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1. Introduction. 

We consider parabolic two-component systems of the form 

(1.1) dtu = figtt - F'(u) 

on the whole real axis —oo < x < oo where u = (^1,^2) € R2, F(u) is a 
given smooth non-negative potential which has the gradient F'(u) which is 
Lipschitzean in u. We consider solutions bounded for all x, t. Such solutions 
include in particular x-periodic solutions. 

Our main goal is to describe domains in the function space which are 
invariant with respect to this equation, and which correspond to stable, spa- 
tially chaotic patterns. Existence of such domains may model persistence 
of spatially chaotic patterns in many natural phenomena. It turns out that 
the spatial behavior can be very complex, and the complexity can be de- 
scribed in terms of appropriate algebraic-topological notions. In the scalar 
case when u = -ui, constant solutions u — m^ where m = const satisfies the 
equation Ff{rn) = 0, play an important role. Solutions mi of this equation 
divide the real line R1 into a number of intervals 0; = {u : ra; < u < rai+i}. 
If initial data tx(rr, 0) of (1.1) take value in only one of these intervals, then 
it is well known that the Maximum Principle implies that the values u(x,t) 
stay in this interval for alH > 0 (see [13]). Hence, a geometrical partition of 
R1 explicitly defines a number of invariant domains in the function space of 
initial data of (1.1). In the case of the two - component system we consider 
here, the Maximum Principle is not applicable; the topology of the plane 
differs from the topology of the straight line. Nevertheless, it is possible to 
define geometrically domains in the function space that are invariant under 
(1.1). Now an important role is played not by constants, but by special 
time-independent periodic solutions of (1.1) which correspond to minimal 
cycles of a corresponding Jacobian metric; the cycles determine "holes" in 
the plane. These holes create a "soft obstacle" for dynamics (see Remark 
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3.6); but if energy is bounded, this obstacle can't be jumped over and creates 
a topological restriction on dynamics and thus defines invariant domains in 
the function space. Here we continue research started in [1], [4], [5]. 

In [1] it was proved that if the graph of F(u) has large enough bumps, 
one can introduce a non-trivial topological space D' in the ^/-plane. The 
dynamical system St generated by (1.1) that takes u(:r, 0) to u(x^ £), which 
is defined on x-periodic functions with period L with bounded energy has 
topologically conserved quantities b = h(u(t)) where b is an element of the 
fundamental group of the introduced space. The maximal complexity of b 
depended on the size of the bumps and the bumps were assumed to be large 
if the energy (and complexity) of solutions is large. In [4], [5] a connection 
was shown between the homotopy conservation laws and properties of the 
Jacobian metric VTFds. In the present paper we study the case when the 
energy 

e(u)= I   ^\dxu\2 + F{u)dx 

of solutions and their complexity is arbitrarily large or infinite (thanks to 
unboundedness of L) and describe topological obstacles in intrinsic terms of 
the Jacobian metric. 

Steady-state solutions of (1.1) play important role in the dynamics. We 
consider bounded solutions of the steady-state equation 

(1.2) ^C/-F,(C/) = 0 

which satisfy the Hamiltoniari conservation law 

(1.3) \dxU{x)\2/2 - F{U{x)) = 0 Vx 

that is J7(x), dxU(x) lie on a fixed level surface in R4 of the Hamiltonian. 
We take F(u) = FQ(U) + ^Fo(u) > 0, so (1.3) fixes the arbitrary constant 
fji in the definition of the potential F. 

The main object which is responsible for existence of extremely many 
stable spatial patterns is a minimal cycle. We consider in this paper the case 
when there exist several minimal cycles, that is closed geodesies Ci = dDi 
which encircle non-intersecting domains A- The cycles are contained inside 
a larger domain -Do encircled by an external minimal geodesic CQ. We give a 
very simple explicit sufficient condition for existence of a minimal cycle C*. 
Let C3, C2, C1 be three circles encircling disks D1 C D2 c D3 centered at a 
point P with radii n = r/(7r+1), r2 = r, rs = R respectively. Let F(u) > M 
in D2 \ D1 and F(u) < m on C3.  If y/Mrj^ + 1) > R-Kyfrh then there 
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exists a minimal cycle Ci = dDi encircling A, C1 C A- Geometrically 
this means that if this condition is fulfilled, the surface corresponding to 
the Jacobian metric forms a mushroom which grows on the plane, and the 
minimal cycle encircles its leg. This condition gives in particular a simple 
criterion for existence of a periodic solution of (1.2). An external minimal 
cycle Co which encircles DQ exists if F(u) has also a "bump" at infinity, for 
example if F(u)\u\2 —► oo as \u\ —► oo. 

We consider the domain D" C R2, D" = Do \ UJU A- The fundamen- 
tal homotopy group ^{D'^a) = TTI of the set D" is a free group with n 
generators gi corresponding to counterclockwise cycles in D" around points 
Pi G Di starting from and ending in a fixed closed contractible base set a 
(this set may consist of one base point P*); cyclic permutations of words in 
the group correspond to homotopy classes of closed curves without a des- 
ignated set a; the set of classes is denoted by TT^. A generalized homotopy 
element b G TTJ

0
 is given as a formal infinite product (irreducible word) 

k = IIS-oo 9il without cancellations. Elements of 71*1 are represented by 
finite irreducible words. 

2U Figure 1: A curve of class ^ zg\ 
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We construct solutions with a prescribed homotopy type b G TTJ
0
 using 

minimizers of Jacobian length. When the interval is infinite we prove for 
any given b existence of stable steady-state solutions ?7(x), —oo < x < oo 
of the equation (1.2) which belong to generalized homotopy classes b e TTJ

0
, 

and finite restrictions of which minimize Jacobian length of the restriction. 
Note that in geometry existence of minimal geodesies on a manifold in ev- 
ery class of the fundamental group of the manifold is well-known starting 
from Hadamard (see [8], [9], [14], [16], [21], [22] and references therein). 
The strong influence of "big bumps" of the Riemannian metric on the man- 
ifold on the topology of geodesies is also well known (see [8],[9]). Geodesies 
which correspond to infinite products of generators are related to minimal 
geodesies in a cover of the manifold (see [8], [9] and references therein). 
The most deeply studied cases are the case of geodesies on a torus T2 and 
on surfaces of constant negative curvature (see [3], [15]); in the mentioned 
cases topology of the manifold is non-trivial from the very beginning. A 
variational approach was recently applied in [10], [11] to construct chaotic 
solutions of a Hamiltonian system on a manifold using the topology of the 
manifold. 

The natural Jacobian metric corresponding to the potential F(u) from 
(1.1) is defined on the plane R2, apriori the topology in the ix-plane is trivial; 
also we do not assume any kind of hyperbolicity. Our paper is not aimed at 
studying properties of geodesies, but we are trying to use ideas and notions 
from geometry to study dynamics of curves in the plane generated by (1.1). 
Since the dynamics of (1.1) cannot be reduced to geodesies (geodesies corre- 
spond to equilibria of the parabolic flow), the main point of our research is to 
find robust properties of geodesies and robust relations between properties 
of geodesies and properties of general curves which are close to them; these 
relations have to be stable under the dynamics of (1.1). We managed to do 
that through introduction of a non-trivial topology in the u-plane related to 
existence of minimal cycles. 

Together with steady-state solutions U(x) - minimizers with a given 
homotopy type 6 - we consider initial data u(0) which are close to U in the 
sup-norm of C(R) and which have local energy density close to that of U, 
namely 

J — c 

IFMO,*)) + 13^(0, x)|2/2 - F(U(x)) - \dxU{x)\2/2\dx < /?. 

We prove that the generalized homotopy type b is preserved under dynamics 
u(t) of (1.1) (in fact /? may be not small if F(u) is large enough inside A 
).  We show that an approximate Hamiltonian conservation law holds for 
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solutions of (1.1): 

(1.4) I     (y2Fo{u(x,t)) + 2ii-\dxu(x,t)\\  dx<29Vt>0. 

Here 6 does not depend on £; convergence of (1.4) implies that 

2Fo(u(x,t)) + 2/1 - \dxu(x,t)\2 

can be not small only on a subset of the real line with a finite Lebesgue 
measure; note that (1.3) does not hold strictly for non-equilibrium solutions 
of (1.1). 

So we classify essentially different invariant classes of (1.1) by two pa- 
rameters: Hamiltonian value /x = \dxU\2/2 — Fo(U), which is a continuous 
parameter (clearly convergence of (1.4) fixes [i for solutions of (1.1) like (1.3) 
fixes it for solutions of (1.2); and by the generalized homotopy type b G TTJ

0 

which is a parameter of spatial chaos. We study the relation between the 
homotopy complexity of the solutions restricted to an interval —L < x < L 
and the length of this interval. The number N(L) of homotopy different 
restrictions of solutions to a segment of length 2L can be estimated in terms 
of quantities similar to entropy. We introduce the following characteristics 
of complexity: 

0 < h* = lim inf lniV(L)/(2L) < lim sup In N{L)/{2L) = h\ 

We call h* and h* upper and lower complexity respectively. 
As an example we consider the case of a special potential when the 

potential F(u) = F(u, d) is constant outside two very narrow circular rings 
with width d and has a small variation in the ring. In this case |fc*—/&o\/^l + 
\h* — hoy/2il\ = 0(d) and ho is a solution of the equation 

e-how + e-hoy + e-hoz = 1 

where w, y, z are lengths of common tangents to the two circles (in the limit 
d = 0) and circular arcs between them (see Section 7 for details). To find this 
estimate we used topological entropy of the suspended flow (see [25]). Since 
spatially periodic solutions are of special interest, we estimate (in the case 
d = 0) their number Nper(L). The number Nper(L) of homotopy different 
spatially periodic solutions with period not greater than L is of order 
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for large L. Note that we consider the case when the diffusion coefficient 
multiplying d^u is v = 1; the general case is reduced to this by changing x 
for Vz/x. So in the above formula L is a dimensionless length related to the 
length scale y/u. In case v ^ 1 one has to replace /x by /x/i/. 

2. Reaction-diffusion systems with a positive potential. 

We consider the system (1.1) where JF('U) is a potential which has the prop- 
erties described in the introduction, in particular F(u) = Fo{u) + /u, Fo > 
0, ^ > 0 with a fixed /z. So 

(2.1) F{u)>ii>0,  VueR2. 

Later we show that it suffices to impose this condition only for a bounded 
set of u rather than for all u. 

We impose either L-periodic boundary conditions 

(2.2) u(0?£) =u(L,t) 

or Dirichlet boundary conditions 

(2.3) ^(0,*)=?!, uOM)=p2. 

Later we consider the equation on the infinite interval. 
The energy of a solution on a finite interval is given by the formula 

5(u) = I [^I^I2+F(W) dx 

The energy equation for solutions of (1.1) with periodic or Dirichlet bound- 
ary conditions is 

(2.4) £{u{T)) - £{u(ti)) = - [    [   \dtu\2dxdt. 
Jo   Jo 

The norm in Sobolev spaces Hs is defined by \\u\\2 = ||(-^)5/2iz||2+||u||2 

where ||ti|| is the /Vnorm of u. The space C([0, L]) has the usual sup-norm. 
By the Sobolev embedding theorem ffiQO, L]) C C([0, L]). 

The following two theorems hold for equation (1.1) with periodic or 
Dirichlet boundary conditions. 
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Theorem 2.1. For any initial data u(0) € #i([0,L]) which satisfies either 
periodic (2.2) or Dirichlet (2.3) boundary conditions there exists a unique so- 
lution u(t) = u(x,t),u(t) eH2,t> 0, o/(l.l) with periodic (2.2) or Dirichlet 
(2.3) boundary conditions respectively. It satisfies the energy estimate 

(2.5) S(u(t))<£(u(0))       Vt>0. 

The proof of existence is based on the Galerkin method and is standard, 
see [6]; the inequality follows from (2.4). 

Therefore (1.1) generates a semigroup of operators St : u(0) —> u(t) 
which acts in Hi([0, L]). 

The following theorem is standard, see [6], [13]. 

Theorem 2.2. For every p > 0 and every non-empty closed invariant sub- 
set E(/3) C {£(u) < /?} bounded in C([0,Z/]) the semigroup St generated 
in Hi by the equation (1.1) has a global attractor A(f3) which contains an 
equilibrium point U such that the energy £(U) = iniueEiP) £(11). In particu- 
lar, for every bounded in C([0, L]) solution u(t),t > 0 of (1.1) there exists a 
solution U of (1.2) which belongs to the omega-limit set ofu(t). 

3. Minimal cycles. 

We introduce the Jacobian (or Fermat-Maupertuis) functional 

J{u)= /    y/2F(u) \dxu\dx, 
Jo 

the value of this functional is determined by the graph of the curve u and 
does not depend on its x-parameterization, so 

J(u)=   H y/2F(u(8))\du(8)\. 
Jsi 

Here u(s) = u(x(s))1 f*
2 |<M5)I is the Euclidean length of the curve. If the 

natural parametrization |Ghi(s)| = ds is used, the Euclidean length equals 
52 — 51, si can be taken arbitrarily. Here x(s) is a monotone function, 
x(si) = 0, x(s2) = L. We consider functions u(<x(s)) with bounded variation. 

Very often we use a parametrization which does not coincide with the 
natural and take si = 0,52 = 1. For any curve, for which such an integral 
is not defined, we put Jiu) = +00. 
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The functional J determines a Jacobian length and a Riemannian 
metric on R2 with the tensor y/2F5ij where <5y is the Kronecker sym- 
bol. Jacobian distance between two points Q11Q2 € R2 is given by 
dist^Qi,^) = in£uJ(u) where u(s) connects Qi^Qz- 

Very often, abusing notations, we write w(s) instead of u(x(s)); the 
parametrization by s is not necessarily the natural Euclidean parametriza- 
tion. We also use the letter u to denote functions u(x) as well as points in 
the M-plane. The sense of notation is clear from context. Obviously, 

(3.1) J^ + lf   (V2F('"(x))-\dxu\ydx = £(u) 

and 

(3.2) J(u) < £(u). 

Definition 3.1. Let a smooth simple Jordan curve Ci bound a domain D^ 
d = dDi (we always take open domains Di and denote by Di their closure). 
It is called a minimal cycle if it has the following minimality property. For 
any closed cycle T which lies in an €-neighborhood Oe(Ci) of the cycle in the 
■u-plane, T C 0€(Ci) fl A, once encircles Pi € A \ Oe(Ci) and has a point 
Q strictly inside Di at distance €1 from Q the following inequality holds: 
J^r) > J(Ci) + €2 where €2 > 0 depends on ei and does not depend on F. 

