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Abstract. Consider a compact embedded hypersurface Ft in R714"1 which 
moves with speed determined at each point by a function F(KI, ... ,Kmt) of 
its principal curvatures, for 0 < t < T. We assume the problem is degenerate 
parabolic, that is, that F{ •, t) is nondecreasing in each of the principal 
curvatures ^i,... ,Kn. We shall show that for t > 0 the hypersurface Tt 
satisfies local a priori Lipschitz bounds outside of a convex set determined 
by To and lying inside its convex hull. Our method is the parabolic analogue 
of Aleksandrov's method of moving planes [Al], [A2], [A3], [A4], [AVo]. 

The flow of a smooth hypersurface may be generalized to the evolution 
of a closed set Ft described as the level set of a continuous function ut which 
satisfies in the viscosity sense a degenerate parabolic PDE defined by F 
for 0 < t < oo, [ES], [CGG]. It has recently been noted that this level- 
set flow, even when starting from a smooth hypersurface To, may develop 
a nonempty interior after the evolving hypersurface collides with itself or 
develops singularities [BP], [AIC], [AVe], [K]. We shall prove that the same 
local Lipschitz bounds as in the hypersurface case hold for the inner and 
outer boundaries of IV 

As an application, we give some new results about 1/H flow for non- 
star-shaped hypersurfaces, which was recently investigated by Huisken and 
Ilmanen [HI]. We prove existence and asymptotic roundness, in the Lipschitz 
sense, for "extended" viscosity solutions in Rn+1. In contrast, the evolving 
hypersurfaces given in [HI], which were used to prove a version of the Penrose 
conjecture, are solutions of a non-local variational problem, valid in general 
asymptotically flat Riemannian manifolds. 
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1. Main results. 

Let F* be a embedded connected C2 hypersurface in Rn+1 evolving in the 
direction of its unit inward normal vector N with speed 

(1.1) V = F(KU...,Kn,t) 

a function of the principal curvatures «i < • • • < /Cn and time t € [0, T) 
where 0 < T < oo. Here we assume that Ft = F( •, t) is uniformly Lipschitz 
continuous for each t > 0 and F is non-decreasing in each «$, which ensures 
the evolution equation is degenerate parabolic (weakly parabolic). Our sign 
convention is such that Ki is positive on the standard sphere. We will not 
require that i^ be symmetric. 

Choose a unit vector // e Sn and a number A £ R. Define the hyperplane 

P = Px(u) = {x 6 Rn+1 : (x, v) = A} 

and the half-spaces 

JJ+= #£(*/) = {X:(X,J/}> A} 

Jff^ = iy^(z/) = {x: (a:, i/) < A} . 

We have the orthogonal reflection in Px{v) 

(TA(i/)(a;) = a:-2((x,i/>-A)i/. 

For simphcity, when the choice of A G R and v e Sn are clear, we denote 
x* = ax(u)(x). 

Any embedded connected C2 hypersurface F is the boundary of a con- 
nected bounded open set Q, F = dfl. 

Definition 1. We say that A is admissible for F with respect to z/ if 

<7A(i/)(rnl£(i/))cn. 

We have the following Aleksandrov reflection-type result. 

Theorem 2. Let Ft be a family of embedded C2 hypersurfaces evolving by 
equation (1.1). 

1. If X is admissible for FQ with respect to v, then A is admissible for Ft 
with respect to v for all t 6 [0,T). 
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2. If To is compact and (—00, A) is admissible for TQ with respect to 
all v in the neighborhood of vo, then Ft fl H^(i/o) is a C2 graph 
in the direction VQ with locally bounded gradient; this local bound is 
independent of t and F. 

For an example where the first part of Theorem 2 is valid but not the 
second part, see the example of section 4.2 below. 

Let Amax(z/) be the supremum of all A such that (—oo, A] is admissible 
for To with respect to z/. For convenience, we shall write iJ™3* (z/) for the 

half-space jE^max(l/) (y). According to Theorem 2, Part (2), it will also be 
important to consider the upper semicontinuous envelope A of Amax : Sn —> 

Corollary 3. Let K be the intersection of the closures of the halfspaces 

H+fy), for v € Sn. Then the part of the hypersurface Ft lying outside K 
satisfies local gradient bounds, which depend only on FQ. 

Theorem 4. Let A = A(ro) = sup^^n [—Amax(^)]. Then for all t 6 [0, T), 
the part of the hypersurface F* lying outside the ball BA(0) is a radial graph 
r = i/jt(Q), Q € S71, with gradient estimate 

mm <   rA 
Vr2 - A2 

For example, if Fo is close in the Lipschitz norm to a round sphere, then 
the constant A of Theorem 4 is a small positive number, and for all t > 0, the 
part of Ft lying outside of BA(0) will be Lipschitz close to a round sphere. 
In fact, log('0t/A) satisfies Lipschitz estimates governed by its lower bound. 

