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Groups quasi-isometric to symmetric spaces

BruUce KLEINER! AND BERNHARD LEEB2

We determine the structure of finitely generated groups which are
quasi-isometric to nonpositively curved symmetric spaces, allowing
Euclidean de Rham factors. If X is a symmetric space of noncom-
pact type (i.e. it has no Euclidean de Rham factor), and T is a
finitely generated group quasi-isometric to the product E* x X,
then there is an exact sequence 1 - H - I"' = L — 1 where H
contains a finite index copy of Z* and L is a uniform lattice in the
isometry group of X.

1. Introduction.

If X is a symmetric space with no Euclidean de Rham factor, then any
finitely generated group I' quasi-isometric to X is a finite extension of a
uniform lattice in I'som(X). This result is a direct corollary of the main
results of [K1Le97b] together with earlier work in the rank 1 cases [Tuk88,
Gro81la, Hin90, Pan89, Ga92, CJ94], and was first announced in June 1994 at
MSRI, and in [KILe97a]. This result does not extend to symmetric spaces
with a nontrivial Euclidean factor: it was observed by Epstein, Gersten,
and Mess that any extension of a Fuchsian group by Z is quasi-isometric to
H? x R, and such extensions are typically not finite extensions of lattices in
Isom(H? x R). In this paper we treat the case of groups quasi-isometric to
symmetric spaces with a Euclidean de Rham factor.

Theorem 1.1. Let X be a symmetric space of noncompact type, and let
Nil be a simply connected nilpotent Lie group equipped with a left-invariant
Riemannian metric. Suppose I is a finitely generated group quasi-isometric
to Nil x X (endowed with the product metric). Then there is an ezact
sequence

(1.2) 1—wH—T-21L-—1

1Supported by a Sloan foundation fellowship, and NSF grants DMS-95-05175
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where H is a finitely generated group quasi-isometric to Nil and L is a
uniform lattice in the isometry group of X, and this sequence is unique up

to isomorphism. Furthermore, given any quasi-isometry T 2, Nilx X ,

there is a quasi-isometry L 2, X so that the diagram
r £
(L3) | 3|
Nilx X 25 X
commutes up to bounded error. In particular, H is undistorted® in T.

When Nl is the trivial group then I' is a finite extension of a uniform
lattice in Isom(X), and when Nil ~ R* then H is virtually abelian of rank &
by [Gro81b, Pan83]. The case when X is the hyperbolic plane and Nil ~ R

is due to Rieffel [Rie93].
We further refine Theorem 1.1 when Nil ~ R".

Theorem 1.4. Let X be as in Theorem 1.1. Then any finitely generated
group ' quasi-isometric to R™ x X contains a finite index subgroup Ty C T
which is a central extension of the form

(1.5) 1—72" —T1— L —1
where L1 is a finite extension of a lattice in Isom(X).

In general, one cannot arrange that the group L, is a lattice in Isom(X)
rather than a finite extension of a lattice. Examples of Raghunathan [Rag84|
show that this is impossible in general even when n = 0.

Theorem 1.4 raises the question of which central extensions (1.5) are
quasi-isometric to E* x X. Theorem 1.8 below gives a homological answer
to this.

Definition 1.6. An extension 1 — K — G & Q — 1 of finitely generated
groups is quasi-isometrically trivial if there is a quasi-isometry G %K x Q
so that the diagram
G - Q
(1.7) 6 i idQl
K x Q —17—2—-> Q

3The inclusion of H in T is biLipschitz with respect to the word metrics.
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commutes up to bounded error.

The central extension (1.5) is quasi-isometrically trivial by the second
part of Theorem 1.1. The next result gives a general characterisation of
quasi-isometrically trivial extensions.

Theorem 1.8. (See section 7 for the definition of L™ cochains for CW
complezes.) Let

(1.9) 1-2"-G—-Q -1

be a central extension of finitely generated groups, and let o € H%(Q;Z")
be the associated cohomology class. Let K be a CW-complez with finite 1-
skeleton which is an Filenberg-Maclane space for Q, and identify o with
a class in HX(K;Z") ~ H?*(Q;Z"). Then the extension (1.9) is quasi-
isometrically trivial iff the pullback of o to H 2(]? ;Z™) is in the image of
H2.(K;Z™) Ay 2(K,Z"), where K denotes the universal cover of K.

Remarks. Using bounded cohomology instead of L*° cohomology, Gersten
[Ger92)] gave a sufficient condition for a central extension by Z to be quasi-
isometric to a trivial extension. In [ReNe97, Section 4] the authors give
another cohomological characterization of quasi-isometrically trivial central
extensions.

An earlier version of this paper was posted on the AMS preprint server
in October 1996.

We gratefully acknowledge support by the RiP-program at the Mathe-
matisches Forschungsinstitut Oberwolfach.
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2. Preliminaries.

In this section we recall some basic definitions and notation. See [Gro93] for
more discussion and background.

Definition 2.1. A map f : X — Y between metric spaces is an (L, A)
quasi-isometry if for every 1,20 € X

L'ld(ml, z2) + A < d(z1,z2) < Ld(z1,72) + A,

and for every y € Y we have d(y, f(X)) < A. Two quasi-isometries f1, f» :
X — Y are equivalent if d(f1, f2) < oo.

