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Groups quasi-isometric to symmetric spaces 
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We determine the structure of finitely generated groups which axe 
quasi-isometric to nonpositively curved symmetric spaces, allowing 
Euclidean de Rham factors. If X is a symmetric space of noncom- 
pact type (i.e. it has no EucUdean de Rham factor), and T is a 
finitely generated group quasi-isometric to the product E^ x X, 
then there is an exact sequence 1—> H —>r—»L-»1 where H 
contains a finite index copy of Zk and L is a uniform lattice in the 
isometry group of X. 

1. Introduction. 

If X is a symmetric space with no Euclidean de Rham factor, then any 
finitely generated group F quasi-isometric to X is a finite extension of a 
uniform lattice in Isom(X). This result is a direct corollary of the main 
results of [KlLe&7b] together with earlier work in the rank 1 cases [Tuk88, 
GroSla, Hin90, Pan89, Ga92, CJ94], and was first announced in June 1994 at 
MSRI, and in [KlLe97a]. This result does not extend to symmetric spaces 
with a nontrivial Euclidean factor: it was observed by Epstein, Gersten, 
and Mess that any extension of a Puchsian group by Z is quasi-isometric to 
H2 x R, and such extensions are typically not finite extensions of lattices in 
/s0ra(H2 x M). In this paper we treat the case of groups quasi-isometric to 
symmetric spaces with a Euclidean de Rham factor. 

Theorem 1.1. Let X be a symmetric space of noncompact type, and let 
Nil be a simply connected nilpotent Lie group equipped with a left-invariant 
Riemannian metric. Suppose T is a finitely generated group quasi-isometric 
to Nil x X (endowed with the product metric). Then there is an exact 
sequence 

(1.2) i—+H—*r-^L^l 

Supported by a Sloan foundation fellowship, and NSF grants DMS-95-05175 
and DMS-96-26911. 

Supported by SFB 256 (Bonn). 

239 



240 Bruce Kleiner and Bernhard Leeb 

where H is a finitely generated group quasi-isometric to Nil and L is a 
uniform lattice in the isometry group of X, and this sequence is unique up 

to isomorphism. Furthermore, given any quasi-isometry Y —>• Nil x X, 

there is a quasi-isometry L —> X so that the diagram 

r     -£-> L 

(1-3) ,j ,| 

mi x x -2L-> x 

commutes up to bounded error. In particular, H is undistorted? in T. 

When Nil is the trivial group then T is a finite extension of a uniform 
lattice in Isom{X)) and when Nil ~ Rfc then H is virtually abelian of rank k 
by [GroSlb, Pan83]. The case when X is the hyperbolic plane and Nil ~ R 
is due to Rieffel [Rie93]. 

We further refine Theorem 1.1 when Nil ~ Rn. 

Theorem 1.4. Let X be as in Theorem 1.1. Then any finitely generated 
group F quasi-isometric to Rn x X contains a finite index subgroup Ti C T 
which is a central extension of the form 

(1.5) 1 —► Zn —> Ti —>Li —> 1 

where Li is a finite extension of a lattice in Isom(X). 

In general, one cannot arrange that the group Li is a lattice in Isom(X) 
rather than a finite extension of a lattice. Examples of Raghunathan [Rag84] 
show that this is impossible in general even when n = 0. 

Theorem 1.4 raises the question of which central extensions (1.5) are 
quasi-isometric to En x X. Theorem 1.8 below gives a homological answer 
to this. 

Definition 1.6. An extension 1—>K-+G-!->Q—>loi finitely generated 

groups is quasi-isometrically trivial if there is a quasi-isometry G —► K x Q 
so that the diagram 

G     -*-« 

(1.7) *j idgj 

KxQ -^-> Q 
3The inclusion of H in F is biLipschitz with respect to the word metrics. 
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commutes up to bounded error. 

The central extension (1.5) is quasi-isometrically trivial by the second 
part of Theorem 1.1. The next result gives a general characterisation of 
quasi-isometrically trivial extensions. 

Theorem 1.8. (See section 7 for the definition of L00 cochains for CW 
complexes.) Let 

(1.9) i_*zn->G->Q->l 

be a central extension of finitely generated groups, and let a G H2(Q;Zn) 
be the associated cohomology class. Let K be a CW-complex with finite 1- 
skeleton which is an Eilenberg-Maclane space for Q, and identify a with 
a class in H2{K',ljn) ~ H2(Q]Zn). Then the extension (1.9) is quasi- 
isometrically trivial iff the pullback of a to H2{K\rLn) is in the image of 

H^oo^]!/1) —> H2{K,7Ln), where K denotes the universal cover of K. 

Remarks. Using bounded cohomology instead of L00 cohomology, Gersten 
[Ger92] gave a sufficient condition for a central extension by Z to be quasi- 
isometric to a trivial extension. In [ReNe97, Section 4] the authors give 
another cohomological characterization of quasi-isometrically trivial central 
extensions. 

An earlier version of this paper was posted on the AMS preprint server 
in October 1996. 