As another example, if F* leaves every compact set, it must become 
round in the sense that after rescaling to get |f2t| = l-Sih F* converges to 
the unit sphere in the Lipschitz norm. Note that in the literature, such 
convergence to a round sphere has been proven in the C2 sense for certain 
strictly parabolic problems by first showing the curvatures all converge to 1. 
Our methods, in contrast, work for degenerate parabolic problems and do 
not require (nor imply) the pointwise convergence of curvatures. 

The results above extend to generalized solutions (viscosity solutions). 
In particular, let Fo be an embedded compact (but not necessarily con- 
nected) C0 hypersurface bounding a bounded open (not necessarily con- 
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nected) set fto- Let K > 0. Define UQ : Rn+1 -» R by 

, N      fdist(a;,ro)AjR:    ifx6Rn+1\no 
uo(x) = < , 

[ — dist(x, To) if x e Flo 

which is the signed distance function to To (cut off by the constant K.) Then 
Fo = {x : uo(x) = 0}. Consider the level set flow (see [ES] and [CGG]). That 
is, for (x,t) e M71*1 x [0, oo) let ut(x) be the unique continuous solution of 
the degenerate parabolic equation 

-^ = - \Dut\F(Kh...,Kn,t) 

where tfi < ••• < «n are the eigenvalues of D MjDwtl" i?^), with the 

given initial condition ^o(^). The evolving zero-set (which is not necessarily 
a hypersurface) is given by 

rt = {x : ut(x) = 0}. 

Tt is called the generalized solution to the evolution problem (1.1), and is 
unique. Recall that for t > 0, Tt is uniquely determined by To independent 
of the choice of UQ. Also, since To is compact, Tt is a compact set for each 
t e [0, oo). Define further 

O* = {x : ut(x) < 0} 

Et = {x : ut{x) > 0}. 

We then have Mn+1 = Tt U f^ U jEt as a disjoint union.  In fact (contrary 
to a conjecture stated for the case F = KI H H ftn by E. DeGiorgi, L.C. 
Evans and J. Spruck) a smooth hypersurface To may evolve into a set Tt 
with nonempty interior after a finite time. See [BP], [K], [AVe] and section 
4 below. 

Definition 5. Let r,£), £ be disjoint sets such that Rn+1 = T U Q U E. 
Given v e Sn and A € R, we say that A is admissible for the triple (F, ft, E) 
with respect to v if both 

ax (i/) (nnfl^(i/)) c ft n#*(*/) 

(7A (i/) (E n F^ (i/)) D E n £rA(z/). 
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Since Mn+1 =ruf2u£,isa disjoint union, these containments are respec- 
tively equivalent to 

ax (u) ((E u r) n fr^(i/)) D (E u r) n H$(V) 

aA(i/)((fiur)n^(z/)) c(siur)nH$.(v). 

When F is an embedded compact connected C2 hypersurface, Q is the 
bounded open set with boundary T and E is their complement, this defini- 
tion agrees with our previous definition of admissibility. 

Theorem 6. Let Tt be the zero-set of a solution ut to a degenerate parabolic 
geometric level-set flow. 

1. If X is admissible for the triple (FQ, ^OJ-^O) with respect to v, then X 
is admissible for the triple (Ft, fit, Et) with respect to u for all t>0. 

2. If To is compact and (—oo, AQ) is admissible for the triple (FQ, fio? ^o) 
with respect to all i/ in a neighborhood ofvo, then Tt fl H_0 (Z/Q) is the 
closed set between two locally Lipschitz graphs in the direction I/Q? with 
Lipschitz bounds independent of F and oft. 

Remark 1. It will be apparent to the reader that in the context of level-set 
solutions, the conclusions of Corollary 3 and of Theorem 4 hold for the inner 
boundary and for the outer boundary of the level-set solution Ft. Similarly, 
the following corollary is stated for level-set solutions, but applies to Tt itself 
in the smooth case. 

Corollary 7, Let A := swpu£Sn [-Xm3tX(v)] be determined by FQ. For t > 0, 
let do(Tt) be a connected component of either the inner or the outer boundary 
of the level-set solution Tt- There is a constant CQ = 4.603 such that ifdo(Tt) 
contains a point XQ with |xo| > Co A, then do(Tt) is a radial graph in an 
annulus of width (Co — 1)A. Moreover, any other connected components of 
the inner or outer boundary (respectively) must lie inside BA(0). 

Remark 2. It will be seen from the proof that Co = Vcr2 + 1, where a — 
arctan a = TT, and that TT < Co — 1 < 37r/2. 

This paper is closely connected with the authors' 1996 paper [CGI]. In 
the special case that F* is a strictly convex hypersurface, it may be rep- 
resented by its support function vt : Sn —► R. Then v = vt satisfies the 
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evolution PDE 

_ = G(VVi/+ *$,*), 

where, writing G(-,t) in terms of the eigenvalues of its matrix argument, 
G(Ai,..., An, t) = F ((Ai)"1,..., (An)"1, t) and where g is the standard Rie- 
mannian metric on Sn. For this special case, results such as Corollary 3 of 
the present paper follow from Theorem 3.1, part (iv) of [CGI]. 