If T is a finitely generated group, then any two word metrics on I' are
biLipschitz to one another by idr : I' — I'. We will implicitly endow our
finitely generated groups with word metrics.

Definition 2.2. An (L, A)-quasi-action of a group I" on a metric space Z
isamap p:T' x Z — Z so that p(v,-) : Z — Z is an (L, A) quasi-isometry
for every v € T, d(p(71, p(72, 2)), p(7172, 2)) < A for every m,72 €T, 2 € Z,
and d(p(e, 2),z) < A for every z € Z.

We will denote the self-map p(v,-) : Z — Z by p(y). p is discrete if
for any point z € Z and any radius R > 0, the set of all v € I" such that
p(7, z) is contained in the ball Bg(z) is finite. p is cobounded if Z coincides
with a finite tubular neighborhood of the “orbit” p(I')z C Z for every z.
If p is a discrete cobounded quasi-action of a finitely generated group I'" on
a geodesic metric space Z, it follows easily that the map I' — Z given by
v +— p(7, 2) is a quasi-isometry for every z € Z.

Definition 2.3. Two quasi-actions p and p’ are equivalent if there exists a
constant D so that d(p(y),p' (7)) < D forall y € T.

Definition 2.4. Let p and p’ be a quasi-actions of I" on Z and Z’ respec-
tively, and let ¢ : Z — Z’ be a quasi-isometry . Then p is quasi-isometrically
conjugate to p’ via ¢ if there is a D so that d(¢ o p(7), p'(7) 0 ¢) < D for all
veT.

Lemma 2.5 (cf. [Gro87, 8.2.K]). Let X be a Hadamard manifold of di-
mension > 2 with sectional curvature < K < 0, and let 80X denote the
geometric boundary of X with the cone topology. Recall that every quasi-
isometry ® : X — X induces a boundary homeomorphism Ooo® : 0o X —
000 X.
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1. If p: T'x X — X is a quasi-action on X, then p is discrete (respec-
tively cobounded) iff Oso¢p acts properly discontinuously (respectively
cocompactly) on the space of distinct triples in oo X.

2. Given (L, A) there is a D so that if ¢, 1 are (L, A) quasi-isometries,
then O ¢y, converges uniformly to O iff limsup d(¢rz, Yz) < D for
every z € X. In particuler, if ¢1,¢2 : X — X are (L, A) quasi-
isometries with the same boundary mappings, then d(¢1,¢2) < D.

Proof. Let %X C 05X X 050X X 85X denote the subspace of distinct
triples. The uniform negative curvature of X implies that there is a Dy
depending only on K such that

(a) For every z € X there is a triple (£1,£2,£3) € 83X such that
d(z,&&;) < Do for every 1 < i # j < 3, where &¢; denotes the
geodesic with ideal endpoints &;, ;. Moreover for every C the set
{(&1,&2,83) | d(z,&&;) < C for all 1 < i # j < 3} has compact closure
in 83X.

and

(b) For every (&1,€2,€3) € 83X there is a point z € X so that
d(z,&&) < Do for each 1 < i # j < 3. And for every C
there is a C’ depending only on C and K so that {z € X |
d(z,&:&;) < C for every 1 < i # j < 3} has diameter < C'.

easily from this. : O
3. Projecting quasi-actions to the factors.

Let Nil and X be as in Theorem 1.1 and decompose X into irreducible
factors:

i
(3.1) x=1]x

=1

Suppose p is a quasi-action of the finitely generated group I' on Nil x X.
We denote by p : Nil x X — X the canonical projection. Theorem 1.1.2
from [KILe97b]* implies that every quasi-isometry of Nil x X respects the

4 Although Theorem 1.1.2 is only formulated in the case that Nil ~ R™, the same
proof works in general provided one uses [Pan83] to conclude that all asymptotic
cones of Nil are homeomorphic to R* where k = Dim(Nil).
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fibering p and covers a product quasi-isometry X — X, up to bounded error.
Applying this theorem to p(7y) for each «, we construct quasi-actions p; of
I on X; so that

k
d (po o), [ () 0p) <D

=1

for all ¥ € I" and some positive constant D.

4. Straightening cocompact quasi-actions
on irreducible symmetric spaces.

The following result is a direct consequence of [Pan89, Théoréme 1] and
[KILe97b, Theorem 1.1.3].

Fact 4.1. Let X be an irreducible symmetric space other than a real or
complex hyperbolic space. Then every quasi-action on X is equivalent to an
isometric action.

Proof. Let p be a quasi-action of a group I on X. By the results just cited,
there is an isometry p(-y) at finite distance from the quasi-isometry p(v) for
every v € I". This isometry is unique and its distance from p(+y) is uniformly
bounded?® in terms of the constants of the quasi-action. So j is an isometric
action equivalent to p. ' a

We recall that the real and complex hyperbolic spaces of all dimensions
admit quasi-isometries which are not equivalent to isometries [Pan89).

Fact 4.2. Any cobounded quasi-action p on a real or compler hyperbolic
space of dimension > 2 is quasi-isometrically conjugate to an isometric ac-
tion.

This result is due to Sullivan in the H® case, and to [Gro81la, Tuk86]
in the real-hyperbolic case. Using Pansu’s theory of Carnot differentiability
one can carry out Tukia’s arguments for all rank-one symmetric spaces other
than hyperbolic plane, cf. [Pan89, sec. 11]. Another proof for the complex-
hyperbolic case can be found in [Chow96].

