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We demonstrate that for all but a finite number of Dehn fillings on 
a cusped manifold, the core of the attached solid torus is isotopic 
into every Heegaard surface for the filled manifold. Furthermore, 
if the cusped manifold does not contain a closed, non-peripheral, 
incompressible surface, then after excluding the aforementioned set 
and those filled manifolds containing incompressible surfaces (also 
a finite set) every other manifold obtained by Dehn filling contains 
at most a finite number of Heegaard surfaces that are not Heegaard 
surfaces for the cusped manifold. It follows that these manifolds 
contain a finite number of Heegaard surfaces of bounded genera. 
For each cusped manifold, the excluded manifolds are contained in 
a finite set that can be determined algorithmically. 

1. Introduction. 

This paper continues the authors' investigation into the Heegaard structure 
of manifolds obtained by Dehn filling [10]. Throughout, X will denote a 
cusped manifold, i.e. an orientable 3-manifold with a single incompress- 
ible torus boundary component. Closed 3-manifolds can be obtained by 
performing Dehn filling, attaching a solid torus to the boundary of X. It 
is straightforward to see that every Heegaard surface for X will be a Hee- 
gaard surface for every manifold obtained by performing a Dehn filling on 
X, While it is possible that a filled manifold possesses a Heegaard surface 
that is not a Heegaard surface for X, here we are able to develop restrictions 
to this phenomenon. 

Johannson (see [5]) has shown that a-toroidal Haken manifolds have 

1The authors would like to thank the topology groups at Oklahoma State Uni- 
versity, the University of California, Santa Barbara and the University of Melbourne 
for their hospitality during this research. Partial support was provided by the NSF 
through grant DMS95-10505/GIG. 
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only finitely many Heegaard surfaces of bounded genera2 and Rubinstein 
[11] has shown that non-Haken manifolds contain at most a finite number of 
Heegaard surfaces of bounded genera. For non-Haken manifolds we achieve 
a weaker result, Corollary 5.2, with different methods. Our main objective 
is connecting all the Heegaard surfaces of a filled manifold to those of the 
manifold being filled as much as possible. 

Pick a manifold M obtained by filling X, and E a Heegaard surface for it. 
If the core of the attached solid torus is not isotopic into E the pair (M, E) 
is called bad. The manifold M is called bad if it contains some Heegaard 
surface E so that (M, E) is bad. A slope is called bad if the corresponding 
filled manifold is bad. It has been shown in [9] and [10] that good surfaces, 
i.e. Heegaard surfaces for M into which the core is isotopic, are either 
Heegaard surfaces for X or were obtained from such a surface by a single 
destabilization along the meridian. It is therefore desirable to rule out bad 
fillings as much as possible. 

Indeed, the set of bad fillings was constrained in [7] and [9], However, 
in both those works the authors had to assume the surfaces discussed had 
bounded genera. The main goal of this paper is to remove this assumption. 

For convenience we will assume that X is given via a one-vertex tri- 
angulation. (We can obtain a one-vertex triangulation by starting with a 
triangulation of X for which all of the vertices are in the boundary [1], "clos- 
ing the book" on any pair of adjacent triangles in the boundary which do 
not share all their vertices, and "layering on" additional tetrahedra when it 
is necessary to create additional book covers.) 

Theorem 6.2. Let T be a one-vertex triangulation of the cusped manifold 
X. IfT,cMisa bad Heegaard surface then the meridian of M is either 
the slope of a boundary edge of the triangulation or the slope of a normal or 
almost normal surface in (X,T). 

In [4] it is shown that the set of slopes bounding normal or almost normal 
surfaces is finite, and of course there are only three boundary edges in a one 
vertex triangulation. Thus we obtain the following corollary: 

Corollary 6.6. A cusped manifold X has only finitely many bad slopes. 

In other words, for all but a finite set of manifolds obtained by Dehn 
filling on a cusped manifold the core of the attached solid torus is isotopic 

throughout this paper,  "surfaces of bounded genera" means a collection of 
surfaces so that there exist an upper bound for their genera. 
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into every Heegaard surface possessed by the filled manifold. Moreover, as a 
consequence of Corollary 6.6 and the work in [10], with the exception of the 
finite set of bad slopes and a (possibly infinite) set of slopes arranged along 
a finite number of lines in the Dehn surgery space, every Heegaard surface 
for a manifold in the Dehn surgery space is a Heegaard surface for X. 