2. Proofs. 

We first define admissibility for functions on R71"1"1. 

Definition 8. Let u : ]Rn"fl -* R be a continuous function. Given v e Sn 

and A G R, we say that A is admissible for u with respect to v if 

u{x)>u (x*)     for all x € H*(i/), 

where x* = ax (i/) (x) = x — 2 ((x, z/) — A) i/. 

Lemma 9. Let T be the zero-set of a continuous function u. If A is admis- 
sible for u with respect to v, then A is admissible for the triple (F, Q, E) with 
respect to i/, where Vt = {a;: u{x) < 0} and E = {x : u(x) > 0}. Tjf it is t/ie 
signed distance function, then the converse is true. 

Proof Write H± = fl±(i/). If A is admissible for u with respect to i/, then 
for all x G fi H iJ^ we have tx(x*) < u(x) < 0, which implies x* 6 fi fl fl"+. 
Similarly, if x G EnH+, then tx(x*) > tt(x) > 0, which implies x* G EnH-. 
That is, A is admissible for the triple (F, Q, JB) with respect to z/. 

Conversely, suppose A is admissible for the triple (F, fi, E) with respect 
to v. We want to show that the signed distance function u(x) > u(x*) for 
all x G #-. 

First, suppose x G (E U F) fl fiL. If the closest point y G F to x is in 
H+, then |x* — y| < |x — y|, so that u(x*) < u(x). Otherwise, y is in JEL., 

in which case y* G (fi U F) fl ^4.. At the same time, crA(i/) [(fi U F) n i?-] C 
(Slur)nH+, hence 

t*(x*) = dist (x*, (Q U F)) < dist (x*, y*) 

= dist (x, (fl U F) fl fiL) = tx(x). 
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Second, suppose x € (ft uT) H J3L. Now aA (i/) ((E U T) n il_) D (E U 
T) fl i?+ implies 

dist (x, (E u r) n i?+) > dist (x*, (js u r) n H+) 

> dist (x*, GX
(V) [(E u r) n i?^]) 

= dist (^(JBurjnfl"-), 

and hence 

t/(x) = - dist (x, (E U T) fl H-) 

> - dist (x*, (E u r) n JBT+J = u (x*). D 

In particular, the lemma implies that if u is the signed distance function 
of a C2 hypersurface T, then A is admissible for u with respect to 1/ if and 
only if A is admissible for F with respect to v. 

Hence Theorem 2 follows from Theorem 6 and we only give the 

Proof of Theorem 6. Let UQ be the signed distance function to FQ. Since A 
is admissible for the triple (FQ, fto, Eo) with respect to z/, the lemma implies 
A is admissible for UQ with respect to i/. That is, UQ (X) > UQ (X*) for all 
x e Hx{v). For x E PA(^), we have x = x*. Thus, by the maximum 
principle for viscosity solutions, the solution ut to the geometric level set 
flow satisfies ut(x) > ut(x*) for all x £ H*(v) and t > 0. That is, A is 
admissible for ut with respect to u for all t > 0. Applying the lemma again 
implies A is admissible for the triple (r*,ftt,i7t) with respect to u for all 
£>0. 

Before considering part (2) of Theorem 6, we shall prove the 

Proposition 10. If (-oo, AQ) is admissible for the function u with respect 
to v, then u is nonincreasing in the v direction on HXo(u). 

Proof Let y e PXo (v), and consider any two points x = y + si/ and x' = 
y + s'v with 5 < s' < 0. Their bisecting hyperplane is PA (i/), where A = 
AQ + \ (s + sf) < AQ, and we have x £ Hx (z/), while 

x*    :=   x - 2 ((x, i/) - A) u = y + su - 2 (AQ + s - A) z/ 

=    y + (2A - 2Ao - s) v = y + s'v = x'. 

So the first part of Theorem 6 shows ut (x) > ut (x*), that is, ut is nonin- 
creasing in the z/-direction when restricted to the half-space H^ (y).       D 
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Proof of Theorem 6; Part (2). Let s be the radius in Sn of a ball so that 
(-00, AQ) is admissible for (ITo, fto, -E'o) with respect to each v in the ball. As 
we have shown above, (—00, AQ) is also admissible for ut with respect to each 
v in the ball. It now follows from Proposition 10 that ut is nonincreasing in 
the v direction on H^{y) for all v with dist(z/, Z/Q) < s. 

Consider two points £, x e H*0 (I/Q) which are in the outer boundary 
doutfit) := Tt n Ei. Then there are xk -> x with ut (xk) > 0 for all k. 
Since if^0 (I/Q) is an open halfspace, we have £, £ € i^^0 (^) for all v e Sn 

with dist(z/, I/Q) < i for some i € (0, e] which depends on x and £. Write 
x = y + §1/0 and x = y + SUQ, where 5, s G (-00,0) and y, y € PAo (^0) - We 
shall show that 

(2.1) \s-s\<coti\y-y\. 

This inequality shows that inside H*0 (I/Q) , the outer boundary cWflTt) is 
the graph of a function: PAo —► (—00,0) with local Lipschitz constant cotf. 