5The uniformity in the rank one case follows from Lemma 2.5.
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Fact 4.3. Let p be a cobounded quasi-action of a group T' on H2. Then p is
quasi-isometrically conjugate to a cocompact isometric action of I' on H2.

Proof. We recall that every quasi-isometry ¢ : H2 — H? induces a quasi-
symmetric homeomorphism Oe¢ : OooH? — O H?, see [TuVa82]; moreover
the quasi-symmetry constant of J.,¢ can be estimated in terms of the quasi-
isometry constants of ¢. Since equivalent quasi-isometries yield the same
boundary homeomorphism, every quasi-action p on H? induces a genuine
action sop on JxoH? by uniformly quasi-symmetric homeomorphisms.

Let T’ be the quotient of I' by the kernel of the action Oop, and let
7 : T' — T be the canonical epimorphism. If two elements 1, y2 € I" have the
same boundary map then d(p(v1), p(72)) is uniformly bounded by Lemma
2.5. Hence we may obtain a quasi-action p of I on H? by choosing v € 7~1(%)
for each 4 € T, and setting 5(3) = p(y). If 7 is an isometric action of I’
on H? and ¢ : H? — H? quasi-isometrically conjugates 5 into 7, then ¢ will
quasi-isometrically conjugate p into the isometric action 7 : I' x H? — H?2
given by 7(v) = 7(m(v)). Hence it suffices to treat the case when I =T,
and so we will assume that dp is an effective action.

Lemma 4.4. The quasi-action p is discrete if and only if the action Osop
on OoH? is discrete in the compact-open topology.

Proof. Suppose Op is discrete, and let (v;) be a sequence in I' so that
p(7;) maps a point p € H? into a fixed ball Br(p). Then by a selection
argument we may assume — after passing to a subsequence if necessary —
that there is a quasi-isometry ¢ : H?2 — H? so that for every ¢ € H?2
we have limsup; d(p(v:)(q), #(q)) < D for some D. Hence the boundary
maps Oxop(7y;) converge to O, and so the sequence doop(7;) is eventually
constant. Since p is effective we conclude that +; is eventually constant.
Therefore p is a discrete quasi-action.

If p is a discrete quasi-action on H?, then O, is discrete by Lemma. 2.5.
O

Proof of 4.3 continued.

Case 1: Oxop is discrete. In this case, p is a discrete convergence group
action (Lemma 2.5) and by the work of [CJ94, Ga92], there is a discrete
isometric action 7 of I on H? so that 8up is topologically conjugate to Huo.
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Since p is cobounded, 9. p acts cocompactly on the set of distinct triples of
points in O,,H? (lemma 2.5); therefore 8,7 also acts cocompactly on the
space of triples and so T is a discrete, cocompact, isometric action of I on
H2. We now have two discrete, cobounded, quasi-actions of I on H?, so they
are quasi-isometrically conjugate by some quasi-isometry + : H? — H2.

Case 2: Oxp is nondiscrete. By [Hin90, Theorem 4], Owop is quasi-
symmetrically conjugate to 8T, Where T is an isometric action on H2. The
conjugating quasi-symmetric homeomorphism is the boundary of a quasi-
isometry % : H? — H?2, [TuVa82], which quasi-isometrically conjugates Ooop
into the isometric action action 7. Applying Lemma 2.5 again, we conclude
that 7 is cocompact. a

Section 3, and facts 4.1, 4.2 and 4.3 imply:

Corollary 4.5. Let X be a symmetric space of noncompact type without EBu-
clidean factor. Then any cobounded quasi-action on X is quasi-isometrically
conjugate to a cocompact isometric action on X.

5. A Growth estimate for small elements in nondiscrete
cocompact subgroups of Isom(X).

5.1. Parabolic isometries of symmetric spaces.

Let X be a symmetric space of noncompact type, and let G = Isom(X).

Recall that the displacement function of an isometry g is the convex
function &, : X — R defined by the formula 4(z) := d(gz, ). An isometry
g € G is semisimple if its displacement function 6,4 attains its infimum and

parabolic otherwise.

Lemma 5.1. Let A C G be a finitely generated abelian group all of whose
nontrivial elements are parabolic. Then A has a fized point at infinity.

Proof. Recall that the nearest point projection to a closed convex subset is
well-defined and distance non-increasing. This implies that if C is a non-
empty A-invariant closed convex set, then for all displacement functions da,
a € A, we have inf §, = inf 5a| c Hence for all n € N, the intersection of
the sublevel sets {p | do,(p) < infda, + 1/n} is non-empty and contains a
point p,. We have d,,(pn) — inf d,; for all a;, and since the isometries a;
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are parabolic the sequence {p,} subconverges to an ideal boundary point
£ € 0o X. It follows that the a; fix £. O

Lemma 5.2. Letay,...,ar € Isom(X) be commuting parabolic isometries.
Then there is a sequence of isometries {gn} C G so that for every i the
sequence gna;g,, 1 subconverges to a semisimple isometry a;.

Proof. From the proof of the previous lemma, there is a sequence of points
{pn} C X converging to an ideal point ¢ so that d,,(pn) — inf s, for all a;.
Pick isometries g, € G such that g, - p, = po. The conjugates gna;g;* have
the same infimum displacement as a;. Since

Jgnaig,tl(po) = 604‘ (Pn) — inf ‘sai )

the gra;g; ! subconverge to a semisimple isometry. O

We call an isometry g # e purely parabolic® if the identity is the only
semisimple element in Adg(G) - g.

