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1. Introduction. 

Background. In the study of minimal surfaces, it is of great value to have 
a large collection of examples for reference and insight. The purpose of this 
article is to develop a general procedure for constructing complete minimal 
surfaces of finite total curvature in E3. 

As far as the author knows, most, if not all, of the nontrivial examples 
of complete minimal surfaces have been found through extensive use of a 
global version of the Weierstrass representation theorem; one first assumes 
the existence of a minimal surface with certain properties, makes a good 
guess at the complex theoretic data, and then determines whether or not 
the period problem is solved. This method has had great success. (See 
[N],[DHKW],[HK] for a survey.) But, since this method uses complex data, 
it is not easy to gain insight into the examples constructed this way. Fur- 
thermore, the period problem restricts examples found by this method to 
those that have a lot of symmetry in general. For instance, it was only 
in 1980 that the first example of an arbitrary number of catenoidal ends 
was found [JM]. For these reasons, a more direct and geometric method of 
constructing complete minimal surfaces of finite total curvature is desirable. 
In particular, one hopes that a general method will be found to construct 
complicated ones from simple ones. 

In this paper, I provide such a procedure by solving a nonlinear P.D.E. 
with singular perturbation methods. Kapouleas was the first who applied 
this technique in order to construct complete embedded minimal surfaces 
of finite total curvature, by desingularizing the circles of intersection of a 
collection of catenoids and planes with a common axis [K5]. Here, I prove 
the following. 

The main results. For any integer I > 0, fix a collection M := {Ni}j^ 
of complete, immersed (without any branch points), orientable, minimal 
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surfaces in E3 of nonzero finite total curvature. Assume that none of the N^s 
has an exceptional bounded Jacobi field (whose meaning will be explained 
shortly). Then, there exists a very small number TQ > 0 depending upon M 
such that the following is true: 

For any 0 < r < TQ and any integer K > 0 with I + K > 0, let 
B := {^m}^ix+i and € := {Em}m=i be collections of catenoidal necks 
and catenoidal ends, respectively, of neck sizes rm which satisfy Tm < r 
and C-1 < TI/TJ < C for some constant C depending only on M. But, if 
7 = 0, then B := 0, and if K=0, then £ := 0. Then we can construct a 
complete, immersed, orientable, minimal surface of finite total curvature by 
gluing together all the elements of M U B U £ in the following manner: 

1. Bm serves as a bridge between two elements of M. 

2. Em is glued to an element of M. 

3. The resulting minimal surface can be thought of as a tree when we 
consider the N^s as vertices and the i?m's as edges. 

The gluing can occur at any point and on either side of AT;. When r —* 0, 
the resulting minimal surface converges to the union of N^s touching at the 
points where the gluing occurs, and jBm's and Em

Js converge to catenoids if 
they are appropriately scaled. □ 

Recently, there appeared new results in applying gluing techniques for 
constructing constant mean curvature surfaces in E3 [MP] [MPP] and min- 
imal hypersurfaces in En for n > 4 [FP]. 

About Jacobi fields. Recall that any minimal surface necessarily pos- 
sesses Jacobi fields which arise from translations, homothetic expansions, 
rotations, and possibly other Jacobi fields. I shall call any Jacobi field 
which does not arise from translations exceptional Refer to [CR], [P], [PR]. 
Unfortunately we need to assume that there are no exceptional bounded Ja- 
cobi fields for some technical reasons which will be explained in the outline 
of the proof. However, the assumption is quite general in the sense that 
Ejiri & Kotani and Montiel & Ros independently proved that it holds true 
for generic complete (finitely branched) minimal surfaces with 'genus zero' 
of finite total curvature [EK],[MR]. In particular, the assumption holds true 
if the branching values of the Gauss map lie in an equator [MR, Corollary 
15], which is the case for any complete orientable minimal surface of finite 
total curvature parameterized on the unit sphere C U {oo} with the Gauss 
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(X? 

A configuration which is not allowed 
in the construction posed in this paper. 

Figure 1. 

map g = uf1, n > 1. See [DHKW, §3.8] for explicit descriptions of exam- 
ples of such minimal surfaces, which include catenoids, Enneper's surfaces, 
Jorge-Meeks n-noids, etc. 

On the other hand, there do exist complete minimal surfaces which have 
exceptional bounded Jacobi fields. For instance, [EK],[MR] say that the 
Jacobi fields which arise from homothetic expansions for flat-ended minimal 
surfaces (refer to [RT] for such examples), as well as the Jacobi fields which 
arise from rotations around the axes of the minimal surfaces constructed by 
Kapouleas [K5], are (nontrivial and) bounded. It would be nice to be able 
to use those minimal surfaces also as ingredients in the construction posed 
in this paper. 

Outline of the proof. The construction posed in this paper is an ap- 
plication of the gluing techniques developed by Schoen [S2] and Kapouleas 
[Kl-5], in the form they evolved into in [K4]. For the convenience of the 
reader, we proceed now to provide an outline of the general approach, some 
of the difficulties in applying them to our case, and the methods by which 
we overcome them. 

First, we construct an approximately minimal surface: 1) fix a collection 
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of minimal surfaces with no exceptional bounded Jacobi fields and catenoids 
of very small neck sizes; 2) remove small disks from the minimal surfaces, 
remove one or two ends from each of the catenoids; 3) arrange them so that 
the boundary circles of the truncated catenoids fit closely into the holes of the 
drilled minimal surfaces; 4) then glue them together to obtain a connected, 
immersed, complete, orientable surface, say X : M —> E3, of finite total 
curvature. The general approach requires that the mean curvature should 
be small relative to the neck sizes of the catenoids, and for this purpose 
we need to pay more than passing attention to choosing appropriately the 
relative sizes of the holes in the minimal surfaces and the boundary circles 
of the truncated catenoids. 

Then, we look for a perturbation of the surface which is minimal. More 
specifically, when v denotes a unit normal vector field of M, we look for a 
function y> : M —► R such that X^ : M —► E3, given by X^ = X + yv, is 
minimal. Recall that for a real valued function <£ on M, the mean curvature 
B.^ of X^ : M —> E , given by X^ := X + (/>z7, can be written as follows: 

(1.1) ^ = ff+i(As + |A|2)<A + Q^ 

where B. is the mean curvature function of X(M), A^ is the Laplacian of 
M, | A|2 is the square of the length of the second fundamental form, and Q^ 
is the nonlinear term. So, our problem is now to find a function ip : M —► R 
which solves the minimal surface equation 

(1.2) 0 = ff + ^Afl + |A|2V + QV 

We find such ip by using the Schauder fixed point theorem [GT], and the 
heuristic method is as follows: let </>i be a solution of the linearized minimal 
surface equation, that is 

(1.3) (A^ + iAiV^-aff. 

For each function ^ of M into R, we define 02 to be a solution to 

(1.4) (A, + |A|2)^ = -2QV 

Then, we would have a map J sending $ to fa + fo, and we thus see that 
a fixed point of this map is going to be a solution of (1.2). 

The success of our work rests on our ability to construct a solution fa to 
(1.3) such that fa is the same size as H and that Q^ is much smaller than 
fa, from which there are two main issues worthy of mention. 
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The first issue is the invertibility of the linearized operator Ag + |A|2, 
i.e., the Jacobi operator. We first compactify M using the Weierstrass rep- 
resentation theorem. The general approach developed in [Kl-5] requires us 
to understand the spectrum of the linearized operator not on the entire M 
but on appropriate domains, each of which is a standard piece extended 
by joining pieces. Roughly speaking, a standard piece is a drilled minimal 
surface or a truncated catenoid, and a joining piece is a neighborhood of the 
region where the gluing occurs. (Refer to the remark after definition 3.2.2.) 
The domains overlap on the joining pieces and cover M. It turns out that 
there are small (i.e., indistinguishable from 0) Dirichlet eigenvalues for the 
linearized operator on each domain. So, we solve the linearized equation 
with the Dirichlet condition on each domain modulo the eigenspace of those 
small eigenvalues (i.e., modulo the approximate kernel), and correct the lo- 
cal solutions later by the force balancing argument. And, this is exactly 
where the assumption of no exceptional bounded Jacobi fields plays a role, 
for the force balancing arguments can take care of the bounded Jacobi fields 
which arise from translations. 

To apply the force balancing argument, we need to perturb an arbitrary 
end so that a prescribed change of forces is achieved. If the end possesses 
a nonvanishing force, this can be easily arranged by scaling and rotation. 
But these do not work for the ends of vanishing forces, for example, the end 
of Enneper's minimal surface. There appeared a similar situation in [K4], 
and the "geometric principle" was proposed to help overcome the difficulty 
there. In the present construction, perturbing the ends of vanishing forces is 
one of the greatest difficulties, and fortunately, it can be achieved through 
a study of ends using the Weierstrass representation theorem. 

The second issue is the decay property of the local solutions along the 
joining pieces. Following the general approach, we obtain a global solution 
01 to (1.3) by gluing local solutions and taking care of the error term by 
iteration. The decay of local solutions ensures the smallness of the error 
term, hence the success of the iteration, and the smallness of the nonlinear 
term Q^ for fa. We achieve the required decay by adopting the ideas from 
[K2,4,5]: we first modify the local solutions through the addition of a certain 
function in order to force the solutions to decay exponentially along joining 
pieces, and then we correct them by rearranging the relative positions of the 
drilled minimal surfaces and the truncated catenoids. 

Because of the perturbation of ends and the rearrangement of the relative 
positions, we construct a whole family of approximately minimal surfaces 
and single out an appropriate one to be perturbed by a fixed point argument 
in the proof of the main theorem. An elaborate accounts for the general pro- 
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cedure for solving the linearized minimal surface equation and the analytic 
reason for the perturbations are explained in the beginning of section 4, but 
one needs to get familiar with the notation to be developed in subsections 
3.1 and 3.2. 

Outline of the paper. In section 2, I present some results related to the 
ends of complete minimal surfaces of finite total curvature: using the Weier- 
strass representation theorem, I classify the ends and study their forces. 
Then I devise a way to perturb the ends (of vanishing forces) by deform- 
ing the Weierstrass data so that prescribed changes in the forces can be 
achieved. In section 3, I construct a family of approximately minimal sur- 
faces and develop much of the notation. In section 4, I solve the linearized 
minimal surface equation (1.3). In section 5, I solve (1.4) and combine the 
result with that of section 4 to prove the main theorem. 

Acknowledgments. I would like to thank my thesis advisor, Professor 
N. Kapouleas, for suggesting this problem, and for his constant encourage- 
ment and stimulating discussions on this subject. This work was partially 
supported by a Sloan Doctoral Dissertation Fellowship. 

This paper is dedicated to the memory of my father, Ik-Hyun Yang. 

2. Ends of complete minimal surfaces 
of finite total curvature. 

In this section we use the Weierstrass representation theorem extensively 
to classify ends of complete minimal surfaces of finite total curvature and 
to show that any end can be perturbed so that a prescribed small change 
of forces can be achieved. We need this perturbation of ends to handle the 
kernel of the linearized operator A^ +1 A|2. When an end has a nonvanishing 
force, changing forces could be done easily by simply rotating and resizing 
the end. But, this idea does not work for ends of vanishing forces, for 
example the end of Enneper's surface. We perturb such ends by deforming 
the corresponding Weierstrass data. We start with 

Theorem 2.1.1 ([O], [HK] Weierstrass representation theorem). 
Suppose N is a minimal surface inE3, M its Riemann surface, g the stere- 
ographic projection of its Gauss map. Then, N may be represented, up to a 
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translation, by the conformal immersion 

(2.1) X = (x,y,z):=Ref$, 

where 

(2.2) $ = (tufafa) := (^(9-1-9)dh,~(9-1 + g)dh,dh^ 

for some holomorphic one-form dh on M.  When X : M —> E3 is a complete 
conformal minimal immersion with finite total curvature, 

1. M is conformally diffeomorphic to M\{pi, ...,Pr} where M is a closed 
Riemann surface, and r > 1, 

2. X is proper, 

3. The Gauss map M —> S2
; which is meromorphic on M, extends to a 

meromorphic function on M; the holomorphic one-form dh extends to 
a meromorphic one-form on M, 

4. The total curvature is an integer multiple of ^TT and satisfies 

f KdA < -47r(k + r - 1) = 27r(x(M) - 1), 
JM 

where k is the genus of M, r as in 1, and x(M) is the Euler characteristic 
ofM. 