Suppose inequality (2.1) is false; without loss of generality we may as- 
sume 5 < s < 0. Write the unit vector 

Xk — x x — x 

\xk-x\ \x-x\ 

We may compute 

(1/,I/Q) =    / >   >     3 * , V -" COS£' 
y/\fi-y\2 + {S-3)*      Vtan^ + l 

which imphes (^,^0) > cosf, and hence dist(i/A;,i/o) < s, for fc sufficiently 
large. Note that (x,i/k) < (xkiVk) • Proposition 10 shows that m is nonin- 
creasing in H*0 (i/jfe), which implies 0 = ut (x) > ut (xk) > 0, a contradiction. 
This proves inequality (2.1) for any 5, x e ^(P^) in the open half-space 

A similar argument shows that, inside H*0 (I/Q) , the inner boundary 
dinFt) := Tt nUi" is the graph of a second function: PAo (I/Q) -> (-00,0) 
satisfying the same local Lipschitz condition. 

Applying Proposition 10 one more time, one sees that inside H_0 (Z/Q), 

din(Tt) lies above ^(Ft) in terms of the I/Q direction. Since the Lipschitz 
bound cot i depends only on 5, x and PQ, it is independent of t and F.    O 

Proof of Theorem 4.    Note first that necessarily A > 0, since Amax(z/) + 

Amax(-^) > 0. 
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Let XQ be a point of Ft, |rEo| =• ^o > A. Then for all v 6 Sn, since 
\max(v) > —A, we have XQ e H™ax{v) for all v such that (i/,xo) < —A. 
Write XQ = ro QQ, where OQ € 5n, and choose a unit tangent vector e to Sn at 
#0. The inward radial unit vector Z/Q = —djdr satisfies (Z/OJ^O) = —^o < —A, 
implying via Theorem 2, Part (2) that Ft is a Lipschitz graph r = tyti®) in the 
radial direction in some neighborhood of XQ. The vector r := —re—Dipt(e)i>o 
is tangent to F*; according to Theorem 2, Part (2), r is transverse to u for 
all v e Sn satisfying (i/, XQ) < -A. Therefore 

Vr2 + (DM*))2     XM 

Equivalently, after a little algebra 

Proof o/ Corollary 7. According to Theorem 4, applied now in the level-set 
context (cf. Remark 1), near any point outside of J5A(0), do(rt) is locally a 
radial graph r = il>t(0) where the Lipschitz function ifrt : Sn —> R satisfies 
almost everywhere 

rA 

y/r2 - A2 

We define the constant CQ by 

^0 V^T 
--JT dr. 

Write XQ = ro^o^ where ro = |xo| > CQA, and consider any other point 
x1 = riOi e 5o(rt). Write 6± for a unit vector orthogonal to 0o such that 
01 = ^0 cos 5i + 6± sin 5i for some 0 < si < TT. Consider the unit speed 
great-circle arc on Sn from 0o to 6i : 

s »-> ^(5) := ^0 coss + 9± sins,  0 < s < si. 

Since, outside 5A(0), 5o(rt) is a locally Lipschitz graph in the radial di- 
rection, there is a unique continuous lift from 0(s) to r(s)9(s) € ^(F*) on 
0 < 5 < 5*, where s* is the first value in [0,51], if any, where r(s*) = A, and 
5* = si otherwise. 
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According to Theorem 4, we have 

dr r(s)A 
ds "" 

on [0, s% with the initial condition r(0) = TQ. That is, r(s) is a supersolution 
to an ordinary differential equation (evolute equation) whose exact solution 

f (s) is given by r(s) = Ay(a(s))  + 1, where 

s =: arctan<7(s) — a(s) — arctanao + CTQ 

and (Jo := \/r%A-2 — 1. The hypothesis ro > Co A implies ao—arctan ao > TT. 

On the other hand, 5 < 5* < si < TT. This forces a(s) > 0 and r(s) > A on 
[0, 5*]. Hence 5* = $i and r(si) > A. 

By a similar argument, we may show that 

^>Co-l. 
A 

In fact, comparing any two intervals of the form [ro,ri] C [0, oo) on which 
arctan ai — ax — arctan ao + CTQ = TT, where r^ =: A2(cr| +1), k = 0,1, we see 
that the shortest such interval starts at ro = 0. This shows that do(Tt) is a 
radial graph r = ^(0), where ipt maps 5n to an interval of length at most 

A(Co-l). 
Now consider any point #2 = ^2 #2 € SoutQTt) (or in ^(r*), respectively) 

with r2 = |x2| > A. We may apply Theorem 6, part (2), with u = —92 and 
Ao = A > -XmaxM. Both X2 = r2 ^2 and 0:3 := Mh) h lie in tf™"^-^), 
and therefore lie on the graph in the ftz-direction of the same function; hence 
X2 = xz e doiTt). This shows that outside BA(0), dout(Tt) (or 3^(Ft), 
respectively) agrees with doiTt). □ 