5.2. The growth estimate.

Proposition 5.3. Let X be a symmetric space of noncompact type with no
Euclidean de Rham factors. Let ' C G = Isom(X) be a finitely generated,
nondiscrete, cocompact subgroup. Let U C Isom(X) be a neighborhood of
the identity, and set

flk) =#{geT:|glr <k, g U},

where | - |r denotes a word norm on I'. Then f grows faster than any poly-

nomial, i.e. for every d > 0 limsupy_, —f%l = 0.

Proof. Let T be the closure of T in G with respect to the Hausdorff topology,
and let T be the identity component of I

Case 1: T° is nilpotent. Let A be the last non-trivial subgroup in the
derived series of I'°. Then A C T is a connected abelian subgroup of positive
dimension, A is normal in T, and I' N A is dense in A.

Lemma 5.4. For every 6 € (0,1) there is a v € I" such that all eigenvalues
of the automorphism Adg('y)l 4+ A — A have absolute value < 4.

6This is a geometric way of defining unipotent isometries.
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Proof. See section 5.1 for terminology.

Step 1: A contains no semisimple isometries other than e. Otherwise we
can consider the intersection C' of the minimum sets for the displacement
functions §, where a runs through all semisimple elements in A. C is a
nonempty convex subset of X which splits metrically as C =2 EF x Y. The
flats E* x {y} are the minimal flats preserved by all semisimple elements in
A. Since I' normalises A it follows that C is I'-invariant. The cocompactness
of I" implies that C = X and k = 0 because X has no Euclidean factor. This
means that the semisimple elements in A fix all points, a contradiction.
Step 2: All non-trivial isometries in A are purely parabolic. If a € A,
a # e, is not purely parabolic then there is a sequence of isometries g,
so that g,ag;! converges to a semisimple isometry @ # e. We can uni-
formly approximate the g, by elements in I', i.e. there exist 4, € I and a
bounded sequence k,, € G subconverging to & € G so that v, = k,g,. Then
Ynavst = kngnagy k! subconverges to the non-trivial semisimple element
kak~1. This contradicts step 1.

Step 3: Pick a basis {aj,...,ax} for A ~ RF. By Lemma 5.2 there exist
elements g, € G so that gnhaig, 1 _, e for all a;. We approximate the g, as
above by 7, so that the sequence v,g;! is bounded. Then y,a;v;! — e for
all a;. The lemma follows by setting v = -, for sufficiently large n. a

Proof of case 1 continued. By Lemma 5.4, thereisa vy €T', v # e, and a
norm | - |4 on A such that for all a € A we have

lhay=la < llala.

Consider a neighborhood U of e in G. Let r > 0 be small enough so that
{a € A:|a|la<r}CU andpick a € T'N A with |le||la < 7/2. Then the
elements

VYeo...€n—1 = a - (7a7—1)€1 """ (7n—1a71_n)6n—1

for ¢; € {0, 1} are 2™ pairwise distinct elements contained in 'NU with word
norm |Yeo...e,_; Ir < n%(|e|r + |7|r). This implies superpolynomial growth of
I

Case 2: T° is not nilpotent. Define an increasing sequence (the upper central
series) of nilpotent Lie subgroups Z; C I'* inductively as follows: Set Zp =
{e} and let Z;;; be the inverse image in I'° of the center in I'°/Z;. The
dimension of Z; stabilizes and we choose k so that dim Zj, is maximal. Then
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the center of '/Z) is discrete and, since I'* is not nilpotent, we have dim Zj <
dimT. Proposition 5.3 now follows by applying the next lemma with H =T'
and Hy = Zy. O

Lemma 5.5. Let H be a Lie group, let H; <{H be a closed normal subgroup
so that H := H/H, is a positive dimensional Lie group with discrete center,
and suppose ' C H is a dense, finitely generated subgroup. IfU is any neigh-
borhood of e in H, then the function f(k) := #{g € T : |glr <k, g€ U}
grows superpolynomially.

Proof. The idea of the proof is to use the contracting property of commu-
tators to produce a sequence {ox} in H N T which converges exponentially
to the identity. The word norm |ok|r grows exponentially with &, but the
number of elements of (¢y,...,0k) in U also grows exponentially with k;
by comparing growth exponents we find that f grows superpolynomially.

Fix M € N, a positive real number ¢ < 1/3 and some left-invariant
Riemannian metric on H. Since the differential of the commutator map
(h,h’) + [h, k'] vanishes at (e, e) we can find a neighborhood V' of e in H
such that:

(56) hKW eV = [hh]eV and d([h}]e) <7 d(h e)
Since the differential of the k-th power h — h* at e is k- ulTe gforallk € Z,

we can furthermore achieve that, whenever 1 < k, k¥’ < M and h, hk r¥ € V,
then

(5.7) d(h*,B¥) > (Jk — K| — €) - d(h, €)

By our assumption, there exist finitely many elements v1,...,vm € I'N
V such that the centralizers Zz(%;) of their images in H have discrete
intersubsection. We construct an infinite sequence of elements a; € (I' N
V) \ H by picking ap € V' arbitrarily and setting a;+1 = [es, v;(;)] € Hi for
suitably chosen 1 < j(i) < m. Then

(5.8) 0 < d(cs1,€) <7 d(a,,e)
by (5.6).
Sublemma 5.9. Pick ng € N. The M™ elements

(5.10) Vepomen = U1 Oy € €1{0,...,M—1}

are distinct.
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Proof. Assume that 7e,. ., = Vel...et,» €l # ¢ and €; = ¢ for all ¢ < I. Then

a—€ _ [ €41 €n €1+1 €n -1
ano_'_l = (an0+l+1...ano+n an0+l+1...ano+n .

