniqueness part in 
Lemma 8.2, by taking advantage of the fact that \l + K* is invertible on 

Bp_1/v{dSl) for | -£<p<3 + £. □ 

Finally, we are ready to present the 
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Proof of Proposition 8.3. Again, we follow closely [FMM]. Here the depar- 
ture point is to consider the operator 

(8.21) LP(fi, A^M) 3 u *-> d(5Uu -v)e dH^ity, 

where v is the unique solution to the Dirichlet problem 

' Av = 0 in £2, 

(8.22) I Trv = Tr (6Uu) G B*_1/p(dn), 

Lemma 8.4 guarantees that this assignment is well defined, linear and 
bounded if | — e < p < 3 + e for some s = e(f2) > 0. Using this and 
paralleling the argument in Proposition 8.1 yields the desired conclusion; 
we omit the details. The sharpness of the range of p's is proved in [FMM]. 
□ 

A- Remarks on l)p(dQ,). 

In (1.38) we defined ^(dQ) in terms of ^(dQ), which in turn was defined 
in terms of atoms. As explained in §1, the spaces i)p(dfl) and 5^(80) for 
(n— l)/n < p < 1 are defined analogously. Here we characterize ^(dQ) for 
p in this range in terms of ions, defined as follows. Pick a € (0,1). We say 
/ 6 Loc(dQl) is an ion, or an (a,p)-ion, provided 

(A.l) supipfCBr(xo)ndn 

for some XQ E dtl, r 6 (0, diam £2], and 

(A.2) ||/ik~(9n) < r-^1)^,        I /   fda <ra. 

Lemma A.l. For (n — l)/n < p < 1, 

(A.3) \f (dO) = {J2 «yU : U (a,p)-ion, Y, ^ < ^ ' 

Proof Temporarily denote the right side of (A.3) by tf?(dtt). Clearly 
t)p(dQ) C fjf (dCl). To establish the reverse inclusion we only need to check 
that there exists C > 0 so that 

(A.4) / (a,p)-ion =* / € ff(dQ) and WfW^a^ < C. 
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Then the inclusion ljf(0fi) C lf(dQ) will follow from l)P(dQ) = S&idSl) + 
L*(dCl) plus the fact that P «-»l1 if (n - l)/n < p < 1, and q > 1. 

As for (A.4), if / is as in (A.1)-(A.2), we write f = g + h with 

(A.5, />:=6r-<»-1>/PXBr(,o)nan,    b^^lLfj^ 

where A{xo, r) is the area of J5r(xo) nc?f2. Thus ^ is a p-atom, up to a factor 
of 1 + |6|. Note that, if K, = /c(fi) > 0 is a constant satisfying 

^n~l 
(A.6)  < Afar) < rn-lK,,    Vrc e 5(1,  Vr € (0,diamft], 

AC 

then |6| < C(AC). In particular, Hsll^p (^Q) < C(«). The remainder h is a 
function we call a charge (or an a-charge); it satisfies 

(A.7) supp/i C Br{xo) n 02,    ||/i||Loo(an) < ^ra-^-l\ 

Upon noting that a charge satisfies 

provided g := (n — l)/(^ — 1 — a) > 1, the desired conclusion follows.      □ 

The ionic characterization of \)p(d£l) readily shows the following. 

Lemma A.2. Let (n — l)/n < p < 1. Then the space \f(dQ) is a module 
over Ca(c?fi) for any a > (n — Ijfp"1 — 1). 

Proo/. Suppose that IIV^IIL
00
^) ^ -^ and |y?(a;) — <p(y)\ < Sdist(x,j/)a, for 

some a > (n — l)(p_1 — 1). If / is a p-atom, supported on BT(XQ) n5fi, then 
the decomposition 

(A.9)     <pf = af + (<p-ayf,    a = <p(xo),    \\(<p - a)f\\Loo < Br^n-l\ 

writes / as a linear combination of a p-atom and a /?-charge, where /? := 
a - (n - l)^"1 - 1) > 0. In particular, M^ : ^(fift) -> \f{dd) is bounded. 
D 

While independent of the (smooth) background metric used to define a 
distance on M, the space ^{dSl) does depend, generally speaking, on the 
Riemannian metric g which induces the surface element da on dSl. Specifi- 
cally, for further reference we record the following useful observation. 
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Lemma A.3. Assume that g and g1 are two metric tensors with continuous 
coefficients on M and denote by da, da' the surface measures induced on 
dQ. Also, for (n - l)/n < p < 1, denote by ff(dQ,dcr); ^(dfyda7) the 
corresponding (homogeneous) Hardy spaces and set p := da'/da € L00(9fi). 

Then Mp, the operator of multiplication by p is an isomorphism of 
t)p(dn, da) onto Jf (dft, da'). 