3. Application: Flow by 1/H+. 

Several papers have been published recently which investigate properties 
of a hypersurface which expands with velocity equal to the reciprocal of 
mean curvature [G], [Ul], [U2], [HI]. As a simple application of the results 
of the previous sections, we shall construct an "extended" solution rt for 
l/il"1" flow, and will show that as t —» 00, and after suitable normalization, 
Tt converges in Lipschitz norm to a round sphere or around annulus. Our 
approach is in a certain sense opposite to that of [G], [U2] and [HI], since 
we first show asymptotic roundness in the Lipschitz sense and only later, 
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if at all, are in a position to prove that the curvatures are asymptotically 
constant. As in the recent result of Huisken and Ilmanen on the Penrose 
conjecture [HI], we do not need to assume the initial hypersurface is star- 
shaped. In contrast to the solutions constructed in [HI], which result from a 
globally defined variational problem, our hypersurfaces are limits of solutions 
to local problems (see Remark 5 below.) 

Consider an embedded, compact initial hypersurface FQ. In the next few 
paragraphs, we shall construct the solution Tt to the extended evolution 
problem V = 1/H+. Ft will be the level set of the limit of viscosity solu- 
tions to a one-parameter family of geometric PDE's. We refer to this as an 
extended evolution problem, since the values of the right-hand side 1/H+ 
are extended real numbers in (0, oo]. Similarly, the corresponding PDE, the 
level sets of whose solutions are extended solutions to the l/iT+Hflow, may 
be called an extended PDE : 

0 ifDu = 0 

As mentioned above, the solution u will not necessarily be a viscosity 
solution, but instead will be the monotone limit of viscosity solutions of a 
family of regularized PDEs. 

The first step is to regularize the problem. Given s > 0, we approximate 
1/H+ with a smooth, strictly decreasing function $e : R -» (0, oo) such that 
&(H) = l/HifH>e and 1/e < $£(H) < 1 + 1/s for H e (-oo,e). In 
addition, we require that $>£(H) be a nonincreasing function of s. 

Choose K > 0, and define initial values as in Section 1 above: 

Jdist(x,ro)AK     ifx€£o 

I — dist(rr, To) if x € ilo 

where fio is the bounded open set with dQo = TQ and EQ is their open 
complement. For each s > 0, there is a unique, continuous viscosity solution 
u£ to the equation 

(3.3, ^-ID.-lWdiv1'"'8 

dt V      1-°^ 

for (x,t) e R71"1"1 x (0, oo) satisfying the initial condition u£(x,0) = UQ(X) 

[CGG]. Observe that, since $£(H) is a nonincreasing function of £, u£(x) is a 
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nondecreasing function of e. Namely, if 0 < SQ < e, then u£o is a subsolution 
of the equation (3.3). Also, u£ is bounded above by the constant K and 
below by the infimum of UQ on OQ- Therefore, u£ converges pointwise and 
monotonically to a function u as e —> 0. We define the zero level set Yt of 
u(',t) to be an extended solution of l/iT4- flow. 

The solution u will in general have discontinuities, and we will not claim 
it is a viscosity solution of the extended PDE (3.1). However, it will have 
the approximate-symmetry properties we have shown in Section 2 above 
for viscosity solutions of geometric PDE's. To see this, suppose (—oo, AQ) 

is admissible for the initial hypersurface FQ with respect to a unit vector 
v e Sn. Then we may apply Proposition 10 to the viscosity solutions u£ 

of the regularized PDE (3.3). The conclusion of Proposition 10 is that u£ 

is nonincreasing in the u direction on H*0(v). Since u£ —► u pointwise, 
it follows that u itself is nonincreasing in the u direction on il^0(z/). We 
conclude that the level set Tt of u(-,t) satisfies the conclusions of Theorem 
6, and all the hypotheses of Corollary 7 except the existence of XQ € Tt with 
|a;o| > Co A. 

We shall show next that the zero level set Tt of ut expands outward 
toward infinity as t —► oo. Without loss of generality, suppose that the origin 
O of ]Rn+1 lies inside fich and choose a radius po such that BP0(O) c £V 
Define ?;o • Mn+1 -» R to be the signed distance function from dBp0 (O) : 

vo(x) := (\x\ - po) A K. 

Note that vo{x) > uo(x). Starting from the initial condition v£(x, 0) = VQ(X), 

there is a unique solution v£(x,t) to the regularized PDE (3.3) for (x,t) G 
Rn+1 x [0, oo). Since v£ and u£ are viscosity solutions of the same PDE (3.3), 
we have ve(x,t) > u£{x,t) for all (x,t) G Mn+1 x [0,oo) (see e.g. Theorem 
4.1 of [CGG]). It follows that u[x,t) < u£(x,t) < v£(x,t) for all * > 0. But 
the zero level set of v8^^) is dBp^(0)^ where p(t) = p(t,e) satisfies the 
ODE 

with initial condition />(0,£) = po- We have v£(x:t) < 0 whenever |a;| < 
p(i, e). For £ < (n/po) exp (—t/n), we find p(t, s) = po exp(t/n) independent 
of s, by means of a straightforward computation. This implies that ut = 
u(-,i) < 0 on a ball Bp(t)(0) of exponentially growing radius. Therefore Tt 
lies entirely outside an arbitrarily large ball for large £, and the remaining 
hypothesis of Corollary 7 is satisfied for sufficiently large t. We conclude that 
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doutO^t), after rescaling to enclose volume equal to Vol(J?i(0)), converges 
at an exponential rate to a round sphere in the Lipschitz norm. The same 
conclusion holds for ^(F*). 