By (5.8) and the triangle inequality

5' ! —1
1+1 €n €141 €
d ((ano+l+1 ... ano_,_n) (ano+l+1 e an’(‘)_,_n) , e)

< QMZ (4M)Jd(an°+l’e) = 3d(ano+l, )
j=1

On the other hand, by (5.7) we have

2
d (ol e) 2 (1= ©)d (angr €) > 5d(Gngiis€)
which is a contradiction. O

To complete the proof of the lemma, we observe that the elements (5.10)
have word norm |ve,. e, |r < const(ng) - 3" and are contained in U if ng is
sufficiently large. This shows that f(k) grows polynomially of order at least
IZ,’;];J ) for all M, hence the claim. a

6. Proof Theorem 1.1.

Let po : I' x I' — T be the isometric action of I" on itself by left translation,
and let ¢ : I' — Nil x X be a quasi-isometry. Then there is a quasi-action
p of T on Nil x X such that ¢ quasi-isometrically conjugates pg into p.
According to section 3, p projects (up to bounded error) to a cobounded
quasi-action g of I' on X. p is quasi-isometrically conjugate to a cocompact
isometric action p, cf. Corollary 4.5. Pick z € X, y € Nil x {z}, and
R > 0. Since the quasi-action p covers p, we know that for all v € " with
p(7) - z € Bgr(z), the distance d(p(7) - ¥, Nil x {z}) is uniformly bounded.
The map I' — Nil x X given by v — p(7) - ¥y being a quasi-isometry, we
conclude that the function

(6.1) N(k) :=#{y €T | lvlr <k, p(v) - = € Br(z)}

grows at most as fast as the volume of balls in Nil, i.e. it is < Ck? for some
C, d € R. Proposition 5.3 implies that L := p(T') is a discrete subgroup in
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Isom(X) and hence a uniform lattice. The kernel H of the action p is then
a finitely generated group quasi-isometric to the fiber Nil, since it clearly
(quasi)-acts discretely and coboundedly on the fiber.

To see that the sequence (1.2) is unique up to isomorphism, let

1-—>H’-—>I‘£/>L'—»1

be an exact sequence with L' C I'som(X) a uniform lattice and H’' a group
quasi-isometric to Nil. Then by [Gro81b, Pan83] H' is a virtually nilpotent

group. Now if T' L ris an isomorphism then p’(H) C L' is a normal,
finitely generated, virtually nilpotent subgroup; it follows that p/(f(H)) is
trivial. Similarly p(f~1(H’)) is trivial and we conclude that f induces an
isomorphism of the two exact sequences.

We now prove the last statement of Theorem 1.1. When we restrict g to
H we get a quasi-action which is equivalent to the trivial action of H on X.
Hence g induces a quasi-action n of L = I'/H on X, which is discrete and
cobounded. The action 79 of L on itself by left translations is also discrete

and cobounded, so g — 7(g)(m2(¢(e))) defines a quasi-isometry L %X It
follows that the diagram

r S N

(6.2) 5 5
Nilx X 2, X

commutes up to bounded error since ¢ quasi-isometrically conjugates pg into
p, p projects to p, and d(p(vH),n(vH)) is uniformly bounded (independent
of 7). a

7. Proof of Theorem 1.4.

Sketch of proof. IfT is quasi-isometric to R x X where X is a symmetric
space with no Euclidean de Rham factor, then by Theorem 1.1, I fits into
an exact sequence (1.2) where H is an undistorted virtually Z™ subgroup.
We will use the undistortedness of H to pass to a finite index subgroup of
" which is a central extension, cf. [Ger91].

If S is a subset of a group G, we will use the notation Z(S, G) to denote
the centralizer of S in G, and Z(G) to denote the center of G.
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Proof of Theorem 1.4. By Theorem 1.1 we get an exact sequence
1—H—IT 5L —1

where H is a finitely generated group quasi-isometric to Z®, and L C
Isom(X) is a uniform lattice. Applying the second part of the theorem

we can get a quasi-isometry I' 1,77« L so that
r -1
(7.1) fl idJ'
Z"xL 2~ L
commutes up to bounded error. Clearly f(H) C Z™ X L has finite Hausdorff
distance from Z" x {e} C Z" x L, so H is undistorted” in I. By [Gro8lb,
Pan83] H contains a finite index copy of Z".

Next we will identify a finite index abelian subgroup of H which is normal
in I'. Let T be the subgroup of “translations” in H, i.e.

(7.2) T={heH|[H: Z(h H)] < xo}.

Clearly T is a characteristic subgroup of H, and has finite index in H; in
particular T is finitely generated. Note that Z(T'), the center of T, has
finite index in T since if T = (t1,...,t), then Z(T) = M;Z(¢;,T) is a
finite intersection of finite index subgroups of T. Hence Z(T) is a finitely
generated abelian group of the form Z" @ A where A is a finite abelian group.
Note Z(T) is normal in I" since it is characteristic in H, and H is normal in
T.