We then provide an application motivated by the examples of Casson 
and Gordon (see, e.g. [15]): pretzel knots that possess an infinite number 
of fillings producing manifolds each of which possesses an infinite number of 
strongly irreducible Heegaard surfaces (of arbitrarily high genera). Funda- 
mental to this construction is the fact that X contains an infinite number 
of essential spanning surfaces (of arbitrarily high genera). See the Examples 
in Section 4. 

In fact, we demonstrate here that if a cusped manifold X possesses an 
infinite number of fillings where the filled manifolds each have an infinite 
number of Heegaard surfaces which are not Heegaard surfaces for X, then 
X possesses an infinite number of essential surfaces with boundary (each 
with at most 2 boundary components). In turn, this implies that X also 
contains a closed non-peripheral essential surface. 

A small manifold is one that does not possess a closed essential non- 
peripheral surface. For small manifolds we get: 

Theorem 5.1. If X is small then all but a finite number of manifolds in 
D(X) contain at most a finite number of Heegaard surfaces that are not 
Heegaard surfaces for X. 

The set of manifolds containing infinitely many Heegaard surfaces that 
are not Heegaard surfaces for X is contained in a finite set that can be 
determined algorithmically. 

Using Johannson's finiteness result (see above) we get: 

Corollary 5.2. If X is small then all but a finite number of manifolds in 
D(X) have a finite number of Heegaard surfaces of bounded genera. The 
excluded manifolds are contained in a finite set that can be determined algo- 
rithmically. 

This article is written in six sections: Sections 2 and 3 contain back- 
ground material and definitions (some of which are new so the reader is 
encouraged to look over them). Sections 4 and 5 derive all the information 
necessary about "good" Heegaard surfaces, i.e. Heegaard surfaces for a filled 
manifold onto which the core of the attached solid torus can be isotoped. In 
Section 6 we treat bad Heegaard surfaces (i.e. Heegaard surfaces that are 
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not good). This final section utilizes and assumes familiarity with Gabai's 
thin position argument and normal surface theory. 

The authors would like to thank William Jaco, Hyam Rubinstein and 
Martin Scharlemann for inspiring conversations. 

2. Good, Bad and Other Basic Concepts. 

All surfaces and 3-manifolds considered are orientable and compact. We give 
the following definition of a Heegaard surface, and note that it is equivalent 
to the usual definition of a Heegaard surface as the common boundary of 
two compression bodies. For basic definitions see [12]. 

Definition 2.1. A closed, 2-sided surface E embedded in a 3-manifold M 
is called a Heegaard surface if M can be constructed by attaching 2 and 3 
handles to a product neighborhood, S x /, of S C M. 

A Heegaard surface is called stabilized if there exist two disks in its com- 
plement, meeting transversely in exactly one point. Otherwise the surface 
is said to be non-stabilized . 

Throughout we will consider X to be a cusped manifold, a 3-manifold 
with a single incompressible torus boundary component, denoted T. Our 
main tool for studying manifolds is via Dehn filling, i.e. attaching a solid 
torus to the cusped manifold X along dX. The collection of all manifolds 
thus obtained is called the Dehn Filling Space, denoted D(X). At times we 
will restrict our attention to small cusped manifolds, i.e. cusped manifolds 
that do not contain a closed non-peripheral incompressible surface. Dehn 
filling on a small cusped manifold will produce at most a finite number of 
manifolds that are Haken , i.e., contain a closed, two-sided, incompressible 
surface [3]. The results of this paper hold also when X has more than 
one boundary component, and the Dehn fillings are performed along T, a 
distinguished incompressible boundary torus component. In that case, when 
referring to filled manifolds, Haken and non-Haken should be replaced by 
not small and small, respectively. 

Since attaching a solid torus is equivalent to attaching one 2-handle and 
one 3-handle, immediately from our definition of Heegaard surface we get 
that any Heegaard surface for X is a Heegaard surface for any filled manifold. 
The converse is not true: for example the filled manifold may be iS3, and 
a Heegaard surface for it is 52. This will never be a Heegaard surface for 
X. (Note that the core of the attached solid torus is never isotopic into this 
S2.) 
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Prom this point on, we will be looking for obstructions for such phenom- 
ena. The main concepts are defined below: 

Definitions 2.2. 1. Let M be a manifold obtained by filling X and E 
a Heegaard surface for it. The pair (M, E) is called bad if the core of 
the attached solid torus is not isotopic into E. 

