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1. Introduction.

Background. In the study of minimal surfaces, it is of great value to have
a large collection of examples for reference and insight. The purpose of this
article is to develop a general procedure for constructing complete minimal
surfaces of finite total curvature in E3.

As far as the author knows, most, if not all, of the nontrivial examples
of complete minimal surfaces have been found through extensive use of a
global version of the Weierstrass representation theorem; one first assumes
the existence of a minimal surface with certain properties, makes a good
guess at the complex theoretic data, and then determines whether or not
the period problem is solved. This method has had great success. (See
[N],[DHKW],[HK] for a survey.) But, since this method uses complex data,
it is not easy to gain insight into the examples constructed this way. Fur-
thermore, the period problem restricts examples found by this method to
those that have a lot of symmetry in general. For instance, it was only
in 1980 that the first example of an arbitrary number of catenoidal ends
was found [JM]. For these reasons, a more direct and geometric method of
constructing complete minimal surfaces of finite total curvature is desirable.
In particular, one hopes that a general method will be found to construct
complicated ones from simple ones.

In this paper, I provide such a procedure by solving a nonlinear P.D.E.
with singular perturbation methods. Kapouleas was the first who applied
this technique in order to construct complete embedded minimal surfaces
of finite total curvature, by desingularizing the circles of intersection of a
collection of catenoids and planes with a common axis [K5]. Here, I prove
the following.

The main results. For any integer I > 0, fix a collection M := {N;}/*]
of complete, immersed (without any branch points), orientable, minimal
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surfaces in E? of nonzero finite total curvature. Assume that none of the N;’s
has an ezceptional bounded Jacobi field (whose meaning will be explained
shortly). Then, there exists a very small number 79 > 0 depending upon M
such that the following is true:

For any 0 < 7 < 79 and any integer K > 0 with I + K > 0, let
B := {B,}£tL +1 and € = {Ep}E_ be collections of catenoidal necks
and catenoidal ends, respectively, of neck sizes 7,, which satisfy 7, < 7
and C~l < 7 /75 < C for some constant C depending only on M. But, if
I =0, then B := 0, and if K=0, then £ := . Then we can construct a
complete, immersed, orientable, minimal surface of finite total curvature by
gluing together all the elements of M UBU €& in the following manner:

1. B,, serves as a bridge between two elements of M.
2. E,, is glued to an element of M.

3. The resulting minimal surface can be thought of as a tree when we
consider the N;’s as vertices and the B,,’s as edges.

The gluing can occur at any point and on either side of N;. When 7 — 0,
the resulting minimal surface converges to the union of N;’s touching at the
points where the gluing occurs, and B,,’s and E,,,’s converge to catenoids if
they are appropriately scaled. O

Recently, there appeared new results in applying gluing techniques for
constructing constant mean curvature surfaces in E3 [MP] [MPP] and min-
imal hypersurfaces in E* for n > 4 [FP].

About Jacobi fields. Recall that any minimal surface necessarily pos-
sesses Jacobi fields which arise from translations, homothetic expansions,
rotations, and possibly other Jacobi fields. I shall call any Jacobi field
which does not arise from translations ezceptional. Refer to [CR], [P], [PR].
Unfortunately we need to assume that there are no exceptional bounded Ja-
cobi fields for some technical reasons which will be explained in the outline
of the proof. However, the assumption is quite general in the sense that
Ejiri & Kotani and Montiel & Ros independently proved that it holds true
for generic complete (finitely branched) minimal surfaces with ‘genus zero’
of finite total curvature [EK],[MR]. In particular, the assumption holds true
if the branching values of the Gauss map lie in an equator [MR, Corollary
15], which is the case for any complete orientable minimal surface of finite
total curvature parameterized on the unit sphere C U {oo} with the Gauss
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Figure 1.

map g = w", n > 1. See [DHKW, §3.8] for explicit descriptions of exam-
ples of such minimal surfaces, which include catenoids, Enneper’s surfaces,
Jorge-Meeks n-noids, etc.