Lemma 7.3. The centralizer of Z(T) in T, Z(Z(T),T), has finite indez in
.

The proof uses properties of translation numbers, see [Gro81la, pp. 189-
191]. The paper [Ger91] uses a similar setup.

Definition 7.4. Let G be a finitely generated group, and let |-|g be a word
norm on G. Then the translation length of g € G is ‘

k
: G
dolg) = Jim (7€

The limit exists since k — |g¥|¢ is a subadditive function.

7A finitely generated subgroup of a finitely generated group is undistorted if the
inclusion homomorphism is a quasi-isometric embedding.
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The translation length is conjugacy invariant, vanishes on torsion ele-
ments, and changes by at most a bounded factor if one passes to a different
word metric. If a homomorphism « : H — G is a quasi-isometric embedding
of finitely generated groups (i.e. 3C > 0 such that |a(k)|¢ > C|h|g for all
h € H) then the pullback of d¢ to H agrees with 6g up to a bounded factor.

Proof of Lemma 7.3. We know that Z(T) is undistorted in I' since Z(T')
has finite index in H and H is undistorted in I'. Hence dr restricts to a
function on Z(T) which is equivalent to dz(7). The latter function clearly
factors through the homomorphism Z(T') — Z™ whose kernel is the torsion
subgroup A C Z(T). Hence 677y : Z(T) — R is a proper function on Z(T)
which is invariant under conjugacy by elements of I'. If R is large enough
that Kp := {g € Z(T) | 0r(9) < R} generates Z(T), then any finite index
subgroup of I" centralizing K g will centralize Z(T), so Z(Z(T),T') has finite
index in I. O

Proof of Theorem 1.4 concluded. Let I'1 := Z(Z(T),T), let Hy C Z(T) C
I'1 N H be a finite index subgroup of Z(T') isomorphic to Z*, and set L :=
Ty/H;. Then clearly L; is a finite extension of a uniform lattice in Isom(X),
and hence

1—)H1—)F1—>L1—->1

is an exact sequence as in (1.5). O
8. Geometry of central extensions by Z".

The objective of this section is Proposition 8.3, which provides criteria for
recognizing quasi-isometrically trivial central extensions.

Definition 8.1. Let X be a CW-complex. A cellular k-cochain a €
C*(X;Z") is bounded if its values on the k-cells of X are uniformly bounded.

The collection of bounded cochains forms a subgroup® of C*(X;Z") which
will be denoted by Ck..(X;Z").

Lemma 8.2. Suppose k > 0, X is a CW-complezx with finitely many (k —
1)-cells, X & X is the universal covering, and o € B¥(X;Z") is a k-
coboundary. Then p*a € I m(C’f;l(X ;s Z™) N Ck(X;zZ™)).

8Under appropriate finiteness conditions C}..(X;Z") will be a subcomplex of
C*(X;Z™) and the L™ cohomology H} . (X;Z") will be well-defined.
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Proof. If 6 € C*~Y(X;Z") and a = &9 then p*a = p*d0 = &p*6 and p*0 €
C'I’i;l(X ;Z") since X has a finitely many (k — 1) cells. O

Let X be a CW complex with finitely many (k—1)-cells. By the Lemma,
the subgroup

ZE(X;Z7) = {a € ZF(X;Z7) | pra € Im(CEZH(X;27) S CX(X;Z7))}

descends to a subgroup HE,(X;Z) of H¥(X;Z"); we will refer elements of

H fp(X i Z™) as special cohomology classes®. If X 4, X is a continuous map
from X to another CW complex with finitely many (k — 1)-cells, we can
homotope f to a cellular map, so we have an induced homomorphism

HE(x 2z L B (X327,

When G is a finitely generated group, the special cohomology group
H EP(G;Z") of G is defined as follows: pick a K(G, 1) with finite 1-skeleton;
the special cohomology group H2,(X;Z™) C H*(X;Z") ~ H?(G;Z") defines
a subgroup of H%(G;Z") which is independent of the choice of X.

Proposition 8.3. Let
(8.4) 1-2"5e2 Q-1

be a central extension of finitely generated groups. Then the following are
equivalent:

1. The extension is quasi-isometrically trivial, i.e. there is a quasi-
isometry G 7 % Q so that the diagram

¢ 259
(8.5) f l idl
" x Q e,
commutes up to bounded error.

2. There is a Lipschitz section s: Q — G of p.

91t would be more descriptive to say that these classes “pullback to d(bounded)”;
but we chose “special” for brevity.
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3. The cohomology class ¢ € HZ?(G;Z") associated with the ezten-
sion (8.4) is a special cohomology class, i.e. if K is a K(G,1)
with finite 1-skeleton and ¢ € Z?(K;Z") represents o, then p*c €

Im(H}w (B Z7) 2 HV(K;Z7)).

Proof. (1 => 2). Suppose f makes diagram (8.5) commute up to bounded
error, and let f~1 be a quasi-inverse!® for f. Define sp : Q — G to be the

composition @ — {e} xQ — Z"xQ = G. The approximate commutativity
of (8.5) implies that d(p o sg,2dg) < oo. Define a section s : Q — G of p by
letting s(q) be a point in p~1(g) closest to so(g), for all ¢ € Q. By Lemma
8.6 below, we have d(s, sp) < oo, and so s is Lipschitz since sg is Lipschitz
and d(q1, ¢2) > 1 for distinct elements q1, g2 € Q.