We gratefully acknowledge support by the RiP-program at the Mathe- 
matisches Forschungsinstitut Oberwolfach. 
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2. Preliminaries. 

In this section we recall some basic definitions and notation. See [Gro93] for 
more discussion and background. 

Definition 2.1. A map / : X —> Y between metric spaces is an (L,A) 
quasi-isometry if for every xi, X2 G X 

L"1d(xi,X2) + A < d(xi,X2) < Ld{xi,X2) + A, 

and for every y e Y we have d(y, f(X)) < A. Two quasi-isometries /i, /2 : 
X —> Y are equivalent if d(/i, /2) < oo. 

If F is a finitely generated group, then any two word metrics on T are 
biLipschitz to one another by idr : T -* T. We will implicitly endow our 
finitely generated groups with word metrics. 

Definition 2.2. An (L, A)-quasi-action of a group F on a metric space Z 
is a map p : F x Z —► Z so that p(7, •) : Z —► Z is an (L, A) quasi-isometry 
for every 7 G F, d(p(7i, ^(72,2)), p(7i725 ^)) < A for every 71,72 € F, z € Z, 
and <i(p(e, 2:), z) < A for every z G Z. 

We will denote the self-map p(7, •) : Z —» Z by p(7). p is discrete if 
for any point z e Z and any radius i? > 0, the set of all 7 G F such that 
p(7,2) is contained in the ball BR{Z) is finite, p is cobounded if Z coincides 
with a finite tubular neighborhood of the "orbit" p(T)z C Z for every z. 
If p is a discrete cobounded quasi-action of a finitely generated group F on 
a geodesic metric space Z, it follows easily that the map F —► Z given by 
7 »-* p(7,2) is a quasi-isometry for every z G Z. 

Definition 2.3. Two quasi-actions p and p7 are equivalent if there exists a 
constant D so that d(p(ry),p/(/y)) < D for all 7 G F. 

Definition 2.4. Let p and p7 be a quasi-actions of F on Z and Zf respec- 
tively, and let <j!): Z —^ Z7 be a quasi-isometry . Then p is quasi-isometrically 
conjugate to p' via (f) if there is a D so that d((j) o p(7), p/(7) ocj)) < D for all 
7 G F. 

Lemma 2.5 (cf. [Gro87, 8.2.K]). Let X be a Hadamard manifold of di- 
mension > 2 with sectional curvature < K < 0; and let d^X denote the 
geometric boundary of X with the cone topology. Recall that every quasi- 
isometry $ : X —► X induces a boundary homeomorphism <9oo$ • dooX —* 
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1. If p : F x X —> X is a quasi-action on X, then p is discrete (respec- 
tively cobounded) iff doofi acts properly discontinuously (respectively 
cocompactly) on the space of distinct triples in dcoX. 

2. Given {L,A) there is a D so that if (j)k, ifr (ire {L,A) quasi-isometries, 
then doQ^k converges uniformly to dooip ifflimsupdfykXiipx) < D for 
every x € X. In particular, i/^i,</>2 : X —► X are (L,A) quasi- 
isometries with the same boundary mappings, then d(0i,02) < D. 

Proof Let cPX C dooX x d^X x dooX denote the subspace of distinct 
triples. The uniform negative curvature of X implies that there is a DQ 

depending only on K such that 

(a) For every x € X there is a triple (^i,&,6) € d3X such that 
d(x,$i€j) < Do for every 1 < i ^ j < 3, where 1^ denotes the 
geodesic with ideal endpoints &, fy. Moreover for every C the set 
{(6? £2, £3) I d(x, &&) < C for all 1 < i ^ j < 3} has compact closure 
in a3X. 

and 

(b) For every (&,&,&) 6 dzX there is a point x € X so that 
d{x,£>i£,j) < Do for each 1 < i ^ j < 3. And for every C 
there is a C" depending only on C and K so that {x e X \ 
d(x, €i€j) < C for every 1 < i ^ j < 3} has diameter < (7. 

easily from this. □ 

3. Projecting quasi-actions to the factors. 

Let Nil and X be as in Theorem 1.1 and decompose X into irreducible 
factors: 

1 

(3.1) x=nxi 

Suppose p is a quasi-action of the finitely generated group F on Nil x X. 
We denote by p : Nil x X -> X the canonical projection. Theorem 1.1.2 
from [KlLe97b]4 implies that every quasi-isometry of Nil x X respects the 

4 Although Theorem 1.1.2 is only formulated in the case that Nil ~ Rn, the same 
proof works in general provided one uses [Pan83] to conclude that all asymptotic 
cones of Nil are homeomorphic to M^ where k = Dim(Nil). 



244 Bruce Kleiner and Bernhard Leeb 

fibering p and covers a product quasi-isometry X —> X, up to bounded error. 
Applying this theorem to ^(7) for each 7, we construct quasi-actions pi of 
F on Xi so that 

d[pop{>y),Y[pi{l)0p\ <D 

for all 7 6 F and some positive constant D. 

4. Straightening cocompact quasi-actions 
on irreducible symmetric spaces. 

The following result is a direct consequence of [Pan89, Theoreme 1] and 
[KlLe97b, Theorem 1.1.3]. 