Remark 3. In order to obtain convergence of the curvatures of din(Tt) and 
of dout(Tt) to constants, it would be necessary to derive curvature estimates 
for level sets of u£, for example. Such estimates are a topic for another 
paper. 

Remark 4. We would like to show that these extended solutions satisfy a 

weak barrier principle. Suppose that To and To are compact hypersurfaces 
in Mn+1 and let CIQ resp. QQ be a bounded union of components of the 
complement. Choose ^o : Rn+1 —► R and So : Mn'fl —> R to be the signed 
distance functions from To resp. FQ. Let ut resp. ut be the solutions of the 
extended PDE (3.1) and let Ft, Tt be their zero sets at time t. If Fo lies inside 
fioj or more generally if QQ C fio5 then for all t > 0, Qt c Clf That is, one 
extended solution Ft of 1/H+ flow acts as a barrier to any other extended 
solution Ff 

The proof is similar to the proof above of approximate-symmetry prop- 
erties. As in the proof of Lemma 9, the inclusion QQ C tto implies that 
UQ > VQ. The weak maximum principle then allows us to conclude that for 
all t > 0, ut> ut, which implies that £2* c fit, as required. 

The reader might well ask about the consistency of our definition of 
extended solutions. The following result is clear. 

Proposition 11. If Mn is a compact n-manifold and X : Mn x [0,T) —> 
R71"1"1 is a classical, embedded C2 solution to the inverse mean curvature flow 

at    H 

with H > 0 (N is the unit outward normal), then our extended solution 
u with the same initial data {x : UQ (X) = 0} = X (0) (Mn) is equal to the 
classical solution: 

(3.4) {x : ut (x) = 0} = X (t) (Mn) 

for allte[0,T). 

Proof. Given any r < T, let £T = imnM»x[0jT] H. Then equation (3.3) defines 
a viscosity solution u = ue (independent of e) to (5) on Rn+1 x [0, r] with 
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u (0) = UQ for any e G (0, eT] and the proposition follows from the uniqueness 
of the solution (see [CGG]). 

Remark 5. By means of a fairly simple example, we would like to compare 
our notion of "extended" solutions to l/#+-flow with the variational solu- 
tions recently introduced by Huisken and Ilmanen [HI]. Let To be the union 
of two disjoint spheres lying outside each other. Then for t in a certain time 
interval [0,r], an embedded solution Yt of 1/H flow will continue to exist. 
In fact, Tt will be the union of two spheres corresponding to the two com- 
ponents of FQ. If one of the original components of To has radius ro, then 
the corresponding sphere in Tt has the same center and radius ro e*. This 
solution ceases to be embedded at the first time T when the two spheres of 
Tt intersect. According to Proposition 11, Ft will be the extended solution of 
l/iir+-flow for all 0 < t < T. In contrast, Example 1.5 of [HI] indicates how 
the Huisken-Ilmanen solution of l/iI+-flow agrees with F* only for t < T', 
where T* is strictly less than T. Specifically, if the two spheres which com- 
prise Tt are sufficiently close together, then there will be a unique catenoid 
tangent to both of them, at small circles Ci and C2, one circle in each sphere 
of Ft. Then T" is the time at which the area of the segment of the catenoid 
between Ci and C2 equals the area of the union of the two spherical caps of 
Ft having the Ci and C2 as boundary. 

4. Examples. 

4.1. Two circles. 

Bellettini and Paolini have proposed a simple and intriguing initial condition 
consisting of FQ = two circles in R2 bounding disjoint disks. They allowed 
FQ to flow as a level set, that is, Ft = {x : u(x,t) = 0}, where u satisfies 
equation (1.1) with F in the form F(«, i) = /c+p(t), where K, is the curvature 
of Tt- For certain choices of the forcing term #(£), the initial radii no and 
r2o, and the distance between the centers of the two circles of FQ, they show 
that Tt has positive Lebesgue measure in M2 after a time t* > 0 
[BP] 1. After rescaling, we may assume that the two circles comprising FQ 

are dBri0 ((-1,0)) and dBr20 ((+1,0)). Let ri(t) and ^(t) be the solutions 
of the ODE 

r{(t) = -(ri(t)r
1+fl(t),     0<t<T 

1That is, "ballooning" or "fattening" of the solution occurs at time t*. 
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with initial conditions 

ri(0) = r«)     (i = l,2), 

and where T 6 (0, oo] is the smaller of the blow up times for the two ODE- 
initial value problems. Belletini and Paolini show that ballooning occurs at 
time t* < T provided that g(t) > 0 for all t and that the sum of the solutions 
ri(*) + 7*2 (*) reaches the maximum value 2 at t = f*. 