On the other hand, there do exist complete minimal surfaces which have
exceptional bounded Jacobi fields. For instance, [EK],[MR] say that the
Jacobi fields which arise from homothetic expansions for flat-ended minimal
surfaces (refer to [RT] for such examples), as well as the Jacobi fields which
arise from rotations around the axes of the minimal surfaces constructed by
Kapouleas [K5], are (nontrivial and) bounded. It would be nice to be able
to use those minimal surfaces also as ingredients in the construction posed
in this paper.

Outline of the proof. The construction posed in this paper is an ap-
plication of the gluing techniques developed by Schoen [S2] and Kapouleas
[K1-5], in the form they evolved into in [K4]. For the convenience of the
reader, we proceed now to provide an outline of the general approach, some
of the difficulties in applying them to our case, and the methods by which
we overcome them.

First, we construct an approximately minimal surface: 1) fix a collection
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of minimal surfaces with no exceptional bounded Jacobi fields and catenoids
of very small neck sizes; 2) remove small disks from the minimal surfaces,
remove one or two ends from each of the catenoids; 3) arrange them so that
the boundary circles of the truncated catenoids fit closely into the holes of the
drilled minimal surfaces; 4) then glue them together to obtain a connected,
immersed, complete, orientable surface, say X: M- E3, of finite total
curvature. The general approach requires that the mean curvature should
be small relative to the neck sizes of the catenoids, and for this purpose
we need to pay more than passing attention to choosing appropriately the
relative sizes of the holes in the minimal surfaces and the boundary circles
of the truncated catenoids.

Then, we look for a perturbation of the surface which is minimal. More
specifically, when 7 denotes a unit normal vector field of M, we look for a
function ¢ : M — R such that X, : M — E3, given by X, = X + 7, is
minimal. Recall that for a real valued function ¢ on M, the mean curvature
Hy of Xy : M — E3, given by X := X + ¢, can be written as follows:

(1) Hy=H+ 35+ |AP)S + Gy,

where H is the mean curvature function of X (M), Ay is the Laplacian of
M, |A]? is the square of the length of the second fundamental form, and Cj¢
is the nonlinear term. So, our problem is now to find a function ¢ : M — R
which solves the minimal surface equation

(1.2) 0=H+ %(Ag + A + Q.

We find such ¢ by using the Schauder fixed point theorem [GT], and the
heuristic method is as follows: let ¢; be a solution of the linearized minimal
surface equation, that is

(1.3) (Ag+ |AP)¢1 = —2H.
For each function ¢ of M into R, we define ¢2 to be a solution to
(14) (Ag + |A]) 2 = —2Q.

Then, we would have a map J sending ¢ to ¢;1 + ¢2, and we thus see that
a fixed point of this map is going to be a solution of (1.2).

The success of our work rests on our ability to construct a solution ¢; to
(1.3) such that ¢; is the same size as H and that Qy, is much smaller than
¢1, from which there are two main issues worthy of mention.
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The first issue is the invertibility of the linearized operator Ay + |A|?,
i.e., the Jacobi operator. We first compactify M using the Weierstrass rep-
resentation theorem. The general approach developed in [K1-5] requires us
to understand the spectrum of the linearized operator not on the entire M
but on appropriate domains, each of which is a standard piece extended
by joining pieces. Roughly speaking, a standard piece is a drilled minimal
surface or a truncated catenoid, and a joining piece is a neighborhood of the
region where the gluing occurs. (Refer to the remark after definition 3.2.2.)
The domains overlap on the joining pieces and cover M. It turns out that
there are small (i.e., indistinguishable from 0) Dirichlet eigenvalues for the
linearized operator on each domain. So, we solve the linearized equation
with the Dirichlet condition on each domain modulo the eigenspace of those
small eigenvalues (i.e., modulo the approximate kernel), and correct the lo-
cal solutions later by the force balancing argument. And, this is exactly
where the assumption of no exceptional bounded Jacobi fields plays a role,
for the force balancing arguments can take care of the bounded Jacobi fields
which arise from translations.

To apply the force balancing argument, we need to perturb an arbitrary
end so that a prescribed change of forces is achieved. If the end possesses
a nonvanishing force, this can be easily arranged by scaling and rotation.
But these do not work for the ends of vanishing forces, for example, the end
of Enneper’s minimal surface. There appeared a similar situation in [K4],
and the “geometric principle” was proposed to help overcome the difficulty
there. In the present construction, perturbing the ends of vanishing forces is
one of the greatest difficulties, and fortunately, it can be achieved through
a study of ends using the Weierstrass representation theorem.