Conversely, let M be a Riemann surface, g : M —► C U {00} a mero- 
morphic function and dh a holomorphic one-form on M. Then (2.1) and 
(2.2) define a conformal minimal mapping of some covering of M into E3, 
which is regular provided the poles and zeros of g coincide with the zeros of 
dh with same orders. The mapping X is well-defined on M if and only if 
no component of $ in (2.2) has a real period.  That is 

Period^) := Re d> $ = 0 

for all closed curves 7 on M. □ 
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If we denote by g the metric inherited from the standard metric of E3, 
by A the second fundamental form, then we have from [DHKW] [HK] 

(2.3)        ,.   :      m     _ 10  ,2 

=i2e/^.da lAf = -IK = 32b| 2 dp 
d/i (i + M2)4 

For any ■p € M, we can find a neighborhood D of p such that we may assume 

p = 0 € D = Dh, = {UJ e C : \UJ\ < 6'}, 

(2.4) 
y = ^ ?   w* = 

77l=fc 

^ = u;n,    d/i = yj am(jjmd(jj 

for some ^ > 0, ajt 7^ 0 , and n,k G Z with n > 1, by rotating and translating 
X(M) in E3 and reparameterizing D if necessary, 

There is an interesting relationship between n and fc. 

Proposition 2.1.2. Assume (2A). Then, p is a branch point iff k > n. p 
is a regular point iff k = n. (p is umbilic iff k = n > 1.) p is a puncture iff 
k < n- 1. 

Proof. First of all, if k = n — 1, then Resogdh = 0 and Resog~1dh = a^ ^ 
0. Hence, Resofa = —iResofo ^ 0, which implies the non-vanishing of a 
period, a contradiction. If fc > n, it is easy to check with (2.3) that the 
metric g vanishes, hence u = 0 is a branch point. 

Suppose fc = raorfc<n — l. Then, (2.1),(2.2) and (2.4) imply, up to 
translation 

x = — 
—T r 1 

W (Reak cos(T0) + Imak sin(T0)) + o(r-r), 

—T 
2/ = -^7 (flea* sin(r0) - /mafc cos(T0)) + o(r-T), 

-Cr^1 < z < Crk+1    iffc^-1,    ^ = JDlnr + 0(r)    iffc = -l, 

for some constants C, D, where a; = re20, T := n - k — 1. When fc = n, it 
is easy to see that the image of a small circle {w : |u;| = 5"} C Ds' winds 
around (suitably translated) z-axis once, and contracts to a point as 6" —> 0, 
hence p = 0 is a regular point. Using (2.3), it is easy to see when it can be 
umbilic. When n — 1 > fc, we see x^y —* 00, hence p = 0 is an end. □ 
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The formulae in the above proof imply that the image of an end satisfies, 

up to translation, 

\z\<A(^wY    ifM-1, 

z = Bin (v^T^) + O H Vrr2 + j/2J J     iffc = -l, 

for A/^
2
 + V2 > R wliere A 5> ^ are some constants and // := w1fc

fe"l1
1. Mo- 

tivated by the fact that if n - 1 > k > -1 then -(n - 1) < fi < 0, if 
-1 > k > -n - 1 then 0 < /i < 1/2, if k = -n - 1 then 1/2 = /*, if 
-n - 1 > k then 1/2 < // < 1, we classify the ends as follows. 

Definition 2.1.3. We call an end planar, catenoidal, of small amplitude, of 
moderate amplitude, of large amplitude, respectively if n - 1 > fc > -l,fc = 
-1, -1 > k > -n - l,fc = -n - 1,-n - 1 > fc. □ 

The winding number of an end given by (2.4) is n - k - 1. It is obvious 
that the above characterization does not depend upon a choice of the Weier- 
strass data. When an end is embedded, the above definition of a planar or 
catenoidal end coincides with what appears in literature. The definition of 
an immersed planar end coincides with that of a flat end of [EK]. 

Let 7 be a closed curve in an end £", and consider /7 ff(s)ds where ?/(s) 
is a unit vector field in a neighborhood of 7, tangent to E and normal to 7, 
pointing toward infinity. Then, the quantity /7 rf(s)ds is homology invariant 

[KKS],[HK]. 

Theorem 2.1.4 ([HK]). When 7 is any closed curve in the homology class 
of the puncture pi E M defining an end E, 

Force(E) :=  / 7/(s)ds = -27rResPi$ 

where $ is as in (2.2). O 

In particular we have Res^i, Res^fc, ResPi(l)s € R, which is equivalent 
to the vanishing of the period of E. 

Lemma 2.1.5. Suppose an end E is given by (2A). Then, we get the fol- 
lowing table, where the vertical direction is the direction of the limit normal 
of an end. 
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type 
of end 

1* relation of 
n and k 

nonzero 
horizontal force 

nonzero 
vertical force 

planar -(n-l)</i<0 n-1 > k> -1 impossible impossible 
catenoidal M = 0 fc = -l impossible necessary 
of small 

amplitude 
0</i<| -1 >fc> -n-1 impossible possible 

of moderate 
amplitude M=i ■fc = -n - 1 necessary possible 

of large 
amplitude i</i<i -n-l> k possible possible 

Proof. When E is planar, catenoidal, or of small amplitude, we have 
Resogdh = 0. So, 

ResQ(j)i = —Resog~1dh = —iResofo- 

Since Resofa, Resofo G M, we conclude i?eso</>i = Resofo = 0, hence the 
horizontal components of the force vanish. It is easy to check for vertical 
components when E is planar or catenoidal. 

Suppose E is an end of moderate amplitude. If horizontal components 
of the force vanish, then Resog~ldh — Resogdh = 0 = Resog~1dh + Resogdh 
which implies Resogdh = a^ = 0, a contradiction. 

All other conclusions follow from appropriate examples stated after the 
next corollary. □ 

Corollary 2.1.6. If there is only one end in a complete minimal surface of 
nonzero finite total curvature, then it is an end of large or small amplitude. 

Proof. Prom the balancing formula [S2] [KKS] and the above table, we con- 
clude that the end is planar or of small or large amplitude. It cannot be 
planar because of the harmonicity of coordinate functions and the maximum 
principle, by similar arguments to [JM, corollary 2]. D 

The end of the Enneper's surface is of large amplitude. So are those 
of higher order Enneper's surfaces [HK]. It would be interesting to have a 
minimal surface with only one end which is of small amplitude. 

Now, we present some examples of various ends and how to perturb them 
to change their forces. 
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Example (i). End of large amplitude. Consider g = (jjn,dh = uj~n~2 + 
dhp on C U {00} with n > 1 where 

dhF ^-^--(-u;-71-1 +ujn-1)dw 

—ZTT — ZTT 

with n > 1, a, /?, 7 € R. If a2 + /?2 + 72 ^ 0, they give us Enneper's surface 
for n = 1 or higher order Enneper's surface for n > 1, with the only end at 
CJ = 0, which is of large amplitude with vanishing force. Recall that cu = 00 
is a regular point for Enneper's surface, but a branch point for higher order 
Enneper's' surface. If a2+/?2+72 7^ 0, the Weierstrass data give a branched 
immersion with "two" ends: CJ = 0 is still an end of large amplitude with 
force (a, /?, 7); u = 00 becomes an end of moderate amplitude if a2 + /?2 ^ 0, 
or a catenoidal end if a2 + /?2 = 0; the branch points are uniformly away 
from LJ = 0 if a2 + /32 + 72 is small enough. 

Example (ii). End of moderate amplitude. The Weierstrass data 
g = u/1, dh = (a;-72-1 — ujn~1)dcj on C U {00} with n > 1 give us a branched 
immersion with two ends. Both u = 0 and CJ = 00 are ends of moderate 
amplitude with horizontal forces (27r, 0,0), (—27r, 0,0), respectively. 

Consider, on C U {00}, the Weierstrass data g = un and dh = d/ip with 
ot2 + /?2 + 72 7^ 0 where cf/iir is as in example (i). If a2 + /32 ^ 0, they give 
us a branched immersion with two ends, UJ = 0 and 00 are ends of moderate 
amplitude with forces (a,/?,7),(—a, — /?, —7), respectively. If a2 + /32 = 0, 
they give us an n-sheeted catenoid. 

Example (iii). End of small amplitude. The Weierstrass data g = u/1, 
dh = {uk + -^u~l)duj on C U {00} with n > 1, -1 > k > -n - 1,7 G M 
give us an immersion, branched if 7 ^ 0, with two ends, LJ = 0 is an end of 
small amplitude with force (0,0,7). CJ = 00 is planar if 7 = 0, or catenoidal 
if 7 7^ 0. Creating horizontal forces for ends of small amplitude is not so 
simple as we will see in the proof of the following proposition. 

Proposition 2.1.7. Let E be an immersed end with no branch point which 
is catenoidal or of any amplitude, and c > 0 be a small constant. Then for 
any £ := (^1,^2^3) € R3 with \/£i + £2 + £3 — c> we can fin^ an immersed 
end E? with no branch point such that 

1. Force(Eg) - Force(E) = £ 
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2, E? depends smoothly on £. 

Proof. Without loss of generality, we may assume that E is the image of 
X : D(5/\{0} —► E3 with the Weierstrass as in (2.4). First, we note that 
the existence of a root of dh = 0 in £V\{0} would imply the existence of a 
branch point, hence it has no root. 

Case (i). E is an end of large or moderate amplitude. Define 

(2.5) g := g,    dh := dh + dhF = [ 1 + —^ J dh 

where dhp is as in the example (i) with £ = (a,/?,7). Note that 1 + -^ is 
a holomorphic function in D$i in this case. When a, /?, 7 are small enough 
in comparison with 5', we can say that the equation 1 + -^- = 0 has no 
root in Df

s because dh = 0 has no root in JDJ\{0}. Then, p, dh do not create 
branch points and give us an immersed end of large or moderate amplitude, 
respectively, whose force is different from that of E by (a,/?,7). Note that 
winding numbers do not change. 

Case (ii). E is an end of small amplitude. In this case, an_i = 0 
in (2.4) and the force of E is (0,0,-27ra_i), both of which follow from 
Resog~1dh = Resogdh = 0. (See the proof of lemma 2.1.5.) Now if we 
define <?, dh as in (2.5) we would obtain an end with a branch point in 
general because dh would have a zero in £^{0} when a2 + /?2 ^ 0. Note 
that winding numbers would change. We consider instead a perturbation 
given by the following formulae 

where A = A(dh, a, (3) is a constant to be defined shortly. Note that g is still 
holomorphic in D's while the order of zero at u = 0 decreases in general, and 
that the zeros of dh in Z^/^O} coincide with zeros of g with same orders. 
We easily see that 

00 

~g-ldh = u;-n(l - Au/1-*-1 + AV^"*"^ -•••)]£ amumdw 
m=k 

which immediately implies ResUj==og~1dh = — Aak- On the other hand, 

gdh = (gdh + 2gdhF + gdh2
F/dh)(l + Au/1"*-1) 

= 2gdhF + gdhp/dh +    holomorphic one-form 
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which implies Res^ogdh = (a+i/S)/7r+(a+if3)2cn+k+i/ i^2) where cn+k+i 
is given by u)kduj/dh = Ylm=o cmUm. By defining 

A := (a + ip)/ir + (a + i/3)2cn+fc+i/(47r2)/aA;, 

we have   
Resu^og" dh = — Actk = —Res^^ogdh. 

Then, 5, dh on D^/ define an immersed end E without branch points whose 
force is (0,0, -27ra_i) + (-27ri?e(Aafc), 2'Klm(Aak), 7). The correspondence 

is a local diffeomorphism on a neighborhood of (0,0,0) to a neighborhood of 
(0,0,0), so we get the result. Note that E is of small amplitude if a2+/32 = 0 
but that E is of large amplitude if a2 + (32 ^ 0. Note that winding numbers 
do not change. 

Case (Hi). E is a catenoidal end. When E is a catenoidal end, it already 
has non-zero force. Hence we resize and rotate E to generate small extra 
force. Note that, when £ = (^i?^?^)? we have Weierstrass data 

(2.7) g = g,    dh = y/# + £2
2 + (£ - 27ra.1)

2dh/^(27ra^ 

for E? up to rotation. □ 

We can perturb an immersed catenoidal end (but not embedded) by 
perturbing the Weierstrass data as in the case (ii) of the proof, hence keeping 
the direction of the end. The Winding number is preserved in this case, 
too. When we tried the same idea to perturb embedded catenoidal ends, we 
always ended up producing ends with a branch point and a different winding 
number. 