Lemma 8.6. If H < G are finitely generated groups, we define a distance
function dgyg on G/H by letting dg/r(g1H, g2H) be the distance between
the subsets g1 H, go H of G with respect to a fized word metric on G. Then the
coset distance metric on G/H is equivalent'! to any word metric on G/H.

Proof. Let & C G be a symmetric finite generating set, and let ¥ ¢ G/H
be the image of ¥ under G — G/H. Then there is a canonical 1-Lipschitz
map between the Cayley graphs Cay(G,X) and Cay(G/H,X). Paths in
Cay(G/H,X) can be lifted to paths in Cay(G, L) of the same length which
join the corresponding cosets of H. O

(2= 1). If s: @ — G is a Lipschitz section of p, we may define a map
7zn : G — Z" by the formula 7z»(g)s(p(g)) = g, i.e. 7z~ is the unique map
G — Z™ which sends s(Q) to e € Z", and which is equivariant with respect
to translation by elements of Z™.

Lemma 8.7. nzn is Lipschitz.

Proof. Note that if g1, g2 € G, h € Z", and go = g1h, then mzn(g2) =
7z~ (91)h, so dgn(mzn(91), 7zn(g2)) = dzn(e, k). The properness of the dis-
tance function dz~(-,e) implies that there is a function § : N — N so that

194(f=1 o f,idg) and d(f o f~1,idg~xq) are both finite.
11The two metrics have uniformly bounded ratio.
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for all h € Z™,
(8.8) dgn(h,e) < 6(dg(h,e)).
To prove Lemma 8.7, it suffices to find an L such that

dzn(mzn(91),727(92)) < L

whenever dg(g1,92) = 1. Consider the unique g3 € ¢1Z™ which satisfies
mzn(g3) = mzn(g2), ie. g3 € g1Z" N (mzn(g2)s(Q)). Then dg(gs,g92) < C
for some constant C because the composition s o p is Lipschitz. Applying
triangle inequalities and (8.8), we get

dgn (mzn(91), 7z (92)) = dz= (727 (91), 727 (93))
< 6(de(91,93)) £ 6(1+C).

O

To finish the proof that (2 = 1), note that we have a bijection f
Z™ x Q — G given by f (h,q) = hs(q). f is clearly Lip(s)-Lipschitz in the Q
direction. That f is Lipschitz in the Z™ direction follows from the fact that
Z™ is a central subgroup of G:

do(f(h1,9), f(h2,9)) = da(has(q), has(q))
= dg(hlhgl,e) < dgn(hih3?l, €) = dgn (hi, ha).

Letting f = f~1, we see that f = (mz»,p) is a biLipschitz bijection.

(2 <= 3). This follows from the obstruction theoretic interpretation of the
characteristic class of the extension. Let K be a CW complex with finite 1-
skeleton and one vertex, and which is an Eilenberg-Maclane space for Q. Let
P — K be a principal T"-bundle with characteristic class [a] € H(K;Z"),
so that the exact homotopy sequence m1(T™) — w1 (P) — mi(K) for the
fibration P — K is isomorphic to (8.4). Let o : Skel;(K) — P be a
section of P over the 1-skeleton of K. In the fiber over the point Skelg(K),
choose a bouquet of n circles with vertex at o(Skelo(K)), which gives a
standard basis for the fundamental group of the fiber. Let M C P be the
1-complex consisting of the union of this bouquet of circles with the bouquet
o(Skely(K)) C P.

Let P — K be the pullback of the bundle P — K under the covering
projection K — K, let & : Skel;(K) — P be the pullback of o, and let
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M C P be the inverse image of M under the covering P — P. Finally,
let P — P be the universal covering, and let M C P be the inverse > image
of M under P — P. Note that if we put path metrics on Skel; (K) and
M, then the prOJectlon map Skelo(M )— Skelo(K ) is naturally biLipschitz
equivalent to G 5 Q.

Now suppose 3 holds, and that a € C2.(K;Z") C C*(K;Z"). We
may assume that our section o : Skeli(K) — P was chosen so that the
associated cellular obstruction cocycle is . Then &, the image of a under
the pullback C}.(K;Z") — Ciw (K;Z"), is the obstruction cocycle for
& : Skely(K) — P. By assumption, & = 6 for some 8 € Cio (K;Z").
Hence we may modify & using 6 to get a new section &; : Skel; (K) — P with
trivial obstruction cocycle. In particular, if P — P is the universal covering
map, then &; lifts to a section & : Skely(K) — P of the R-bundle P — K.
The fact that 0 is an L°°-cochain implies that & restricts to a 1-Lipschitz map
from Skelo(K) to Skelo(M). Since the projection Skelo(M) — Skelo(K) is
biLipschitz equivalent to G — Q, we get a Lipschitz section of p, so 2 holds.

Conversely, suppose 2 holds. Then we get a Lipschitz section 7 :
Skelo(K) — Skelg(M) of the projection Skelo(M ) — Skelo(K ). We may
extend 7 to a section & : Skell(K ) — P, and let & : Skely(K) — P be
the composition of & with P — P. Notice that 6; has trivial obstruction
cocycle since it lifts to &.