Definition 3.2. A cycle d encircling Di is called ^-stable (with 8 > 0 ) 
with respect to a cycle Cf = dD}, D] C A, if for any curve F0 = u(x), x\ < 
x < X2 which lies in A \ D} and F0 fl C^^ 0 there exists a homotopy 
r*,0 < t < 1 of this curve inside the ring A \ Dj which does not change 
points of F0 H d such that F1 C G, J(T0) > JiT1) + 0. 

Remark 3.1. A minimal cycle Q is €2-stable with respect to a cycle C/ 
which can be chosen arbitrary close to C*, with €2 depending on the distance 
between C/ and C*. This follows from the following lemma. 

Lemma 3.1. Let G be a minimal cycle which encircles Di. Let it0(a;), xi < 
x < X2 be a curve which lies in 0€(C;) fl Di, with endpoints on the cycle 
u0(xi) = Qi € Ci, u0{x2) = Q2 € G and one point u0(xo) = Q strictly 
inside Ci at distance 61 > 0 from Ci. Than there exists a homotopy ^(x) in 
Oe(Ci) DDi which transforms the curve into the curve n1(x) with the same 
endpoints tx1(xi) = Qi, u1(x2) = Q2 which takes values in Ci. There exists 
a number €2 > 0 which depends only on €1 such that Jiu1) < J(u0) — €2. 
The same is true for closed u0 without points on Ci. 
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Proof. The reason we need a proof is that in the definition of a minimal 
cycle the curve F is a cycle which once turns around D, and here we may 
have many turns. 

Since the ring A = 0€{Ci) fi A is homeomorphic to the product 
d x [0,1/2] we take the homotopy W(t), 0 < t < 1/2 defined on the ring A 
which shrinks [0,1/2] to {0}; it is the identity function on the boundary C*, 
H(0)(A) = A, H(1/2)(A) = Ci = CiX {0}. Let F be the arc of d with 
endpoints Qi, Q2 which forms together with t*0 an oriented cycle G0 (cycles 
d are always oriented counterclockwise, orientation of u0 is determined by 
its parameterization). The curves G0 and G1 = H(l/2)(Go) have the same 
homotopy type g? where a equals to the rotation number around Di. The 
closed curve G0 is parameterized by xi < x < xs (x2 < x < X3 is a parame- 
terization of r). We identify xi and x3. The curve G1(s) = H{l/2)(G0(s)) 
has the induced parameterization. We introduce the coordinate <j) on C* 
which is proportional to the Euclidean distance from u0(xi) along the curve 
in the counterclockwise direction and is normalized so that <f> and <£+27r are 
coordinates of the same point. The standard curve G2 C C; is obtained by 
passing a times along Ci with a non-zero constant speed, it is given by the 
formula <£ = (foOs) = 27ra(x — xi)/(xz — xi); we use the same parametriza- 
tion for V. We have J(G2) = \a\J(Ci). There is a homotopy in C* which 
connects G1 and G2 (since they are from the same homotopy class; the fun- 
damental groups 7ri(R2 \ Di) and 7ri(Ci) are naturally isomorphic, they are 
given by the rotation number). The curves Gi and G2 are written using the 
coordinate 4> as <f)i(x) and faix) respectively with ^1(0:1) = ^2(^1) by def- 
inition, ^1(0:3) = ^2(^3) = ^1(^1) + 2a7r since they have the same rotation 
number. The homotopy connecting them is given by t(/>i(x) + (1 — £)</>2(x); 
it is the identity function on X2 < x < X3. 

We take as ul the curve which represents G2 and is composed of the arc 
F" = Ci \ F' and |a| — 1 cycles d. Its length equals 

(3.3) J(^^1) = |a|J(Q)-J(^,). 

Now we give a lower estimate of J(G0): 

(3.4) J(G0)>\a\J(d) + 62. 

This estimate follows from the definition of a minimal cycle when |a| = 1 
( closed curves with |a| = 1 we call elementary). In the general case we 
will show that G0 includes at least |a| elementary curves, and one of them 
passes through Q; this yields the estimate. First we make general remarks. 
Consider a closed curve u(s), SQ < s < ss in Di which has a finite Jacobian 
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length, lies in the ring A and has a non-trivial homotopy type b = gf with 
a fixed a ^ 0 with respect to a point Pi G A \ A (we denote the set of such 
curves by So). The curve may have self-intersections; if |a| > 1 the curve 
must have self-intersections, since by the Jordan's theorem a simple curve 
is a cycle for which a = ±1. 

An interval [54,55] C [so, s6] is called a rest interval if u(s) = u(ss) Vs G 
[54,55]; for every rest interval we can find a maximal rest interval which 
contains it. An interval [51,52] C [50, SQ] is called a loop interval if ^(52) = 
u(si) and there exists 5o G [51,52] such that u(so) ^ u(si). We call the loop 
interval [51,52] simple if for every two points 55,54 such that 5i < 54 < 55 < 
52 the equality ^(55) = ^(54) implies that [54,55] is a rest interval. If the 
homotopy class on a loop interval [51,52] with respect to Pi is trivial we call 
this interval non-essential (see Fig. 2 where a loop which corresponds to a 
non-essential loop interval is shown). 

If we have a loop interval [51,52], we can modify a curve by a cut-off 
operation eliminating the loop, that is by putting u(s) = ^(51), 5i < 5 < 52 
without changing the curve outside the loop interval. 

The cut-off operation does not increase Jacobian length and variation; if 
the interval is non-essential it preserves the homotopy type. Such operation 
allows to obtain from a given ^(5) a curve u(s) which has the same type 
and has no non-essential loop intervals. It is clear that if the original curve 
has a finite number of self-intersections, we can replace non-essential loop 
intervals by rest intervals in a finite number of steps. 

non-essential 
loop 

r" 
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In the general case we introduce a partial ordering in the set HQ. We 
say that u » v if ^(s), v(s) are defined on the same interval [50, se]? every 
rest interval or non-essential loop interval of u is a rest interval of v and 
u(s) = ^(5) outside rest intervals of v. Starting with a given u and applying 
the above modification we obtain in the limit as a minimal element u(s) 
which has no non-essential loop intervals and the corresponding curve G0. 
The homotopy type of G0 is not changed, fr(G0) = ^(G0) = a. 

Every simple loop interval of u(s) has a graph which is a simple Jordan 
curve without self-intersections and by Jordan's theorem the loop belongs 
to the class gf1. Since the type of an essential loop is gf1, after applying 
the cut-off operation to a simple (essential) loop interval the homotopy type 
a is changed by ±1. The Jacobian length of a deleted simple loop is not less 
than J(Ci) by definition of a minimal cycle. We have self-intersections and 
may continue the cut-off operations as long as |a| > 1 by Jordan's theorem. 
After N — 1 cut-off operations we have only one loop interval (the number 
JV of such operations is finite since v = u has a finite length), and the 
resulting curve is of the class a = ±1. Therefore we obtain the inequality 
J(G0) > NJ{Ci). We need at least |a| subtractions of ±1 from a to get 
zero, so N > \a\. Therefore we get J^G0) > \a\J(Ci), which is a weaker 
version (with €2 = 0) of (3.4). 

Consider now the point 5 = 5*, u(s*) at distance ei from d, it lies on 
one of the simple loops. We have 5* 6 [si, 52] with u(si) = ^($2). The loop 
may be non-essential, therefore we take such 53 > 52, u(ss) = 14(51) that the 
homotopy type of u(s) on [51,53] is gf1] the Jacobian length of this loop 
G0" is not less than J(Ci) + 62 by definition of a minimal cycle. Cutting off 
this loop we obtain a curve G0/ of class a qp 1. Applying the weak version of 
(3.4) to G0' we get J^G07) > |aTl|J(Ci). Since J(G0) = J(G0') + J(G0") 
we obtain (3.4). Comparing (3.4) with (3.3) we obtain the assertion of the 
lemma. □ 

Consider now the case when we have several minimal cycles. From now 
on we fix the following notations. We denote by A, D}, i = 1,..., n n pairs 
of open domains in the plane, the boundary dDi = G;, dDj = C* of every 
domain is a simple Jordan curve; e-neighborhoods of the domains do not 
intersect: 0€(A) n 0€{Dj) = 0 when 1 < i < j < n. We denote by Pi 
a point such that Pi G Dj C D} C A- We assume that dD} lies in an 
6-neighborhood of dDi (see Remark 3.1). By Ci we denote cycles which are 
minimal and 0-stable with resect to G/,i = 1, ...,n. (Sufficient conditions 
for existence of such cycles are given later in this section). 



292 V. Afraimovich, A Babin, and S.N. Chow 

Definition 3.3, We denote by S the set of closed continuous curves u(s) 
(parametrized by s e [0,1], u(0) = u(l)) which do not intersect D} and have 
finite Jacobian length. We denote for b e ^(R2 \ Uji?^) by S^ the set of 
curves from S which belong to b and put 

r(b) = inf J(u). 
ueSb 

The same definition applies to curves with fixed endpoints when b e TTI. 

Definition 3.4* We denote by S'QO, L]) and S^([0, L]) the set of functions 
u E ifi([0, L]) which have graphs from S and S& respectively. 

Theorem 3.1. Let Ci, i = 1, ...,n be the 6-stable cycles described above; let 
b 6 TT^ be the homotopy class of closed curves. Then the sets S£([0, L]) n 
{£(u) < £} where C < £*(b) + 0 are invariant with respect to the flow 
defined in i?i([0, L]) by the parabolic equation (1.1) with periodic boundary 
conditions. Similar statement holds for the Dirichlet boundary conditions 
when 6 G TTI. The following approximate Hamiltonian conservation holds: 

(3.5) !   L/2F{u(x)) - \dxu\\2dx < 26. 

Proof. We consider the case of periodic boundary conditions. Consider the 
set S&n {J(u) < £} where C < £*(b) + 0. According to Definition 3.2 every 
curve u(x) from this set lies strictly inside R2 \ D^, u(x) n C} = 0 Vi, tz, x. 
Indeed, assume the contrary, namely let there exist a curve u such that 
u(s*) e C}. Since C} C A, we have two possibilities. Either we can find an 
interval [51,52] containing 5* such that ^(5) € Di for $1 < s < 52, u(si) = 
Qi € Ci, 14(52) = Q2 € Cf, or the curve does not intersect Ci. We consider 
the first case. We fix 5i, 52 and denote the curve To on the segment [51,52] by 
xx* (5). By ^-stability we have a homotopy on [51,52] which takes u*(5) into 
ul(s) with J(u*) > J(ul) + 6. We do not change u(s) outside [51,52], and 
ul(5),* € [0,1] do not take values outside Di and therefore do not intersect 
Cj,j =^ i. So we have a homotopy in R2 \ U^D} of u(s) into ^1(5) which 
decreases the Jacobian length by 0, so J^u1) < £*(b) which contradicts the 
definition of ^*(6). In the second case we again use ^-stability and obtain 
the same contradiction; thus u(s) cannot have points on C/. 

Therefore E£([0, L]) fl {£(u) < C} is invariant with respect to the flow 
defined in Hi by the parabolic equation (1.1). Indeed, u(t) is a continuous 
function of t and by (2.5) S(u(t)) < S(u(0)) < C.  If u(to) G E^[0,L]) D 
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{£(u) < £} then its graph is at positive distance from all C*; therefore it 
is true for t < to + e. Hence the set T of t for which u(t) e S£([0, L]) fi 
{£(u) < C} is open. On the other hand, the set H^([0,L]) fl {£(u) < C} 
is closed in Hi([0,L]) since £(u) is continuous, jffi([0,X]) C C([0,L]) and 
the set R2 \ D} is closed. Thanks to continuity of u(t) and closedness of 
££([0, L]) fl {£(u) < £} we conclude that T is closed. Therefore this set is 
all t > 0. 

Inequality (3.5) follows from (3.1) since u(t) € Z'b([0,L]) and J(u(t)) > 
e*(b). D 

To make ideas transparent and geometrically obvious, we give now as 
an example a special type of a potential when minimal cycles are explicitly 
given. We discuss this example in more detail in Section 6. 

Example 3.1. We fix two points Pj, i = 1,2 in the plane (^1,^2) at the 
distance 2a > 0; fixing the coordinate system we take the points on the 
txi-axis, Pi = (—a,0),P2 = (a,0). We denote by Di(r) discs of radius r 
centered at the points Pf, Di(r) = {\u — Pi\ < r}, r < a. We fix rs < a and 
assume that the function F(u) in the rs-neighborhoods Di(rs) of Pi depends 
only on 7] = \Pi — u|, we denote 

(3.6) F(u) = f(r))   when 77 = \u - P*] < rs. 

We also assume that there exists 770, 0 < 770 < rs such that the function 
r]y/2f(r)) has a strict minimum at this point, 

(3.7) Wlfiv) > W2/(r7o), V77 € [770 - 6,770 + 6], 17 # 7?o. 

Lemma 3.2. Let (3.7) hold. Then \u — Pi\ = 770 is a minimal cycle. 

Proof. Let (ri(x)J(f>(x)) be the polar coordinates of a curve in Di(rio). Let 
77(0:1) = 77(0:2) = ^o?^?^) < 770, xi < x < X2. One can write the Jacobian 
length of a piece of the curve in the polar coordinates at Pi on the interval 
when 77 < rs as 

I     VWW) \dxu\dx = /     y/2f{ri(x)) yjriH'2^) + V'2(x)dx. 
XI Jxi 

First, we can replace the piece of the curve by a curve with monotonely 
varying ^(rr); indeed, if (f)(x) has a local maximum at XQ e (xi,X2) we have 
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^(^i) = fii00^) — ^o for some points x'v x^ close to XQ and we put <$>{x) = </>o 
on (x'^x1^). Since 

^y/Wtm    \jr)H'\x)+i\x)-W{x)\ dx>0 

the resulting length is smaller.   So we assume that (/)(x) is monotone on 
(xi,X2). Since it is a cycle, the variation A^ of <f> is not greater than 27r. 