Fact 4.1. Let X be an irreducible symmetric space other than a real or 
complex hyperbolic space. Then every quasi-action on X is equivalent to an 
isometric action. 

Proof. Let p be a quasi-action of a group F on X. By the results just cited, 
there is an isometry ^(7) at finite distance from the quasi-isometry p^) for 
every 7 € F. This isometry is unique and its distance from p^) is uniformly 
bounded5 in terms of the constants of the quasi-action. So p is an isometric 
action equivalent to p. □ 

We recall that the real and complex hyperbolic spaces of all dimensions 
admit quasi-isometries which are not equivalent to isometries [Pan89]. 

Fact 4.2. Any cobounded quasi-action p on a real or complex hyperbolic 
space of dimension > 2 is quasi-isometrically conjugate to an isometric ac- 
tion. 

This result is due to Sullivan in the H3 case, and to [GroSla, Tuk86] 
in the real-hyperbolic case. Using Pansu's theory of Carnot differentiabihty 
one can carry out Tukia's arguments for all rank-one symmetric spaces other 
than hyperbolic plane, cf. [Pan89, sec. 11]. Another proof for the complex- 
hyperbolic case can be found in [Chow96]. 

5The uniformity in the rank one case follows from Lemma 2.5. 



Groups quasi-isometric to symmetric spaces 245 

Fact 4.3. Let p be a cobounded quasi-action of a group F on H2. Then p is 
quasi-isometrically conjugate to a cocompact isometric action ofT on H2. 

Proof. We recall that every quasi-isometry (/> : H2 —► H2 induces a quasi- 
symmetric homeomorphism doofi : dooH? -* dooH2, see [TuVa82]; moreover 
the quasi-symmetry constant of doecf) can be estimated in terms of the quasi- 
isometry constants of <f>. Since equivalent quasi-isometries yield the same 
boundary homeomorphism, every quasi-action p on H2 induces a genuine 
action docp on dooH2 by uniformly quasi-symmetric homeomorphisms. 

Let f be the quotient of T by the kernel of the action doop, and let 
TT : F —► F be the canonical epimorphism. If two elements 71,72 € F have the 
same boundary map then d(p(7i),p(72)) is uniformly bounded by Lemma 
2.5. Hence we may obtain a quasi-action p of f on H2 by choosing 7 G TT""

1
 (7) 

for each 7 G F, and setting ^(7) = p^). If f is an isometric action of f 
on H2 and 0 : H2 —> H2 quasi-isometrically conjugates p into f, then </> will 
quasi-isometrically conjugate p into the isometric action r : F x H2 —► H2 

given by T(J) = f(7r(j)). Hence it suffices to treat the case when F = F, 
and so we will assume that doop is an effective action. 

Lemma 4.4. The quasi-action p is discrete if and only if the action d^p 
on c?ooH2 is discrete in the compact-open topology. 

Proof. Suppose d^p is discrete, and let {^i) be a sequence in F so that 
p(7i) maps a point p G H2 into a fixed ball BR{P). Then by a selection 
argument we may assume - after passing to a subsequence if necessary - 
that there is a quasi-isometry cj) : H2 —► H2 so that for every q G H2 

we have limsupid(p(7i)(g),<^(g)) < D for some D. Hence the boundary 
maps doop^fi) converge to c?oo<£, and so the sequence doop^i) is eventually 
constant. Since p is effective we conclude that 7* is eventually constant. 
Therefore p is a discrete quasi-action. 

If p is a discrete quasi-action on H2, then d^p is discrete by Lemma 2.5. 
□ 

Proof of 4.3 continued. 

Case 1: doop is discrete. In this case, p is a discrete convergence group 
action (Lemma 2.5) and by the work of [CJ94, Ga92], there is a discrete 
isometric action r of F on H2 so that doop is topologically conjugate to dooT. 
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Since p is cobounded, d^p acts cocompactly on the set of distinct triples of 
points in dooH2 (lemma 2.5); therefore d^r also acts cocompactly on the 
space of triples and so r is a discrete, cocompact, isometric action of F on 
H2. We now have two discrete, cobounded, quasi-actions of Y on H2, so they 
are quasi-isometrically conjugate by some quasi-isometry xj; : H2 —> H2. 

Case 2: doop is nondiscrete. By [Hin90, Theorem 4], doop is quasi- 
symmetrically conjugate to c?ooT, where r is an isometric action on H2. The 
conjugating quasi-symmetric homeomorphism is the boundary of a quasi- 
isometry ^ • H2 —* H2, [TuVa82], which quasi-isometrically conjugates docp 
into the isometric action action r. Applying Lemma 2.5 again, we conclude 
that r is cocompact. □ 

Section 3, and facts 4.1, 4.2 and 4.3 imply: 

Corollary 4.5. Let X be a symmetric space of noncompact type without Eu- 
clidean factor. Then any cobounded quasi-action on X is quasi-isometrically 
conjugate to a cocompact isometric action on X. 