3. Approximately minimal surfaces. 

3.1. Construction of a family of approximately minimal surfaces. 

Conventions and definitions. For the rest of this paper, we assume the 
following: Tm for 1 < m < K + / are small independent constants except 
that their ratios are uniformly bounded. Let 

52 

r := 7nax{rm},        ^ := In — 
r 
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where 5 is a small positive constant which is independent of rm's, except that 
T/6 is very small when compared with 6. Let ip : R -* [0,1] be a smooth 
monotone function, fixed once and for all, such that if; = 0 on (—oo, 1/3] 
and V =1 on [2/3, oo). We define V[a, 6] : R -* [0,1] by 

^[a,6](rc) :=^ ' 
b — a 

where a > 6 is allowed as well as a < 6. We fix a Cartesian coordinate 
system (x,y,z) in E3, and for f = (fi, &,6) e R3, ||| := V^f+^Kf. 
A function with a compact support is not distinguished from its restriction 
to a subdomain containing the support, or a trivial extension to a larger 
domain. A is an arbitrary constant in (0,10~2). 

Collection of minimal surfaces. For any integer I > 0, fix 1 +1 number 
of complete, immersed (without branch points), orientable minimal surfaces 
of nonzero finite total curvature without any exceptional bounded Jacobi 
fields. The Weierstrass representation theorem 2.1.1 provides immersions 
Xi : Mi = MiMPi^y^i -» E3 for 1 < i < I + 1. We can choose a finite 
cover of Mi by open sets in such a way that each puncture p^g, 1 < q < rif, 
belongs to only one open set, say A/^. We may assume that A/^'s are 
pairwise disjoint and 

Mi,q = DA5 := {a; <E C : M < 45}    with pi>g = 0. 

We may also assume that the Weierstrass data #, dh on Ni,q are 

oo 

(3.1) g = u/1,     dh=^2 amumduj    with ak ± 0 
ra=fc 

up to Euclidean motions. We fix these data once and for all, and we do not 
distinguish the domains or points in Mi from their images by X;. 

Now, we fix arbitrary points {pj}j^i2/ C uf^M; where the gluing is to 
occur in such a way that each Mi has at least one pj for K+1 < pj < K+2I 
and that pK+i and PK+l+i for each 1 < i < I belong to different Mi's. We 
may assume that none of the p/s belongs to the ends U^qN^q. 

For each Xi : M* —> E3, we introduce two kinds of perturbations for the 
unbalancing and repositioning whose purposes are explained in the outline 
of the proof. 
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Unbalancing. Firstly, we perturb an end so that the force of the resulting 
one would be different from that of the original one by a prescribed amount. 
Recall that if all ends of Xi : Mi —> E3 are planar, there is a bounded 
Jacobi field which does not arise from translations [EK, Theorem B]. By 
our assumption of no exceptional bounded Jacobi fields, we may assume 
without loss of generality that the end corresponding to p^i is not planar. 
For each £; 6 R3 with j^J < 72^

2
T where 72 is a constant to be determined 

in proposition 4.3.4, we have an immersion X^ 1 : i)4£\{0} —> E3 given by 
proposition 2.1.7 (with AS = 5') the force of whose image is different from 
that of the original end by ^. Then we define Xi : Mi —> E3 by 

Xi(p) := ^(p)Xi(p) + (1 " ^(P)) X'iA(p) 

where ^(p) := V>[25,35](\uj{p)\) on D4s\{0},    := 1 on Mi\D4s^ 

Repositioning. Secondly, for each pj G iV* we change the relative position 
of a neighborhood of pj and the minimal surface minus the neighborhood by 
translation. Let (rj,8j,Zj) be the cylindrical coordinates system such that 
the the tangent plane C E3 at Xi(pj) to Xi(Mi), which we call Pj, is given 
by Zj = 0. We may assume that 5 is small enough that a neighborhood of pj 
in Mf, say A/}, is mapped by Xi to the graph over {(r^, 0j, 0) £ Pj : rj < AS} 
of a function, say /j, and that A/^'s and A/j's are pairwise disjoint. Define 
ipj : Mi -> R by ^ := 1 on Mi\J\fj, ipj := 7p[2S,3S] o rj on J\fj. Finally, for 
any Q 6 M with |<^| < 7i£2r where 71 is a constant to be determined in 
proposition 4.3.4, define Xi : Mi —> E3 by 

3 

where Pi is a unit normal vector field on Xi{Mi) and the sum is taken over 
all indices j such that pj G M;. Note that as Cj varies, Xi(Mi\Afj) translates 
along Ui(pj). 

We now turn to construct small catenoidal ends and necks by first re- 
moving one or two catenoidal ends from an unbalanced catenoid of a fixed 
neck size, and then by scaling with various scale factors rm. 

Unbalanced catenoid. Put a catenoid C of neck size 1 in E3 in such a 
way that its axis is the z-axis and its center is at the origin of E3. The 
force of the top end is (0,0,2n). Choose an arbitrary £cm £ K3 with |£cm| < 
72^

2
T(

3
~

2A
)/

2
. Let C be another catenoid which still centered at the origin 

and whose top end now possesses a force of (0,0,27r) + r"1^™- In fact C is 
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obtained from C rotation and homothetic expansion by small amounts. Con- 
sider the cylinder {(#, y, z) : x2 + y2 = 1/4, -1 < z < 1}. Both C and C will 
be graphs over the cylinder given by r = f (0, z) for C, r = f(0, z) for C, 
respectively, where (r, 0,2) is the cylindrical coordinate system. Let 

r(0, z) := (1 - </,[-!, 1] o s)f(0, z) + (</>[-!, 1] o z)r{0, z) 

on {(0, z) : — 1 < z < 1}, and define an unbalanced catenoid C by C := C if 
2 < -1, := the image of (0, z) 1-* r(0, z) if -1 < z < 1, := C if 1 < z . 

Small catenoidal ends and necks.   Choose rm for 1 < m < K. Cut off 
the bottom end of C by a plane in {z < 0} which is perpendicular to the 

~ —1/2 ~ 
z-axis and which intersects C in a circle of radius 2rm , and scale the C 
minus the bottom end by rm, and call them Em. That is, Em is the image 
ofCby 

(x, y, z) -» (rmx, Tmy, rmz). 

These are the catenoidal ends to be used in the construction. For catenoidal 
necks, choose rm for K + 1 < m < K + 7, and cut off the two ends of C by 

~ . —1/2 
planes which are perpendicular to the axes of C in circles of radius 2rTn , 
and scale the C minus the two ends by rm. We call them Sm. 

The configuration. Arrange the perturbed minimal surfaces X;(M;), 1 < 
i < I + 1, the catenoidal ends Em,l < m < K, and the catenoidal necks 
5m, K + l<m<K + I as follows: 

1. The boundary circle of Em coincides with the circle in Pm of the same 
radius centered at pm. 

2. The bottom boundary circle of Bm coincides with the circle in Pm of 
the same radius centered at pm, and the top boundary circle with the 
one in Pm+j centered at pm+j. 

3. When we consider Ni's as vertices and i?m's as edges (and disregard 
Em's), it is a connected tree. 

The gluing. Now we glue them together as follows. Fix a pj. Recall 
the cylindrical coordinates system (rj,0j,Zj) where the tangent plane Pj 

to Xi(Mi) at pj is given by ZJ = 0. Then, over the annulus Tj/4S^4S := 
{(^•,0^,0) G Pj : 3$ < rj < AS}, a neighborhood of pj in Mi is mapped by 
Xi to the graph of a function, say ^ = fjfa, Oj), and E^ if 1 < j < K or 
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Bj if K + 1 < j < K +1 is also the graph of a function, say Zj = fj(rj, 9j). 
(We define fj := 0 if rj > 2y/fj and may assume fj > 0.)   Define ^j •= 

^[VTji2VTj]0rj and 

The graph of $j transits smoothly from Bm or £7m to Xi(Mi), and we glue 
all Xi(Mi), Bm, Em using these transition functions to obtain a smooth, con- 
nected, orientable surface M and a family of smooth complete immersions of 

finite total curvature X. x*: M —> E3 for each parameter (((j), (^QJ, (^cm)) 

in Z71 x S72 x S72 where 

^-n := {(Cl, • • • , C^+2/) 6 RK+21 : 101 < 1lt\ } , 

S72 := {(l*^, • • • ,|n/+1) € R3(/+1) : |4l < 72^} , 

S72 := {(&,■• • ,&+,) € R3(^ : |fCJ < ^r^^} . 

Remark 3.1.1. (1) It may be possible to relax the tree requirement for 
the graph prescribing the way the connected sums are taken, but we 
postpone discussing this for another occasion. 

(2) Note that the positions where the gluing occurs, the sizes of the 
catenoidal necks and ends, and the relative sizes of iVi's may be pre- 
scribed, hence there are 3(K + 21) continuous parameters which can 
be chosen freely in the construction of the approximately minimal sur- 
faces (when there is no symmetry). There are also (discrete) choices 
of which sides of the minimal surfaces the catenoid is to be attached 
to. 

Lemma 3.1.2. The immersions X. ? : M —► R3 depends smoothly upon £ 

and £. 

Proof, follows trivially from proposition 2.1.7 and the way the approximately 
minimal surfaces are constructed. □ 

Convention.   We will use subscripts   . z*   to denote the dependency of 

various objects upon the parameter (((j), (^nj, (£cm)) € Zm x S72 x 572, 

but we try to avoid writing them if it can be clearly understood from the 
context. 
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The smallness of the mean curvature, hence the justification for the 
phrase 'approximately minimal', will be shown in lemma 3.3.7. 

We define Mj C M to be the domain which is mapped by X+ ? onto the 
graph of $7 over T-./^D^ C PJ. By abusing notation, we use the same A/;^ 

for ends of Mi to denote the corresponding ends of M. A4 for 1 < k < K 
is used to denote the ends of M which arise from the attached catenoidal 
ends. Note that A4 may be represented up to Euclidean motion by the 
Weierstrass data 

(3.2) ,-u,    &=l(°,°.^)+^fa[    j, 

3.2. Conformal change of the metric. 

The smooth metrics g = g. r on M induced by the immersions X.g-.M-* 

E3 are not good for the purpose of estimating functions and tensors on M. 
In this subsection, we construct a metric conformal to g by gluing metrics 
defined locally, and then use it to estimate various quantities in the next 
subsection. 

Firstly, we note that on the unperturbed ends Ni,q for 1 < i < / +1, 2< 
q < Hi, 

(3   ) g=      4]^      \du\^{r    dr+de^ 

using (3.1) and (2.3) with LJ = reie. Introducing x := ln£, we see that 
r~2dr2 + dO2 = dx2 + dO2. Define a metric x^g := dx2 + ^2 on M^q. On 
the perturbed ends A/i,!, define Xi,i similarly using (3.1) and (2.5), (2.6) or 
(2.7), respectively, depending upon how we perturb the end A/i,i. 

Secondly, on the attached catenoidal ends Mk for 1 < k < K define 
x := In |^| + In g and Xk := dx2 + d92 using (3.2). 

Thirdly, we note that on Nj for 1 < j < K+27, where the gluing occurs, 
we have that 

using the cylindrical coordinates system (rj^Bj^Zj) and the function <I>j, 
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hence if x := In-r-, 

Define a metric Xj := rJ2& = S~2e2xg on A/}. 
Now we define smooth cutoff functions to be used in gluing the metrics. 

In the following, B^ or E^ stands for the connected component of M\(Uj\fjU 
Mk) which arises from 5m or Em, respectively, where the unions are taken 
for 1 < j < K + /, 1 < k < K: 

1. ^q := ^[25, S]or on A/^, := 0 on M\A/i5g for 1 < i < 7+1,1 < q < ni, 

2. ^u := ^[25,5] o r on J\fk, := 0 on M\J\fk for 1 < fc < 7C, 

3. ^ := ^ [^-, ^1 o r^ - ^[<5,25] o r^ on A/}, := 0 on M\Afj for 1 < j < 

K + 27, 

4. ^m := 1-^m-^m+l pn B^, := 0 on M\Bf
m for K + l < m < K + I, 

and ^.n := 1 - tpm -'ipm on £4,   := 0 on MXE^ for 1 < m < K. 