B. Cauchy integrals and layer potentials 
on l)p{dtt), (n - l)/n <p<l. 

To begin, let T be a Lipsehitz graph in Rn, of the form xn = ^(xi,..., xn_i) 
for some Lipsehitz function (p : R71"1 —» E. The first result is perhaps part 
of the "folklore" of the subject, but we believe it deserves a written proof. 

Proposition B.l. There exists N = iV(n) such that, if k G CN(Rn \ 0) is 
odd and homogeneous of degree — (n — 1), then 

(B.l) JCfix) = Jk(x- y)f{y) da(y),    x e Rn \ F 

r 

satisfies the nontangential maximal function estimate 

(B.2) mm\Lxn < c(p,r) Hfclsn-xllc^ ll/ll«i(D. 
for each p € ((n — l)/n, 1], where C(p, T) depends only on p and \\V<£>||jr,oo. 

Proof It suffices to estimate (/C/)* when / E L00(r) is a p-atom, and con- 
sidering the transformations of our various objects under translations and 
dilations, it suffices to consider normalized atoms, i.e., / € L00^) satisfying 

(B.3) supp/cBx(0)nr,    ll/llLcopr) < 1,    Jfda = 0, 

r 

assuming that 0 6 F. The hypotheses clearly yield 

(B.4) \x\>2=*\}Cf(x)\<C\x\-n, 

so 

x e F, |^| > 2 ==► (!Cf)*{x) < C\x\-n 

r\B2(0) 
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as long as(n-l)/n<p<l. The L2 theory due to [CMM] gives 

(B.6) j [{KfYfda < Cp\\{Kfr\\lHv) <C'p< +00, 

B2(0) 

so we are done. □ 

Granted Proposition B.l, we can establish the following variable coeffi- 
cient extension, by the same argument as used in [MT]. 

Proposition 3.2. There exists M = M(n) such that the following holds. 
Let b(x, z) be odd in z and homogeneous of degree — (n — 1) in z, and assume 
D*b(x,z) is continuous and bounded on Rn x S,n~1, for \a\ < M. Then 

(B.7) Bf(x):=Jb(x,x-y)f(y)d*(y),    xeRn\T, 
r 

satisfies 

(B.8)       ||(W||LP(r)<C(r)  sup  ||I>?6(x,z)||Loo(R»X5-i)||/||JsPt(r), 
|a|<M 

for each p € ((n — l)/n, 1]. 

Proof This follows by expanding 6(x, •) in spherical harmonics, 

(B.9) b(x,z) = ^(x^jiz/lzl) l^r^-1), 
j>0 

and then invoking Proposition B.l for each term. Since II^HL^II^'IIC^ ^ 
CKJ"*, we can use the p-homogeneity and the subadditivity of || • ||^p/r) to 
prove (B.8) by taking K large; compare the proof of Proposition 1.2 in [MT]. 
□ 

We are also interested in estimates on 

(B.10) Bf(x) := J b(y, x - y)f{y) da(y),        x e Rn \ T. 

r 

In this case, bj(x) in the expansion (B.9) is replaced by bj(y), which acts as a 
multiplication operator on /. Now neither ^(T) nor f)p(r) is a module over 
the space of bounded continuous functions, but, for any compact To C F, 
l)p(To) is a module over Cr(To), for r > (n — IJCp""1 - 1), so we have the 
following result. 
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Proposition B.3. In Proposition B.2, assume in addition that D°b(x,z) 
is Holder continuous on W1 x S*1'1, of exponent r > (n - l)(p-1 - 1). Let 

To C F be compact. Then 

(B.ll) ||(H/)*|Up(r0) < C sup   sup ||I>^(x,z)||Cr(ro)||/||(,p(r0), 
|Q|<M |Z|=1 

for f supported on To- 

The following is a simple consequence; compare Proposition 1.5 of [MT]. 
Denote by (73% the classical m-symbols p(x, f) which are Cr in x, for some 
r € [0, oo), while still smooth in £ € Mn\0. Also, let To be a compact subset 

ofr.' 

Proposition B.4. lfp{x,0 € C0^1 has principal symbol that is odd in f, 
then the integral kernel K(x,y) ofp(x,D) has the property that 

(B.12) 1Cf{x) = j K{x,y)f{y)My),    x€Rn\r, 
r' 

satisfies, for each (n - l)/n < p < I, 

(B.13) IK/C/niiPcro) < CH/ll^o).     ™PPf ^ To- 

If (n - l)/n < p < 1, r > (n - iXp"1 -1)^ «(e, x) € CTS? has principal 
symbol odd in £, t/ien i/ie integral kernel K(x,y) ofq(D,x) has the property 

that 

(B.14) JCf(x) = JK(x,y)f(y)da(y),    xeRn\T, 

r 

(B.15) ll(^/)*llLp(ro) ^ C'll/IIWo).    s^/ ^ ro- 

Proposition B.4 extends to the setting of pseudodifferential operators on 
a compact manifold, containing a Lipschitz domain ft, with dQ, replacing P. 
In the process, Lemma A.3 is used. 