5. A Growth estimate for small elements in nondiscrete 
cocompact subgroups of Isom(X). 

5.1. Parabolic isometries of symmetric spaces. 

Let X be a symmetric space of noncompact type, and let G = Isom(X). 

Recall that the displacement function of an isometry g is the convex 
function 5g : X —► R defined by the formula Sg(x) := d(gx,x). An isometry 
g € G is semisimple if its displacement function 8g attains its infimum and 
parabolic otherwise. 

Lemma 5.1. Let A C G be a finitely generated abelian group all of whose 
nontrivial elements are parabolic.  Then A has a fixed point at infinity. 

Proof. Recall that the nearest point projection to a closed convex subset is 
well-defined and distance non-increasing. This implies that if C is a non- 
empty A-invariant closed convex set, then for all displacement functions Sa, 
a e A, we have inf 5a = inf Sa\c. Hence for all n e N, the intersection of 
the sublevel sets {p | S^ip) < inf S^ + 1/n} is non-empty and contains a 
point pn. We have ^(pn) —> inf 6^ for all a*, and since the isometries a* 
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are parabolic the sequence {pn} subconverges to an ideal boundary point 
f € dooX. It follows that the a; fix £. □ 

Lemma 5.2. Let ai,..., a^ E Isom(X) be commuting parabolic isometries. 
Then there is a sequence of isometries {gn} C G so that for every i the 
sequence pn^fffn1 subconverges to a semisimple isometry ai. 

Proof From the proof of the previous lemma, there is a sequence of points 
{pn} C X converging to an ideal point f so that ^(Pn) —► inf 5ai for all a;. 
Pick isometries gn € G such that gn'pn = p0. The conjugates gn^ign1 have 
the same infimum displacement as a;. Since 

^oi^r1 (») = ^ (P«) "^inf S<H    ' 

the gn^iQn1 subconverge to a semisimple isometry. □ 

We call an isometry g ^ e purely parabolic^ if the identity is the only 
semisimple element in AdciG) • g. 

5.2. The growth estimate. 

Proposition 5.3. Let X be a symmetric space of noncompact type with no 
Euclidean de Rham factors. Let T C G = Isom(X) be a finitely generated, 
nondiscrete, cocompact subgroup. Let U C Isom(X) be a neighborhood of 
the identity, and set 

m := #{9 € r : \g\T < k, g € U}, 

where \ • |r denotes a word norm on T. Then f grows faster than any poly- 
nomial, i.e. for every d > 0 limsup^QQ £pf- = oo. 

Proof Let T be the closure of F in G with respect to the Hausdorff topology, 
and let f0 be the identity component of F. 
Case 1: Y0 is nilpotent Let A be the last non-trivial subgroup in the 
derived series of f0. Then A C f is a connected abelian subgroup of positive 
dimension, A is normal in f, and F n A is dense in A. 

Lemma 5.4. For every S € (0,1) there is a 7 G F such that all eigenvalues 

of the automorphism AdG(/y)\A : A —» A have absolute value < S. 

6This is a geometric way of defining unipotent isometries. 
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Proof. See section 5.1 for terminology. 
Step 1: A contains no semisimple isometries other than e. Otherwise we 
can consider the intersection C of the minimum sets for the displacement 
functions Sa where a runs through all semisimple elements in A. C is a 
nonempty convex subset of X which splits metrically as C = E^ x Y. The 
flats Efc x {y} are the minimal flats preserved by all semisimple elements in 
A. Since T normalises A it follows that C is F-invariant. The cocompactness 
of F implies that C = X and k = 0 because X has no Euclidean factor. This 
means that the semisimple elements in A fix all points, a contradiction. 
Step 2: All non-trivial isometries in A are purely parabolic. If a € -A, 
a 7^ e, is not purely parabolic then there is a sequence of isometries gn 

so that Qn^gn1 converges to a semisimple isometry a ^ e. We can uni- 
formly approximate the gn by elements in F, i.e. there exist jn e F and a 
bounded sequence kn 6 G subconverging to k G G so that 7n = kngn. Then 
InO'lnl ^ kngnagn1^1 subconverges to the non-trivial semisimple element 
kak"1. This contradicts step 1. 
Step 3: Pick a basis {ai,... ,0^} for A ~ Rk. By Lemma 5.2 there exist 
elements gn € G so that gn^ign1 -* e for aU ai- We approximate the gn as 
above by jn so that the sequence 7n<7n1 is bounded. Then jn^nn1 ~* e for 

all ai. The lemma follows by setting 7 = 7n for sufficiently large n. □ 

Proo/ 0/ case 1 continued. By Lemma 5.4, there is a 7 G F, 7 ^ e, and a 
norm || • \\A on A such that for all a € -A we have 

Consider a neighborhood U of e in G. Let r > 0 be small enough so that 
{a e A: \\a\\A < r} C U and pick a 6 F fl A with ||am < r/2. Then the 
elements 

for ei € {0,1} are 2n pairwise distinct elements contained in TDU with word 
norm |7€o  €n Jr < ^2(|«|r + Mr)- This implies superpolynomial growth of 