Definition 3.2.1. Define a metric x = X/- r conformal to g by 

K+I I+l   ni K+I 

j=l i=l q=l m=K+l 

K K 

+ J2 ^m^m2g + Z fa** 
m=l fc=l 

(/<:+/ 7+1  rii K+I K K        \ 

i-E^-EE^- E ^a»-E^fi»-E^U- 
j=:l i=l g=:l m=K+l m=l A;=l       / 

A positive function pg : M -> R is defined by x = />pg- □ 

With x metric, each end of M is isometric to 51 x [0, oo), and a neigh- 
borhood of the region where the gluing occurs becomes a long cylinder of 
length ~ ln((52/r) which is almost flat. The remaining region with x metric 
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has finite area and uniform geometry, that is nonzero injectivity radius and 
bounded curvature. 

Now we develop some notation which is conveniently used to denote 
various regions of M. 

Definition 3.2.2.     (1) Define Tj for K +1 +1 < j < K + 21 by Tj := r,./ 

T3 
and^:=ln^    ioxl<3<K + 2L 

(2) Define a function x : M -> M by a;(p) := mm{^,maa:{0,ln^y}} 

on Nj, := maa:{0, In ^} on M^ := maa;{4,4 + In ^y} on A4, 
and extend it to be continuous and constant on each component of 
M\(Uj\fjUAfiiqUAfk) where the unions are taken for 1 <j < K+21,1 < 
i < I + 1,1 < qi < ni) and 1 <k < K. 

(3) Vj [6, c], Vi,q[b, c] or Vk[b, c] is defined to be the closure of the component 
of {p e M : b < x(p) < c} which is a subset of Mj^M^q or Nk, 
respectively. 

(4) We define closed curves C^cfj := {p e Vj^ij] : x(p) = d}, Ci,q[d\ := 
{p e V^O, oo] : x(p) = d}, CfcM := {P £ ^[4, oo] : x(p) = d}. 

(5) Define Cm to be the closure of the component of {p e M : x(p) > 0} 
which arises from Em for 1 < m < K or from Sm for K + 1 < m < 
K + /, and C'm\={p€Cm:lm-2< x{p) <tm + 2}. Define fi; for 
1 < i < / + 1 to be the closure of the component of M\ U^i[ {p G 
Cm : ^(p) = 4i} which arises from Nu and fi^ := {p G fii : x(p) < 2}. 
D 

Note that £Vs and Cm's cover M and they overlap, if they do, on 
Vj [0, tj] 's. In the language of [K5], we can interpret Vj [0, ^] as joining pieces, 
Sli\ \Jj Vj [0, tj), Cm\ Uj Vj [0, ^] as standard pieces, and f^, C^ as cores of the 
standard pieces. ^[0, oo] or 14[4, oo] are an end of ^ or of Ck,respectively. 

Note that t/tj for any j is arbitrarily close to 1 when r is small enough. 
Recall that M is orientable. We choose a unit normal vector field on X^M) 
and denote it by i>.?. With % metric, the minimal surface equation (1.2), 

parametrized by («,-), (InJ, (fej) € Z^ x S72 x S72, can be written as 

(3.5) (Ax + ^2|A|2)^ = -2p-2Hu- 2p?Qcfo. 

Definition 3.2.3. Cx = C^x := Ax + p-2\A\2. □ 
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3.3. Estimates for various 
geometric quantities of 

the approximately minimal surfaces. 

Convention. Prom now on, we assume the following for the indices: 1 < 
i < / + 1, 1 < g < rii, l<j <K + 2I, l<k<K, l<m<K + L Unless 
stated otherwise, all indices are assumed to run through the above range, 
for example with sums and unions. 

Let $j be as in subsection 3.1, that is $j is a function defined on the 
annulus {(^j,^,0) G Pj : ^ < rj < 45} whose graph is a neighborhood 
of the region where the gluing occurs. Then, Vj[0,^j] is the image of the 
embedding 

(3.6) X : [0,^] x S1 -> E3,     (x,0) ^ (6e-x cose.Se^sine^j). 

In particular, if we write x = x1^ = a;2,g = gai)dxadxb,A = Aai)dxadxh, 
then 

det 

(3.7)   Aab = 

dahX 
diX 
d2X 

dab(Se~xcos0)   dah(8e~x sin 0)   dab$j 
—Se~xcos9 — 5e~xsm6      dx$j 
—5e~x sin 0 5e~x cos 0        do$j 

Vdet[9ah] 52e-2xJl + S-^idx&j + de®?) 

For gab, recall (3.4).   Now we proceed to estimate $j.   As in [K4], for a 
tensor T, 

||T:C-(f!,,„)||,= sup&^f^I, 
pen Q{P) 

where q is a function on Q, c M and Bp is the geodesic ball of radius 1 
centered at p. We omit q when q = l. 

Lemma 3.3.1. For any t G N, we have 

WVQj : CiVj&e&dx2 + de2,q)\\ < C(t)52 

where q := e~2x in V}[0,^/2] and := e"^' in VJ[£J/2,£J]. 

Proof. Recall that $j := ipjfj + (1 — ^O/j where ipj is a smooth cutoff 
function which transits from 1 on 2y/fj < rj < 5 to 0 on Tj/5 < rj < ^/fj. 

Since fj is analytic and fj\r=o = Dfj\r=o = 0, we have 

fj = 0{r^),    Dfj = 0{rj),    Drnfj = 0(l)    for ^7 < ^ < 6    for m > 2, 
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where D in this proof means drj or ^j"1^.- Note that 

\fj\ < CTJ   on 07 < rj < 2^7. 

On the other hand, fj for TJ/5 < rj < 207 can be written as 

ftV^/Tj     dt 
fi(rJ,Oj) = Tj -y^^    iorl<j<K + I, 

Jrj/rj Vt2 - 1 

r2^/^    dt 

JriM        Vt2 - 1 J/'J 

where rj := ^1(0,0, -2ir) + rT-^Cj_I\/2n. (See (3.2).) Then it is easy to see 

\fj\ < CTJ    on 07 < rj < 207, 

|^m/il < CrjrJ™    on TJ/S < rj < 207   for m > 1. 

Now the result follows from the above estimates, the trivial estimates for 
V^j, and the relation rj = 5e~x. □ 

As in [Kl,4], two metrics xi and X2 are called ^-equivalent on a domain 
ft by a constant C iff for (ij) = (1,2) or (2,1), we have 

HxiiC^x.Oll^c,      llxr1:^,^)!!^. 
If xi, X2 are t-equivalent by Ci, then 

||-:Ct(n,xi)||<C(t,C1)||.:C
<(0,X2)||. 

Lemma 3.3.2. On fi^, g and x are t-equivalent by C(t,S). On C'm) r~
2g 

and x are t-equivalent by C(t,S). On Vj[-£ — 1,-f], rj" g and x are *- 
equivalent by C(t). On Vj[0,£j], dx2 + d62 and x are t-equivalent by C(t), 
and 

\\x - (dx2 + dO2) : C'iVjiO^jldx2 + de2,q)\\ < C(t)52, 

where q = e"2*    in V^[0,^/2] and = e2^"^) in ^[VVj]- 

Proo/. The equivalences of metrics on Q • or on C^ follow easily from defini- 
tions. The rest of the assertion follows from definitions, formula (3.4), and 
lemma 3.3.1. □ 

In the following lemmas, n > 1, k are integers assigned to each ^[0, oo] 
by (3.1). Note that for q = 1 they are related to the unperturbed Weierstrass 
data, and that n-fc-l>lby proposition 2.1.2. 
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Lemma 3.3.3. When q > 1, or q = 1 and 1^,1 [0, oo] was originally (i.e. 

when £i = 0) an end of large or moderate amplitude or a catenoidal end, we 
have 

||A : C*(^[0,oo],x,e-(fe+1)3e)|| < C^1. 

Note the difference of decay rates depending upon the type of ends. When 
V^ifO, oo] was originally an end of small amplitude, 

||A:C7*(Fi,1[0,oo],x,e'ue)||<C(t)<5-n. 

Finally we have 

||A : C^VjlO^j],x,q)\\ < C(t)62   for q as in lemma 3.3.1, 

||A : Cf(fiU)ll < C{t,8),    ||A : C^Cx)!) < C(t,8)Tmt 

WA-.C'iVkl^oolx^^C^Syk. 

Proof. For the first inequality with q > 1, we see from (2.3),(3.1) that 

A = Re{f(u;)Ljk-1(Lj2} 

= Re{f(uj)uk+1}(dx2 - de2) + 2Im{f(uj)ujk+1}dxde. 

for some holomorphic / with /(0) 7^ 0. Prom the holomorphicity of /, we 
have ||ite/(or Imf) : C^Ds, |^|2)|| < C(t) which in turn implies 

\\Ref(ar Imf) : ^(^[O^]^)!! < C(t) 

The first inequality with q > 1 follows. The case for q = 1 when V^ifO, oo] 
was originally an end of large or moderate amplitude follows similarly, 
with perturbed Weierstrass data (2.5). When V£}i[0, oo] was originally a 
catenoidal end, we may consider only the effect of the scaling and get the 
result from (2.7). 

When V^ifO, oo] was originally an end of small amplitude, we have 

A = ReS[^f1(uj)u;-n+kdw2\ 

from (2.6),  where fi(uj)   :=   (1 + A^-^^cj^dh/du. When /a   := 
(^Troj^dh/dw)-1, f3 := 1 + Aujn-k-\ we have 

g = (-a- if3)f2fsuj-k-1 + fsun + ^hhuP'16"1 + (a - i/Wsu;2 
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from which we compute -JL to obtain 

A = Re^^^dJ1} + Re{(-CL - iflfsuj-^dw2} 

+ Refrfcdu;2} + Re{(a - i(3)f7u
n-2dw2} 

for some holomorphic functions f^ • • • , fr with fi(0) ^ 0. Arguing as in the 
case for q > 1, we obtain 

||A : Ct(Viil[x,x + l],x)|| < C^JCl + ||;|r(n+fc+1)e(ri+A;+1)rc)5fc+1e-(fc+1)a; 

which implies the result. 
On VjlOJj], the result follows from (3.4), (3.7), and lemmas 3.3.1 and 

3.3.2. 
On Qh we use (2.3),(2.4) with n = k to estimate A locally with \duj\2 

metric, and appeal to the equivalence of \d(jj\2 and g on Ds> the compactness 
of this region with respect to the g metric, and finally the equivalence of g 
and % in this region. 

On C^, the scaled picture by the order of r"1 and the equivalence of 
r~2g and x give the result. 

On t4[4, oo], the result follows from (3.2) and (2.3). □ 

Lemma 3.3.4. 

||pf : C^^oo],*^-*-1)*)!! < CW**"-*-1), 
||pf :C*(Vi[0l/i],x,6^)11 ^CC*)^1, 

\\p?:Ct(C'm,x)\l<C{t,S)<tf, 
||^1:C*(nJ>x)||<C7(t,*)> 

||pf : ^(Vfcl/fc.ool.x.c*^*))!! < Cm/Ti.)*. 

Proof. On ^,5(0,00] with g > 1, we have from (3.1), (3.3) 

_! = 1 + Iffl2 W , , = 1 + M2n 

^ 4|5|    |<M    '        4|w|» TO=fc 

|a;| := Flwl"^-*-1). 

F is smooth in Ds, which imphes ||F : C^Ds, \M2)\\ < C^)- Therefore 
||F : C'^JO, oo], x)|| < C(t), and we get the result for p'1. Since F\w^ ^ 
0, p is also smooth in Ds by choosing smaller 8 if necessary, we get the 
result for pg. 
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On Vijg[0, oo] with q = 1, we work with the perturbed Weierstrass data, 
that is (2.5),(2.6),(2.7). When ^[O, oo] was originally an end of large or 
moderate amplitude, the above calculations are still valid with the perturbed 
Weierstrass data (2.5). When V^i[0,oo] was originally an end of small am- 
plitude, we observe from (2.6),(3.3) that 

du 

We easily see that F is a smooth function on Ds with JF^O ^ 0, hence 
arguing as in the case for q > 1, we get the result. The result for the case 
where V^ifO, oo] was originally a catenoidal end follows from (2.7). 

On Vjf[0,^], we have pj1 = rf1 = J^e1^ which with the equivalence of 
X and dx2 + d62 implies the result. On Vfc[4;,oo], it follows from (3.2). On 
the rest of M, the results follow easily from definitions. / □ 

The following corollary with lemma 3.3.2 tells us that the linearized 
operator Cx is not different much from the flat Laplacian on the joining 
pieces and ends. 