If we replace r](x) by 770, we replace 7/ by 0 and ^2f('r])7]2 by V^/fao)7?!)? 
we obtain for the new curve u 

(3.8)   J(u) - J(u) = J*2 [^/M ^tj^+rf2 - JVifio) sfftV2 dx 

which is not less than 

(3.9)    ^/foOijg £2 [71 + ^/^2 - lj l^jdr 

Here rf^ = r?7/^' = dq/dxfr. The first integral is not less than the difference 
of two lengths. The second length A^ < 27r equals the variation of the 
angle <j> and can be considered as the length of the interval 0 < ^ < A^ 
in the (0, ln77)-plane. The first length is the length of the continuous curve 
ln77(^) — In 770 in this plane. Let XQ be a point of maximum of | In ri((f>(x)) - 
Inr/ol, I ln(77(0(xo)) — Inr/ol = 63 > 0. If the curve intersects the cycle 77 = 770 
this difference is minimal when the curve forms an isosceles triangle and is 

not less than 2 [e^ + TT
2
] 

1'   - 27r. Therefore, 

J(u) - J(u) > 62 = 2^/2/(7/0)7?^[e2
3 + TT

2
] 

1/2 - TT). 

If the curve does not intersect the cycle 77 = 770 and lies strictly inside, let 
771 be the maximal value of 77 on the curve. In this case the variation of (/) 

is 27r and the first integral is estimated by 2^2/(770)77$ ( [e2 + TT
2
] — TTJ 

with €3 = I ln(77(<?!>(xo)) — In 7711 > 0. The second integral in (3.9) is not less 
than 

Vmm)-\/v(vo)v2o K Mm) =rriinvo-e<ri<mf('r))'n ■ 
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Since /i(7?i) is a continuous function and /i(r?i) > /(rfa)^ ^0I Vi < Vo we 
have 

ln(T/(^(a:o))-lnr7i| + 2 Vmri-^mvoWo TT > €2 

for ri(</)(xo)) < rji < 7]o with 62 > 0. This gives the minimality property.   D 

Now we give a sufficient condition for existence of a minimal cycle in a 
general case. 

Definition 3.5. Let C1 = dD1^2 = dD2 be two non-intersecting simple 
Jordan curves (cycles) which encircle domains D1, D2 respectively, Dl C D2, 
let B = D2 \ D1 be a closed band with the boundary dB = C1 U C2. We 
say that the size of B is not less than /?o if the following two conditions are 
satisfied. First, 

(3.10) inf        distj(Q\ Q2) > (3Q. 

Second, there exist two sets Bi,B2 C B such that B\Bi and B\B2 are 
contractible (a set X is contractible if there is a homotopy of X into X 
which starts as identity and ends as a constant) and 

(3.11) inf       distj(ul,u2) > fo. 
uleBiiu

2eB2 

The distances distj* in both formulas are taken in the band £, that is using 
the curves confined to B. 

Example 3.2. Let Pi be a given point, F(u) > M when \u — Pi\ <r2. We 
take C} = {\u - Pi\ = n}, Cf = {\u - P^ = T2}, n < r2. Condition (3.10) 
takes the form v/2M(r2 — ri) > /?o- We introduce polar coordinates 77,^ 
with the origin at Pi. We take as Bi the straight line segment originating at 
Pi at the angle <£ = 0,ri < 77 < r2. As J52 we take the symmetric segment 
$ = 7r,ri < 7] < r2. Obviously, (3.11) takes the form 7r\/2Mri > /?o. To 
maximize /3o we take ri = r2/(7r + 1). Therefore the size of B for such a 
metric J is not less than \/2Mr27r/(7r + 1). 

We will use below the following simple lemma on the Hamiltonian 
parametrization. 
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Lemma 3.3. For a given smooth curve u{s) on which F{u{s)) > fi there 
exists such a parameterization u(x), 0 < x < L that 

J(u) = £(u) 

and 

^        if mb™ 
where lE{u)is the Euclidean length of the curve u. 

Proof, We assume (1.3); by (3.1) J{u) = £{u) in this case. Prom (1.3) we 
obtain the equation for the Hamiltonian parameterization 

dx 1 

ds      y/2F{u{s)) 

where s is the natural Euclidean parametrization of the curve. This gives 

r*2 ds 
L -f Jsi IS1    y/2F(u(8)) 

Since F > /i, we have 

^    p y/2F(u(8))d8        J(u) 
JS1      2F(u(s))     -   2^  ' 

Hence, we have the second inequality in (3.12). On the other hand, 

lE(u) = f   \dxu\dx < L1/2(2£(U))1/2 

Jo 

and the lemma is proven. □ 

First we consider the case when only one D} is given, that is n = 1. 

Theorem 3.2. Let D\ be encircled by a band B with size not less than /3Q. 

Let a cycle C3 = dD3 with D} C D3, J{C3) < 2(3Q. Then there exists a 
minimal cycle Ci encircling Pi € D], this cycle is 6-stable with respect to 
C} with 8 = 2/?o — J(CZ). It determines, with the parameterization (1.3), a 
solution of (1.2). 
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Proof. The cycle C3 is 0-stable with respect to C} on curves of class gfl. 
Namely, let a cycle To which lies in D3\Dl and once encircles Dj have a point 
Qi € Cl fl TQ. There are two possibilities. First, there is a point Q' e To 
which is outside D2. In this case there is a point Q2 € C2 nTo. We have two 
arcs on To which connect Qi and Q21 their subarcs connect C/ and C2 and 
(3.10) implies J(To) > 2/%. The second possibility is To C B = D2 \ Dj. In 
this case To has to intersect Bi and #2. Indeed, the set JB\ B1 is contractible 
in B and To is not, so we have a point Qi € ToHBi. Similarly, Q2 G To nB2• 
We have two arcs on To which connect Q^ and Q2 inside B and (3.11) again 
implies i7(ro) > 2/?o. Since TQ once encircles i?^ it has the same homotopy 
type as C3, so there is a homotopy connecting them in R2\D?-; since Ds\Dl 
is a retract of R2 \ D} there is a homotopy in D3 \ D] . Since v7(ro) > 2/?o 
we obtain ^(ro) - J(C3) > 9 with 9 = 2Jo - J(C3), so C3 is ^-stable. 

Consider the set S^ of all curves which encircle once D}, that is have 
a homotopy type g] G 7ri(R2 \Dl), let ^* = ^*(^) be the infinum of their 
Jacobian lengths, we have ^* < J(Cf) < 2/?o. We take a smooth cycle 
CJ, J(CJ) < £* + €j,€j —» 0. Using Lemma 3.3 we parametrize C^ to 
obtain a periodic function ^(x) with period Lj which satisfies (1.3) and 
with £(u) = J(u) < £* + €j. If P < £* + e^ let E(Lj,l3) be a subset of 
{u € ^([0, Lj]), £(u) < f3} consisting of these functions whose graphs once 
encircle D} (belong to Sj). We can apply Theorem 3.1 to E since we need 
^-stability only with respect to curves of type gj. 

By Theorem 3.1 the set E is invariant: u(t) e E,t > 0; moreover, it is 
bounded in C([0, Lj]) since from boundedness of £(u) follows a bound for the 
Euclidean length of the graph of u and the graph encircles Pi; therefore the 
statement of Theorem 2.2 holds. So we have a global minimizer Uj of S(u): 

£(Uj) < t + €j. We have Lj uniformly bounded from below and above 
(Lemma 3.3) so we choose a convergent subsequence Lj —> L; functions 
v^x) = Uj{xLj) uniformly bounded in JEfiQO,!]) since £ (Uj) are bounded; 
yi are solutions of rescaled (1.2) : 

Lj2d*v> - JFV") = 0,0 < x < 1. 

Therefore they are bounded in C2([0,1]). Passing to the limit as ej —> 0 
over a subsequence we obtain in the limit a periodic solution v e i?i([0,1]). 
Such a solution belongs to C2([0,1]). Therefore we obtain U(x) = v(x/L), 
£{U) = J(U) = ^*. So we have obtained a smooth solution U of (1.2) 
which is a global minimizer of Jacobian length from the homotopy class Sj, 
J(TJ) = ^*; it represents a smooth simple Jordan curve. Equation (1.3) 
holds for U since it holds for Uj. The curve U(x) has no self-intersections 
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since by cutting off the extra cycle at a self-intersection we can make J{U) 
smaller. 

The derivative dxU(x) ^ 0 by (1.3) and (2.1). So the curve d = 
graph(U) is smooth. The curve may be non-unique, so we take such that 
the area bounded by the curve is minimal. Clearly, the minimum is attained 
since the area is a continuous function of u E iJiQOjL]) and L and the set 
of considered solutions is compact in Hi([0,L]). 

Now we prove that the U(x) defined above determines a minimal cycle. 

Consider for a given point Q inside C* with dist(Q, Ci)>r}f all curves F 
from S? which pass through Q. Let 7(Q) be the infinum of J'(r) over such 
T. It is attained on a solution C/*(rr) of (1.2), £/*(0) = £/*(£) = Q, U* E E, 
J(U*) = 7(Q). One deduces it as above considering the same invariant set E 
of functions as before but subjected to an extra condition u(0) = u(L) = Q. 
This condition corresponds to the case of Dirichlet boundary conditions in 
Theorem 2.2. The infinum ^(Q) is strictly greater than J{Ci). To show 
this, assume the contrary, ^(Q) = J(Ci). First, the curve U* cannot have 
common points with Ci. 

Indeed, every two arcs with common endpoints of any two geodesic cycles 
which are global minimizers from Sj have the same Jacobian length (oth- 
erwise we could decrease the lengths of a cycle by interchanging the arcs). 
If the lengths are equal, interchanging the arcs we again obtain minimal 
geodesies from 55. The curves obtained by interchanging may have corner 
points. Since every minimal geodesic is invariant under the parabolic flow 
for some L and the flow decreases lengths of non-equilibria, the minimizer 
so obtained should be a smooth curve. Therefore the curves at points of 
intersection have to be tangent. They are solutions of (1.2) with the same 
value of u at x = xo; thanks to the tangency they have collinear values of 
dxu{xo)\ Hamiltonian conservation (1.3) implies that \dxu(xo)\ is the same. 
Their orientation is the same. Therefore solutions of (1.2) coincide. If the 
curves have only one common point they again are tangent and coincide. So 
the only possibility left is a curve U* which does not intersect U at all. But 
in this case it lies inside Ci and bounds area smaller than Ci which contra- 
dicts the definition of d. So 7(Q) > J{U)+€2, with d2 > 0 depending on Q; 
so Ci is weakly minimal. Now we consider €2 = inf (^(Q)) with the infinum 
over Q from the closed set Y = {dist(Q,Ci) = ?/}; we have 62 > 0. We 
prove this from the contrary as before, assuming that €2 = 0 and choosing 
a convergent sequence U*(Qj) of the above solutions with Qj —> Qo € Y, 
e'2 -> 0. We get JiPiQj)) -+ J(U{Qo)) = J(d), but this contradicts the 
weak minimality So Ci is minimal. 
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The cycle C* is 0-stable with respect to C*. Note first that if there is a 
cycle To in the band between C3 and C/, JXFo) > J{Ci) by construction 
of Ci as a global minimizer. After that we apply the proof of Lemma 3.1 to 
the case when a general curve F has a point on C*, hence one of the cycles 
formed by self-intersections has length not smaller than J{Ci) + 0, and all 
other have Jacobian lengths which are not smaller than J(Ci). This implies 
the ^-stability. □ 

Remark 3.2, In the situation of Example 3.2 if F(u) < m when \u - Pi\ = 
R, R > 7*2, a sufficient condition for existence of a minimal cycle which 
follows from Theorem 3.2 is 

y/Mrijip + 1) > R\fm. 

In this case the cycle C\ is given by \u — P;| = ^/(TT + 1). 

If we have several bands with large sizes and encircling them cycles 
with small Jacobian lengths, we obtain existence of several non-intersecting 
minimal cycles. 

Theorem 3.3. Let D} be encircled by bands Bi (bounded by C} and Cf such 
that Df nD^ = 0 for k ^ i ) with size not less than fa. Let cycles Cf = dDf 
satisfy D\ C Df C D% and J(Cf) < 2fa, and assume that Z?£ n JDf = 0 
for k 7^ i. Then there exist minimal cycles Ci encircling Di C Df. These 
cycles are 6-stable with respect to C} if9< 2fa — J(Cf) for i = 1,..., n. The 
domains Di do not contain points of cycles C^, k ~fi i; moreover, Ck HCi = 0 
for k 7^ i. 

Proof. The proof is similar to the proof of Theorem 3.2. Now we minimize 
Jacobian length in the class of curves which have homotopy type g\ in R2 \ 
UJI?^ and not in R2 \ D} with one fixed i as we did in Theorem 3.2. We 
take in the proof 6j < 6/2, so a quasi-minimizing curve u in R2 \ UJD^ with 
J{u) < t + €j < t + 0/2 does not intersect with C\, k ^ i. Indeed, if a 
piece of the curve u{s) intersects C\ that is u(s*) € C\, it has to intersect 
C\ (otherwise it would lie in D\ and its homotopy type can't be g\ since 
D\ is contractible in R2 \ D\). Therefore u{s) € B\ for s\ < s < 52, 
u(si) e C^u(s2) € Cf. It has two arcs connecting Cf with Cfc; these arcs 
intersect C^, therefore their Jacobian length is not less than /?*.. Replacing 
the piece of the curve on [51,52] by the arc of Cf between points u(si) e u(s2) 
we decrease the Jacobian length at least by 2/3^ — J{C%) > 6 and the 
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resulting length is less then £*(6). Since the replacement can be included 
into a homotopy in the ring between C| and C^, the homotopy type of this 
curve is again b = gj and we obtain a contradiction with definition of £*(b). 
Proceeding as in Theorem 3.2 we obtain a minimizer which gives a minimal 
cycle Ci for every i. The cycle Ci does not intersect C^5 k ^ i and is 0-stable 
with respect to Q1. If two minimal cycles Ck and Ci intersect, we see as 
before that the arcs between intersection points should have equal lengths; 
but this contradicts minimality. Like in the proof of Theorem 3.2 we show 
that tangency is also impossible. □ 

Remark 3,3. We may consider a plane as a sphere with a deleted point at 
infinity, and take a neighborhood D'0 = \\R2 \ Do of infinity as exterior of a 
cycle Co; we also take another neighborhood DQ of infinity which is bounded 
by a cycle CQ C DQ. Below we show that minimal cycles Ci,i = 1, ..,n 
exist inside the external minimal cycle CQ. This observation allows to relax 
condition F(u) > JJ, for all u, see below for details. 

Theorem 3.4. Let DQ C DQ C DQ. Let an external band Bo with size (3o be 
bounded by cycles CQ, CQ (CQ outside CQ). Let F(u) > fi > 0 Vu 6 DQ, that 
is inside CQ. Let bands Bi,i = 1,...,n with sizes /% be encircled by cycles Cf 
and all Cf,i = 1, ...,n be inside DQ. 