2. A filling is called bad if the filled manifold contains a Heegaard surface 
E so that (M, E) is bad. Note that E can be assumed to be non- 
stabilized. 

3. The converse of bad is good. 

4. A good Heegaard surface for M € D(X) is called non-trivial if it is 
non-stabilized and cannot be isotoped in M to be a Heegaard surface 
for*. 

3. The Circular Logic of Destabilization Lines. 

The material in this section is not new and is presented here for completeness 
of presentation. 

The good<->bad dichotomy is essential to our study. In Section 6 we 
show that there are only finitely many bad fillings, and here we analyze good 
fillings. A secondary dichotomy appears when considering a good Heegaard 
surface E C M € D(X): either E is a non-trivial Heegaard surface or it is a 
Heegaard surface for X (perhaps after isotopy in M). We are quite pleased 
when it is a Heegaard surface for X, and aim to place restrictions on the 
case when it is not. 

There are two operations that we will need to perform with surfaces in 
a good manifold. First, if E is a good Heegaard surface, we may isotope the 
core of the attached solid torus into E and drill it out. The resulting surface 
is properly embedded in X and has two boundary components. By choice 
of isotopy we may be able to obtain more than one surface in this fashion, 
any one of these will be denoted by E*. Conversely, given a surface E* with 
two boundary components that is properly embedded in X, we get a closed 
surface E* C M by "capping it off", i.e. by attaching to dE* one of the two 
annulus components of T — <?E*. 

Definitions 3.1. 1. A twice punctured surface (E*,d£*) C (X,T) is 
called almost Heegaard if X can be constructed by thickening E* U T 
and attaching 2 and 3 handles, where no attachments are performed 
along T (cf. Definition 2.1). 
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2. Let a be a slope on T. By the line defined by a we mean the set of all 
slopes intersecting a once exactly. 

3. An almost Heegaard surface S* above is called genuine if for some 
manifold M on the line determined by the slope of E* the closed 
surface E* obtained by capping it off is a non-trivial Heegaard surface 
for M. (RecaU Definition 2.2 #4). 

Consider an almost Heegaard surface (E*,5E*) C {X,T). Cap it off to 
obtain E*. Then E* is a Heegaard surface for any manifold obtained by 
filling along a slope which meets a component of <9E* once (see [6]). If E* 
is a genuine almost Heegaard surface, by assumption E* is not a Heegaard 
surface for X. However, as Figure 3.1 suggests, after stabilizing E* once a 
Heegaard surface for X is obtained. In the compression body not containing 
T there is a properly embedded disk D which runs along the attached handle 
in a single arc. 

Figure 1:   Stabilizing a good Heegaard surface for M to get a Heegaard 
surface for X. 
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Conversely, starting with a non-stabilized Heegaard surface S for X that 
possesses a disk D as above3 there is a line of manifolds in JD(-X') for which 
E destabilizes, as the meridian intersects D once. After such a filling, desta- 
bilize E. Clearly the core is isotopic into the destabilized surface. Isotope it 
into that surface and drill it out, obtaining E*. Thus we obtain an almost 
Heegaard surface. Note that the slopes for which E destabilized are precisely 
the slopes which meet E* once. We thus complete the circle, and motivate 
the following definition: 

Definition 3.2, The line defined by the slope of a genuine almost Heegaard 
surface is called a destabilization line. 

Remark. Let M be a filled manifold that possesses a Heegaard surface E 
that is not isotopic in M to a Heegaard surface for X. According to our 
definitions at least one of the following holds: 

1. M is a bad manifold, 

2. M is a Haken manifold, or 

3. M is a good non-Haken manifold and therefore lies on a destabilization 
line defined by the slope of the genuine almost Heegaard surface E*. 

We show in Section 6 that there are only a finite number of manifolds of 
the first type. If X is small then manifolds of the second type are finite in 
number. In the next section we show that although there may be an infinite 
number of manifolds of the third type, they are contained on a finite number 
of lines in the Dehn surgery space, D(X). 

4. Incompressibility of Genuine Almost Heegaard Surfaces. 

Using Corollary 6.6, in studying Heegaard structure in the Dehn Surgery 
Space we do not study bad fillings (until Section 6), nor do we consider 
trivial good fillings. 