Corollary 3.3.5. When q > 1, or q = 1 and V^ifO, oo] was originally an 
end of large or moderate amplitude or a catenoidal end, 

\\p-2\A\2 : C7*(^[0,oo],x,c-2nae)|| < C(t)S2n. 

When q = 1 and V^ifO, oo] was originally an end of small amplitude, (recall 
that k + 1 < 0 in this case) 

\\pf\A\2 : C7t(V5,1[0,oo],x,c2(fc+1)x)|| < C^S-2^1^. 

When q := e"2* in V,-[0, %],   := e"2^"*) in Vjfoij], 

||p^|A|2:C7*(Vi[0,/i],x,«)||<C(t)«a. 

Finally 

\\pf\A\2 : C^i^lJU^C^xn < C(t,6), 
\\pf\A\2 : C'^ooUe-2^))!! < C(t)S2. 
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Proof, follows from the previous two lemmas, since p~2|A|2 = p2|A|2 where 
| • \x is the length with respect to the x metric. □ 

Definition 3.3.6. The mean curvature function H, ? related to X. ?: M —► 
E3 is decomposed as follows: 

K+2I J+l I+K 

j=l i=l m=l 

where supphTj C Vj[-±-l, -^], supph^j C A/^nuf^1^, supph^Cm C C^, 
and finally supph?Q C A/i,i- C 

Lemma 3.3.7.  WTien || • || stands for ||- : C^MJX)!!; ^e feave 

\\p;\ni\\ < C(t,6)\£Qi\ < C(t,5)72t\ 

\\p;\cj < C(t,S)\ZcJ < C{t,5)l2l*T^I\ 

Proof. Recall that Hc?= \Y,^ab9ab in a local coordinates system. Then 
\\hr,j\\ < C(t,6) follows from (3.4),(3.7) with lemmas 3.3.1 and 3.3.2. Triv- 
ially we have ||^A|| < C(t,<5)|4|, \\hu\\ < C(t,<5)|0l from Taylor ex- 

pansions of X* P : M —► E3. By considering the picture scaled back by the 

order of r"1, we see \\hgCm\\ < C^S^-2]^]' Combining these results 
with lemma 3.3.4, we finish the proof. □ 

4. Linearized equation. 

The general procedure for solving linearized equations. We will 
shortly find ourselves in need to solve 

£x</> = E       on   M 

with suppE C uf^ftj. Following the general approach of [Kl-5], we proceed 

as follows: we decompose E = Y^Zl^i sucl1 t':iat suPPEi C n*. On each 
Qi , we add a linear combination of some (vector) functions uji to Ei so 
that Ei + Ai- u)i is orthogonal to the Dirichlet approximate kernel, hence we 
obtain a unique solution to 

£x0i = Ei + At • uji    on fii,    (^2 = 0   on    dQi. 
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Now we add a linear combination of some functions Vj and, we obtain the 
exponential decay of ^ + ^ QjVj along the joining pieces V}[0,^] c fi*. 
Let ipi : M —> E be a smooth cutoff function which transits from 1 on fi; 
minus small neighborhoods of the boundary to 0 on M\Qi. Then, we have 

Cx [X^ l^ + E9^ 
/+1 K+2I J+l / 

2=1 j i=i y        j 

on M, where r/j := C^tpiVj) and for the rest of the paper, [£x, ^] = CXI/J — 
ipCx. Note that the last term on the right hand side of the equation is 
supported in U^tf^C^, which is to be rewritten as J2 E'm w^ suPpE,

m C C'm. 
Add a linear combination of some (vector) functions d>m to E^ so that 
E'm + Am - ujm becomes orthogonal to the Dirichlet approximate kernel, and 
we get a unique solution to 

Cx(i)'m = E'n + Am - um   on Cm. 

Let tl)'m be a smooth cutoff function which transits smoothly from 1 on Cm 

minus small neighborhood of the boundary to 0 on M\Cm. Then 

//+i i+K \ 

\i=l m=l ) 
J+l JM-2J J+JC 

= E + Y^ Ai • cji + J2 @M3 + j^ ^ • a;m + E" 
2=1 j=l m=l 

on M with suppE" C U^nj. Then we iterate the process to obtain 4* 
which satisfies 

J+l J+l I+K 

Cx(t) = E + ]r Ai • uji + X] ©i^i + X! ^m ' ^m   on M- 
2=1 2=j m=l 

The reason for the perturbations for unbalancing and reposi- 
tioning can now be explained. Consider the linearized minimal sur- 
face equation.    Recall that Ylj^rj is caused by the gluing,  and that 
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Yli^ifi- + Ylm^ic an(^ Sj^CJ are artificially introduced for unbalanc- 
ing and repositioning, respectively. For ^. hTj, a slight modification of the 
general procedure produces 0r and some unwanted terms such that 

JCX(/}T = -2p~2 Y^ hTj + Yl ^ 'Ui + Yl ^T'm 'Qm + Yl ®T^3' 

Then we construct ^ following the general procedure, and ^ in somewhat 
different manner, which satisfy 

cxk = -2^2 Y^ hU + Yl AC^ * Ui + Y ^m • ^m + Y ^M, 

with 

A^i - A£i ~ 0 ~ Ac,^   Ar,m - A^m - o - Ac,m,   Grj- - eCii - o - e^.. 

So for each parameter in Z71 x H72 x S72, we have $. r := 0r + 0^ + 0r* which 
satisfies 

Our hope is that all ~ are actually = for some parameter £, £. 

4.1. Linearized equation enjoining pieces and ends.. 

In this subsection, we study the existence, uniqueness, and the decay prop- 
erty of solutions of linearized equations on joining pieces Vj[0,£j] and ends 
1^4[0, oo], Vk[£k,oo]. Note that the linearized operator Cx on these domains 
is a small perturbation of the Laplacian As of the flat metric s := dx2 + d02 

due to lemma 3.3.2 and corollary 3.3.5. The situation is quite similar to 
[K5,Appendix A], but our metric and the 0-th order term on VJ[£J/2,£J] 

show different behavior. Furthermore our strategy of obtaining local so- 
lutions on joining pieces is different from that of [K5], and requires us to 
analyze our situation more carefully. 

Conventions. We use e to denote a constant which can be taken arbitrar- 
ily small by choosing smaller S if necessary, and we fix a constant a e (0,1). 

Lemma 4.1.1. The smallest eigenvalue for the Dirichlet problem for Cx on 
any domain ofVj[0,£j] is no smaller than C£j2. In particular, the Dirichlet 
problem has a unique solution. 
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Proof. By the domain monotonicity and variational characterization of eigen- 
values [C], and by lemma 3.3.2, it suffices to show, where V := ^[0,^], 

ff cfdxde < a* ff (\v<f>\2s - 4p-2\A\2<t)2)dxde 

for any smooth function </> vanishing on dV. For this, we first decompose 
^(a:,fl) = <l>avg(x) + (f>osc(x,Q) by ^avg(x) := ^ $* ^{x, 0)d0, and observe 
that 

II q{x)(t>2{x, e)dxde = II q{x)(j>2
osc{x, 6)dxde + 2*J' q(x)<t>2

avg(x)dx, 
n2TT 

<t>2osc(x,e)<2Tr        \Vct>(x,0)\2sd9   for* €[0,4], 
Jo 

4>2aV9(x)<xJX(ci>'avg(x))2dx<xJJ Wfre^dxde   for xe [0,4/2], 

fagi*) < Vj - X) f' WavgWfdx < (£j - x) Jf  \V<j>{x, 0) faxdO 

for x G [^j/2,£/]. The above with q = 1 or q as in corollary 3.3.5 imply 

ff (fdxdO < Ctf ff \V(t>\2sdxde, 

ff p-2\A\2(i>2dxd8 < Ce ff \V<t)\2sdxdO. 

The result follows. □ 

Corollary 4.1.2. If £x(j>i = Cx(j)2 in fi C V^[0,^] and cfri > fa on dft, 
then (f>i > fa on fi. 

Proof. If £1' := {p G fi : (j>i{p) < faip)} is not empty, then £x(<^i — fa) = 0 
in £1' and fa — fa = 0 on dfi,'. But, then we should have fa — fa = 0 in fi7 

by the previous lemma, a contradiction. □ 

Proposition 4.1.3. Let V := VJ[XQ,XI] where 0 < XQ < xi < £j with 
xi — XQ large enough, say x\ — XQ > £j/A. Or let V := Vi}g[xo,oo] with 
XQ = 0, or V := Vfc^o? oo] with XQ = £k- Let AQ be an arbitrary number in 
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(0,1).  Then, there are bounded linear mappings 

Ui : C0'a(V,s,e-^-Xo){x-xo)) -» C2'a(V,s,e-^-Xo)(x-xo)), 

n2 : C<)'a(^[xo,xi],3,e-(1-Ao>^-ir)) ^ C^C^faro.xil.^e^1-^^-^) 

which satisfy, if (j>E is the image of E by Hi or 1^2, 

1. £x<t>E = E    inV. 

2. For Ki, we have 4>E = a-E € R on Cj[xo], 4>E = 0_on Cj[xi] if V = 
Vj[xo,xi\; otherwise 4>E = a-E € R on Cj[xo\ or on Ck[xo\. 

For 72.2, we have <f>E = CLE € R on Cj[xi\ and 4>E = 0 on Cj[:co]- 

3. For Hi, 

\\<t>E : C^a(V,s,e-^-Xo^x-xo)\\ 

< C{\o)\\E : C0'a(V,s,e-^-Xo^x-xo))\\. 

For 112, 

\\(f>E : C2'a(V,s,e-^-Xo^xl-x))\\ 

< C(Xo)\\E : ^•"(V.a.c-^-^^1-^)!!. 

I For Kt, \aE\ < C(Xo)\\E : C^^s^-V-^-^W. 

ForK2, |oE| < C(Xo)\\E : C0'a(V,s,e-^-xo)(-i-))\\. D 

Proof By standard theory, it is easy to construct a bounded linear mapping 

C0>a(V, s, e-t1-^*-1")) -> C2'a(V; s, e-(1-Ao)(:,:-X0))        or 

C^O^xo,xx], s,e-V-W*^) - C2'a(^[xo, xi], S, c-d-^oX*!-*)) 

which satisfies 2,3,4, and 1 with As instead of £x. Then, iAs is the in- 
verse of As which is regarded as a mapping from the range of 2A3 to 
C^O^e-*1-*0^-^)) (or C^iYjlxo^ils^-^-^^1-^) ). Since the 
operator norm of £x - As is small (in particular < s) by lemma 3.3.2 and 
corollary 3.3.5, we have the result. □ 
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The map 7^2 will be used only in the proof of lemma 4.1.5. 
In the following proposition, A is the constant used for the range of £cm • 

Note that </> in the next proposition shows a linear decay in general as is 
seen from lemma 4.1.5 and corollary 4.1.2. 

P . 
Proposition 4.1.4. Let Vj be the solution to CxVj = 0 in Vj[-£,£j], Vj = 1 

on Cj[-£], Vj = 0 on Cj[£j]. Suppose 

Cx(f) = 0    inVj[ej/2,ej],    0 = 0 on Cj[£,-]. 

Then, there exists a^ G M, unique by the construction, such that 

(i) 

W + a+ej: d2*<yJ[bti],x,e-i1-w*-t>n)\\ 

<C(\)\\4>-   avg tid^iCj&UW, 

(2) 
K+   avg <i>\<C(X)eU-   avg <t>:C?>a(Cj[ej/2]tx)\\. 

Cstoffl CM/2] 

Proof. Let AaVj = 0 in Vj^jfaij], Vj = 1 on C,-[€j/2], v-j = 0 on Cj[£j]. 
Define <p by 

Astp = 0   mVM/Wj],    <p = <fi   ondVjfofalj]. 