We shall apply Theorem 6 to show that for each t > 0, Ft is the closed 
set between two locally Lipschitz graphs: 

Tt = {(xi,X2) : y&fci) < \x2\ < ^out(^l)} 

where cpf^ cp^ : R —> M are continuous and uniformly Lipschitz away from 
the rci-axis. The Lipschitz bounds are independent of t, and in fact take the 
simple form 

(4.1) -1 < ^(sO^'Orij + x1 < 1, 

for both cpfn and ^out- ^he local Lipschitz estimate (4.1) holds whether or 
not ballooning occurs; if Ft is a smooth curve, then <p! = ^f out* 

Note in particular that inequality (4.1) forces Ft, or the inner or outer 
boundary of a ballooned 1$, to have a vertical tangent line whenever it 
crosses the xi-axis outside the closed interval — 1 < xi < 1, but that the 
Lipschitz bounds lose all force near (—1,1) on the xi-axis. 

To prove inequality (4.1), we first compute Amax(^) for an arbitrary 
v = (cos 6, sin 9) G S1. Given A e R, we observe that the portion of a 
given circle in To fl H* (i/) reflects to the interior of the circle if and only if 
the center of the circle lies in H+ (i/). That is, A is admissible for To with 

respect to v = (cos 0, sin 0) if and only if both centers (±1,0) lie in H+, that 
is, A < - |cos0|. Thus Xmax (i/) = - |cos^|. According to Theorem 6, for 
any t € (0,T), A will remain admissible for Ft with respect to u whenever 
A< -|cos0|. 

Now suppose Z/Q = (cos^o, sin^o), and consider a point x = (xi,^) € 
jtymax ^^ ^ which is equivalent to 

(4.2) (x,vo) <-|cos0o|. 

Then inequality (4.2) remains true for all u e Sl sufficiently close to Z/Q, that 
is, 

(4.3) (x, i/) < - |cos 0\ = \max (u), 
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for all 6 near 9Q, writing v = (cos 0, sin 9). Thus, according to Part 2 of 
Theorem 6, for each v satisfying (4.3) and for all t > 0, Yt n H™3* (i/) is the 
closed set between two locally Lipschitz graphs in the direction v. 

In particular, with 0o = —^/2, we have Amax (^o) = 0, and inequal- 
ity (4.2) holds whenever x^ > 0. That is, iJ^3* (0, —1) is the open upper 
half-plane. This allows us to conclude, for any given t 6 (0,T), that the 
intersection of F* with the upper half-plane is the relatively closed set 

{x : X2 > 0, (ftoixi) <X2< ^out(^l)} 

for some functions <^n, <££ut : R —► [0, oo) which are locally Lipschitz away 
from zeroes. 

We next show the sharp Lipschitz bound (4.1). With either (p = ^n 

or (p = ^*ut, consider any point x = (xi,X2) in the upper half-plane on 
the inner or outer boundary, respectively, of Ft : X2 = <p(xi) > 0. For 
small e > 0, write x+ = (£1,0:2 + s) and x~" = (xi,X2 — e)- By Theorem 
6, for any v = (cos 6, sin 6) satisfying inequality (4.3), x e H™**^) and 
Ft n H™** (z/) is the relatively closed set between two Lipschitz graphs in 
the i/-direction (as well as in the i/Q-direction). We restrict 9 to the interval 
(—TT, 0) and note that inequality (4.3) holds for 9 in an interval on both sides 
of 0o = —7r/2. Choose e small enough that x^ E .EP1^ (y). Then the sign (0 
or +1, resp.) of ut is constant along the (upward) ray x+ — 51/, 0 < s < 00. 
Similarly, the sign (—1 or 0, resp.) of ut is constant along the segment 
x" + sv, 0< s < — (#, i/) — |cos0| + ssinfl. In terms of the function y>, this 
means that a line segment starting from x+ = (£i,^(xi) + e) and having 
slope tan 9 lies above the graph of y>, and that a line segment starting from 
x" with the same slope lies below the graph of (p. Note, using inequality 
(4.3), that the lengths of these segments may be chosen independent of e. 
Letting e —► 0 gives bounds for ^(xi), assuming for convenience that this 
derivative exists (otherwise, we find the same bounds on difference quotients 
with sufficiently small denominators). The bound states that ^'(^i) ^ tan0 
when tan0 > 0, i.e., when 9 < —7r/2. In this case, inequality (4.3) holds 
whenever £2tan0 > 1 — xi, which shows (p{xi) <pr(xi) < 1 — xi, which is 
the right-hand side of inequality (4.1). When tan0 < 0, i.e. — 7r/2 < 0, this 
is a lower bound ^(xi) > tan0, for all 9 such that X2tan0 < 1 — xi, and 
the other side of inequality (4.1) follows. This proves the Lipschitz bound 
(4.1). Moreover, the estimate (4.1) is sharp. In fact, equality holds on the 
right-hand side of (4.1) for a circle centered at (1,0), and on the left-hand 
side for a circle centered at (—1,0). In particular, this is the case for Ft, 
0 < t < t*. 
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We next consider reflections <J
X
 (VQ) with VQ = (0,1); as we have seen, 