The second issue is the decay property of the local solutions along the
joining pieces. Following the general approach, we obtain a global solution
¢1 to (1.3) by gluing local solutions and taking care of the error term by
iteration. The decay of local solutions ensures the smallness of the error
term, hence the success of the iteration, and the smallness of the nonlinear
term Q¢1 for ¢;. We achieve the required decay by adopting the ideas from
[K2,4,5]: we first modify the local solutions through the addition of a certain
function in order to force the solutions to decay exponentially along joining
pieces, and then we correct them by rearranging the relative positions of the
drilled minimal surfaces and the truncated catenoids.

Because of the perturbation of ends and the rearrangement of the relative
positions, we construct a whole family of approximately minimal surfaces
and single out an appropriate one to be perturbed by a fixed point argument
in the proof of the main theorem. An elaborate accounts for the general pro-
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cedure for solving the linearized minimal surface equation and the analytic
reason for the perturbations are explained in the beginning of section 4, but
one needs to get familiar with the notation to be developed in subsections
3.1 and 3.2.

Outline of the paper. In section 2, I present some results related to the
ends of complete minimal surfaces of finite total curvature: using the Weier-
strass representation theorem, I classify the ends and study their forces.
Then I devise a way to perturb the ends (of vanishing forces) by deform-
ing the Weierstrass data so that prescribed changes in the forces can be
achieved. In section 3, I construct a family of approximately minimal sur-
faces and develop much of the notation. In section 4, I solve the linearized
minimal surface equation (1.3). In section 5, I solve (1.4) and combine the
result with that of section 4 to prove the main theorem.

Acknowledgments. I would like to thank my thesis advisor, Professor
N. Kapouleas, for suggesting this problem, and for his constant encourage-
ment and stimulating discussions on this subject. This work was partially
supported by a Sloan Doctoral Dissertation Fellowship.

This paper is dedicated to the memory of my father, Ik-Hyun Yang.

2. Ends of complete minimal surfaces
of finite total curvature.

In this section we use the Weierstrass representation theorem extensively
to classify ends of complete minimal surfaces of finite total curvature and
to show that any end can be perturbed so that a prescribed small change
of forces can be achieved. We need this perturbation of ends to handle the
kernel of the linearized operator Ag+|A|?>. When an end has a nonvanishing
force, changing forces could be done easily by simply rotating and resizing
the end. But, this idea does not work for ends of vanishing forces, for
example the end of Enneper’s surface. We perturb such ends by deforming
the corresponding Weierstrass data. We start with

Theorem 2.1.1 ([O], [HK] Weierstrass representation theorem).
Suppose N is a minimal surface in B3, M its Riemann surface, g the stere-
ographic projection of its Gauss map. Then, N may be represented, up to a
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translation, by the conformal immersion

(2.1) X =(z,y,2) = Re/@,

where
22 ®=(ondnd) = (307 - h e + )i an )

for some holomorphic one-form dh on M. When X:M—-Eisa complete
conformal minimal immersion with finite total curvature,

1. M is conformally diffeomorphic to M\{p1, ..., pr} where M is a closed
Riemann surface, and r > 1,

2. X is proper,

3. The Gauss map M — S2, which is meromorphic on M, extends to a
meromorphic function on M; the holomorphic one-form dh extends to
a meromorphic one-form on M,

4. The total curvature is an integer multiple of 4w and satisfies

/ KdA < —dn(k+ 1 — 1) = 2n((M) — 1),
M

where k is the genus of M, r as in 1, and x(M) is the Euler characteristic
of M.