Lemma 8.9. 61 is obtained from & by applying a bounded cochain 0 €
Cleo (K;ZM).

Proof. If e is a closed 1-cell in Skel;(K), we want to show that the fixed
endpoint homotopy classes of the two sections a[ ‘e — P and a'1| ce— P

(as maps into the inverse image of e in P) agree up to bounded error. If
7 : [0,1] — e is a characteristic map for e, lift the path oy : [0,1] — M c P
to a path 4 : [0,1] — M C P starting at 6 o 7(0). Then

dir(7(1),6 0 (1)) < dgr(3(1), 7(0)) + 7 (5(0), 5 0 (1))
=1+ dy(7(v(0)), 7(~(1)))
<1+1L,

where L is the Lipschitz constant of 7. But then 4(1) = (G o y(1))h for
some h € Z", and we can bound dz-(h, e) by a constant C depending on L,
cf. (8.8). In other words, the fixed endpoint homotopy classes of &[e and
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o1 le (as maps from e to the inverse image of e in P) differ by some h € Z*
where ||h||z» < C. O

If o € C%(K; Z™) is the obstruction cocycle for the section o, then the
pullback of o to K is the obstruction for 6. As the obstruction for 47 is 0,
Lemma 8.9 gives

0=a+40
for § € Clo (K;Z™), so 3 holds. This completes the proof of Proposition
8.3. O
References.

[CJ94] A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3-
manifolds, Inv. Math. 118 (1994), 441-456.

[Chow96] R. Chow, Groups quasi-isometric to complez hyperbolic space, Trans.
AMS, 348 (1996), 1757-1769.

[Esk96] A. Eskin, Quasi-isometric rigidity of nonuniform lattices in higher rank
symmetric spaces, J. AMS, 11 (1998), 321-361.

[Ga92] D. Gabai, Convergence groups are Fuchsian groups, Ann. Math. 136
(1992), 447-510.

[Ger92] S. Gersten, Bounded cocycles and combings of groups, Int. J. Alg. Comp.,
2 (1992), 307-326.

[Ger91] S. Gersten, H. Short, Rational subgroups of biautomatic groups, Ann. of
Math. 134 (1991), 125-158.

[GDH90] E. Ghys, P. de la Harpe, Sur les groupes hyperboliques d’apres Mikhael
Gromov, Progress in Mathematics, 83, Birkhauser.

[Gro93] M. Gromov, Asymptotic invariants for infinite groups, in: Geometric
group theory, London Math. Soc. lecture note series 182, 1993.

[Gro81a] M. Gromov, Hyperbolic manifolds, groups, and actions, Riemann surfaces
and related topics: Proceedings of the 1978 Stony Brook Conference, 183-

213, Ann. of Math. Stud. 97.

[Gro81b] M. Gromov, Groups of polynomial growth and ezpandzng maps, Publ.
IHES, 53 (1981), 53-73.

[Gro87] M. Gromov, Hyperbolic groups, 75-263, In: Essays in group theory, MSRI
Publ. 8, Springer, 1987.



Groups quasi-isometric to symmetric spaces 259
[Hin90] A. Hinkkanen, The structure of certain quasi-symmetric groups, Mem.
Amer. Math. Soc. 83 (1990), 1-83.

[KaLe96] M. Kapovich and B. Leeb, Quasi-isometries preserve the geometric de-
composition of Haken manifolds, Invent. Math. 128 (1997), 393-4186.

[KlLe97a] B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces
and Euclidean buildings, C. R. Acad. Sci. Paris, 324 (1997), 639-643.

[K1Le97b] B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces
and Euclidean buildings, Publ. IHES, vol. 86 (1997), 115-197.

[Pan83] P. Pansu, Croissance des boules et des géodésiques fermées dans les nil-
variétés, Erg. Thy. Dyn. Sys. 3 (1983), 415-445.

[Pan89] P. Pansu, Métrigues de Carnot-Carathéodory et quasiisométries des es-
paces symetriques de rang un, Ann. of Math. 129 (1989), 1-60.

[Rag84] M.S. Ragunathan, Torsion in cocompact lattices in coverings of Spin(2,n),
Math. Ann. 266 (1984), 403-419.

[ReNe97] W.D. Neumann, L. Reeves, Central extensions of word hyperbolic groups,
Ann. of Math. (2) 145 (1997), 183-192.

[Rie93] E. Rieffel, Groups coarse quasi-isometric to H? x R, PhD Thesis, UCLA,
1993.

[Sch95] R. Schwartz, The quasi-isometry classification of rank one lattices, Publ.
of THES, vol. 82 (1995), 133-168.

[Tuk86] P. Tukia, On gquasiconformal groups, J. Analyse Math. 46 (1986), 318-346.

[Tuk88] P. Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew.
Math. 391 (1988), 1-54.

[TuVa82] P. Tukia, J. Vaisila, Quasiconformal extension from dimension n to n+1,
Ann. Math., 115 (1982), 331-348.

UNIVERSITY OF MICHIGAN
ANN ARBOR, MI 48109-1109
AND

UNIVERSITAT OF TUBINGEN

E-mail addresses: bkleiner@math.lsa.umich.edu
leeb@Mathematik.Uni-Mainz.DE



260 Bruce Kleiner and Bernhard Leeb

RECEIVED NOVEMBER 12, 1998.