jtymax^ ^ is foe lower half-plane. We shall show that Ft is symmetric 
under reflection crmax(z/o) in the rri-axis. Prom the proof of Part 1 of 
Theorem 6, (—oo, 0] is admissible for ut with respect to Z/Q = (0,1); re- 
call Tt = {x : ut(x) = 0}. In particular, ut is a nonincreasing function of 
X2 € (—oo, 0] for each fixed xi G R. Further, since A = 0 is admissible for ut 
with respect to J/Q = (0,1), we have ^(^1,^2) < ^(aJi, —2:2) for all X2 > 0, 
by Definition 6. On the other hand, A = 0 is also admissible for ut with 
respect to —Z/Q = (0,-1), so that ut(xi,X2) > utfei,— X2) for all X2 > 0. 
Therefore ut(xi, •) is an even function for all xi G M, and Ft is invariant 
under reflection in the xi-axis. 

Higher Dimensions. Results analogous to [BP] have been recently pub- 
lished for hypersurfaces in Rn+1. Koo [K] has shown that if an immersed 
surface £* evolves by V = — H + g(t) for some nonnegative function #(£), 
and touches itself from the outside at time t* without crossing, then the cor- 
responding generalized solution Tt has positive Lebesgue measure for times 
t in an interval (£*, t* + 5). 

In particular, fattening occurs for the initially smooth example of a pair 
of evolving spheres whose centers lie at an appropriately chosen distance. 
An application of Part 1 of Theorem 6, completely analogous to the case 
n = 1 just discussed, shows that for all t > t*, Ft is the closed set between 
the hypersurfaces of revolution generated by two graphs r = ^(zi) and 
r = viutixi), in cylindrical coordinates about the axis containing the centers 
of the two initial spheres. The functions ^n and v?QUt : R -+ [0,00) satisfy 
the estimate (4.1) and hence are locally Lipschitz away from zeroes. 

4.2. Non-Lipschitz Example. 

The purpose of this example is to highlight the distinction between the first 
and second parts of Theorems 2 and 6. Namely, if a point x is in Hx(uo) but 
(x, u) > Amax(^) for all u in a punctured neighborhood of Z/Q? then Part 1 of 
the theorem applies near x, but not Part 2. In this example, the conclusion 
of Part 2 fails: for a certain to > 0, Tt is not a Lipschitz submanifold at x. 

We begin with the case n = 1 of an evolving curve in the plane. Let 
(XQ, xi) be Euchdean coordinates for R2. Choose four line segments parallel 
to the xo-axis, all ending at the line XQ = —1, the outer two starting at 
xo = +1, and the inner two at the xi-axis. Now add four semicircles to 
complete a connected, embedded C1 curve FQ. Write I/Q = (1,0). Then for 
z/ ^ ±vo, A = Amax(z/) is the largest value such that the centers of all four 
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semicircles lie in H+(2/). 
In particular, as v —> vo^max(v) —» —1. However, Amax(z/o) = 0- Thus, 

even though (—oo, 0) is admissible for Z/Q, it cannot be concluded from The- 
orem 6, Part (2) that Ft, or its inner and outer boundaries, are Lipschitz 
hypersurfaces inside the half-plane H^(UQ) = H™ax{yo). 

In fact, this conclusion fails, at least for the fully degenerate case of 
the Hamilton-Jacobi equations. If the curve moves outward with prescribed 
constant velocity —i^/si,.. .?/cn,£) = 1, then the inner two line segments 
will collide at a certain time t* > 0, where 2£* is the distance between the 
inner segments of FQ. The level set Ft* is singular, since it includes a triple 
point where two semicircles are externally tangent and are continued by 
a segment of their common tangent. Moreover, this line segment has the 
bounded open set fit* on both sides. 

This example shows that Lipschitz or even topological regularity of Ft, 
or its inner and outer boundaries, inside the open half-space H^^{y) is 
not guaranteed. Nevertheless, regardless of the choice of Fo and JP, a limited 
regularity follows from Proposition 10: TtCiH™**^) is the closed set between 
the graphs of two semicontinuous functions. 

Higher Dimensions. If the original curve Fo is chosen to be symmetric 
about the ^o-axis, then rotation about the rro-axis forms a hypersurface of 
Rn+1 such that the solution of the outward Hamilton-Jacobi flow F = — 1 
starting from this hypersurface has analogous properties to those described 
above for n = 1. For example, after a certain time t* > 0, Ft* contains the 
segment 0 < XQ < 1 of the xo-axis, which is also in the interior of £V. 

With the inward Hamilton-Jacobi flow F = +1, and with the same 
rotationally symmetric initial hypersurface Fo, the evolving level set becomes 
singular at some positive time £** : F*** includes a cylindrical segment which 
bounds Et** on both sides. 
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