Conversely, let M be a Riemann surface, g : M — CU {0} a mero-
morphic function and dh a holomorphic one-form on M. Then (2.1) and
(2.2) define a conformal minimal mapping of some covering of M into E3,
which is regular provided the poles and zeros of g coincide with the zeros of
dh with same orders. The mapping X is well-defined on M if and only if
no component of ® in (2.2) has a real period. That is

Period,(®) = Re% ¢=0
v

for all closed curves v on M. a
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If we denote by g the metric inherited from the standard metric of E3,
by A the second fundamental form, then we have from [DHKW][HK]

2\2
_1@2=(1+|gl) ldh|2,

g—2l | 4lgl2
(23) dg 2 32lg]> |dg|?
A=Rel% . an\ (AP =—2K =229 199
e{g } Al T+ 9P dhl

For any p € M, we can find a neighborhood D of p such that we may assume
p=0€D=Dyg={weC:|w| <d}

2.4 >
(2:4) g=uw", dh=Zamwmdw

m=k

for some &’ > 0, ax, # 0, and n,k € Z with n > 1, by rotating and translating
X (M) in E?® and reparameterizing D if necessary,
There is an interesting relationship between n and k.

Proposition 2.1.2. Assume (2.4). Then, p is a branch point iff k > n. p
is a regular point iff k = n. (p is umbilic iff k =n > 1.) p is a puncture iff
k<n-1.

Proof. First of all, if k = n — 1, then Resogdh = 0 and Resog~'dh = ay, #
0. Hence, Reso¢1 = —iResop2 # 0, which implies the non-vanishing of a
period, a contradiction. If k > n, it is easy to check with (2.3) that the
metric g vanishes, hence w = 0 is a branch point.

Suppose k = n or k < n — 1. Then, (2.1),(2.2) and (2.4) imply, up to
translation

-T

%17 (Reay, cos(T8) + Imaysin(T9)) + o(r~T),
-T

y = —12—:,—,- (Reay, sin(T0) — I'may, cos(T0)) + O(,,.—T)’

—CrFtl < z < Ork L ifk #-1, z=Dlnr+0(r) ifk=-1,

r=—

for some constants C, D, where w = re?, T :=n —k — 1. When k = n, it
is easy to see that the image of a small circle {w : |w| = 6"} C Dy winds
around (suitably translated) 2-axis once, and contracts to a point as 6" — 0,
hence p = 0 is a regular point. Using (2.3), it is easy to see when it can be
 umbilic. When n — 1 > k, we see =,y — oo, hence p = 0 is an end. a
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The formulae in the above proof imply that the image of an end satisfies,
up to translation,

el <a(Var+e?)" itk -,
2= Bl (VT +) +0 ((m)‘” ‘""“‘”) it = 1,

for /22 + y2 > R where A, B, R are some constants and p := —k=L. Mo-
tivated by the fact that if n —1 > k > —1 then —(n —1) < p < 0, if
1>k>-n—1then0< pu<1/2,ifk=—n—1then 1/2 = p, if

—n—1> kthen 1/2 < p < 1, we classify the ends as follows.

Definition 2.1.3. We call an end planar, catenoidal, of small amplitude, of
moderate amplitude, of large amplitude, respectively if n —1 >k > -1,k =
-1,-1>k>-n-1lk=-n-1-n-1>k a

The winding number of an end given by (2.4) is n — k — 1. It is obvious
that the above characterization does not depend upon a choice of the Weier-
strass data. When an end is embedded, the above definition of a planar or
catenoidal end coincides with what appears in literature. The definition of
an immersed planar end coincides with that of a flat end of [EK].

Let v be a closed curve in an end E, and consider [ 7(s)ds where 7(s)
is a unit vector field in a neighborhood of v, tangent to k and normal to v,
pointing toward infinity. Then, the quantity /. 'y 7(s)ds is homology invariant
[KKS],[HK].

Theorem 2.1.4 ([HK]). When v is any closed curve in the homology class
of the puncture p; € M defining an end E,

Force(E) := / 7j(s)ds = —2mRes,, ®
v

where ® is as in (2.2). a

In particular we have Resp, ¢1, Resp,¢2, Resy,$3 € R, which is equivalent
to the vanishing of the period of E.

Lemma 2.1.5. Suppose an end E is given by (2.4). Then, we get the fol-
lowing table, where the vertical direction is the direction of the limit normal
of an end.
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type n relation of nonzero nonzero
of end (= n'_k,;_ll n and k horizontal force|vertical force
planar  |[-(n—-1)<pu<0[n-1>k>-1 impossible impossible
catenoidal uw=0 k=-1 impossible necessary
of small 1 . . .
amplitude O<p<s —1>k>-n~—1| impossible possible
of moderate 1 _ ,
amplitude k=735 k=-n-1 necessary possible
of large 1 . .
amplitude s<p<l -n—-1>k possible possible

Proof. When E is planar, catenoidal, or of small amplitude, we have
Respgdh = 0. So,

Resppy = %Resog—ldh = —iResgps.