Let J{Cf) < 2/3i, i = 0,1,..., n. Then there exist minimal cycles Ci, i = 
1, ...,n such that the domains Di,i = 1, ...,n encircled by them do not inter- 
sect and they lie inside an external minimal cycle CQ which lies inside CQ. 

The cycles Ci,i = 0,1, ...,n are 0-stable with 0 = min;=o,...,n(2A — J(Cf)) 
with respect to C}. 

Proof. The proof is similar to the proofs of Theorems 3.2 and 3.3. First 
we extend F{u) > /J, outside CQ. Then we prove existence of minimal non- 
intersecting cycles Ci,i = 0,1, ...,n like in Theorem 3.3; the cycles are 6- 
stable with respect to C/. Since all cycles constructed are inside CQ, the 
values of F(u) outside CQ do not influence the minimality and ^-stability 
properties of all Cf, i = 0,..., n. □ 

Remark 3.4. If F(u) >M = M{Ri) when |u| > #1 we can take as C^ the 
circle \u\ = Ro where Ro is large enough to include all Ci and is fixed. We 
take the band Bo = {Ri < \u\ < (TT + l)Ri}. Then the size of the external 
band is not less than VVMivRi; if R\M(R\) —► 00 when JRI -* 00 the size 
becomes arbitrarily large when i?i is large. 
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Definition 3.7. We denote by S^O, L]) and S£([0, L]) the sets of functions 
u e Hi([0, L]) which have graphs from H and H^ respectively. 

The sufficient conditions for existence of minimal cycles we give above 
imply that if a potential Fo(u) has a critical point PQ, then there exists a 
perturbation of this potential, which has an arbitrarily small C2"€-norm, 
such that the perturbed potential has arbitrarily many minimal cycles near 
the point PQ. This shows that existence of many minimal cycles is typical. 
Note that in the following theorem we discuss properties of the potential 
Fo(u) only near the point Po- We also do not assume that Po(^) is positive 
as we do everywhere else. 

Theorem 3.5. Let n = m2 with an integer m. Let |Po(^) — Po(Po)| ^ 
Ko\u-Po\qo

} qo>l when \u-Po\ < So; let/i^ pfKo- Then for sufficiently 
small po> 0 there exists a function ^(u) > 0, ^f(u) = 0 when \u — Po| > po 
and 

which has the following property. The Jacobian metric corresponding to the 
potential F(u) = Po(^) — Po(Po) + ^f(u) +yu has n minimal cycles contained 
in an external minimal cycle which is inside the domain \u — PQ\ < />o- 

Proof We take Fo(Po) = 0 for brevity. First, the potential F{u) = Fo(u) + 
p, > 0 if r] = |u-Po| < Po = (p/Ko)1^0- Let *o(7?) be a smooth non-negative 
function, #ofa) = 0 when \ri\ < l/4,*o(»?)> 1 when 1/2 < ^l < 3/4. Let 
^1(77) be a smooth non-negative function, #1(77) = 0 when \T]\ > 1, ^1(77) > 1 
when I77I < 1/2. Let m > 1 be an integer, pi = po/(Sm) and P^i = 
1, ...,n,n = m2 be points in Do = {\u - Po\ < Po/4} such that their pi- 
neighborhoods do not intersect and lie in Do- It is always possible to find n 
such points. Now we put 

F(u) = Fo(u) + MotfoO^ - Po\/po) + p + MiY^ *i(N - Pi\/pi)- 

The external band Bo = {1/2 <\u- Po\/po < 3/4} has size not less than 
V2M0P0/4. The cycle C$ = {\u - Po\ = Po/4} has J(C§) = TTV^OA 

We take Mo = 47r2/x. The internal bands Bi = {1/4 < \u - Pi\/pi < 1/2} 
have size not less than y/2Mipi/4c. The cycle Cf = {\u - Pi\ = pi} has 
J(Cf) < 2ny/2jlpi. We take Mi = 327r2^. So conditions of Theorem 3.4 
are fulfilled and there exist n minimal cycles inside the external minimal 
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cycle CQ. NOW we estimate the norm of the perturbation. We have an 
estimate of the Holder seminorm || • ||' of order 7 (or derivatives of order 7) 

HM^idu - P*|/pi)||k < cMx/pl < CirnVg0""7- 

Estimating the C-norm we obtain 

||Afi*i(|u - Pi\/pi)\\c < csM1 < c4p«>. 

Similar estimates hold for Mo*o- Since we can take po arbitrary small, these 
inequalities imply the assertion of Theorem 3.5. □ 

Remark 3.6. In the scalar case stable constant solutions u = q with 
f'(ci) = 0 of the equation d^u — f^u) = 0 with periodic boundary conditions 
create barriers for dynamics of the parabolic equation dtu = d^u — f{u)\ the 
set ci < u{x) < C2 is invariant thanks to the Maximum Principle. Minimal 
cycles are rather a soft obstacle, they do not create a non-penetrable barrier 
for dynamics of the parabolic PDE. One can easily see this by writing (1.1) 
in polar coordinates centered at Pi in the situation of Example 3.1 : 

(3.13) dtV = %V-n(dx<l>)2-f'(T,), 

(3.14) vdt<f> = vdx<i> + 2dxr)dx<j>. 

Let 77 = 770 = const where 770 satisfies (3.7) (in particular f(r)o)r]o + 2f(r]o) = 
0), let dx<f) = <f>' = const where the constant <f/ is determined from (1.3) 
which takes the form 

(^7?)
2+77

2(^)2 = 2/(77) 

and let L = 27r/^/. One can easily check that we obtain a steady-state 
solution of (3.13), (3.14) which determines by Lemma 3.2 a minimal cycle. 
If we take initial data 77(x,O),0(rr,O) such that 77(0;, 0) = 770 = const is the 
same and (f)(x, 0) perturbed so that \dx(f>(xo, 0)|2 > -fi^/rjo at a point XQ, 

than from (3.13) we obtain dtr}(xo,0) < 0 so 77(2:0,*) < rjo for small t > 0, 
and the curve u(x,t) gets inside the minimal cycle at x = XQ. Nevertheless, 
if the energy of perturbation is small, the curve u{x, t) gets only a small 
distance inside the minimal cycle according to Theorem 3.1 and Remark 
3.1. 
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4. Steady-state solutions of a given type. 

Prom now on we assume that there exist n+1 minimal cycles Q, i ==■ 0,1,..., n 
which do not intersect, which are boundaries of domains Di and which are 
0-stable with respect to C} = dDj, i = 1, ...,n with a fixed 9. The open 
non-intersecting domains D*, JD^, £ = 1,..., n have properties described in the 
previous section; moreover, they lie inside the domain Do bounded by the 
external minimal cycle CQ. We denote D' = D^U^Dl, D" = Do\U^=1 A- 

We recall that the fundamental homotopy group ^i{D\ a), where a e D' 
is a contractible set, is the set of classes of homotopy equivalent mappings 
u from the segment [0,1] into D' such that u(0) 6 cr,u(l) e a; there is a 
standard group structure on this set. The set of mappings depends on a, but 
since a is contractible and Dr is connected, there is a natural isomorphism 
between the sets of classes of equivalence, so we identify 7ri(Dr,c) with 
different a. Below we fix a point P* 6 D" and take a contractible a which 
contains P*. The contraction of a into P* takes curves with endpoints in a 
into curves with endpoints in P* which gives the isomorphism of ^(.D', P*) 
and 7ri(jD',cF). So we identify TT^L^P*) = 7ri(Df,a). (For more detail see, 
for example, [12], [20], [26].) We denote for brevity 7ri(£>',P*) = TTI. 

The homotopy group TTI of the disc with n holes D' is a free group with 
n generators #;. Every # corresponds to a counterclockwise turn around 
Di. A pair of arbitrary finite sequences of non-zero integers fci,..., k^ and 
hi »iN with- b-fi T^ V where ij € {1,..., n} determine an irreducible word 

(4-1) b = sftsG.~4 fa 

The fundamental group TTI consists of all irreducible words and of the unit 
element 1 which corresponds to the trivial class. The sum |A;i| H h \k]^\ = 
deg b is called the degree of the word 6, deg (1) = 0. Obviously, b can be 
represented as a product of deg 6 elements gi,g2,9i1i92l etc- The group 
multiplication in TTI includes the group relations gig"1 = 1 and g^gi = 1. 

The set of all possible words w with letters gi,g~l without the group 
relations is denoted by TTI. The number of letters in a word is called the 
degree of the word. Two words wi,W2 G TTI are equivalent: wi ~ W2 if 
they determine the same element b 6 TTI after cancellations of pairs gig"1 or 

The homotopy class h(u) € TTI is defined for a curve which lies in D' 
and has endpoints in a, such curves are graphs of functions on an interval 
[0,L] which have boundary values tt(0),tx(L) in cr; such functions arise as 
solutions of Dirichlet boundary problems. 
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Homotopy classes of closed curves in D1 correspond to functions satis- 
fying periodic boundary conditions. The set of these homotopy classes (we 
denote it by TT^) can be described as the set of words from TTI with an addi- 
tional equivalence relation: a word b' is equivalent to the word b^ if the first 
word is a cyclic permutation of the second. 

We give a theorem of existence of a periodic solution with an arbitrary 
homotopy type. 

Theorem 4.1. For every nontrivial homotopy class b G TTJI there exists L 
and a steady-state L-periodic solution U of the equation (1.2) such that U G 
b, 

(4.2) S(U) = J(U)=t(b), 

and the Hamiltonian conservation law (1.3) holds. The graph of the solution 
either coincides with one of Ci or lies in Do and does not intersect C^i = 
0, ...,n; that is it lies in D". If the function F{u) is twice continuously 
differentiable, then this solution is stable in the Lebesgue space L^, namely 

(4.3) /   [dlV(x) - F,,{U)V{x))V{x)dx < 0 
Jo 

for any smooth L-periodic function V{x). 

Proof. The cycles d are 0-stable with a fixed 6 > 0. We take a sequence of 
smooth curves Uj(s) € b in Df such that J(UJ) < ^*(6)+€j, €j < 0/2, €j —> 0. 
Using the parametrization from Lemma 3.3 we find functions Uj (x), 0 < x < 
Lj, J(UJ) = S(UJ); corresponding lengths (see Lemma 3.3) of x-intervals 
are denoted by Lj. We take Uj(x) = Uj(x, 0) as initial data for the parabolic 
equation (1.1) with the spatial period Lj. We obtain using (2.5) that 

JMt)) < Siujit)) < SiujiO)) = JiujiO)) < t(b) + €,, 

The set {£{u) < r(6)+€-,•} nS'6([0, Lj]) is invariant by Theorem 3.1. Bound- 
edness of curves in DQ implies boundedness of the sup-norm. By Theorem 2.2 
we obtain existence for every j of a stable solution Uj of (1.2), which provides 
the absolute minimum of energy over the class S£([0, Lj]), £{Uj) < £*(b)+ej. 
The curve Uj does not intersect the cycles C/ (see the proof of Theorem 3.2). 
Therefore Uj is in the interior of {£(u) < e*(b) +€j}n 3h([0,Lj]). Since Uj 
is a minimizer of £, its second differential at Uj is non-negative, hence Uj is 
stable. 
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Now we tend j to infinity and €j to zero. By Lemma 3.3 Lj are uniformly 
bounded from above and below, so we choose a subsequence Lj —> L > 0. 

We have e*(b) + ej > Siuj) > £*(b), therefore £(uj) -* t{b) as j -» oo. 
Absolute values |f7j(a;)| are bounded since their graphs Uj{s) are in the 
bounded domain DQ. Functions Uj(x)= UJ{LJX/L) axe i-periodic solutions 
of 

(L/LtfdlU - F'{U) = 0. 

Therefore Uj(x) are bounded in C2. Since all Uj are bounded in #2, we 
easily construct convergent sequences Uj, Uj —> U to a solution U strongly 
in Hh £{Uj) -> r(6), so £(«) = T(6). Since r(6) < £{U) < J(U) < e{b) 
we have £(U) = J(U), therefore we obtain the minimizer of J as well as of 
5, equation (1.3) holds by (3.1). Like in the proof of Theorem 3.3 we show 
that if the graph of U intersects with C*, it should coincide with it. □ 

For a curve u(s),s 6 [0,1] which lies in D' and intersects the set a, 
u(si) = pi,u(s2) = P2 with pi,P2 € cr, we consider the restriction of u(s) 
on [51,52] and denote it by ^|[s1,s2]- For this restriction the homotopy type 
h(uI[5l,52]) € TTI is well defined. 

Definition 4.4. We denote by S(pi,p2) the set of curves u(s) in D' with 
fixed endpoints pi,p2 £ ^ We denote for b £ TTI by S5 the set of curves 
from S which belong to the class b and put 

^(6,Pi,P2)=    Jnf    ^(ti). 

Definition 4.5. We denote S,([0,L],pi,p2) and ^([O^^JPI?^) the set of 
functions u € jffi([0,L]) which have graphs belonging to S(pi,p2) and 
S6(pi,P2) respectively. 

The functionals £ and J are naturally defined on restrictions of functions 
to subintervals: 

JV^M) = / vmu(x))\dxu(x)\dx, 
Jxi 

mixl,X2]) = /     &(?(*)) + \d,U(x)\2/2} dx. 

Proposition 4.1. Let u(x),xo < x < X3 be a curve in D', u(xo) = 
pi,u(xs) = P2 with pi,P2 € cr. Let u(x) intersect a at two more points, 
u{xi) = pi,^(2:2) = P2 wtthP11P2 Ea^xo <xi<X2< X3. 
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(i) IfJ(u) < **(&,Pi,P2) + C with b = /iM[so,z3])> C > 0; then 

(4.4) 

(ii) If£{u)<i¥(b,p1}P2) + C9 ^en 

(4.5) t(h(u\[xiiX2]),p[,p'2) < £(u\[xuX2]) < €*(fc(ti|[x1|a2]),l/i,pi) + C- 

(iii) Le^ deg (h(u\[xiM)) < d. If J(u) < t{b,pup2) + C with b = 
/i(w|[X0?a.3]); t/ien ^(^[[x!,^]) ^ ^ ^ere t/ie constant Rd does not 
depend on u. 