As discussed above, a non-trivial good surface is a destabilization of 
a Heegaard surface for X, and the manifolds containing such surfaces are 
arranged along fines in D(X). A priori, there can be infinitely many such 

3We describe the important property of D: D is an embedded disk in the com- 
pression body not containing T. There exists a second disk D' in the compression 
body V containing T so that V cut open along D' contains a piece homeomorphic 
to T2 x / (where T2 is the torus) and D intersects that piece in a single arc. 
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lines, and surfaces for X may destabilize in many different ways (that is, 
one surface may destabilize in infinitely many ways yielding non-isotopic 
surfaces or infinitely many surfaces for X may destabilize in one filling). In 
this section we develop a constraint to these phenomena. 

Examples. 

1. Morimoto and Sakuma have demonstrated that certain (toroidal) knot 
exteriors admit an infinite number of non-isotopic Heegaard surfaces 
of genus 2 [8]. In [13] Rubinstein and Scharlemann demonstrated that 
there is a bound on the genus of the common stabilization for every pair 
of these surfaces. It follows that there is a single surface that stabilizes 
this entire collection (recall that stabilization is unique). Therefore 
there must exist a surface that destabilizes in infinitely many ways. 

2. The Casson-Gordon examples were constructed in manifolds arranged 
along a destabilization line in the Dehn Surgery Space of a certain 
pretzel knot. In each manifold on the line infinitely many Heegaard 
surfaces for the knot exterior destabilize, each yielding a non-stabilized 
Heegaard surface for the filled manifold. While it is possible that 
the destabilized Heegaard surfaces are isotopic in every one of the 
filled manifolds to a Heegaard surface for the knot exterior, this seems 
unlikely. 

An essential ingredient in this construction is the fact that the pretzel 
knot exterior contains an infinite collection of free spanning surfaces of 
arbitrarily high genus. This implies the existence of a closed essential 
surface of genus at least 2 in the knot exterior (c.f. Theorem 5.1). 

These examples provide evidence for the necessity of the assumption that 
X is small in some of our statements. 

We first place restrictions on destabihzation lines. (This is a version of 
the work done in [10], simplified greatly by the assumption that the filled 
manifold is non-Haken, and with a stronger conclusion.) 

Theorem 4.1. LetX be a small cusped manifold, M 6 D{X) a non-Haken 
manifold, and S C M a non-trivial good Heegaard surface. 

Then E* is essential. 

Remark. We may be able to isotope the core onto S in more than one way, 
obtaining more than one surface that fits the description of E* above (see 
Section 3). Theorem 4.1 holds for any of them. 
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Proof. Assume to the contrary that E* compresses. Denote by F the surface 
obtain by compressing E* maximally. Since M is an irreducible non-Haken 
manifold, the surface E is strongly irreducible (it is not stabilized). Thus 
the compressing disks for E* form an embedded collection of disks A which 
lie only to one side of the surface E*. 

Case 1: JP is essential. 

1. If F is an almost Heegaard surface: cap F off to obtain F. Then 
E = E* compresses down to F, a Heegaard surface for M. So the 
Heegaard surface F was obtained by compressing the Heegaard surface 
E along the disks A to only one side of E. But this implies that 
the Heegaard surface E C M is a Heegaard surface for one of the 
compression bodies bounded by F, and is therefore, by Scharlemann 
and Thompson [14], a stabihzation of F, contrary to our assumption. 

2. Otherwise at least one of the components of X cut open along F is 
not a compression body, or it is but F is not its attaching region. This 
component will contain a closed incompressible surface not parallel to 
dX, which remains essential in X (since F is essential), contradicting 
our assumption that X is small. 

Case 2: F is inessential. Since F is incompressible it must be a boundary 
compressible annulus. To complete the proof, we will argue that E is trivial. 

Let D denote the boundary compressing disk for F. Since E was a 
strongly irreducible Heegaard surface, the collection A was attached only 
to one side of E*, and this must be the same side to which D now lies. 
Tubing F to retrieve E* we observe that D is disjoint from the tubes. Hence 
D is a boundary compressing disk for E*, connecting distinct boundary 
components. 