Since Resopi, Resops € R, we conclude Resppy = Resopz = 0, hence the
horizontal components of the force vanish. It is easy to check for vertical
components when FE is planar or catenoidal.

Suppose F is an end of moderate amplitude. If horizontal components
of the force vanish, then Resqg~1dh — Resggdh = 0 = Resog~'dh+ Resogdh
which implies Resggdh = ap, = 0, a contradiction.

All other conclusions follow from appropriate examples stated after the
next corollary. 0O

Corollary 2.1.6. If there is only one end in a complete minimal surface of
nonzero finite total curvature, then it is an end of large or small amplitude.

Proof. From the balancing formula [S2][KKS] and the above table, we con-
clude that the end is planar or of small or large amplitude. It cannot be
planar because of the harmonicity of coordinate functions and the maximum
principle, by similar arguments to [JM, corollary 2. O

The end of the Enneper’s surface is of large amplitude. So are those
of higher order Enneper’s surfaces [HK]. It would be interesting to have a
minimal surface with only one end which is of small amplitude.

Now, we present some examples of various ends and how to perturb them
to change their forces.
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Example (i). End of large amplitude. Consider g = w™,dh = w™" 2+
dhp on CU {oo} with n > 1 where

.__a_ _,,—n—1 n—1
dhp '——27r( w +w" ) dw

+ :'g—ﬂ(-—z')(w_"_l + W Ndw + _—Z;w_ldw,

withn > 1, @, 8,7 € R. If o® + 82 + 42 # 0, they give us Enneper’s surface
for n =1 or higher order Enneper’s surface for n > 1, with the only end at
w = 0, which is of large amplitude with vanishing force. Recall that w = co
is a regular point for Enneper’s surface, but a branch point for higher order
Enneper’s’ surface. If a®+ %42 # 0, the Weierstrass data give a branched
immersion with “two” ends: w = 0 is still an end of large amplitude with
force (a, 3,7); w = 0o becomes an end of moderate amplitude if a2+ 3% # 0,
or a catenoidal end if o + 82 = 0; the branch points are uniformly away
from w = 0 if a? + B2 4+ 42 is small enough.

Example (ii). End of moderate amplitude. The Weierstrass data
g=uw",dh = (w1 —w"1)dw on CU {co} with n > 1 give us a branched
immersion with two ends. Both w = 0 and w = oo are ends of moderate
amplitude with horizontal forces (27,0, 0), (=2, 0, 0), respectively.

Consider, on CU {oo}, the Weierstrass data g = w™ and dh = dhp with
o? + 2 + 4% # 0 where dhp is as in example (i). If a2 + 52 # 0, they give
us a branched immersion with two ends. w = 0 and oo are ends of moderate
amplitude with forces (a, 8,7),(—a, —B, —7), respectively. If o + 5% = 0,
they give us an n-sheeted catenoid.

Example (iii). End of small amplitude. The Weierstrass data g = w",
dh = (¥ + Lw)dwon CU{oo} withn>1,-1>k>-n—-1,y€R
give us an immersion, branched if v # 0, with two ends. w = 0 is an end of
small amplitude with force (0,0,%). w = oo is planar if v = 0, or catenoidal
if v # 0. Creating horizontal forces for ends of small amplitude is not so
simple as we will see in the proof of the following proposition.

Proposition 2.1.7. Let E be an immersed end with no branch point which
is catenoidal or of any amplitude, and ¢ > 0 be a small constant. Then for

any € == (€1, €2, €3) € R® with \/.517 + 522 + 632 < ¢, we can find an immersed
end Eé' with no branch point such that

1. Force(Eé-) — Force(E) = g,
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2. Eg" depends smoothly on £.

Proof. Without loss of generality, we may assume that E is the image of
X : Dy\{0} — E® with the Weierstrass as in (2.4). First, we note that
the existence of a root of dh = 0 in Dg\{0} would imply the existence of a
branch point, hence it has no root.