Case 2: T0 is not nilpotent Define an increasing sequence (the upper central 
series) of nilpotent Lie subgroups Zi C f0 inductively as follows: Set ZQ = 
{e} and let Z»+i be the inverse image in f0 of the center in T0/Zi. The 
dimension of Zi stabilizes and we choose k so that dim Zk is maximal. Then 
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the center of T/Zk is discrete and, since ro is not nilpotent, we have dim Zk < 
dimf. Proposition 5.3 now follows by applying the next lemma with H = f 
and Hi = Zk. □ 

Lemma 5.5. Let H be a Lie group, let Hi <H be a closed normal subgroup 
so that H := H/Hi is a positive dimensional Lie group with discrete center, 
and suppose T C H is a dense, finitely generated subgroup. IfUis any neigh- 
borhood of e in H, then the function f(k) := #{g G T : \g\r < k, g € U} 
grows superpolynomially. 

Proof. The idea of the proof is to use the contracting property of commu- 
tators to produce a sequence {a^} in H D Y which converges exponentially 
to the identity. The word norm |afc|r grows exponentially with fc, but the 
number of elements of (ai,... ,afc) in U also grows exponentially with fc; 
by comparing growth exponents we find that / grows superpolynomially. 

Fix M € N, a positive real number e < 1/3 and some left-invariant 
Riemannian metric on H. Since the differential of the commutator map 
(h, hf) »-> [/i, h'] vanishes at (e, e) we can find a neighborhood V of e in H 
such that: 

(5.6) h,tieV    ==>     [h,ti]eV   and   d([h,h%e) <-!gd(h,e) 

Since the differential of the fc-th power /n-^ hk at e is k • idTeH for all k G Z, 
we can furthermore achieve that, whenever 1 < fc, kr < M and /i, hk, hk G V, 
then 

(5.7) d(hk, hk') > (\k - k'\ - e) • d(fe, e) 

By our assumption, there exist finitely many elements 71,...,7m G F D 
V such that the centrahzers Zgip/j) of their images in H have discrete 
intersubsection. We construct an infinite sequence of elements c^ G (F n 
V) \ Hi by picking ao G V arbitrarily and setting oti+i = [a*, 7^)] 0 Hi for 
suitably chosen 1 < j(i) < m. Then 

(5.8) 0 < d(ai+u e) < j^^, e) 

by (5.6). 

Sublemma 5.9. Pick no G N. The Mn elements 

(5.10) lei.„en = a^1^! • • • a^n        ei G {0,..., M - 1} 

are distinct. 
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Proof, Assume that 7€l...6n = It' ...e'^ €i ¥" €/ ari<i ei = ei for alH < Z. Then 

ano+Z " ^ano+i+l ' * * ano+nJ ^"no+Z+l * " * ano+nJ       • 

By (5.8) and the triangle inequality 

«* ((4+i+l • • • «£+») (C-H+l • - • <+n) "1 » «) 
00      1 2 

On the other hand, by (5.7) we have 

which is a contradiction. □ 

To complete the proof of the lemma, we observe that the elements (5.10) 
have word norm |7ei...£n|r < const(no) • 3n and are contained in U if no is 
sufficiently large. This shows that f(k) grows polynomially of order at least 

!^$- for aU M, hence the claim. □ 

6- Proof Theorem 1.1. 

Let po : F x T —► F be the isometric action of F on itself by left translation, 
and let (f>: F —► Nil x X be a quasi-isometry. Then there is a quasi-action 
p of F on Nil x X such that <f> quasi-isometrically conjugates po into p. 
According to section 3, p projects (up to bounded error) to a cobounded 
quasi-action p of F on X. p is quasi-isometrically conjugate to a cocompact 
isometric action /5, cf. Corollary 4.5. Pick x G X, y € iViZ x {x}, and 
R > 0. Since the quasi-action p covers p, we know that for all 7 € F with 
,9(7) • x e BR{X), the distance d{p{i) • y.Nil x {x}) is uniformly bounded. 
The map F -^ JViZ x X given by 7 i-» p(7) • y being a quasi-isometry, we 
conclude that the function 

(6.1) N{k) := #{7 e r I |7|r < *, ^(7) • x € BR{x)} 

grows at most as fast as the volume of balls in Nil, i.e. it is < Ckd for some 
C, d 6 R. Proposition 5.3 implies that L := p(r) is a discrete subgroup in 
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Isom(X) and hence a uniform lattice. The kernel H of the action p is then 
a finitely generated group quasi-isometric to the fiber Nil, since it clearly 
(quasi)-acts discretely and coboundedly on the fiber. 

To see that the sequence (1.2) is unique up to isomorphism, let 

1 _> H/ _> r 4 L> _> i 

be an exact sequence with 1/ C Isom{X) a uniform lattice and H' a group 
quasi-isometric to Nil. Then by [GroSlb, Pan83] H' is a virtually nilpotent 

group. Now if T —> T is an isomorphism then ^{H) C 1/ is a normal, 
finitely generated, virtually nilpotent subgroup; it follows that £/(/(#)) is 
trivial. Similarly p(/""1(jy/)) is trivial and we conclude that / induces an 
isomorphism of the two exact sequences. 