Proof. The first inequality in (4.4) is trivial. If the second is not true, 
^Mbi^]) = ^(^[si^Pi^) + CC > C- In this case we can replace 
a piece of u{x) on [0:1,0:2] by a curve with the same endpoints p^p^, the 
same homotopy type and with the Jacobian length ^^{u^^^^p^p^ + e. 
Therefore the length is decreased by at least (,' - €> Q \l eis small; so we 
obtain a new curve ?/ with h(uf) = 6, Jiu') < ^*(&,Pi,P2) which contradicts 
the definition of £*. Therefore (4.4) is true. To obtain (ii) we make a change 
of paramerization according to Lemma 3.3 so that £(u) = J(u) on every 
interval; clearly £* does not depend on the parametrization. 

To obtain (iii) note that for any given b 6 TTI we have a uniform bound 
t*(b,pi,p2) < ^o(k) for aU PuP2- Indeed, one can connect any two points 
PI1P2 £ <? by a contractible curve passing through P* and lying in a small 
neighborhood of a so that the length of the curve is uniformly bounded 
by a constant K = K(a). Then ^(6,^1,^2) < r(6,P*5P*) + K. There 
is a finite number of classes fe7 € TTI which satisfy deg (b,) < d, therefore 
corresponding f*(6,P*,P*) are bounded by a constant R'd. Using (i) we 
obtain that J(u\[xuX2]) <R'd + C = Rd< □ 

We obtain a simple corollary from Theorem 4.1: 

Corollary 4.1. If the graph of the energy-minimizing solution U(x) from 
Theorem 4-1 intersects a contractible closed set a C D', that is for xi < X2 
we have u(xi) = Pi G a, ^(#2) = P2 ^ 0' ^en 

(4.6) J(U\[X1,X2]) = £(U\[XUX2]) = tihiU^U^). 
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Proof. We can take any XQ and pi = ps = ?7(zo); we can connect pi with a 
by a curve in D' and take the union of this curve and a as a new a. After 
that we use Proposition 4.1 with £ = 0. □ 

Now we consider the Dirichlet problem (1.2), (2.3) with the boundary 
data pi = ^(0), p2 = u(L) in D". We take a contractible set a c Df and 
assume that pi,p2 € a DD". 

Theorem 4.2. Letpi,p2 EanD" Then for every b € TTI tfiere exists L and 
a steady-state solution of the equation (1.2) , (2.3) swc/i £/ia£ U Eb, 

£(U) = J(U)=t(b1p1,p2) 

and (1.3) /ioZds. If F(u) G C2(R2); £/ie solution is stable, that is (4.3) ZioMs 
/or everT/ smooth V(x) with a compact support in (0, L). If for xi < X2 we 
have u{xi) = p^ G cr, u(x2) = P2 € cr t/iera t/ie equation (4.6) feoZds. TTie 
^rap/i o/t/ Zies in Z)". 

Proo/. The proof is completely similar to the proof of Theorems 4.1 and 
Corollary 4.1; now we obtain U which is a global minimizer of £ and J 
in 3£([0,If],pi,p2) and 26(pi,p2)? respectively. The only difference is that 
when piiP2 € Ci the graph of U may intersect C; at x = 0, x = L not 
coinciding with Q. □ 

When the length of a curve u is infinite, the functionals £(u) and J(u) 
are infinite and we cannot define stable geodesies of a prescribed type as 
their minima. To be able to pass to the limit as the length tends to infinity, 
we need to introduce localized characteristics which have limits. To this end 
we use a localization of the homotopy type. This localization depends on 
the set cr and is defined below. Below we denote by a a contractible set in 
D' which contains a 5- neighborhood of a in D'. 

We consider a curve u(s) in D7 which intersects a. Let u(si) = 
pi, u(s2) = P2 with puP2 € cr. We denote the restriction of u(s) on [si, 52] 
by v>\[SUS2]. The homotopy class of u|[ai>S2] in TTI is well-defined and we de- 
note it by frH[si,s2])- E ^(5i)> w(52), ^(^s) G cr we have the 7ri-multiplication 
formula: 

For a curve u(s) in JD' with endpoints in a for every s* such that iz(s*) ^ 
a we can find a maximal open interval ($1,52) which contains s* and on 
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which u(s) £ cr. When the restriction onto [51,52] has the trivial type, we 
call the interval non-essential. If [51,52] is non-essential, then h(u\[sliS2y) = 
h(u\[sus3]) when 5i < 52 < 53. If a curve u lies in D', has endpoints in a and 
belongs to a non-trivial class 6, the Euclidean length IE^) of this curve is 
bounded from below: ^(iz) > 1% > 0. Indeed, if IE(U) < 5, the curve u lies 
in a 5-neighborhood of a and therefore in contractible a, so it has a trivial 
type. 

Therefore, if a curve u has a finite length, there is only a finite number 
of essential intervals. 

Definition 4.6. For a curve in D' with endpoints in a and with a finite 
length we find all essential intervals [5;, $[] and define the following word 

(4.7) ha(u) = /iM[sijSi])... h(u\l8NjN]) = H^IM) 
G
 ^ 

1=1 

where N is the number of essential intervals, 5i is the minimal of all left 
endpoints of essential intervals; 5^ is the maximal right endpoint. When 
there is no essential intervals at all,iV = 0, ha(u) = 1 is trivial. 

In a nontrivial (4.7) 5j < 5J < s/+i < 5j+1, [5/,5j] are essential intervals 
of u and [5^,5^1] are non-essential intervals for every L It is possible that 

Note that the reducible word h^u) is defined uniquely by u as well as 
the essential intervals [sz,5{]; they depend on a. Since the homotopy type 
does not depend on a contractible cr, irreducible words for two different a 
coincide: if u has endpoints in a and h(u) = b € TTI and a C cr', then we 
have 

ha(u) ~ /v(*u) ~ 6. 

Here and below ~ denotes the equivalence of words by the group relation; 
two words are equivalent if they are related through cancellation or inserting 
a finite number of pairs gig^1 or g^gi. When two curves -UQ, UI are connected 
by a homotopy in Df, we have h(uo) = h(ui) but ha(uo) may be different 
from h^ui)', of course, h^uo) ~ ^o-(^i). 

Below we define such sets a that h^iu) G TTI gives a detailed enough 
information on the localization of elements of h(u) e TTI. 

Let P* € D" be a base point (we take it as the origin O in the u-plane, 
P* = O). We fix a spider-shaped set a* € I)7 (see Fig. 4) which consists of 
simple curves erf, i = 1,..., n which start at the origin and connect it with the 
external cycle CQ. The curves intersect only at the origin; they intersect CQ 
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only once; therefore they divide the interior of CQ into n sectors E*; every 
sector includes one of the minimal cycles C;. The set a* is contractible, we 
take it as a base point of the homotopy group TTI = 7ri(D\ a*). We number 
the cycles Ci so that the cycle Ci is in the sector Si bounded by a; and Oi+i; 
clearly an+i = ai. Consider now (4.7) for this set a = cr*. The function 
u(s) on every essential interval takes values in one of Si, so its type is gf 
where gi is the generator corresponding to Ci C Si. If the irreducible word 
H^lsus']) € TTI of a restriction of u(s) on [si,si] includes more than one 
generator, there exists one more point of intersection with a* u(s*) G cr*, 
si < s* < S}. Indeed, different Si cannot be connected by curves in Df 

which do not intersect a*. So, if there is no point of intersection with a*, 
the curve ^|[SljS'] lies in one of Si and has the type gf. Therefore for every 

essential interval h(u\[ShS']) = g^ and (4.7) takes the form 

N 

(4.8) Mti)=^flg|.-flt=n»?65fi- 
i=i 

Figure 4: The set a 

Now we give another set a which gives more information, we denote this 
set by a. This set will be systematically used from now on. 

Let a be a set obtained by adding to cr* n arcs a^ which lie in the sectors 
Si and connect the origin O = P* - the center point of a - with the cycles 
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Figure 5: The set a 

C\,i = 1, ...,n. It is assumed that G\ have only one point, namely P*, of 
intersection with a* and only one point of intersection with Ci and C\. 
This 2n-leg spider set a is contractible and Tr^jD^a) = ^(.D^a*) = TTI. 

Note that the set a divides D' into n contractible connected components 
£V If the type h{u\^si^) € TTI of a restriction of u{s) on [si,^] does not 

coincide with gf1 or with 1, there is one more point of intersection with G\ 

u{s*) G ?, 5i < 5* < &\. Indeed, if there is no intersection with a then this 
subcurve lies in one E* and belongs to grf. If |a| > 1 there is a point of 
self-intersection which gives a closed loop with a type of class gf1 (see the 
proof of Lemma 3.1) which lies in the Si and does not intersect a. It is of 
nontrivial type when C\ is inside the loop; but C\ is connected with Co by 
a, which must intersect the loop. So |a| = 1. Therefore on every essential 
interval h{u\^SuQt^) = g^^x = ±1. So we can write (4.7) with a = c in the 
form 

(4.9) K{u) = 5J5g - - -flfc = 114 6 ^ 4Z = h^\M) = 5f • 

Theorem 4.3. Let L > 0. Letbeni. Let L < £*(b,p1,p2) + 6. Then the 
set X = 3£([0, L],pi,p2) H {5(^) < ^C} w invariant under the dynamics of 
(1.1), (2.3) ifeat t5 ti(*) € H/

6([0,L],pi,p2) H {£(M) < £} for all t > 0 t/ ft 



312 V. Afraimovich, A Babin, and S.N. Chow 

is true for t = 0. If this set X is non-empty, it contains the attractor A 
which includes a stable equilibrium point Z which is a solution of (1.2) and 
a global minimizer of £ over X. 

Proof. The invariance and existence of the attractor and of Z directly follow 
from Theorem 3.1 and Theorem 2.2. □ 

Remark 4.1. Obviously we can assume that F{u) may be not positive 
inside the cycles C*; in fact we may allow JP(^) to be equal to zero at 
isolated points inside Co, but in this case we can't assert existence of periodic 
solutions of arbitrary type; solutions of homoclinic or heterochnic type can 
arise instead, thanks to unboundedness of Lj. See for this case [4]. 

Remark 4.2. When a word b contains at least two different generators, a 
curve from this class which has a point on C} must intersect C;. Therefore 
one may slightly relax conditions of minimality and ^-stability of the minimal 
cycle in Definitions 3.1 and 3.2. Namely, the conditions should be imposed 
only on curves which intersect C*; €2 and 9 may be put to zero for curves Y 
which do not intersect the cycle Ci. The statements of Theorems 3.1, 4.1, 
4.2 and 4.3 remain true for such b under the relaxed conditions. 

5. Equations on the infinite interval. 

Prom now on we take the set a given in the previous section as a base set a. 
Consider now solutions of (1.2) and (1.1) on the infinite interval —00 < 

x < 00. We take a generalized element of the fundamental group of D' in 
the form of an infinite word 

00 

(5.1) b = n s? e *f 
Z=—00 

where KI = ±1 and KI+I = KI if ii+i = ii\ the last condition means that the 
word is irreducible. 

A continuous function u{x) belongs to b € TTJ
0
 if there exists a sequence 

—Ljf —► — 00, L^ —► 00, iV -» 00 such that u(—L^-), zx(L^) € cr and the 
restriction of u(x) on the interval [—L^, L^] belongs to the class 

N 

l=-N 
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First we prove for every b G TTJ
0
 existence of a solution U of (1.2) from 

the class b. 
Recall that for every w € TTI there exists an unique be.ni such that 

w ~ 6, that is b is obtained from w by cancellations of Qig^1 or g^gi- 

Proposition 5.1. Let w 6 TTI- Let w ~ b = 6162 £ TTI- ITien w = W1W2 
where wi ~ bi, ^2 ^ ^2- 

Proo/. Note that if a word w ~ b where b is irreducible, one obtains b by 
deleting adjacent pairs of mutually inverse letters g}, p"1 from w until there 
is none left. The word b consists of the remaining letters of w. Inversely, 
inserting the pairs into their old positions we obtain from 6 the word w. Let 
c* be the last letter of the subword 61 of 6. We take as the subword wi 
the subword of w which starts with the first letter of w and ends with c*. 
Clearly it is obtained from 61 by inserting in 61 the canceling pairs to the 
left of c*, that is bi ~ wi. The remaining letters of w give W2. □ 

We denote by a a closed contractible subset of D7, which contains a 
5-neighborhood (Euclidean) in Df of the set a. Obviously, Tri(D\a) = 
ni{D\a) = TTI. Moreover, ^*(fr,Pi,P2) is defined for b 6 7ri,pi,p2 € S. 

Theorem 5.1. £e£ 6 G 7rf\ Then there exists a steady-state solution 
U(x), —00 < x < 00, of the equation (1.2) from the class b. It satisfies 
(1.3); it lies in D" and U(0) G <7. This solution takes values in Dn if it does 
not coincide with a periodic solution which coincides with one of minimal 
cycles Q. If for xi < X2 we have U(xi) = Pi G a, Ufa) = P2 G a then (4.6) 
holds. 

If Flf{u) is continuous, the solution is stable in ^(R) that is 

/oo 
[dlV{x) - F"{U)V{x)] V(x)dx < 0 

-00 

for any smooth function V(x) with a compact support. 

Proof. Let bj = Ut-j $, bf = UU 9%, &i = bjbf. By Theorem 4.2 there 
exist L'j such that W G bj are solutions of (1.2) with the boundary condition 
U(0) = C(Z^) = P*; W are minimizers of £ from the class bj = h(^l[o,I,'.])- 

Letwj = hv(U'\l0tLn)~bj.' 
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By Proposition 5.1 Wj = w~Wj' with wj ~ bj, w* ~ 6+. According 

to (4.9) we have a one-to-one correspondence between the letters g^ of the 
word WJ and essential intervals [x^Xj] of Uj. On taking the I/j = a:J where 
I is the label of the last letter in wj we obtain 

Note that since (1.2) does not depend explicitly on x, U(x + y) is also 

a solution on   —y,Zy — y .   We take y = L^ and put Lj = L",  L+ = 

Lj — L".   Note that the Euclidean length of an arc of W corresponding 
to every essential interval is bounded from below by a constant lg.   By 
Lemma 3.3 the length of an essential interval is bounded from below by 
(Z*)2/(2i?i) = c where Ri is the same as R^d = 1, in Proposition 4.1. 
Therefore the lengths Lj and Lf of supports of both halves of W are not 

j J 

less than jc, c > 0 and U? —► oo as j —> oo. 