Case (i). E is an end of large or moderate amplitude. Define
(2.5) G:=g, dh:=dh+dhp= (1 + %F-) dh
where dhp is as in the example (i) with = (o, B,7)- Note that 1+ % th is
a holomorphic function in Dy in this case. When a, 3, are small enough
in comparison with &', we can say that the equation 1 + £ th = 0 has no
root in D because dh = 0 has no root in D5\{0}. Then, g, dh do not create
branch points and give us an immersed end of large or moderate amplitude,
respectively, whose force is different from that of E by (a, 5,7). Note that
winding numbers do not change.

Case (ii). FE is an end of small amplitude. In this case, a1 = 0
in (2.4) and the force of E is (0,0, —2ma_1), both of which follow from
Resog‘ldh = Resggdh = 0. (See the proof of lemma 2.1.5.) Now if we
define §,dh as in (2.5) we would obtain an end with a branch point in
general because dh would have a zero in Dg\{0} when o2 + 3% # 0. Note
that winding numbers would change. We consider instead a perturbation
given by the following formulae

) dhp e\ s dhp
(26)  §:= (1+_d—h—) (1+Aw ) dh = (1+ﬁ)dh

where A = A(dh, o, B) is a constant to be defined shortly. Note that g is still
holomorphic in D§ while the order of zero at w = 0 decreases in general, and
that the zeros of dh in Ds\{0} coincide with zeros of § with same orders.
We easily see that

o
g ldh=w™(1 - Aw™ 1 4 42,200k Z amw™dw
m=k
which immediately implies Resw=0§‘1d~h = —Aai. On the other hand,

gdh = (gdh + 2gdhp + gdh%/dR)(1 + Aw™F~1)
= 2gdhp + gdh% /dh 4+ holomorphic one-form
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which implies Resy—ojdh = (a+i8)/m+(a+i8)2cniri1/(47%) where cpiki
is given by wkdw/dh = Y o0, cuw™. By defining

A= (@t i)/ + (@t B enrir1/ (A7) [ ax,

we have _ _
Resy—0§ 'dh = —Aay, = —Res,—ojdh.

Then, §,dh on Dy define an immersed end E without branch points whose
force is (0,0, —2ma—_1) + (—27Re(Aay), 2mrIm(Aay),y). The correspondence

(a, 8,7) — (—2mRe(Aay), 2mIm(Aay),7)

is a local diffeomorphism on a neighborhood of (0,0,0) to a neighborhood of
(0,0,0), so we get the result. Note that E is of small amplitude if o2 +82 = 0
but that E is of large amplitude if a? 4+ 82 # 0. Note that winding numbers
do not change.

Case (iii). E is a catenoidal end. When E is a catenoidal end, it already
has non-zero force. Hence we resize and rotate E to generate small extra
force. Note that, when £ = (&1, €2, &3), we have Weierstrass data

@7)  G=g, dh=1/E+&+ (€~ 2may)’dh/\/(2na,)?

for Eg- up to rotation. O

We can perturb an immersed catenoidal end (but not embedded) by
perturbing the Weierstrass data as in the case (ii) of the proof, hence keeping
the direction of the end. The Winding number is preserved in this case,
too. When we tried the same idea to perturb embedded catenoidal ends, we
always ended up producing ends with a branch point and a different winding
number.

3. Approximately minimal surfaces.
3.1. Construction of a family of approximately minimal surfaces.

Conventions and definitions. For the rest of this paper, we assume the
following: 7, for 1 < m < K + I are small independent constants except
that their ratios are uniformly bounded. Let

52

T := maz{T,}, £:=In -
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where 0 is a small positive constant which is independent of 7,,,’s, except that
7/4 is very small when compared with 6. Let ¢ : R — [0,1] be a smooth
monotone function, fixed once and for all, such that 9 = 0 on (—o0,1/3]
and 9 =1 on [2/3,00). We define 9[a, b] : R — [0,1] by

via @) = (3=2),

a

where a > b is allowed as well as a < b. We fix a Cartesian coordinate
system (z,9,2) in E%, and for € = (€1,&2,63) € R?, |& == /EF + E + &.
A function with a compact support is not distinguished from its restriction
to a subdomain containing the support, or a trivial extension to a larger
domain. ) is an arbitrary constant in (0,1072).