We now prove the last statement of Theorem 1.1. When we restrict p to 
H we get a quasi-action which is equivalent to the trivial action of H on X. 
Hence p induces a quasi-action r? of L = T/H on X, which is discrete and 
cobounded. The action ryo of L on itself by left translations is also discrete 

and cobounded, so g H* 
fq{g){TT2{(j>{e))) defines a quasi-isometry L —» X. It 

follows that the diagram 

r     -*-> L 

(6.2) ,j ^ 

ATiZ x x _Z2_> x 

commutes up to bounded error since (f> quasi-isometrically conjugates po into 
p, p projects to p, and d(p(jH),r)(yH)) is uniformly bounded (independent 
of 7). □ 

7. Proof of Theorem 1.4. 

Sketch of proof. If F is quasi-isometric to Rn x X where X is a symmetric 
space with no Euclidean de Rham factor, then by Theorem 1.1, T fits into 
an exact sequence (1.2) where H is an undistorted virtually Zn subgroup. 
We will use the undistortedness of H to pass to a finite index subgroup of 
F which is a central extension, cf. [Ger91]. 

If 5 is a subset of a group G, we will use the notation Z(5, G) to denote 
the centrahzer of S in G, and Z(G) to denote the center of G. 
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Proof of Theorem 1.4.   By Theorem 1.1 we get an exact sequence 

1 —* H —* r -£-» L —* 1 

where H is a finitely generated group quasi-isometric to Zn, and L c 
Isom(X) is a uniform lattice.   Applying the second part of the theorem 

we can get a quasi-isometry T -£+ Zn x L so that 

r    -?-+L 

(7.1) / 

5»xL -2- 

id 

commutes up to bounded error. Clearly f(H) C Zn x L has finite Hausdorff 
distance from Zn x {e} C Zn x L, so H is undistorted7 in T. By [GroSlb, 
Pan83] H contains a finite index copy of Zn. 

Next we will identify a finite index abelian subgroup of H which is normal 
in F. Let T be the subgroup of "translations" in if, i.e. 

(7.2) T={heH\[H: Z{h, H)} < oo}. 

Clearly T is a characteristic subgroup of iJ, and has finite index in JHT; in 
particular T is finitely generated. Note that Z(T), the center of T, has 
finite index in T since if T = (ti,... ,«*), then Z(r) = n<Z(ti,r) is a 
finite intersection of finite index subgroups of T. Hence Z(T) is a finitely 
generated abelian group of the form Zn© A where ^4 is a finite abelian group. 
Note Z(T) is normal in Y since it is characteristic in H1 and i? is normal in 
r. 
Lemma 7.3.  The centralizer of Z(T) in T, Z{Z(T),T), has finite index in 
r. 

The proof uses properties of translation numbers, see [GroSla, pp. 189- 
191]. The paper [Ger91] uses a similar setup. 

Definition 7.4. Let G be a finitely generated group, and let | • \G be a word 
norm on G. Then the translation length of g G G is 

Sob) := Jim J^- 

The limit exists since k H-* \gk\o is a subadditive function. 
7 A finitely generated subgroup of a finitely generated group is undistorted if the 

inclusion homomorphism is a quasi-isometric embedding. 
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The translation length is conjugacy invariant, vanishes on torsion ele- 
ments, and changes by at most a bounded factor if one passes to a different 
word metric. If a homomorphism a : E —> G is a quasi-isometric embedding 
of finitely generated groups (i.e. 3C > 0 such that |a(/z)|<3 > C\h\H for all 
he H) then the pullback of 8G to H agrees with 8H up to a bounded factor. 

Proof of Lemma 7.3. We know that Z{T) is undistorted in Y since Z(T) 
has finite index in H and H is undistorted in F. Hence 5? restricts to a 
function on Z{T) which is equivalent to 8z(T)' The latter function clearly 
factors through the homomorphism Z(T) -> Zn whose kernel is the torsion 
subgroup A C Z(T). Hence Sz(T) : Z(T) -> R is a proper function on Z(T) 
which is invariant under conjugacy by elements of T. If R is large enough 
that KR := {g 6 Z(T) \ 5r(g) < R} generates Z(T), then any finite index 
subgroup of T centralizing KR will centralize Z(T), so Z(Z(T), T) has finite 
index in F. □ 

Proof of Theorem 1.4 concluded. Let Fi := Z(Z(T),T), let Hi C Z(T) C 
Fi fl H be a finite index subgroup of Z(T) isomorphic to Zn, and set Li := 
Ti/Hi. Then clearly Li is a finite extension of a uniform lattice in Isom(X), 
and hence 

1 -* Hx -> Fi -^ Li -> 1 

is an exact sequence as in (1.5). D 

8. Geometry of central extensions by Zn. 

The objective of this section is Proposition 8.3, which provides criteria for 
recognizing quasi-isometrically trivial central extensions. 

Definition 8.1, Let X be a CW-complex. A cellular fc-cochain a € 
Ck(X; Zn) is bounded if its values on the fc-cells of X are uniformly bounded. 
The collection of bounded cochains forms a subgroup8 of C^XjZ™) which 
will be denoted by C£oo(X;Zn). 