To show that E is trivial, fill X and push the core of the attached solid 
torus 7 into the side of E that contains D. Cut M open along E, denoting 
the side containing D by V. Let A be the annulus between 7 and E. Note 
that a neighborhood of A union a neighborhood of D form a solid torus of 
which 7 is a core, and this solid torus is attached to the rest of V by a disk. 
Hence E is a Heegaard surface for X, a contradiction. □ 

Prom Hatcher ([3]) we get: 
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Corollary 4.2. If X is small then there are only finitely many destabiliza- 
tion lines in D(X) that contain a non-Haken manifold with a non-trivial 
good Heegaard surface. 

These destabilization lines are determined by slopes that are contained 
in a finite set that can be determined algorithmically. 

Remark. We do not retrieve the stronger result of [10] which establishes 
finiteness of destabilization lines in general, as we do not consider filled 
manifolds which are Haken. It is possible that a destabilization line will 
be determined by a surface E in a Haken manifold while S is isotopic to a 
Heegaard surface for X in the non-Haken manifolds on that line. No such 
example is known to us. 

5. Finiteness of Heegaard Surfaces 
for Most Non-Haken Manifolds. 

Using Corollary 6.6 we can now show: 

Theorem 5.1. If X is small then all but a finite number of manifolds in 
D(X) contain at most a finite number of Heegaard surfaces that are not 
Heegaard surfaces for X. 

The set of manifolds containing infinitely many Heegaard surfaces that 
are not Heegaard surfaces for X is contained in a finite set that can be 
determined algorithmically. 

Proof We will exclude from consideration all manifolds in D(X) that contain 
a bad Heegaard surface, an incompressible surface or are reducible. This is 
a finite set by Corollary 6.6 and [3]. 

It suffices to show that each of the remaining manifolds has but a finite 
number of non-stabilized Heegaard surfaces that are not Heegaard surfaces 
for X. This is because any stabilized Heegaard surface for a good filled 
manifold is also a Heegaard surface for X. To see this, destabilize the 
stabilized Heegaard surface, by assumption the core of the attached solid 
torus is isotopic onto the resulting Heegaard surface. Now stabilize this 
surface as shown in Figure 3.1, obtaining a Heegaard surface for X. This 
stabilization was unique (in M) and the resulting, i.e. the original, stabilized 
surface is also a Heegaard surface for X. 

Now suppose that a filled manifold M contains an infinite number of 
non-stabilized Heegaard surfaces that cannot be isotoped to be Heegaard 
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surfaces for X. Isotope the core of the attached solid torus 7 into each of 
the surfaces. Drill 7 out to obtain {E*}^, an infinite collection of genuine 
almost Heegaard surfaces in X. Since M is non-Haken, Theorem 4.1 implies 
that these are all essential. 

As there are only finitely many slopes that bound essential surfaces, 
there exists a slope supporting infinitely many surfaces. This implies that 
the manifold X contains a non-peripheral closed essential surface by using 
a standard normal surface argument. We give an outline of the argument 
here. 

Choose least weight normal representatives of each of the essential sur- 
faces. Since there are an infinite number of surfaces, one of these surfaces 
must be able to be expressed as the normal sum of another surface in the 
collection and a closed surface, E* = E^ + C Since the surfaces were taken 
to be least weight the closed surface C is essential and non-peripheral. More- 
over, if E* and E| are the same genus, then the closed surface is an essential 
torus, and if they have different genera, then it is an essential surface with 
genus at least 2. □ 

This implies finiteness of Heegaard structure of bounded genus for "al- 
most all" manifolds, as Johannson proved this for Haken manifolds, which 
includes X. Since the cusped manifold X is a-toroidal and Haken, it contains 
only a finite number of Heegaard surfaces of bounded genera [5]. Combining 
this with the previous theorem we have: 

Corollary 5.2. If X is small then all but a finite number of manifolds in 
D(X) have a finite number of Heegaard surfaces of bounded genera. The 
excluded manifolds are contained in a finite set that can be determined algo- 
rithmically. 

6. Normal and Almost Normal Heegaard Surfaces. 

In this section we make extensive use of normal/almost normal surface the- 
ory and of thin position (see [2] for the basic concepts). 

Let 7 be a knot in a manifold M. Let 7^ be a knot embedded in the 
torus c?iV(7) so that the algebraic intersection of jp with a meridian of iV(7) 
is ±p. Then we say that 7p is a p-cable of 7. So a 0-cable of a knot is the 
meridian of Nfa) and any 1-cable is ambient isotopic to 7 within N^y) (or a 
longitude). (A p-cable need not be unique, for example the (5,1) and (5,2) 
torus knots are distinct, but both are 5-cables of the unknot.) 