Now we choose appropriate subsequences of j which yield the homotopy 
type b for the limit function. Let us fix an integer N and consider j > N. 
We take b^ = b^ = HL-iV^ an<^ 0t>tain the decomposition bj = feyfti- 
By Proposition 5.1 wj = ^yt^i with t*/^ ~ 6^ and K;I ~ 6^. Prom (4.9) 
we have h(W\r L- ^ = b1^ clearly deg^) = N + 1. By Proposition 4.1 

J{Ui | r_L- 0i) < RN+I+Q and by Lemma 3.3 the numbers LJN are bounded 

uniformly in j. We choose a subsequence convergent to Ljj. Similarly 
writing &t = 6^6^. with M^'IrcLt ]) = ^2 we choose a subsequence j for 

which Lt^ —► £+. Using a diagonal process we obtain a subsequence of j 
for which we have the convergence for every AT. 

We fix an arbitrary L > 0. The functions CP are bounded uniformly in j 
in C (their graphs are contained in the bounded set Do). Since the parame- 
terization is defined by \dxu\ = 2F(u), we have boundedness in C1([—L, L])\ 
expressing d%u from the equation (1.2) we obtain uniform boundedness in 
C2([—L, L]). Therefore on every finite interval [—L, L] we easily deduce weak 
compactness of {U^} in H2([—L,L]). Using a diagonal process we choose a 
subsequence of solutions W of (1.2) which converges weakly in i-feQ—£> £]) 
and strongly in iJi([—L,L]) , C([—L,L]) and in C1([--Z/, L]) on every finite 
interval [—L, L] to a solution ?7(:r). Since graphs of W are in D", the graph 
of (7 is in 5". 

Since U^L^)  € a, from convergence in C([—L,L]) it follows that 
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[/(L]y) E a and U^Lfy G a for large j. Since a is contractible 

2=-iV 

Therefore h(Ui\rL- L+i) = 6jv does not depend on j and we can pass to the 
limit and obtain 

(5-3) wk-wti) = n«?. 
AT 

n 
fc=-N 

that is C/ € 6. 
Since (1.3) holds for W, by convergence in C1 we get it for U. The 

graph of U is in D"; the boundary of D" consists of minimal cycles C*. If 
the graph of U intersects Q it should be tangent to it and by (1.3) the graph 
of U should coincide with C* since they correspond to solutions of the same 
second order ODE with the same initial data. 

One can pass to the limit in (4.3) for any fixed V(x) with a compact 
support and obtain that the limit solution U is stable in /^(R)- 

Now we prove that (4.6) is true for U. Assuming that (4.6) does not 
hold for U on [xi, X2] when U(xi)1 Ufa) € oy that is 

(5.4) /    [F{U{x)) + \dxU{x)?mx>t(b',p'l,p'2) + el, b'= h{U\[xiM) 
Jxi 

we will obtain a contradiction. Indeed, consider 17, W on the interval [xi, #2]. 
We have 

im^M) - W%x^\ < K2 \\U\[XUX2] - ^|[M]||Hl([!tl>xa]) 

where K2 depends on bounds of iJi([xi,X2])-norms of U,W on the fixed 
interval [xi,:^] and is bounded. If j is large enough, we obtain from (5.4) 

(5.5) f V(^(z)) + \dxUi(x)\2/2]dx > tib'^p',) + €l/2. 
Jxi 

Since W; are global minimizers, we obtain from (4.6) (which is applicable to 
an arbitrary contractible a, for example to a) 

£(uj\[xl,X2])=t(b',pi,p>2). 
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Comparing with (5.5) we obtain 

(5.6) rVJvA) > **(«,&&) + ei/2. 

where pj = U^{xi),jP2 = Uj(x2) with p^.p^ € 5 since Uj\[XuX2] is in a 
^-neighborhood of U\[xliX2] in the C-norm. 

On the other hand, the dependence of the length of minimizers with 
fixed endpoints on their endpoints has the following general property. If 
P11P2 € 0*5 {pi — pi\ < J, \p2 — P2I '^ ^5 connecting pi with pj_ and P2 with P2 
by straight line segments (which are in a by definition of a) we obtain 

(5.7) \t(b',puP2) -tib'^p'Jl < iTxdp! -pi| + \P2 -p'2\) 

where 

(5.8) Ki = sup y/2F(u). 
uGcr 

We have pj_ = ^(^1) G <7,P2 = ^(^2) € cr.  Since W —> U on the interval 
[a;i,X2]5 points pj^ are close to pi,P2 and we can apply (5.7). Since p{ —» 
K, pj -> Pi, for large j we have \e*(b',p{,p>2) - ^(^Pi,l4)| < €i/2. This 
contradicts (5.6). This contradiction shows that (5.4) cannot hold. □ 

Lemma 5.1. Let (3.5) hold on an interval [£1,2:2] C [0, L].  Then 

(5-9) VLo 2^  

where LQ = |x2 — ^il; Jo is the Jacobian length of the curve u on [rci, x^. 

Proof. We have 

j*2 [^2/1- IMJ dx<  f 2 \y2F(u) - \dxu\\ dx 

</        v/aFCu) - \dxu\   dx < y/X2 - XlVW. 
Jx\    ' ' 

This implies 

£o\/2^ < \fUy/26+ f^ \dxu\dx < T/Z^VM + [ ' \dxu\ ^'L^J-dx. 
Jxi Jx1 y/2F(u) 
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Therefore 

£O\/2M< \/2^V
/
20 + -T=Jro,Jro= /    \dxu\y/2F{u)dx. 

This expression is quadratic in yfLo and after solving a quadratic equation 
we obtain the estimate (5.9). D 

Consider now the parabolic equation (1.1) in the unbounded domain 
x € R. We will show that together with a steady-state solution Z with a 
given homotopy type and a fixed value of the Hamiltonian given by (1.3) 
there exists an open in appropriate topology invariant set of the parabolic 
equation consisting of functions which have the same homotopy type. It 
gives nonhnear stability for the spatial pattern of solutions. 

Recall that the norm in the weighted Sobolev space #*:,-? is defined by 

/oo ^ 

We extend the function F{u) outside D\ so that the first and second deriva- 
tives of F{u) are bounded uniformly in the entire plane. Prom results of [7] 
we obtain: 

Theorem 5.2. For any initial data u(Q) G Hi,-p,p > 1, there exists a 
unique solution u(t) = ix(x,t) of (1.1) with u(t) 6 Hi^p^t > 0. 

Therefore the dynamics V —> StV generated on Hi-P by (1.1) is well- 
defined. Obviously, bounded smooth functions, in particular smooth peri- 
odic in x functions with an arbitrary period belong to Hi-P ifp > 1; periodic 
functions form invariant subspaces in this space. Since U(x) is bounded and 
by (1.3) dxU(x) is bounded uniformly in x, solutions constructed in Theorem 
5.1 belong to jffi-p if p > 1. 

Proposition 5.2. Let a curve u(x) lie in Df, pi = u(0) € cr,p2 = U(L) G CF. 

Let £(u) < £*(h(u),pi,p2) + Ci and (3.5) hold. Then there exists such a 
L* > 0; which does not depend on u, L, that ify', y G [0, L) satisfy y'—yyL* 
then u(x^) G a for some y < x* < y7. 

Proof. Note that by (3.1) J(u) < r(fc(ti),pi,p2) + Ci- The set cr = 5 divides 
D' into n disjoint contractible subdomains fi;,i = l,...,n.   The internal 
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diameter of every disjoint component Qi in J'-metric is bounded from above 
by a number 2RQ. Changing an arc of the curve inside a component Qi with 
the endpoints of the arc fixed does not change the type of the entire curve. 
Consider an arc which lies in a component fi;. If the Jacobian length of the 
arc is greater than 2RQ+(2I C2 > Ci we connect the endpoints of the arc by an 
arc in Qi with the length 2RQ+e. So we get a new curve with the same type 
and the Jacobian length of this curve is less than t(h(u), pi, P2) + Ci — C2 + e 
which contradicts the definition of (,* when e is small. Therefore, if the 
Jacobian length of an arc of u is greater than 2i?n + Ci ft intersects a. By 
(5.9), if   

y/U> 2^  

we have the Jacobian length Jb > Sifo+Ci; therefore we have an intersection 
with <7. □ 

Theorem 5.3. Let b 6 TTJ
0
, let Z = U G b be a solution of (1.2) which has 

the properties described in Theorem 5.1. Let V(x) be a function which has 
the following properties : \\V — ^H^Hy < €1; 

/oo 
\F(V(x)) + \dxV(x)\2/2 - F(U(x)) - \dxU(x)\2/2\dx < e2. 

■OO 

Let €1 < 6,62 + Kiei = 61 < 6 where Ki is given by (5.8). Then there 
exists a unique solution u(x,t) of (1.1) such that u(x,0) = V(x), u{x,t) 6 
D' Vrr, t and for every fixed t = to > 0 u(to) G b. This solution satisfies the 
approximate Hamiltonian conservation law 

(5.11) f    (v^WM))--|^(a;,*)|)   dx<2e\/t>0 

and (4A), (4.5) with ( = 9. 

Proof. Let Lj, Lt be the same as in the proof of Theorem 5.1 with U = Z. 

We have Z(-LJ) = ?i,Z(L+) = q^Z(0) = 93 with 91,92,53 G a. The 

function Zj(x) = Z|r ^r^t] on tlie interval [""-^J^/l h35 tlie homotopy 

type fc^i) = h = nt-i^1- We have 

* (zihL-,o]) = n ^=bj, h (zip^)=n#=6/' 6i=&7^' 
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We restrict initial data V(x) to the interval [—LJ^L^] with V(-L~) e 

a, V^Lj") G a since €2 < 5. 
Consider (1.1) with the Dirichlet boundary condition 

u(-Lj,t) = V(-LJ) = & u(Lf, t) = V(Lf) = 4 Vt > 0 

and with the initial condition u(x,0) = V(x),x G [—LJ,L+]. 

By Theorem 4.3 we have Uj(t) € X = S^([-Lj,Lt],pJ,p5) Vt > 0, 
therefore itj-(ar,t)-E I?7 are bounded uniformly in x,t,j, that is we have an 
uniform estimate in C. For any fixed L, T with Z^ > L + 1 we consider 
solutions Uj on the rectangle Q = {—L < x < L} x {0 < t < T}. The main 
part of the equation (1.1) is linear and the nonlinear term Ff(u) is bounded 
for bounded u and can be considered as a given function. Using uniform 
boundedness of initial and boundary data, Lipschitz dependence ofF^u) on 
u and standard properties of linear parabolic equations (see [19], [17]) we 
obtain uniform in j boundedness of the first order time derivative and the 
second order space derivatives of solutions in C7(Q),7 > 0. We can choose 
a subsequence of solutions of (1.1) which converges in C(Q) and the time 
derivative and second order space derivatives converge in £2{Q) as j —> 00; 
the limit function u(x,t) is again a solution of (1.1), u(x, 0) = V(x). Since 
ui (x,t) G D' Vx, t, j it is true for u(x,t). So we have proved the existence of a 
solution. Its uniqueness follows from Theorem 5.2. Since every subsequence 
converges to the same limit tz(x,t), the sequence t^(x, t) —* tx(x, t) in C(Q) 
together with first time and space derivatives. 

The inequality (5.11) follows in the limit from (3.5). We obtain for v? 
(4.4), (4.5) from Proposition 4.2 with £ = 9. Passing to the limit like in the 
proof of (4.6) in Theorem 5.1 we obtain (4.4), (4.5) for u. 

Now we show that the solution u(t) G b for any fixed t = T. We use the 
same approach as in Theorem 5.1. We have 

M^'WI^L;]) = 11 g* =**"*. 

Since bj = bjbf we have by Proposition 5.1 Wj = wjwf with wj ~ bj. The 
last essential interval corresponding to the last letter of wj has the right 
endpoint L}, u^ (L?, T) G a. 

We show that L° are bounded uniformly in j. Consider the rectangle 
QJ = {-LJ < x < 0} x {0 < t < T}. The function u(x,£) restricted 
to its boundary determines a cycle F in the u-plane which lies in D'. The 



320 V. Afraimovich, A Babin, and S.N. Chow 

cycle consists of four arcs Fi, r2, Fa, r4 corresponding to the lower, the right, 
the upper and the left sides of the rectangle respectively. According to the 
boundary condition, 11^4) = Z(—Lj) € cr. The cycle F has the trivial 
homotopy type. Indeed, by decreasing T we obtain a homotopy which at 
T = 0 yields a trivial cycle obtained by passing the same curve first from left 
to right (from —LJ to 0) and then backwards; this cycle can be contracted by 
moving the right endpoint of the curve along the curve to the left endpoint. 
Therefore the homotopy classes corresponding to the curves Fi and r2Ur3 = 
Fs are inverse. Changing the orientation on Fs to the opposite (positive 
direction on the upper side now corresponds to increasing re), we obtain 
that the classes coincide. 

By Proposition 5.2 we have XQ G [—If*, 0], u(xo, T) =po € cr, we take the 
maximum of all such XQ] let M^jlf-L •,-£*]) =: boj- The irreducible word boj is 
a subword of the irreducible word 67, bojl/0i = bj. We have two possibilities, 
boj C bj and bL C 6+ . We consider the first case, the second is similar (we 
need to consider x > 0 then). 

The curve Fs consists of three parts: ui given by u3;(x, T), —LJ <x<xo; 

U2 given by ^a;,T),xo < x < 0 and ^3 given by ^(0,£),T > t > 0. We 
denote the union of ^2,^3 by 2x4. So we have bj = &(y&^ with 6^ = h{u4). 

Recall that fc(^|[.xfT,o]) ==: h$s) = bj' We have ^(r5) = wj~ ~ bJ and by 
Proposition 5.1 wj = w^wn^wn ~ b". 

Now we prove that the degree of b" is bounded uniformly in j. Indeed, 

the Euclidean length of the curve r2 is bounded by /0 \dtUj(0, t)\dt, and this 
integral is bounded uniformly since dtUj(x,t) are bounded in Q. Since on 
XQ < x < 0 < xi UJ(X) <£ cr, with Uj(xo) G (7,^-(zi) € a it has type gf1 or 1 
and by Proposition 4.1 it has a Jacobian length bounded by Ri. Therefore 
the Euclidean and Jacobian lengths of Fs are bounded, which implies that 
deg (h(u4)) < ^(T). Therefore deg b'j < di(T) and deg (fe^l^-^oj)) < 

di(T). Applying Proposition 4.1 we obtain that *7(^|r £- Loj)) < K' and 

by Lemma 5.1 |I^| < Ki are bounded uniformly in j. 
Now we define 1^-. We have 

Jo n ^(^%,L0])= ri sj^j-^iK1- 

Since 6J ="6JV'*^ 
usinS Proposition 5.1 we split Wj^ = wj^wj^. Like 

in the proof of Theorem 5.1 for a fixed t = T and 1 < N < j we can find 
points IJJVJ which now depend on t, such that v?(LjN,t) € cr, 1^ < If-, 
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and 

M^l^o,) = I! <# = ^W - b~N- 
-JN 

Therefore deg {h(uj(t)\lLT   Lo  j)) < iV+1. By Proposition 4.1 the Jacobian 

length of corresponding curves is bounded by a constant which depends on 
N and not on j. By Lemma 5.1 corresponding x-lengths are bounded too. 