By standard theory using Fourier expansion on a circle, it is not hard to 
see that if a^, = — avg tp, then (1) with 0 instead of A is satisfied with 

(p, a(p, Vj, s instead of <f>, a^, Vj, X) and 

WCxte + oyvj): cia<*<yi\ej/2tii],8,e-i-ei)'2)\\ 

<Ci  <p-   avg <p : C^Cjfo^],s) 
0^/2} 
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If <// is the image of —Cx(w + CL^VJ) by TZi of the previous proposition with 
AQ = A, then 

V + a^Vj + <p' = 0 + (a^ + ^[4/2])^    on ^[V2» ^] 

by lemma 4.1.1 because they coincide on Cj[^j/2] UCj[&j\ and have the same 
image (i.e. 0) by Cx. Define a^ := a^ + ^lcj^/2]- Finally we change all 
norms in terms of x by appealing to lemma 3.3.2. □ 

Lemma 4.1.5. Suppose 0 < t < u < £j with u — t large enough, say u — t > 
£j/A , and (l>i,(f>r satisfy 

Cx(f)i = Cx^r = 0    in Vjfa u), 

fa - 1 = </)r = 0    on Cj[t],    (f)l = (j)r-l = 0    on Cj[u] 

Then, on Vj[t,u], 

h- 
u — X 

u — t <£, (j)r 
x — t 
u — t 

<e. 

Proof. First consider the case where t<t,/2< u. Let (pi = (u-x)/(u-t) and 
pr = (x-t)/(u-t). Define^ := -C^r^efi-ljfflox, El

2 := -C^i-Ei 
and £}[, E2 similarly with ^r instead of y>j, then 

\\El
2(Er

2)  :C^(Vj[t^S,e-^-^) 

In particular, E[,El are in the domain of Hi (of proposition 4.1.3), and 
El

2,E
r

2 are in the domain of ^ with AQ = 1/2. For i = 1,2, let <$,a( be 
given by proposition 4.1.3 with El and </>[, a[ with £•[. Then we observe 

^C^M^e-M/2^    |ai|     <Ce, 

^:C?a^(7i[t,u],«>e-(»-*)/2)|J     K|     <Ce, 

£x(^i + 4 + fi) = ^(^ + ^2 + ¥>r) = 0 in Vj[t,«], 

^i + ^2 + ¥>! = 1 + ai    on Cj [t],    = 4 on C,- [u], 

$L + ^2 + Vr = a\    on C,- [*],    =1 + 03 on Cj [u]. 
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so by corollary 4.1.2, 

A + A + <Pi = (ai + !)<& + al
2(f>r   in Vj [t, u], 

01 + ^2 + Vr = OL^I + (1 + ar2)(t>T    in T^f [*> ^]) 

hence we obtain 

0z \       1 (l + ar
2     -4   W^ + ^ + w 

(t>r )      (l + aiKl + oSJ-a^ V   -ai      1 + ai / Wi + 05 + Vr 

which implies the result (with 5 chosen small enough). The proofs for other 
cases follow similarly. □ 

4.2. Linearized equation with an arbitrary inhomogeneous term. 

Dirichlet problems on Cm.   We need to solve 

Cx(j) = E   in Cm,        0 = 0   on c?Cm. 

Recall that Cm is obtained from a catenoid with one or two ends removed 
( and extended by one or two joining pieces). A catenoid equipped with 

the metric ^^-g is isometric to the standard unit sphere minus two points, 

hence Cm equipped with the metric -^^g can be thought of as a small 
perturbation of the unit standard sphere. Then [Kl,Appendix B] could 
be used to compare low eigenvalues and corresponding eigenfunctions of 
Ag 2 + 2 on S2 and Aj^   + 2 on Cm. Note that the above equation could 

be rewritten as 

(A^   + 2)0 = —j^ p2
gE   in Cm,        0 = 0   ondCm. 

But, \A\2 may possibly vanish on Vj[-f — 1,-^] C Cm, which makes the 
equation meaningless. For this reason, we consider a metric on Cm which is 

1 2 1g on Vj[-£ — 1, -T^], where 5i is a positive constant which can be taken 
arbitrarily small. 

Dirichlet problems on O;. The situation, however, becomes subtler 
when we consider a Dirichlet problem on Qi because of the presence of 
umbilic points, where |A|2 = 0, and ends.  Recall that each end ^>g[0,oo] 
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is given, up to Euclidean motion, by (2.1),(2.2) with the Weierstrass data 
(3.1) for q > 1 or (2.5),(2.6),(2.7) if q = 1. We have 

IAI2 4ltf'l2 

2   g=(r^W|da;|     onViiq[0,oo] = D6\{0}, 

where ' means the complex differentiation regarding g as a function on Ds, 

which shows that ^-g becomes singular at piiq = 0 iff n > 2. Note that 
this phenomenon does not occur with a catenoid since it has n = 1. So we 

define a small perturbation of the metric ^'-g on an end by the following 
formula 

C4-1) *<* := y^2)2 l^i2     0n Vi«[°> «>] = ^AW, 

which can be smoothly extended on the entire Ds- 

Motivated by the above discussion, we now define a (nonsingular) metric 
on M by slightly perturbing the pull-back of the metric of the sphere. 

Definition 4.2.1. Let Si be a constant which is small and independent of 
5, r. Let ipiiq be a smooth cutoff function on M := M U {punctures} defined 
by := ^[1,2] ox on ^^[0,oo],:= 1 on {puncture},and := 0 elsewhere on M, 
and let ^ be a smooth cutoff function which is ip[£j — 1, £j]ox on 1^[0, £j] and 
is constant on each component of M\ U V^[0,^]. Define a smooth metric h 
on M by 

h := V^g + E^A, + (i - ^ - X>.*) ^T1^ 
hq \ hq       / 

g- 

Pg : M —> R is defined by /i = p2g on M, p% := 0 at punctures. □ 

Before giving the following definition, we note 

^2|A|2 = 4J?FT^ on Vi^ ^ = DMOh 

and we extend p~2|A|2 on entire Ds by this formula. Then, p~2|A|2 is 
smooth on the entire M. And, we define £};, Cm to be the closures of £};, Cm 

in M, respectively. 
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Definition 4.2.2. Given c >0 , we define the "c-approximate kernel of Qi 
( or Cm)" to be the span of those eigenfunctions of the Dirichlet problem for 
Ah + Pg2\A\2 on Cli (or Cm) which have corresponding eigenvalues in [—c,c]. 
□ 

Lemma 4.2.3. If 5, Si, and r are small enough, then there exists c > 0 such 
that the c-approximate kernel offti orCm is 3 dimensional, and we can find 
a basis fiiS, /m)S for 1 < s < 3 such that 

H/i,* - es - u^: L2(nh h)\\ < c,     ||/m}S - es • u^: L2(Cm, h)\\ < c. 

Moreover, we can take c to be arbitrarily small by taking small enough 5,5I,T. 

We define fi := (/^i, /;}2, fos) and fm := (/mji, /m,2, /m,3)- 

Proof. The proof is basically an application of [Kl, Appendix B], which 
is thus assumed to be familiar to the reader, and only the proof for £); is 
provided since the proof for Cm is similar. 

First we construct a Riemannian manifold which is to be compared with 
(f^, h). Define a smooth (nonsingular) metric /i, pg on M; in a similar man- 
ner to the construction of /i, pg on M in definition 4.2.1, that is h is a slight 

perturbation of ^-g so that it is not singular at umbilic points and at ends. 
By our assumption of no exceptional bounded Jacobi fields, we see that the 
kernel of Ah + p~2\A\2 on Mi is 3-dimensional and spanned by es • z7, for 

5 = 1,2,3, where u is a unit normal vector field of X;(Mi), and that there ex- 
ists some constant c^j- > 0 such that there are no eigenvalues in [—c^., c-^] 
except 0. Now, recall that for each j such that Vjf[0,^j] C Jli, there is a 
catenoid which contains VJ[£J/2,£J] It is divided into two components by 
the circle Cj[£j]. Let Dj C S2 be the closure of the image by the Gauss map 
of the smaller component, and h the standard metric of the sphere. We 
choose S small enough that there are no low Dirichlet eigenvalues of A^ + 2, 
say less than 100. Define Ch on Mi Uj Dj to be A^ + Pg2\A\2 on Mi and 
Ah+ 2 on Dj. Then, the kernel of Ch is spanned also by es - v for 5 = 1,2,3 
and there are no eigenvalues in [—c^.^c^j] except 0. 

Note that the assumptions (1),(2) of [K1,B.1.4] are satisfied because 
(£li,h) and (Mi Uj Dj,h) are compact. The use of assumption (3) of 
[K1,B.1.4] in finding the C0 norm of eigenfunctions of low eigenvalues is 
replaced by the following argument: Let / or g be a Dirichlet eigenfunction 
of Ch on Mi Uj Dj or of Ah + p~2\A\2 on fii, respectively, of low eigenvalue, 
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say less than 10. Then, 

||/ : C^Mi Uj DM < CftSJWf : L2^ U,- Dit/»)||, 

\\9:C0(ni)\\<C(5,61)\\g:L2(ni,h)\\. 

The first inequality follows from standard theory. Note the dependency of 
the constant upon 5, <Ji, which follows from the dependency, for example, of 
the Sobolev constant upon them. For the second, we first note that 

\\g : C0(a\ Uj ^[2,^)11 < C(Mi)||<7: tffah)]] 

from the uniform control on the geometry of (f^Uj Vjf [2, ^], h). To estimate 
on Vjf[2,^], we observe 

Ax + Pj2((l + ^)|A|2 + ^1))p = 0   in ^[2,^],    g = 0   onC^l }■ 

Now, from lemma 3.3.3 we see that (1 + |)|A|2 + ^<5i satisfies the same 
estimate as |A|2, hence we can apply lemmas 4.1.2,4.1.5 with the above 
estimate to conclude 

\\g : C^MDH < C(Mi)ll<7: L2(nhh)\\. 

Now, we are going to construct maps 

JT : C?(Mi Uj Dj) -+ CF&i),        Q : CH^) -+ Cg0^ U,- Dj) 

which will satisfy the assumption (4) of [K1,B.1.4]. 
First, we define Z : fi; —► Mi Uj Dj by sending each Vj \-^, tj\ C fif into Uj 

using the Gauss map, by sending Vj[-^- — 1, -^-] into Mi using the projection 

maps into Pj on the images of Xi : Mi —> E3 and X. r, and by identifying 

f2i\ Uj ^j[-f — l,^j] with the obvious domain in M*. Let p : S2 —> R denote 
the distance function from Uj{ej} C §2 where ej is the unit normal along 
the Zj coordinate axis, and define a logarithmic cutoff function i\)§i : S2 —► 
K by ip§2(e) := ^[2, l](logp(g)/log^) where ^ is a small constant to be 
determined later in this proof. Define smooth cutoff functions ipQ on $% to 
be ^§2 o u7r on Vj[0, £j] for each j and 1 on Cli\ Uj Vj[0, £j], and V^M^U D- ori 

Mi Uj Dj to be ip§2 ou.ron Uj(A/j U Dj) for each j', where A/j C Mi is the 

obvious neighborhood of pj G Mi, and 1 elsewhere on Mi Uj Dj. Finally we 
define T(f) to be the the pull-back of ip^u-D-f by ^ and G(9) to be the 
push-forward of ipQ.g by J. 
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It is not hard to check that the assumption (4) is now satisfied, arguing 
as follows: The region on Qi ( or on MiUjDj) where ipQ. ( or ipMiUjDj) ^s not 

1 has arbitrarily small /i-area by choosing Sh small enough ( regardless of 
5, Si. This and the dependency upon 5, Si of the constants in the bounds for 
the C0 norm by L2 norm are the reason for the introduction of UjDj). With 
Sh chosen now, we can ensure that 1 is as close as we like to an isometry on 
the region where ^ is not 0, by choosing £,£I,T small enough. Note that 
the change in the h metric on the perturbed end V^i [0, oo] is small because 
of (4.1) and the smallness of the perturbation of the Gauss map which can 
be seen from (2.5), (2.6), (2.7). 

However, in order to apply the proof of lemma [K1,B.2.2], we need extra 
conditions because the operators we are comparing are not exactly Lapla- 
cians. When we write £h := Ah + B, we should have 

|(p-2|A|2-7mnf2)> - (Bfuf2)\ < e|l/l||oo||/2||oo, 
\(Bg(gi),Q(92)) - <r2|A|V,<72>| < e||/i||oo||/2||oo 

which are easy to check and left to the reader. 
With the above setting, the proof of lemma [K1,B.2.2] can be easily 

adopted for the current lemma, with ||/||2 there replaced by < (£h+C)f, f > 
or < (Ah + p~2\A\2 + C)g,g > for some constant C which is smaller than 
the lowest Dirichlet eigenvalue of C^. Finally we have to compare ^(u- es) 
with v. ? • es of f2;, which is again left to the reader. □ 

Definition 4.2.4. Define u;;)S : Qi —> E and a;m?s : Cm —► R for 1 < s < 3 
by 

Note that they are compactly supported. For the convenience of notation 
for later use, we let, where •* means the transpose, 

<^ := (^i,l?^i,2,^2,3) ,      Vm := (^m,l5^m,2,^m,3) • □ 

Note that /ir0 or hrr is close to a linear combination of plcji s's or p?a)m s's 
for 5 = 1,2,3. The functions u^ ujmiS play the role of the so-called substi- 
tute kernel. [Kl,4-5]. 