Given a height function on a manifold and a knot embedded in it, the 
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bridge number of the knot is the minimal number of minima (which equals 
minimal number of maxima) of the knot, taken over all Morse presentations. 
Bridge zero means the knot is isotopic into a level surface. Consistent with 
our definition from the previous sections, we call such a knot good, and 
a knot not isotopic into a level surface-bad. It is well known a Heegaard 
surface induces a height function (see [12]) on a manifold, and a knot is bad 
w.r.t. the Heegaard surface if and only if it is bad w.r.t. the induced height 
function. 

Before going to the main theorem, we provide the following lemma: 

Lemma 6.1. Let S C M be a Heegaard surface which is bad with respect 
to a knot 7 C M. Let 7^ be a p-cable 0/7. Then ^v has bridge number at 
least p (with respect to the height function induced by Ti). 

Proof Let A be the annulus defining the cable structure, i.e. an annulus 
with one boundary component running once along jp and the other running 
p times along 7. 

Isotope 7^ to be in minimal bridge position, and (subject to that con- 
straint) isotope 7 to be in thin position. Since 7 is bad it cannot be isotoped 
into a level surface. A standard application of Gabai's thin position argu- 
ment gives us a level surface, meeting 7, so that the intersection of the level 
surface with the annulus A does not contain an arc that is boundary paral- 
lel in A into 7 (cf [9], another application of thin position to the study of 
surfaces with boundary). 

Thus every arc with an endpoint on 7 has the other endpoint on 7^. As 
there are at least two intersections for 7 with the level surface, there will be 
at least 2p arcs of intersection (one for each sheet of A near 7) which implies 
that the bridge number of jp is at least p.4 □ 

This lemma gives us a criterion to detect when the core of the attached 
solid torus 7 is isotopic into a Heegaard surface (is good): if 7^, p > 1, is 
isotopic into the Heegaard surface then so must be 7. 

Remark (The Daisy Lemma). If S is strongly irreducible, more is true: 
if the transverse intersection dNfr) and E contains the curve jp (p > 2), 

4In fact, this argument gives us a little more: the bridge number of 7^ is at least 
p times the width of the thickest level of 7 in its thin position, but as we have no 
control over that number we phrased Lemma 6.1 as we did. 
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then E is a Heegaard surface for the knot exterior X = M — ^(7). We shall 
not prove this surprising fact here. 

In [16] Thompson gave a description of Rubinstein's recognition algo- 
rithm for S3 (see [11]). Her argument was modified in [4] to provide a recog- 
nition algorithm for a knot exterior in S3. Both of these arguments apply 
thin position to the genus 0 height function on S3. Here we adapt these ar- 
guments to manifolds of higher genus. The essential ingredient added here 
is Lemma 6.1, which allows us to conclude that the intersection between the 
level surface and boundary torus is in meridional curves (p = 1), or the knot 
is good with respect to the Heegaard surface. 

Endow X with a triangulation T that has one vertex per boundary 
component. Then one vertex and three edges of the triangulation lie in T. 
We refer to the three edges in the boundary component T as boundary edges, 
and note that each edge represents a slope in T. The vertices in dX will 
be called boundary vertices. (Vertices and edges on dM = dX — T play no 
special role.) 

Theorem 6.2. Let T be a triangulation of the cusped manifold X with one 
vertex per boundary component If E C M is a bad Heegaard surface then 
either 

1. the meridian of M is the slope of a boundary edge of the triangulation, 
-or- 

2. the meridian of M is the slope of a normal or almost normal surface 
m(X,T).5 

Proof. 

Finding e. T restricted to T consists of two triangles. After filling along T, 
T embeds in M. (Of course, T is not a triangulation of M, one component 
of the complement of T^ is a solid torus.) The Heegaard surface E induces 
a height function h : M —► [0,1], where /i~1(0) and h~l{l) are embedded 
graphs union 9M, and h~l(t) for t € (0,1) is a surface isotopic to E. The 
boundary vertex is now the unique vertex of T^0) in the interior of M. 

Put T^ (the one-skeleton of T) in thin position w.r.t. h subject to 
the condition that the boundary vertex is held at height 1. To make use of 
thin position we need a boundary edge to have bridge number at least 2. 