So  ZT^and  similarly  Lt^)   are bounded uniformly in j  and  we 

can choose subsequences converging to L^.     We obtain in the limit 
h{uj\r_L- ^oi) = btf and similarly h{uj\rLQ L+^ = 6^ which implies that 

ueb, ^ N □ 

The steady-state solutions of (1.1) are obtained as local minimizers of 
energy with a prescribed value fi of the Hamiltonian. The solutions obtained 
in Theorem 5.1 are parameterized by two parameters: /x (it affects solutions 
through the potential F{u) = FQ{U) +fx and corresponding Jacobian metric) 
and by the homotopy type b G TTJ

0
 which describes their spatial structure. 

Prom Theorem 5.3 follows that the constructed steady state U(x) with a 
given fj,, b is stable with respect to H^QCR) D HQ^ -perturbations. Indeed, if 
V—U has a small norm in this space then (5.10) holds as well as an estimate 
inC. 

Considering /i fixed, we study the spatial distribution of the homotopy 
elements of the set of solutions in the next section. 

6. Complexity of steady-state solutions. 

We want to describe how complexity of steady-state solutions we constructed 
in Theorem 5.1 is related to the length of an interval on which we consider 
the solution. First we give estimates of complexity in the general case. After 
that we consider in more detail the situation of Example 3.1, that is a locally 
radial potential. 

For every element b e Trf3 we have by Theorem 5.1 a solution Z G 
6,Z(0) e a. Moreover, Z[0tOo) 6 fc+, Z(-oo,o) € 6" with 6" = nL-oo<C 
b+ = n^iSr* We have constructed in Theorem 5.1 such L^, L^ that 

o N 

Z[-LJM € bN' bN=ll tf ■   Z&lfl e b»> bN = IK'' 
l=-N 1=1 

Therefore 
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We denote the set of all constructed Z& by M (Af contains exactly one Zt, 
for every 6). 

For every Zb € JV and for any i the lengths |L^i.1 — Lf\ of the inter- 

vals corresponding to g^1 are uniformly bounded from below by a constant 
L* > 0 (since the type is not trivial) and from above by L* according to 
Proposition 4.1 and Lemma 3.3. 

For every L we denote by L^{L) the maximum of L^ < L. We denote 
V(L) = ^(Z[-L-(L),L+(X)]) £ fl"i- We define the number JV(Zr) = N^(L) of 
different homotopy types of z^ e Af on [—L, Ir] as the number of different 
b'(L). 

Since the number of letters of the word bf(L) is between 2L/L* and 
2(L/L* - 1) we have Njsf(L) < 2n(2n - l)^/U-i and ^^ > 2n{2n - 

We introduce a lower complexity h*(N) and an upper complexity h*{N) 

K{N) = lim inf lnNAr(L)/(2L), h* = lim sup lniVJv(L)/(2L). 

So we obtain the following statement. 

Proposition 6.1. 

where n is the number of generators of the fundamental group TTI(D\ P*). 

Now we consider the situation of Example 3.1 (see also Fig. 6) when it is 
possible to give more precise information on h*(J\f). In this case the steady 
state solutions can be explicitly described up to a small error. Recall that 
we assume that F is constant far from two points P;, i = 1,2; namely 

F(u) =fifoTu<t JDf, Df = {\u - Pil <r}o + d}. 

Here d > 0 is a small number and F is radial inside Df, that is (3.6) holds 
with rs = TJO + d.  It is assumed that (3.7) holds with e = d, that is the 
circles C* = flP* — ti| = TJO} are minimal cycles. 

We also assume that the variation 

dp =      sup 
'no<'n<'no+d 

Vv2f(v) - ^Jvofivo) 

is small. We denote by pi = V^o/^o) the minimal value of y/rpTW) an(i 
assume that dp < /ii/2; we assume dp < csd with a fixed C3. 
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Figure 6. 

We fix z/i, z/2> 0 < ui < rjo/a < v^ < 1. Clearly, steady-state solutions 
u(x) are linear when u(x) £ D? and their graphs are straight line segments. 
At the same time, when u(x) G Df by Theorem 4.1 the solutions lie in the 
rings Ai = {770 < \u - Pi\ < r?o + d}. 

The set a* is now the vertical segment ui = 0, \u2\ < 77 + d. 
An external minimal cycle Co is inside the set formed by two horizontal 

straight lines \u2\ = Vo + d and two semicircles \u — Pi\ = 770 + d, \ui\ > a 
(recall that Pi = ((—l)za, 0)). The set a is obtained by adding to a* the 
horizontal segment cr' = {u2 = 0, \ui\ < a — r/o}. 

Since the function F in the neighborhood of Pi depends only on 77 = 
|P;—7/|, the minimizers u(x) = Zh{x) in addition to minimality and (1.3) have 
special properties. We restrict ourselves to the case when b includes powers 
of different <#, that is Z& does not coincide with one of two simplest periodic 
solutions b = gf* and 6 = 32°; the graphs of these simplest solutions coincide 
with minimal cycles Ci and C2. For nontrivial b graphs of u(x) = Z^ix) 
always include straight-line segments (see Fig. 7). 

Consider u(x) on the interval xi < x < X2 when it is near Pi= Pi 
and does not get into the second circle Df- On this interval u(x) can be 
considered as a solution of equation (1.2) with a globally radial potential. 

From (3.13) , (3.14) we obtain equations in polar coordinates 

v"-v^r = f'(v), V<f>" + ^'<f>' = 0 
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The second equation implies Kepler's law 

(6.1) 77V = Mi = const. 

Therefore </>' does not change sign and <f)(x) is a monotone function. 
Equation (1.3) in polar coordinates takes the form 

(6-2) [(ri')2 + V2(<f>')2] = 2/(17). 

Denoting 77* the minimal value of the solution 77(2) at x = 0:0, ry* > 770, 
we obtain from (6.2) at x = XCT?

7
 = 0 SO ^^/(XQ)) = y/2fjjj)rp. Putting 

x = xo in (6.1) we obtain ^^(x) = Mi = ±1/277^/(77*). 
We can rewrite JX^I^ a^]) using (1.3) in polar coordinates centered at 

Pi: 

^H[xi«]) = £2 2F(u(s))<*r = y^ 2^M# 

with <t>2> <f>i- Expressing <£' from (6.1) we obtain 

Similarly, we obtain an expression for the length of the x-interval 

£>X2 r<t>2   J 

L0 = X2 — xi =        dx= "Tjdcj). 

Therefore 

rte       „2 

(6.3) L0 = f A    .   Z       d<f>- 

Consider now ti(n:) = ^(x) on an interval [x_,x+] = [Lt5L+] corre- 
sponding to fo(?i|r£+ L+T) = bf £ TTI. When u(x) is outside Ai, the straight 

line (j* has only one transversal intersection with a straight-line segment 
of u{x) during a transition from one ring Ai into another. When u{x) is 
inside Ai, 0 is monotone and u{x) intersects a' \a\ — 1 times if the class is 
gf between two transitions. Therefore /i<7(?z|rj[+ L+j) e TTI is irreducible and 

coincides with ^(^1 [£+,£+]) € TTI. 

The points of possible intersection of a curve Z with cr = <? are lo- 
cated near five points: pi = (770 — a,0),p2 == (a "" ^o,©),^ = (0,0), 
p4 = (0,770)^5 = (0,-770). More precisely, the distance from these points 
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Figure 7: Curve u(x) 

to the intersections is not greater than cod,co = CQ^I,^)- The restriction 
(U\TL± £±I) has endpoints in a in a cod-neighborhood of one of these five 

points. 
Therefore the angles ^i,02 which correspond to the intersection with a 

for fixed 770, a, b and depend on / vary in an interval with a width bounded 
by cid (angles corresponding to points of intersection with crf do not vary 
at all). So the variation of the length L0 from the same class for different 
/ given by (6.3) is bounded by K^cid + (fa — <l>i)K/L{dF + d) where Kz = 
2a2/iJ,i,K4 = a2/^ + 2a//xi. 

Fix b and consider together with u(x) = Zb a curve v = v^ which has the 
same type 6 and has the same geometric properties as u (monotonicity of (j) 
in every Ai) but in the case d = 0. That means that ^(5) is composed of 
arcs of minimal circles C* and of straight lines tangent to both of them. In 
the integral (6.3) for v we take /(r/) = /i (recall that for Zi, f(rj) = // when 
7? > 7?o + d)- The parameterization of v is obtained as a limit of (1.3) by 
putting \dxv\ = v/2/L 

According to (6.3) the x- lengths of v with endpoints Q'± € 5 are the limit 
of the x-lengths of pieces u = Zi with endpoints Q± in cod neighborhoods of 
Qi G a as d —► 0,dp —► 0. The curve v has the same type b' G ^i{D\ a) as 
the arc of v between Q- and Q+ ( we assume cod < e and e is so small that 
a does not intersect D\,i = 0, ..,n). The x-length L(t;) of v is related with 
the Euclidean length IE(V) of this curve by the formula L(v) = ^(f )/\/2/x. 

For any interval [x-, x+j with Qi = u(x±) € a and with homotopy type 
£/ on this interval [x_,x+] ( Q- is near one of the five points pj and Q+ is 
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Figure 8: The set a 

near another pi ) we take v^ from the same class 6; vf is an arc of v from 
the class If which starts near pj and ends near pi. Applying the estimate of 
variation of x-lengths we obtain: 

L0(u\[x_,x+]) - IEW)/V^ I < deg(6,)M + Kidp^ 

where A^ is the total variation of the angles fa in all Di along u{x) on 
[—x_,X4.]. We have A^ < 27rdegfe/ where degfe' is the degree of the word 
V. Since L* > 0 we have the estimate degfc7 < |a;+ — x-|/L*. Therefore we 
obtain the estimate which is uniform in &': 

|^0(«l[x_,x+]) - LQ{v)\ < K5(dF + d)\x+ - x-\/L*. 

This implies 

(6.4) |L0W/i0(^|[x^x+]) - 1| < Ks{dF + d)IU < Ked, 

when d is small. Denoting the set of all v^ by A/7 we find the lower and the 
upper complexities h*(Aff), /i*(A/r/)- Since there is one-to-one correspondence 
between restrictions of Zb and related VB using (6.4) we conclude that 

lni%((l + Ked)L) > InN^(L),  lni^((l - Ked)L) < lnN^(L) 

for large L and small d. Therefore for small d 

(6.5) \h*{Nl)/K(N) - 1| < 3#6d; \h*{N')/h*{N) - 1| < SXed. 



Infinitely spatially complex solutions of PDE 327 

These differences are small when d is small. 
In the next section we will show that h*(J\ff) = h*^') and find explicitly 

its value. We also find asymptotics of number of different periodic solutions 
from jV on a given interval L as L —> oo. According to (6.4) this gives 
estimates of the number of periodic solutions from Af corresponding to F 
with small d and dp. 

Remark 6.1. The Bernoulli shift Z —> I + 1 determines dynamics of words 
from TTJ

0
 and we are able to find topological entropy which describes how 

fast complexity of 

n 

l=—n 

increases as n —* oo. Since the number of elements equals 4 x 32^, the 
topological entropy equals In 3 (this was shown in [1] ). In this paper we 
apply a different approach. We study not only the topological structure 
of solutions but their spatial structure as well. We consider solutions on a 
spatial interval [—L, L] and study how fast the complexity grows as L —► oo. 

7. Suspended flow for minimizers of a special potential. 

In this section we consider curves v = vi introduced in the previous section. 
Two minimal cycles have centers at points Oi, O2, Oi = (—a, 0), O2 = (a, 0) 
in w-plane with the origin O = (0,0). The radii 770 of the minimal cycles 
are denoted by R. Generators of the fundamental group are still denoted 
by gu 92- Note that since F(u) = /x in the definition of the Jacobian length 
of the restriction J(v\s) of v(x) onto an interval 5 = [xi,^], we have the 
relation 

Jfrkxiw]) = V^
1
E(V\[XUX2]) = 2II\X2 - xi|. 

We put for simplicity fj, = 1/2 and obtain results for /x ^ 1/2 from Section 
1 by a simple rescaling. 

We consider the problem: how many closed geodesic curves of the consid- 
ered type have the length (Euclidean) smaller than a number L, or between 
L — 1 and L? In the course of solving this problem we also solve a simpler 
problem of estimation of the number of arbitrary curves (maybe not closed). 

We need to recall a piece of the ergodic theory. Each closed geodesic 
corresponds to a irreducible word g = g-*. ..^ where fcf £ Z\{0}, i = 
1,..., n and gi is a generator of the fundamental group TT^JD') where Df = 
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Do\{Dl UD2}. Here D^ D^ are open disks of radius R/2 centered at points 
Oi,02. 

In order to describe all admissible words we introduced in [1] the fol- 
lowing topological Markov chain. It has 4 states denoted by symbols 1, 2, 
3, 4. We identified symbols 1, 2 with generators 51,52 and symbols 3, 4 
with elements gf1,^"1 correspondingly.   We admitted a transition i —* j 
if the pair (i,j) does not correspond to the pair gkg^ or g^ gk, k = 1,2; 
i, j = 1,2,3,4. So the matrix of transitions, say A = {aij^j^i is defined as 
follows: ciij = 1 if there exists a transition i —> j, and a^- = 0 if not, i.e., 

/I   1   0   1\ 
1110 
0   111 

Vi 0 1 ij 

The elements of TTJ
0
 given by (5.1) can be rewritten in new notations as 

follows. One can denote, as usual, by ^4 the set of infinite sequences (words) 

a = 

UJ = (...a;_iW0...u;fc...),        uJk € {1,2,3,4} 

with the following property:   aCJ?u,fc+1  = 1, k G Z (the last condition is 
equivalent to the irreducibility of the word). CI4 is endowed with the metric 

00      1 
diSt(a;',a/')=   £   ^ Mb " ^ 

fc=—00 

and is a compact Cantor-like metric space. The shift map r : ^4 -» f^ 
is defined by (ra;)fc = u^+i if (aj)* = a^; it is a homeomorphism. The 
dynamical system (r71, ^4) is a topological Markov chain (or a subshift of 
finite type) determined by the matrix of transition A. By using the standard 
technique of the symbolic dynamics (see, for instance [2]) we showed in [1] 
that the homotopic complexity JC(AN) of an attractor AN which contains 
periodic solutions of all homotopic classes g up to deg g < N is 

1C(AN) = In (2N + \ (S^1 + (-1)" - 2)) . 