Lemma 4.2.5.  ||a;ijS : C1^,*)!! < C and ||c5m>s : C1^,^)!! < C.  When 

&:= /   pl^sfijdg ,    Km :=    /    p2g^m,sfm}td^ 
3 

s,t=l 
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we have   max {\(Ki)Sjt - 5S)t|, \(Km)Sit - Sst\} < i, where e can be taken 
l<s,t<3 

arbitrarily small when S is small enough. 

Proof. The estimates for u^'s and u;m)S's follow easily from definitions. For 
Ki, note 

/   P2g^sfi,td^=  I   p2gUJiiSefVc?dg+ /   p2
gUiMht - et • vt Mg. 

Now, we observe that 

L ph'sgt' *<&=i: L ^ • ^s=i:=*••** 
where the second equality comes from the balancing formula [S2],[KKS]. We 
finish the proof by appealing to lemma 4.2.3. The proof for Km is similar 
to the above and is omitted. □ 

Lemma 4.2.6. There exists c > 0 such that for any E in CZo'^(fii, x); there 
exists a unique A € M3 such that p2

gp~<1{E + A • ui) is L2(fii, h)-orthogonal 

to the c-approximate kernel ofSli, and also for any E in Cj0'"(Cm, x) , there 
exists unique A G R3 such that ptip~<1{E + A • (Di) is L2(Cm, h)-orthogonal to 
the c-approximate kernel of Cm. In fact7 

A = - f PpfEfidh -Kr1,    A = - /   p2
9pfEfmdh • R-1 

where fi and fm are as in lemma 4.2.3. Moreover, if suppE Cft^ or C C^, 
then 

|A| < C\\E : C0'a(a,x)||,     |A| < C\\E : C0-a(Cm,x)||. 

Proof We prove only the case E 6 CZo'^(fii, x) since the proof for the other 
case is similar. Given E, define A by the formula given in the statement of 
the lemma. Then, we have 

/ p2
gp-

2(E + A^i)f^dh= [ plpfEfijdh + A. [ plpfujifrtdh 

= f ppfEhtdh- [ plpfEfidh-Kf1. f fitfuifodh. 
JQi JQi JQi 
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Now, we see that /n. p^p^Uifijdh = /n. p^Uifi^dg is the t-th column of Ki, 

hence Kf1 • JQ. PgPg2Wifi,tdh is a column vector whose entries are all zeros 
except the £-th row, which is 1. Hence we get /n. p^p~2(E + A-uji)fijdh = 0. 
The uniqueness of such A is obvious. The estimate for A follows from lemmas 
3.3.4, 4.2.3, 4.2.5 and various definitions. □ 

Definition 4.2.7. Let Vj to be as in proposition 4.1.4, and for fi; which 
contains Vj[0,^], define Vj : £); —► R to be the trivial extension of 

Vjl/) 
2 + 1'2+2 o x. 

Finally, ijj := CxVj. We have trivially 

Vj : C2>a (Vj 
2' 2 ~t~ ,x <c. 

Now we define some norms which are conveniently used in the rest of 
the paper. 

£ . 

Definition 4.2.8. Let q be a continuous function which is := e"^1-2A)(X~ 2 ) 
on Vj [tj/2, £j] and which is constant on each component of M\ U Vj [£j/2, £j]. 

3 
Then 

|H|2:=||^:C2'-(M,x,g)||, 
IIEIIo-ll^r^'^M,^^1-2^/2)!!. D 

Now we present how to obtain a global solution of the linearized equation 
with an arbitrary inhomogeneous term. 

Proposition 4.2.9. Suppose \\E\\o < 00. Then, there are fa G C/o'^(M,x); 

®E,j £ Rj A^i, A^^ G M3
; unique by the construction, such that 

1. Cxfa = E + Y^ &EjVj + E AE,i • ^ + E A-E,™ ' dm in M, 

2. \\fa\\2 < C\\Eh, 

3. \eEj\ < C\\E\\o,     |A^| < CHEIIo,    |AE,m| < CT^-WWEW*. 

Proof. Define smooth cutoff functions 
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1. i/tj to be ^[1,2] o x - ip[£j — 2,^j — 1] o x on Vj[0,^j], and vanish on 
M\^[0,^], 

2. i/j^q to be ^[1,2] ox on ^[0,oo], and vanish on Af\T^>g[0,oo], 

3. V^fc to be ^[4 +1,4 + 2] ox on t4[4, oo], and vanish on M\Vk[£k, oo]. 

Let W G C^(^[0,^],x), ^ 6 q2
o'c

a(^[0,oo],x), W 6 Cjc
a(t4[4,oo],x) 

be given by TZi of proposition 4.1.3 with tpjE, ^qE, ^kE, respectively, with 
appropriate XQ^XI and AQ = (1 — 2A)/2. Then, 

H^iVilla,    ll^r^lla,    ^-^UV^Ih     <     C\\E\\0. 

^X (E ^.^.9 + E ^k + E ^'^) =E-E^ 
||£o||o < cpilo,      SUPP^ c unj U uC. 

Decompose Eo such that EQ = ^ -Efii + Z) ^ with suppEa- C f2• and 
suppEcm C C^. Then, 

HEh, : C0,a(a,x)ll < CHEHo,     ||^cm = C0'"(Cm,x)|| < Cr^^PHo- 

Let ^ : fit -» R.Aft.i € M3 and (^Cm : Cm -► M,ACm)i € R3 be given by 
lemma 4.2.6 with E^ and Ecm respectively. Then 

(a) 

(Ah + pflA]2)^ = ppfiE^ + A^.i • UJJ) in (U,        fa = 0 on dCk, 

(Ah + p;2\A\2)<l>cm = p2
gpf(Ecm + Acm,i • a>m) in Cm,    ^cm = 0 on dCm, 

(b) lAn^l < CPollo,        |Acm,i| < Cr^^WEoh. 

Then, 
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We obtain the C0(ftA U ^[2,^]) bound of fa and C,0(Cm\ U V$[0,^ - 2]) 
bound of </>cm from (a),(b) and standard theory, and the C0 bounds on 
UjJ^[0,£j] by lemmas 4.1.2,4.1.5 after rewriting (a) in terms of Cx. Hence 
by standard theory 

Wfa ■ C2'a(a,x)|| < C\\E0\\o,    Ucm : C2>a(Cm,x)\\ < CT^-^WEOWO. 

Let O^i G R be given by proposition 4.1.4 with ^ restricted to V^f-^,^.,]. 
Then 

le^i < cpo||o,   m + Eei.ivi) ^4 < C\\Eo\\o. 
where the sum is for all j such that Vj[0,£j] C fij. Let 

1. ^ := 1   on SUXUj VjlO, tj], := ^[tj-1,Ij -2]ox in VJfO,Ij] C fli, := 
0 in M\fii, 

2. Vcm := 1    onCnXu,- V^O,^-], := ^[1,2] ox in ^[0,^] C Cm, := 0 on 
M\CTO. 

and define 

£i := - E [£x>^n*] (^n* + Eei.^) " E [£x» Vte^l fan, 

<P\ ■= E Vtt* (fak + E 0i.ivi) + E ^cm<£cro • 

Then, suppEi C U^lJuC^, and 

ll^illo^Cr^^HJEfello,        |bi||2<C||J%||o. 

(Note that the factor rA/2 is obtained from the the difference of de- 
cay rates in proposition 4.1.4 and definition 4.2.8). Define inductively 
£n+i,¥>n+i,©i,n+i,Aj)n+i from En as we get £;i,y>i,ei)i,AJ-ii from EQ. 

Then, for any n > 1, 

£x<pn = En-i -En + ^2 Qj^Vj + E Ai'n ' ^ + E ^m'n 'Qm   in M' 

\\En-i - En\\o < 2pn_1||o < 2(CTA/2)n-1||£,o||o, 

\Wnh < CPn-lllo < CiCT^r^WEoWo, 
l&U \Ai,n\ < CWK-ib < C(CrA/2)n-i||£;0||0) 

\Am,n\ < Cr^-2^2!!^!^ < Cr^^Cr^r-'WEoWo. 
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Define 
oo 

<I>E := X. ^Vhg + Yl ^k(Pk + XI ^Wi + Yl ^n' 
n=l 

oo oo oo 

n=l n=l n=l 

4.3.   Linearized minimal surface equation. 

Lemma 4.3.1. For any parameter f (Cj)> (£fti)j (&m)J ^ Zyi x "72 x "72^ 

there are (j)T e Cfc^(M,x),©T1i € M,Ar,i € R3,^^ 6 R3
; unique by the 

construction, such that 

1.     £x<f)T = -2p-2J2hTJ + T,Ki'Vi + J2Km-Vm + Y,eT,jrij, 

3. \eTj\ < C£
2
T ,    1^1 < C£2r;    |Ar,m| < C^r(3-2A)/2 . 

Proof. By lemma 4.1.1, we have cfrj such that 

C^j =-2pfhTij    in ISM,    ^ = 0   ondV^li]. 

Then, standard theory and lemma 4.1.1 imply 

Now, proposition 4.1.4 and definition 4.2.7 give a, 6 R such that 

Hfc + W : C^(VJ\lj/2,tj],x,e-l1-M*-e>n)\\<Ct}Tit        |ay| < C^. 

If we let 

E := - 5}£x, V[l, 2] o re - ^[€ - 2, € - 1] o x](^ + a^-), 

then ||E||o < C^2r. Let <f)E,&E,j,^E,i,^E,m be given by proposition 4.2.9 
with the above E, and define 

<t>T := ^(^[1,2] o x - V[€ - 2, € - 1] o x)^ + ajVj) + fo, 

@Tj := aj + 0E,J,    AT>i := A^.i,    AT)m := AE,™,- ^ 
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Lemma 4.3.2. For any parameter ((Cj)) (CnJ? (£cm)) € Z71 x H72 x S72; 

t/iere are ^ G Cz
2

0
,"(M,x),®C,i G K,A^ G M3,A^m G R3, wnig^e by the 

construction, such that 

1. £x(/>c = -2p-2 J] h^i + Yi AC^ ' W + E ^Cm • Urn + E ©CJty"* 

«.  ll^C'lb < Cli^T, 

3. lO-e^l^f^r,    1^1 < C7ifr,    |Ac,m| < C7i^(3-2A)/2. 

Proof. Recall that for each joining piece ^[0,^], there is associated the 
cylindrical coordinates system {rj,6j,Zj). For the convenience of notation 
in this proof, we define Xj : A/jflU^fii —> R by Xj(p) := x{p) in Vj[0, Zj] and 
:= 1 — ri o X. Ap)/8 elsewhere. Let T^[a, 6] be defined as in definition 3.2.2 

but with Xj instead of x. Note that VJ [a, 6] = Vj[a, 6] for any 0 < a < b < £j. 

Let (frj^i : V^f [—3, £j] —* R be such that the image of X. g+faiv* r belongs 

to X^M) with Cj = 0. Then 

(a) \\4>jfl : ^(^[-S,-!]^)!! < CIOI and ^,1 vanishes on ^-[-l,^], 

(b) 11^,1 -C^- .^: ^(^[-3,-2],x)|| < C|0|2, 

(c) II^JM + 2pp2fccj : C'1(^h2,-l],x)ll < C'lOl2 since it has only 
higher order terms in ^1 (recall the mean curvature identity (1.1), 
and note that pg = 1 in this region.), 

where ej is the unit vector in the positive Zj direction (up to sign). Now, 

note that C^Sj • u^) = 0 on ^[-3, -2] U t^[-l, ^ - 1] U Vjfyjj] and 

that ^ • i7c^is l/Jl + ^e2*^*? + Sfe*?)  in ^[0,^]. By utilizing (3.6), 

lemmas 3.3.1, 3.3.2, corollary 3.3.5, and the uniform geometry on Vj[—3,0], 
we have 

(d) ll^ • J7C]|- 1 : COffy-M,-])!! < i,     11^ • ^: C*^-^],*)!! < C. 