5The boundary of this surface may also contain trivial curves. 
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The boundary edges are cables of the core of the attached solid torus. By 
Lemma 6.1, if one is a p-cable for p > 2 it must have bridge number 2 or 
more (by assumption the core is bad); assume all are p-cables for p = 0 or 
p = 1, i.e. each is a meridian or a longitude. It is not possible for all three 
to be longitudinal, so one must be meridional, this is the second conclusion 
of the theorem. 

Prom this point on we shall assume that the meridian is not a boundary 
slope, and hence there exists a boundary edge with bridge number at least 
2. Call it e. 

Finding normal/almost normal surfaces. Near the minima (resp. 
maxima) of 7 bend the surfaces in T^ upwards (resp. downwards). Per- 
turb T^ slightly so that h\T^ is Morse. A layer in M is a subset of the 
form /i""1([a, 6]), where a and b are consecutive critical points of hlT^. A 
layer is called thick if b is a maximum of h\T^ and a a minimum. 

We show that every thick layer contains a normal/almost norifial surface: 
Since we bent T^ near the minima and maxima, applying the standard 

thin position argument yields a level surface between a and b that does not 
have a high disk nor a low disk. Hence all curves of intersection of that level 
with T^ are normal curves or are disjoint from the 1-skeleton. 

Although Thompson proved the following lemmata for planar surfaces, 
the original proofs go through for a height function induced by a Heegaard 
surface of any genus. We omit them here. 

In what follows we will pick a surface E* = £ CiX, where S = h~~l(t) for 
some t. (Our goal is to find the right value of t.) Let (E*,<9E*) C (X,T) 
be a level surface. The lemmata concern the intersection of E* with the 
tetrahedra of T: 

Lemma 6.3 (Thompson). There does not exist a tetrahedron in T so that 
the intersection o/E* with this tetrahedron contains a curve of length greater 
than 8. 

Lemma 6.4 (Thompson). There does not exist a tetrahedron in T so that 
the intersection o/E* with this tetrahedron contains two normal curves of 
length 8. 

Lemma 6.5 (Thompson). There do not exist two distinct tetrahedra so 
that the intersection of E* with each of these tetrahedra contains a normal 
curve of length 8. 
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If S* intersects a face of the triangulation in a simple closed curve com- 
press it; within each tetrahedron compress it until it is a collection of disks. 
We may throw away any components that do not meet a pre-chosen edge. 

The resulting surface is a normal or almost normal surface (using only an 
octagon, no tubes). We may require that it meets the edge e if the original 
surface did. 

Finding a normal/almost normal surface with an essential bound- 
ary component. We use the boundary edge that has bridge number 
greater than one, say e, to show that the intersection of T with one of the 
normal/almost normal surfaces described above must contain an essential 
curve. 

Assume the contrary: all boundary components of all normal/almost 
normal surfaces we found are inessential. Since T restricted to T consists of 
two triangles, all normal curves of intersection that are inessential are vertex 
linking. The outermost of those bound a disk, name it D. 

The edge e consists of two arcs, ei = eflD and 62 = cZ(e — ei). (That ei 
is a single arc follows from that fact that dD is a normal curve.) If 62 had 
both a minimum and a maximum, the procedure above would have yielded 
a normal/almost normal surface, with its boundary meeting intfa). But 
by construction only points from ei can intersect these surfaces. So 62 has 
only a single minimum (or maximum). Isotope ei into dD (which is in a 
level surface) and perturb it to have a maximum (resp. minimum). Clearly 
ei has bridge number one in this presentation, a contradiction. 

Using the surface. Let E* denote the level surface that intersects dX 
in an essential curve. If the essential component of the boundary of E* is 
longitudinal 7 is good, contrary to our supposition. If it is not meridional 
or longitudinal it is some cable of 7. Since this cable lies on the Heegaard 
surface it has bridge number zero and by Lemma 6.1 we again get that 7 is 
good. Hence we conclude that it is a 0-cable, i.e. it is meridional. 

In [4], Jaco and Sedgwick proved that on dX there are only finitely 
many slopes bounding almost normal surfaces. Add to this the three slopes 
of boundary edges. Together with this, Theorem 6.2 yields an analog to 
Hatcher's theorem [3] for Heegaard surfaces. These slopes are a subset of 
finite set that can be detected algorithmically. □ 

Corollary 6.6. A cusped manifold X has only finitely many bad slopes. 
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Proof. Immediate. □ 
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