Collection of minimal surfaces. For any integer I > 0, fix I +1 number
of complete, immersed (without branch points), orientable minimal surfaces
of nonzero finite total curvature without any ezceptional bounded Jacobi
fields. The Weierstrass representation theorem 2.1.1 provides immersions
X, M; = Mi\{pi,q};‘;l — E3 for 1 <i < I+ 1. We can choose a finite
cover of M; by open sets in such a way that each puncture p; 4,1 < g < n;,
belongs to only one open set, say Njq,. We may assume that N,’s are
pairwise disjoint and

/Vi,q =Dys:={weC:|w| <40} with Pig = 0.

We may also assume that the Weierstrass data g, dh on N 4 are

o0
(3.1) g=w", dh=) amw™dw withaj#0

m=k

up to Euclidean motions. We fix these data once and for all, and we do not
distinguish the domains or points in M; from their images by X;.

Now, we fix arbitrary points {pj}]I-i"iﬂ C U;’ille where the gluing is to
occur in such a way that each M; has at least one p; for K+1 < p; < K+2I
and that px.; and pgyr4; for each 1 <4 < I belong to different M;’s. We
may assume that none of the p;’s belongs to the ends U; ¢N; 4.

For each X; : M; — E3 , we introduce two kinds of perturbations for the
unbalancing and repositioning whose purposes are explained in the outline

of the proof.
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Unbalancing. Firstly, we perturb an end so that the force of the resulting
one would be different from that of the original one by a prescribed amount.
Recall that if all ends of X; : M; — E3 are planar, there is a bounded
Jacobi field which does not arise from translations [EK, Theorem B]. By
our assumption of no exceptional bounded Jacobi fields, we may assume
without loss of generality that the end corresponding to p;1 is not planar.
For each §; € R3 with Ifgil < 9027 where 73 is a constant to be determined
in proposition 4.3.4, we have an immersion X;; : Dgs\{0} — E3 given by
proposition 2.1.7 (with 46 = ¢’) the force of whose image is different from
that of the original end by 59,.. Then we define X; : M; — E2 by

Xi(p) = (@) Xi(p) + (1~ %(p)) Xi 1 ()
where ¥(p) := ¥[26, 36](Jw(p)|) on D4s\{0}, :=1 on M;\Dys.

Repositioning. Secondly, for each p; € N; we change the relative position
of a neighborhood of p; and the minimal surface minus the neighborhood by
translation. Let (r;,0;, 2;) be the cylindrical coordinates system such that
the the tangent plane C E2 at X;(p;) to X;(M;), which we call P, is given
by z; = 0. We may assume that ¢ is small enough that a neighborhood of p;
in M;, say Nj, is mapped by X; to the graph over {(r;,0;,0) € P; : r; < 46}
of a function, say f;, and that N; 4’s and Nj’s are pairwise disjoint. Define
¥; 1 M; — R by 9; :== 1 on M;\Nj, v; := [26,36] or; on Nj. Finally, for
any ¢; € R with |¢j| < v1¢%7 where +; is a constant to be determined in
proposition 4.3.4, define X;: M; — E3 by

Xi(p) = Xi(p) + Z ¢ (p)i(ps)

where 7; is a unit normal vector field on X'i(Mi) and the sum is taken over
all indices j such that p; € M;. Note that as ¢; varies, X",(Mz\/\/;) translates
along 7;(p;).

We now turn to construct small catenoidal ends and necks by first re-
moving one or two catenoidal ends from an unbalanced catenoid of a fixed
neck size, and then by scaling with various scale factors 7,,.

Unbalanced catenoid. Put a catenoid C of neck size 1 in E3 in such a
way that its axis is the z-axis and its center is at the origin of E2. The
force of the top end is (0,0, 27). Choose an arbitrary &,, € R3 with I€c,..| <
7227B3=20/2 Let C be another catenoid which still centered at the origin
and whose top end now possesses a force of (0,0,27) + r,;lg”cm. In fact C is
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obtained from C rotation and homothetic expansion by small amounts. Con-
sider the cylinder {(z,y,2) : 22 +y? = 1/4,—1 < z < 1}. Both C and C will
be graphs over the cylinder given by r = #(8,2z) forC, r=#(6,z) forC,
respectively, where (7,0, z) is the cylindrical coordinate system. Let

7(0, 2) := (1 — [—1,1] 0 2)7(0, 2) + (¥[-1,1] 0 2)7(0, 2)

on {(6,2) : —1 < z < 1}, and define an unbalanced catenoid C by C := C if
z < —1, := the image of (8,2) — #(8,2) if —-1<2<1,:=Cifl<z.