Consider now the single layer potential (1.8), under the hypotheses on 
M, ft, L made in §1 and recall the decomposition (2.4). Now Va;eo(x - y, y) 
satisfies the conditions of Proposition B.3 and ei(x,y) satisfies (2.5). Hence 
the contribution of ei(x,y) is easy to estimate (e.g., as in (B,5)-(B.6) but 
more elementary), and we have: 
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Proposition B.5. For (n — l)/n < p < 1, 

(B.16) WWmirm $ cM\\irm> 

uniformly for f 6 fp(dfi). 

Turning to boundary operators, recall first the notation introduced in 
connection with (7.27). Now, if u 6 Cl{Q) is a scalar function and g is a 
two-form with coefficients in F)p(<9fi) for some (n — l)/n < p < 1, we shall 
say that u A du = g provided 

(B.17) Jim / (vt A dut, ip) dat =  A (y, ^> da, 

dCt dQ 

for each two-form V7 with coefficients in Ca(dCl), where a := (n — l)^"1 — 
1) > 0. Recall that we do not make any notational distinction between 
functions and forms with coefficients in l)p(dQ). 

Proposition B.6.  The operators 

(B.18) if*: i)p(dn) —> i)p(dn) 

and 

(B.19) i/ A dS : l)p(dn) —> l)p(dn) 

are well defined and bounded for each (n — l)/n < p < 1. 

Proof In dealing with the first operator, there is no loss of generality in 
assuming that V = 0 on fi, which we shall do. Consider next / in L2(5f2), 
say. Then 

(B.20)        dvSfzlfi&Sl)   and   R<S/||„P(an) < C||(V«S/)*||iP(afi). 

As explained in the course of the proof of Theorem 7.9, this follows by adapt- 
ing the results in [Wi] to the present context. Now, (B.20) and Proposition 
B.5 imply that 

(B.21) —/ + #*)/ ^ C'll/llfjpCafi) 

and, as far as (B.18) is concerned, the desired conclusion follows by the usual 
density argument. 
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The arguments for (B.19) is similar and we omit it. This finishes the 
proof of the proposition. □ 

In closing, let us point out that by combining the result (1.13) with 
Proposition 3.3, we deduce from Proposition B.5 an alternative proof of the 
fact that K* and VTS are bounded operators on ^(dQ). Also, if M has 
a metric tensor of class C1+r for some r > 0, then we can make use of the 
following lemma below to give an alternative proof of the fact that K* and 
VTS

1
 are bounded on ^(dCl) for 1 — e < p < 1. 

Lemma B.7 ([CW]). Let (X, /x, d) be a homogeneous space in the sense of 
[CW], where d is the quasi-distance and ji is the doubling measure on X. 
Also, denote by Off the class of atomic Hardy spaces associated with (X, /x, d) 
and letm stand for the measure distance, i.e., m{x,y) := m/{<iju(i?) : x, y € 
B, B ball}. Consider 

(B.22) Tf(x) := / fc(x, y)f(y) dp{y\        x e X, 
Jx 

an integral operator on X. Assume that T is bounded on I?{X,dfjL) and 
that, for some Co, Ci, 6 > 0, the kernel satisfies 

m(y,yoy9 

m(x,yo) mfayoY 
(B.23) \Hx,y)-k(x,yo)\<Co 

uniformly for m(x,yo) > Cim(y,yo). Then there exists s > 0 so that 

(B.24) T : S)p —> Sf     is bounded 

for 1 — s < p < 1. If in addition, Tf integrates to zero for f € L2{X, d/i), 
then we may also take p = 1 in (B.24). 

Let us check that Lemma B.7 applies to, for instance, the operator K* 
on l)p(dQ,). Recall that its integral kernel is (i/(x), dxE(x, y)), where E(x, y) 
has been introduced in (1.7). Prom §2 we know that E{x, y)\/g(y) = eo(x — 
y> y) + ei(a;, y), where eo(^, y) is independent of V and satisfies (7.26) and, if 
the metric tensor is C1+r for some r > 0 then ei(x, y) satisfies (7.25). Thus, 
in the case under discussion, (B.23) follows by estimating the contributions 
from eo(x — y,y) and ei(x,y) separately. Consequently, the operator K* is 
bounded on t)p(dQ,) for 1 — e < p < 1. There remains the situation when 
p = 1. To this end, assume for a moment that V = 0 on H. Since in 
this case, by the divergence theorem, K*f has a vanishing first moment, 
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V/ G L2(50), the desired conclusion follows directly from the last part in 
Lemma B.7. Now, a different choice of V will (by the fact that eo(x — y, y) 
is independent of V and (7.25)), affect K* only by a bounded map from 
L1((9fi) into LP0(5n), for some po > 1. By (1.39), this suffices to conclude 
that K* remains bounded for p = 1 also. The argument for VTS is similar. 
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