(Homotopic complexity is the log of the number of all words corresponding 
to closed curves u{x) belonging to w4jv-) 

Now we are going to answer the different question: How many homotopy 
different closed solutions have x-period < L? This problem is much more 
difficult; we consider the limit case with d = 0 of the situation considered 
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A , 

Figure 9. 

in the previous section and we give here only asymptotics for a large L. 
According to the results of the previous section this gives estimates of h* and 
h* for solutions with d > 0. (Recall that we consider solutions which satisfy 
(1.3) which gives the relation between the curve and its z-parametrization). 

In other words we consider here a distribution of homotopically different 
closed curves v^ along their length axis (but not along the "complexity axis" 
as in [1]). 

The geodesic lines vi can be situated only along the following lines (see 
Fig. 9): Circles of radius R centered at points O1O2? the interval A1B2 or 
i?i-A2 and the intervals D1D2 and C1C2 which are tangent to the circles. 

For example the closed geodesic of minimal length which represents the 
word gig^1 can be represented as OC1A1B1D1O+OD2B2A2C2O or A1B1 + 
B1D1OD2B2 + B2A2 + A2C2OC1A1 and the word gig2 is represented as 
-A1B1 + B1A2 + ^52 + B2A1. 

We give below an algorithm of the representation of a general closed 
geodesic as a union of standard pieces of lines. 

Let g = 0,10,2... an be an irreducible word, Ok = gfl, k = 1,2,..., n. 
Define the "adjusted" point Mk as follows: Mk := Ai if ak= gi, Mk := Bi 
if ak = Qi 1

5 Mk := A2 if ak = 52? Mk := B2 if a^ = g^1.   Define now 

the "lines of increment" MfcMfc+1, k = 1,..., n - 1 and MnMi as shown in 
Table 1 (see Fig. 9). 
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Table 1 

Gk, Ofc+l MkMk+1 

5l) 9l AiB! + BtDtCiAi 

91,92 AiBx + B1A2 

9U921 AiBi + B1D1 + D1OD2 + D2B2 

pfW1 BiAx + AxCiDiBi 

ft"1,*1 B1A1 + A1B2 

9i   ,92 B1A1 + AxCi + CiOC2 + C2A2 

92,92 A2B2 + B2D2C2A2 

92,91 A2B2 + B2A1 

92,9T1 A2B2 + B2D2 + D2OD1 + D1B1 

92l,92l B2A2 + A2C2D2B2 

92l,9Tl B2A2 + A2B1 

92l,9l B2A2 + A2C2 + C2OC1 + CiAx 

So, the length of the increment can take only three values: either 2TZR, or 
7ri?+2a, or 7LR+2\/a2 - R2+2Rarcsin f where a := \AiB2\/2, -Rarcsin f = 

\D2B2V Let w := 27ri?
5 y := TTJR + 2a, z := TTJ? + 2\/a2 - i?2 + 2JRarcsin f. 

Therefore the lengths of the increments can be represented in the form 
of the following table. 
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Table 2 

ak, Ofe+i MkMk+1 Gfe, Ofc+l MkMk+1 

1,1 to 3,3 w 

1,2 y 3,4 y 

1,4 z 3,2 z 

2,2 w 4,4 w 

2,1 y 4,3 y 

2,3 z 4,1 z 

Let us recall that the symbols 1,2,3,4 correspond to the elements pi, g2, g1
1, 

g^1 respectively. 

Thus, the length of the considered geodesic of the homotopic type 
[u>i,... ,Uk] is the sum of the length of the corresponding increments. It 
allows us to determine this length as the period of a periodic orbit of a 
suspended flow going through the point u = (... [LJI ... a;^] [vi... a;/.]...). 

Recall the definition of the suspended flow of the symbolic dynamical 
system (r, Q) where r : Q, —» fi is the shift map of a set of symbolic sequences. 
Let ^ : Q —> R be strictly positive. We define the suspension space (related 
to V7) as 

]r\ = {(^t) :v€n,0<t< <tP(u)} 

with the identification (o;,^^)) = (^^0). The suspension flow r^ (relative 
to VO is defined as the "vertical" flow on J^^p given by r^^^t) = (^t + f) 
for 0 < t:t +1' < ^(CJ). In our case the function ip is a constant on each 
cylinder [CJO^I]- For example (see Table 2) ^(.. .a;_i 1 2 u>2 ^3 • • •) = y 
independent of u;_fc, k > 1 and ay, j > 2. In order to simplify the situation, 
we reduce this case to that when ip depends only on the coordinate CJQ, 

i.e., ^(LU) = ipiuo)- For that, introduce the new topological Markov chain 
(r, fii2) with the 12 states which are the admissible pairs (i,j) in the left 
columns of Table 2. The transition (m, n) —> (p, q) exists iff n = p. (This 
procedure is well-known in the symbolic dynamics see, for instance [2].) The 
corresponding 12 x 12 matrix of transitions, say S, has now the following 
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form 
111 000 000 000 w 
000 111 000 000 y 
000 000 000 111 z 
000 111 000 000 w 
111 000 000 000 y 
000 000 111 000 z 
000 000 111 000 w 
000 111 000 000 z 
000 000 000 111 y 
000 000 000 111 w 
000 000 111 000 y 
111 000 000 000 z 

The last column shows the values of the function ^(i, j) for the corresponding 
pair (i,j). The pairs (i,j) is ordered here in the same way as in the first 
column of Table 2 (from above, for example the 11th row corresponds to 
the pair (4,3)). It is well-known that the topological Markov chains (r, Q4) 
and (r, ^12) are topologically conjugate (in particular, they have the same 
number of periodic points of each period). We define the suspension space 
relative to tp 

and the corresponding suspension flow. The function ip depends only on 
UJQ : ^(UJ) = ip^o) •= i^uo and takes only the values w,y:z. We use the 
results of [24] to find the topological entropy of the suspension flow. It was 
proved in [24] that if there exists an integer s such that Bs consists of strictly 
positive elements (in our case this condition is satisfied) then there exists a 
unique unit vector e = {e;} with positive components and a number A > 0 
for which 

12 

(7.1) J^ bijCj = A*ci,        % = 1,... 12. 
i=i 

In our case we can explicitly find this vector and this number. 

Lemma 7.1. If X is the unique root of the equation 
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and e is the vector with the following components 

(7.3) ei = 64 = 67 = eio = 
2y/\2to+z) + \2(w+y) + A2(™+2)' 

(7.4) e2 = 65 = eg = en = — , 
2v/A2(2/+2) + \2(w+y) + A2^^2) 

(7.5) 63 = 66 = 63 = 612 = —y , 
2v/A2(2/+2:) + A2(w+2/) + A2(^+2;) 

t/ien t/ie equalities (7.1) are satisfied. 

Proof. In our case the conditions (7.1) can be rewritten as 

ei + 62 + 63 = Awei, 64 + c's + ee = A1/e2, 

cio + en + 612 = A^es, 64 + es + ee = Awe4, 

ei + 62 + 63 = A^es, 67 + eg + eg = A2 ee, 

^7 + e8 + 69 = A™ 67, 64 + 65 + ee = A2 68, 

eio + en + 612 = A^eg, eio + en + ei2 = A^eio, 

e7 + es + eg = Ayeii, ei + 62 + 63 = A2:ei2. 

The direct substitution of the expressions (7.5) into these equations shows 
their validity provided the equation (7.2) is taken into account. □ 

It was shown in [24] that a measure of maximal entropy of the suspension 
flow is obtained from the stationary Markov measure fh in £)i2 for which 
the probability of the state i is e* and the transition probabilities pij are 

Pij = 5^:- It is simple to show that p^ has one of the values 0, A-™, \~y 

or X~z. More precisely, 

—w 
= Pl,l = P2,4 = P3,10 = P4,4 = P5,l = P6,7 = P7,7 = £8,4 

= P9,10 = Pl0,10 = PllJ = Pl2,l 

(7.6) A""^ = pi,2 = P2?5 = P3,ll = P4,5 = P5,2 = P6,9 = P7,9 = £8,5 

= P9,ll = P10,11 = Pll,9 = Pl2,2 

A"z = nonzero others. 

Lemma 7.2.  The topological entropy ho of the suspension flow is In A where 
A is the unique root of the equation (7.2). 
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Proof. The topological entropy coincides with the measure-theoretic (Kol- 
mogorov-Sinai) entropy relative to the measure with maximal entropy for 
the suspension flow. In fact, it follows from [24] that it equals In A. But we 
explain it in the following way. Thanks to the Abramov formula (see, for 
instance [25]) it is equal to 

(7.7) hQ=
hKs{T,fh) 

J>d m 

where KKS^-, m) is the KS entropy of the shift r relative to the measure m. 
Let us calculate the integral first. Since ^ is a constant on each cylinder 
then 

f 12 

(7.8)        <ipdm = J^^Ci 

{w\y+z + y\w+z + z\w+y). 
V3\/\2(y+z) + \2(w+y) + \2(™+z) 

Now the entropy of a Markov measure is given by 

12 

hicsfam) = - ]r eipij log pi j 

(see for instance [2]). By using equalities (7.6) we obtain 

(7.9) 
12 12 12 

hKsir, fh) = -\-w In A-" ^ e* - *~~y In A"y J2ei^ X'Z ln A"'2 J2 ei 

= ln\(w\-w + y\-y + z\-z) 

i=i i=i i=i 

2      (\y+z + xw+z + \w+y) 
\/3 y/\2(y+z) + \2(w+y) + \2(w+z) ' 

Therefore, 

hKSJr.m) _ In A(A^2 + Aw+Z + \v'+v)(w\-w + y\-v + zy'z) 
f ipdm    "" (w\y+z + y\w+z + z\w+y) 

Dividing the numerator and the denominator by A<u;+2/+z we obtain the ex- 
pression 

InAtA-^ + A-^ + A-*) 

which is equal to In A, thanks to (7.2). D 
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Corollary 7.1. h*(f/') = h*(N') = In A. 

Comparing with Proposition 6.1 where n = 2 and using (7.2) we can find 
the average length Lav of the homotopy element of solutions from A/7 as the 
solution of 

Let us recall the following results of [25] (in these results L —> oo). 

(i)  The number N(L) of periodic orbits of the suspension flow with periods 
smaller than L satisfies the asymptotic relation 

(7.10) N(L) 
ehoL 

hoL 

where ho is the topological entropy of the suspension flow ([25], p. 109). 

(ii)  The number M(L) of periodic orbits of the suspension flow with periods 
from L to L + 1 is asymptotically distributed as the probability density 

hoehoL 

eho — 1# 

These results hold under so called weak-mixing conditions. These condi- 
tions are satisfied if the function tl>(<j) defined above and a constant are not 
cohomologous to each other. Let us recall that two functions ^, g are said to 
be cohomologous (ip ~ g) if there exists a continuous function G such that 

^ = g + GoT-G. 

If g := c is a constant then the equality is rewritten as 

(7.11) ^H = G(T(U;)) - G(u) + c,        a; € Q^. 

Lemma 7.3.  The function ^(u) is cohomologous to a constant if and only 
ifw = y = z. 

Proof Assume that ^(UJ) is cohomologous to a constant c, i.e., (7.11) is 
satisfied. The point OJQ := (...252525...) is 2-periodic (see matrix B). 
Therefore, ^(a^g) = G(r^g) - G(UJO) + c; T

2
LJQ = CJQ, i.e., ^(^^g) = G(ujg) - 

G(Tujg) + c. Therefore, ^(^o) + ^(TUQ) = 2c. But i/)(u)o) = y = ^(TCJQ). 

So c = y. The point UJI :=(... 1,3,12,1,3,12,...) is 3-periodic ^(^i) = w, 
^(TCJI) = z = ^(r2c£i).   So, ^(a^i) + ^(TCJI) + IP(T

2
LJI) = W + 2Z = 3C, 
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i.e., c = y^. The point UQ = (...1,2,5,1,2,5,...) is 3-periodic and 

^{UJ2) = w, I}){TU2) = y = IP(T
2
U2). Thus, tz; + 2y = 3c, c = ^±^. The 

equalities c = y = ^^^^ = w+^y impiy w^y:=z □ 

By definition, tu, y and 2: cannot be equal to the same quantity, thus 
the suspended flow possesses the weak-mixing property for every consid- 
ered value of w, y and z. Obviously, the length of periodic curves v^ and 
the periods of the corresponding periodic orbits in the suspended flow coin- 
cide. Therefore, results of [25], and Lemmas above imply the following main 
statement of this section. 

Theorem 7.1. The lengths of periodic curves v^ are distributed in the fol- 
lowing way: 

(i) the number of these curves with the length smaller than L, which we 
denote by N{L), satisfies 

N(L) - AL. 

(ii)  The number of these curves with lengths from L to L + 1, which we 
denote by M{L), is asymptotically distributed as 

where X is a unique root of the equation (7.2): A""™ + A""^ + \~z = 1 
and w = 27rR, y = TTR + 2a, z = TTR + 2\/a2 — R2 + 2R arcsin ^ are 
the parameters of the problem. 

Let us consider different two Umit cases. 

Remark 7.1. Let R go to 0. It is natural to assume that N(L) has to 
increase since rotations around circles of radius R almost do not influence 
the energy. It is really so. As R —► 0 then w c± 27ri2, y c^ 2a ^ z and we 

can derive that R ~ ^^ or (^)1/(2a+1) < A < (^)1/(2a), R - 0, i.e., 
N(L) grows "polynomially," not faster than R-L/(2a) and not slower than 
^-L/^a+i)^ rj-^ eXpress}on (7.12) behaves asymptotically as — R srlni? 

or -R  20+1 IJXR. 
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Remark 7.2. If a —» oo then quantities N(L) and M(L) have to, of course, 
decrease. In this case w = 27ri2, y ~2a + nR ~ z, a —> oo. Asymptotically 
for the solution of (7.2) we have 

A = l + 7,7;,J-ln-^. 
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