(e) ||/:x(ei-^):C'1(^[-2,-l],x)ll<C|C-|. (Note that C^ej ■ P^) = 0 
in this region when Cj = 0.) 

(f) H^^ • Pcg) : C1(Vr
j[^/2 - 1,^/2],x)|| < Cr from explicit computa- 

tions. 
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For ^[0,^] C Sk, define fa,Ejti, Etf -.SU^Rby 

$3,2 •■= (<f>j,i - CjCj • ifo) V'f-S, -2] o XJ,    Cx<i>j,2 + 2pJ2hs,j := Ejti + Ejt2 

with aupp^M € ^[-3, -1], s«ppE,-,2 6 ^[^^ - 1,^/2]. Then, 

(g) Piii:C
1(^[-3,-l],x)||<C|Cj|2  from (b),(c), and (e). 

By propositions 4.1.1,4.1.3,  and standard theory,  we have faj, <t>j,4   ■ 
^[0,^]-+R such that 

Cxci>jt3 = -Ej,2   rnVftO^j], 

^•3 = 0   onC^OjuC,^], 

£^•4 = 0   mVffotj], 

^•4 = 0   onCjiO], 

fa A = {JZJ ' %£   on C3 N • 

<t>j,3,<t>j,4 satisfy 

(h) ||^,3 : C^iVjlOJjlx^l < CpTfel by (f), lemma 4.1.1, and standard 
theory, 

(i) \(f>jA - Q • x/e\ < s\Cj\ by lemmas 4.1.2,4.1.5, and (d). 

Now we observe 

£xfe + <f>3,3 + M = 0   iaVjiij/Wj],    ^,2 + ^,3 + ^,4 = 0   onCjiij], 

and 

0) Xj/2 -  avg ((f)jfi + <l>jfi + 0j,4)| < Ce 
Cllj/2] 

Q\    from (d),(h), and (i). 

Let cij e R be given by proposition 4.1.4 with <f> = fap + <f>j,3 + 4>jA' T3:ien 

81 K-OI<|lO|. 

by (j). If we define c/>ji5 : SU -^ R by 

</>j,5 := ^',2 + (^i,3 + ^i,4)^[l, 2] O X + OJ-UJ, 

then, H^-.sV'^ - 2,^- - 1] o x\\2 < C|<j| and 

£x^,5 = -Zpfhj + atfj + ^,3    in fli 
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where E^z := E^i + [CXJ ^[1,2] o a;](^3 + ^4). If we let 

E := - J^ (Eif3 + [/:x>^i " 2,4 - 1] o z]^), 

then \\E\\o < C£T.  Let (^E^Ej^E^^E^m be given by proposition 4.2.8 
with the above £", and define 

^C := J2 ht^i - 2' Zj - 1] 0 ^ + <f>E, 

Lemma 4.3 .3. For any parameter ((Cj), (fnj, (fcm)) € Z71 x S72 x 572; 

f/iere are ^ G C^M,*),^. G R,A|-. G K3,A|*m e M3
; iznigwe &j/ the 

construction, such that 

1. Cx^ = -2Pf (E^A + £^CJ + E A^ • ^ + E A,-,m • Om + 

5. |ef).|   <   C72€V,       |& - AfcJ   <   |72^2r,       |&m - A^l   < 
f72£

2r(3-2A)/2. 

Proof. By lemma 4.2.6 and arguments similar to the proof of proposition 
4.2.9, there are d>?., k? . and 6?   , Ar    such that 

Zxt&i = -2P9 2hlai + Af.i " ^    in fii'   ^i = 0   on Sfiii 

<hm = -2P92h(fim
+hm'Qm     inCm'    ^m=0     0n ^ 

H^ : C2-«(fti)X)|| < C72^2r,     ||^m : C*'«(Cm,x)\\ < C^r^V*. 

By the formula of lemma 4.2.6, 

& - A& = ^ - / hfaftde ■ Kr1 
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where /* = (fi,i, fi,2, fas), e = (61,62,63). Since J^h^P^- edg = ^ 
by the balancing formula [S2][KKS], we obtain, by lemmas 4.2.3,4.2.5 and 
choosing small enough 5 if necessary, 

a_(3-2A)/2 Ifoj - Ag.| < STarr,    and similarly    |^cm - A^| < ^rr 

Let dj be given by proposition 4.1.4 with (j> = (j)^ restricted on Vj[tj/2, £j] C 
£V Then, 

Wj I < C-n^T,    I (^. + J2 aJvj) V-n, ||2 < C^ '2T. 

where V'fii is the smooth cutoff function defined in the proof of lemma 4.2.9. 
Let t/jCm be also the cutoff function from lemma 4.2.9 and define 

Then, ||E||o < C^r1^2. Let ^, A^,*, A.E,m, ®E,j be given by proposi- 
tion 4.2.9 with the above E, and define 

%:=Af,i + AB'i'  Ar,m:=Ai;m+A^'  ©|-,i:=«j + 0s,i.    □ 

Proposition 4.3.4. For any parameter 

((0), (&,), (lcro)) € Z71 x H72 x S72, 

tiiere are $C)|- € Cj^M,*),©^- G R, AC)£. G R3^^ € M3, unique by 
the construction, such that 

1. £x$a = -2pfH + z eajVj + E A^ • wi + E ^a,m ■ *™  in M' 

2. ||$aH|2<C(7i,72K2r, 

3. |0 - ©c ^1 < |71^r,      |4 - Af^-l < fafir,      ||cm - ACi|-im| < 
|72£

2
T(

3
-

2A
)/

2
. 
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Proof. Define 

*« := ^ + ^c + ^      Gc,6-:=: Gr^ + Gc^ + 06'' 

where all </>'s, O's, A's, A's are from the previous three lemmas. ( We take 
large enough 72 in terms of C, large enough 71 in terms of C, 72, and large 
enough ^ in terms of C, 71,72 so that our claim holds.) □ 

5. Nonlinear Term and the Main Theorem. 

5.1. Nonlinear term. 

For a function 6 on M such that X.?, := X, r+ 0^v r is an immersion, the 
nonlinear term Q. r , is defined from the mean curvature identity (1.1) 

where H. ?. H. ?. are mean curvature functions related to X. AX> ? >, re- 
spectively. As in [Kl], a pointwise rescaling Tx of a tensor T is defined by 
|TX|X = |T| where the length in the left is with respect to x and in the right 
is with respect to g. 

Lemma 5.1.1. If ^ e C?£(M,x) and \<f>M < I on M, then X^^ := 

X,r+ 4>V£ ? is an immersion, and if in addition 

||Mx = C0'a(M,X)\\<C    and   ||(V^)X : C0'Q(M,x)|| < C, 

then 

+\\pf ■ (VA)X||W • \mq6 + ||V>||g7} {||^Ax||g8 + ||(V*)X||B}, 

where \\ • ||9 := ||- : C0'Q(M,x,g)|| and q,qi,--- ,#8 a^e arbitrary functions 
satisfying 9? • 92 = 93 • 94 = ?5 • ?6 = 97,   97 • 98 = 9- 

Proof, follows from [Kl, Appendix C] by similar arguments to the ones in 
[K1,V.1.3]. □ 
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Proposition 5.1.2. Suppose ||</>||2 < 73^2/r where 73 is a constant to be 

determined in the proof of Theorem 5.2.1. Then, X^.?, := X^r+ ffisc is 
an immersion and 

WQtfJo < Cr-(3-^/4||^||| < C732r5/4. 

Proof We first note that 

Ax = plA,    (VA)x = p3
gVA = p3

g(VxA + T*A) 

where T := V — Vx is the difference tensor of the two connections and * is 
the contraction. Since 

lir: CHM.X)!! < c\\p2
gvpf -. C^M.X)!! < c, 

from lemma 3.3.4, we obtain from lemmsts 3.3.3, 3.3.4 that 

where qi := e-C2^-^-1)^ on Vijg[0,oo] when q > 1 or q = 1 and Vi,i[0,oo] 
was originally an end of large or moderate amplitude or a catenoidal end, 
._ e-(n-2k-2)x on ^1(0,00] when l^i [0,oo] was originally an end of small 
amplitude (recall that -n-l<fc<-lin this case),  qi   :=   1 on 

(U^)U(^[0,|]), := e2^"^/2) on ^[|,^], := e*™ on Cm, := e"2^^ 

on Vfc^fc?00] and that 

\\(VA)x:C
1(M,x,q2)\\<C 

where qz := e-(3n-fc-1)1 on Vi,g[0,oo] when q > 1 or q = 1 and ^[O.oo] 
was originally an end of large or moderate amplitude or a catenoidal end, 
._ e-(2n-3k-3)x on ^^[0, oo] when V^ifO, oo] was originally an end of small 

amplitude, ^ := e* on (U^)U(U^[0,|]), := e3*^ on Vjfalj], := e2*™ 
onC:=e-3l+5^ont4[4,oo]. 

When q : M —► M is an arbitrary function, 

||(V^)X : CHMtxM < CM : C2>a(M,x,OT)||, 

where q :=f* on M\(UV^[0, oo] UuFfc[4, oo]), := e("-fc-i)* on V^O, oo], 
ex-24 on t4[4,oo], whose proof follows from (V<£)x = p^V^ and lemma 
3.3.4. Since V^ = V^ + T * V& 

||V^ : CHM.x,?)!! < C||^ : C2^{M^q)\\- 
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Prom lemma 5.1.1 and the above estimates, we get for any arbitrary function 
q:M ->R 

||QC^ : C0'a(M,x,992)|| < CM :C2><*(M,X,q)\\2 

where q := ex on M\(UV^[0, oo] (J UV^^ib, oo]), := c"^-*"1^ on ¥^[0, oo], 
:= e-x+2£k on t^[4, oo]. The result follows. □ 

5.2. Proof of the main theorem. 

Theorem 5.2.1. Ifr is small enough, then there are 

((&), {isuj , (£cm)) € Z^ x S72 x S72 

and (£ G C00(M) mt/i 5maW || ||2 norm such that X. r* : M —» E3 given 

^2/ ^> r    := •^> ^+ i£^> z>is a minimal immersion. 

Proo/. Fix a' in (0, a) and define 

B13 := {^ € dgMxofi) ■ U ■ C2'a(M,Xoj,q)\\ < 73^} , 

where q is the function in definition 4.2.8 and 73 is a constant to be de- 
termined in the middle of this proof. Because of 0 < a7 < a < 1 and the 
behavior of norms at ends, B^ is compact in 

X ■■= {t 6 C?£'(M,x0<5) : ||0 : C2'*'(M,x^,q)|| < 00} , 

where 9 := e^1 on__U^[0,oo], := eA'*e-(i-2W2 on ^[4,00], := g on 
M\(uVi)g[0, oo](Jut4[4)Oo]) for a small positive constant A'. So, Z71 x 
H72 x S72 x ^ is a compact convex subset of the Banach space R^+2/ x 
R3(/+i) x RHK+D x x 

Now, consider the map 

J : Zyi x H72 x S72 x £73 - Rif+2/ x R3^1) x R3^+/) x X 

which sends ((Cj), (l^) , (jcS) , 0) to 
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where 
0C,6'' A«> AC,e,m' \? 

are the ones in proposition 4.3.4, and 

0«,W AC,£<M' AC,e>,m' ^C^> 

are the ones in proposition 4.2.9 with E = Q. r ,.  By reviewing the con- 
struction, it is not hard to see that J is continuous and that 

C7 - e. r ■ - ©^ ?j. 

fft-^A-A CC,^        C,€i^»* 

<^2r + C732r5/4, 

<37^r + C732r5/4) 

&m      AC,i;m      AC,f^,m 
<£72^r(3-2A)/2 + C7|r7/4-A) 

* a+ *>a*: c%a (M' xo,o>«) || < c^2^+CTSV
74

- 

So, by taking r small enough and 73 large enough, we see that J sends 
Z71 x S72 x S72 x JB73 into itself. Then, by the Schauder fixed point theorem 

[GT, Theorem 11.1], there is a fixed point, say ((^ , ^.J , ^mJ ,^J of 

J. By the definition of J, we have 

which immediately imply 

£x(^) = -2p;2tfa-2Qa-<«£)   onM 

Hence, X^ ?    : M —> E3 is a minimal immersion. C00 follows from standard 

theory. □ 
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