Lemma 8.2. Suppose k > 0, X is a CW-complex with finitely many (k — 

I)-cells, X A X is the universal covering, and a G Bk(X'1Z
n) is a k- 

coboundary. Then p*a € /m(C^1(X;Zn) -i Ck(X]Zn)). 

8Under appropriate finiteness conditions C£oo(-X';Zn) will be a subcomplex of 
C*(X; Zn) and the L00 cohomology i/£oc (X; Zn) will be well-defined. 
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Proof, If 0 € C^-^XjZ71) and a = 66 then p*a = p*80 = 5^*0 and p*0 6 
Cj-^X; Zn) since X has a finitely many (k - 1) ceUs. □ 

Let X be a CW complex with finitely many (fc — l)-cells. By the Lemma, 
the subgroup 

Z*p(X]Zn) := {a € Zk(X;Zn) |p*a € /m^1^;^) ^ Ck(X-Zn))} 

descends to a subgroup Hk
p(X;Z) of Hk(X]Zn)] we will refer elements of 

Hk
p(X]Zn) as special cohomology classes9. If X —* X7 is a continuous map 

from X to another CW complex with finitely many (k — l)-cells, we can 
homotope / to a cellular map, so we have an induced homomorphism 

H*p(X';Zn) £ H*p(X;Zn). 

When G is a finitely generated group, the special cohomology group 
Hsp(G;Zn) of G is defined as follows: pick a K(G, 1) with finite 1-skeleton; 
the special cohomology group H%p(X] Zn) C H2(X; Zn) ~ H2(G; Zn) defines 
a subgroup of H2{G\ Zn) which is independent of the choice of X. 

Proposition 8.3. Let 

(8.4) 1 -> Zn ^ G 2* Q -> 1 

be a central extension of finitely generated groups. Then the following are 
equivalent: 

1.  The extension is quasi-isometrically trivial,  i.e.    there is a quasi- 

isometry G —► Zn x Q so that the diagram 

(8.5) 

G -^Q 

f id 

zn 
xQ ■ -^Q 

commutes up to bounded error. 

2.  There is a Lipschitz section s : Q —» G of p. 

9It would be more descriptive to say that these classes "pullback to d(bounded)"; 
but we chose "special" for brevity. 
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3. The cohomology class a € H2(G;Zn) associated with the exten- 
sion (8A) is a special cohomology class, i.e. if K is a K(G,l) 
with finite 1-skeleton and c G Z2(K;Zn) represents a, then p*c G 

Im(Hloo(K]Zn) ± Hl{K',Zn)). 

Proof. (1 => 2). Suppose / makes diagram (8.5) commute up to bounded 
error, and let Z""1 be a quasi-inverse10 for /. Define so : Q —> G to be the 

composition Q —> {e} x Q —> Zn x Q —> G. The approximate commutativity 
of (8.5) implies that d(p o so, idq) < oo. Define a section 5 : Q —► G of p by 
letting s(q) be a point in p'"1(q) closest to 50(9), for all q e Q. By Lemma 
8.6 below, we have d(s, SQ) < 00, and so 5 is Lipschitz since 50 is Lipschitz 
and d(qiJq2) > 1 for distinct elements qu q2 € Q- 

Lemma 8.6. If H < G are finitely generated groups, we define a distance 
function dc/iJ on G/H by letting dQ/H(giH,g2H) be the distance between 
the subsets giH, g2H ofG with respect to a fixed word metric on G. Then the 
coset distance metric on G/H is equivalent11 to any word metric on G/H. 

Proof. Let E C G be a symmetric finite generating set, and let S C G/H 
be the image of S under G —» G/H. Then there is a canonical 1-Lipschitz 
map between the Cayley graphs Cay(G,T,) and Cay{G/H,Y). Paths in 
Cay{G/H, S) can be lifted to paths in Cay(G, E) of the same length which 
join the corresponding cosets of H. □ 

(2 =» 1). Ifs:Q—»Gisa Lipschitz section of p, we may define a map 
TT^n : G —» Zn by the formula Trgn (g)s(p(g)) = p, i.e. TT^U is the unique map 
G —>Zn which sends s(Q) to e € Zn, and which is equivariant with respect 
to translation by elements of Zn. 

Lemma 8.7. Tr^n is Lipschitz. 

Proof Note that if gi, g2 e G, h e Zn, and 52 = gih, then TTZ**^) = 
7rzn(gi)h, so dzn(7rZn(3i)?7rZn(flr2)) = dzn(e,h). The properness of the dis- 
tance function rfzn('»c) imphes that there is a function S : N —* N so that 

10d(f  1 o /, icfcr) and d(f o /  1,idz^^Q) are both finite. 
11 The two metrics have uniformly bounded ratio. 
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for all h e Zn, 

(8.8) dzn(h,e)<5(dG(h,e)). 

To prove Lemma 8.7, it suffices to find an L such that 

whenever ^(51,52) = 1- Consider the unique gz € giZn which satisfies 
^z^igs) = 7rz»(S2), i.e. gz e giLn n {nzn^siQ)). Then ^(33,52) < C 
for some constant C because the composition sop is Lipschitz. Applying 
triangle inequahties and (8.8), we get 

dz^{^zn(gi)^Zn(g2)) = dzn(7rzn(gi),7rzn(gs)) 

<*(<fc(0i,aO)<*(i + c). 

□ 
To finish the proof that (2 => 1), note that we have a bijection / : 

Zn x Q —> G given by /(/i, q) = /15(g). / is clearly Lzp(s)-Lipschitz in the Q 
direction. That / is Lipschitz in the Zn direction follows from the fact that 
Zn is a central subgroup of G: 

dG{f(hu q), /(/i2, q)) = dcihisfa), fasfa)) 

= dcihih^ ,e) < dzn(hih2  ,e) = dzn(/&i,/12). 

Letting / = Z"1, we see that / = (7rzn,p) is a biLipschitz bijection. 

(2 ^=> 3). This follows from the obstruction theoretic interpretation of the 
characteristic class of the extension. Let K be a CW complex with finite 1- 
skeleton and one vertex, and which is an Eilenberg-Maclane space for Q. Let 
P —» K be a principal Tn-bundle with characteristic class [a] G H2(K;Zn), 
so that the exact homotopy sequence 7ri(rn) —> ^ri(-P) -* ^ri(if) for the 
fibration P —> JK" is isomorphic to (8.4). Let a : Skeli(K) —> P be a 
section of P over the 1-skeleton of K. In the fiber over the point Skelo(K), 
choose a bouquet of n circles with vertex at cr(Skelo{K)), which gives a 
standard basis for the fundamental group of the fiber. Let M C P be the 
1-complex consisting of the union of this bouquet of circles with the bouquet 
aiSkehiK)) CP. 

Let P -* K be the pullback of the bundle P —► K under the covering 
projection K —♦ if, let <7 : Skeli(K) -> P be the pullback of a, and let 
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M c P be the inverse image of M under the covering P —> P. Finally, 
let P —* P be the universal covering, and let M C P be the inverse image 
of M under P —> P. Note that if we put path metrics on Skeli (K) and 
M, then the projection map Skelo(M) —> Skelo(K) is naturally biLipschitz 
equivalent to G -^ Q. 

Now suppose 3 holds, and that a e Cl^K',!/1) C C2(if;Zn). We 
may assume that our section a : Skeli(K) —> P was chosen so that the 
associated cellular obstruction cocycle is a. Then d, the image of a under 
the pullback Cfoo (if; Zn) -* C£oo(if;Zn), is the obstruction cocycle for 
<7 : Skeh(K) -» P. By assumption, d = 5(9 for some 6 e C^iK^U1). 
Hence we may modify <J using ^ to get a new section G\ : Skeli(K) —> P with 
trivial obstruction cocycle. In particular, if P —> P is the universal covering 
map, then <7i lifts to a section a : Skeli(K) —» P of the R-bundle P -+ K. 
The fact that 0 is an L^-cochain implies that a restricts to a 1-Lipschitz map 
from Skelo(K) to Skelo(M). Since the projection Skelo(M) —> Skelo(K) is 
biLipschitz equivalent to G —> Q, we get a Lipschitz section of p, so 2 holds. 

Conversely, suppose 2 holds. Then we get a Lipschitz section r : 
Skelo(K) -» Skelo(M) of the projection Skelo(M) -» Skelo(K). We may 
extend r to a section a : Skeli(K) —> P, and let ai : Skeli(K) —> P be 
the composition of <7 with P —> P. Notice that <7i has trivial obstruction 
cocycle since it lifts to a. 

Lemma 8.9. <7i is obtained from a by applying a bounded cochain 6 £ 
C£ooOK-;Z»). 

Proo/. If e is a closed 1-cell in Skeli{K), we want to show that the fixed 
endpoint homotopy classes of the two sections dr\ \e-±P and a\ \ : e —► P 

(as maps into the inverse image of e in P) agree up to bounded error. If 
7 : [0,1] —* e is a characteristic map for e, lift the path 0-07 : [0,1] -» M C P 
to a path 7 : [0,1] -> M C P starting at a o 7(0). Then 

<te(7(l), * o 7(1)) < ^(7(1), 7(0)) + d&(7(0), a o 7(1)) 

= l + ^(r(7(0)),r(7(l))). 

where JLT is the Lipschitz constant of r. But then 7(1) = {a o j(l))h for 
some h e Z71, and we can bound din(h, e) by a constant C depending on LT, 
cf.  (8.8). In other words, the fixed endpoint homotopy classes of a I   and 
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<7i|e (as maps from e to the inverse image of e in P) differ by some h eZn 

where \\h\\zn < C. □ 

If a € C2(K;Zn) is the obstruction cocycle for the section a, then the 
pullback of a to K is the obstruction for a. As the obstruction for ai is 0, 
Lemma 8.9 gives 

0 = a + 89 

for 8 € C^oo^Z71), so 3 holds.  This completes the proof of Proposition 
8.3. □ 
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