Small catenoidal ends and necks. Choose 7,,, for 1 < m < K. Cut off
the bottom end of € by a plane in {z < 0} which is perpendicular to the
z-axis and which intersects C in a circle of radius 27',,_,1/ 2, and scale the €
minus the bottom end by 7,,, and call them E,,. That is, E,, is the image
of C by

(2,9, 2) = (T;m) Tim¥, TmZ2)-

These are the catenoidal ends to be used in the construction. For catenoidal
necks, choose 7y, for K +1 < m < K + I, and cut off the two ends of C by
planes which are perpendicular to the axes of C in circles of radius 27',,_,1/ 2,

and scale the C minus the two ends by 7,,. We call them B,,.

The configuration. Arrange the perturbed minimal surfaces )—(;(Mz), 1<
i < I+ 1, the catenoidal ends E,,,1 < m < K, and the catenoidal necks
B,,,K+1<m< K+ 1 as follows:

1. The boundary circle of E,, coincides with the circle in P, of the same
radius centered at pp,.

2. The bottom boundary circle of B, coincides with the circle in P, of
the same radius centered at p,,, and the top boundary circle with the
one in P,y centered at pp,41.

3. When we consider N;’s as vertices and B,,’s as edges (and disregard
E,.’s), it is a connected tree.

The gluing. Now we glue them together as follows. Fix a p;. Recall
the cylindrical coordinates system (r;,0;,z;) where the tangent plane P;
to Xi(Mi) at p; is given by z; = 0. Then, over the annulus , /46Das =
{(r},6;,0) € P; : £ < rj < 46}, a neighborhood of p; in M; is mapped by
X, to the graph of a function, say z; = f;(r;,0;), and E; if 1 < j < K or
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Bjif K+1<j<K+1is also the graph of a function, say z; = fj(rj,Oj).
(We define f; := 0 if r; > 2,/7; and may assume f; > 0.) Define ¢; :=
Y[/T5,2/Tj] o7 and

B;(rj,05) = i fi(rj,0;) + (1 — ;) fi(rj,0;)  on . /46Das.

The graph of ®; transits smoothly from B,, or Ey, to Xi(Mi), and we glue
all Xi(Mi), B,,, E,, using these transition functions to obtain a smooth, con-
nected, orientable surface M and a family of smooth complete immersions of
finite total curvature X cEiM— E3 for each parameter (((j), (€a,), (&m))

in Z,, x 2., X E,, where
Z’Yl = {(Cl) ot 1CK+2I) € RK+2I : |CJ| S 71827-) } )
Eyp 1= {(gﬂn T ’EQI+1) e R . 0] < 72£2T}>

E,n = {(g"c“ ,g‘CKH) € R3K+D) . |§:m| < ,),2@27.(3—»)/2}'

Remark 3.1.1. (1) It may be possible to relax the tree requirement for
the graph prescribing the way the connected sums are taken, but we
postpone discussing this for another occasion.

(2) Note that the positions where the gluing occurs, the sizes of the
catenoidal necks and ends, and the relative sizes of N;’s may be pre-
scribed, hence there are 3(K + 2I) continuous parameters which can
be chosen freely in the construction of the approximately minimal sur-
faces (when there is no symmetry). There are also (discrete) choices
of which sides of the minimal surfaces the catenoid is to be attached
to.

Lemma 3.1.2. The immersions X oF" M — R3 depends smoothly upon
and f

Proof. follows trivially from proposition 2.1.7 and the way the approximately
minimal surfaces are constructed. o

Convention. We will use subscripts cf o denote the dependency of

various objects upon the parameter ((Cj), (€., (ézm)) € Zuyy X By X B,

but we try to avoid writing them if it can be clearly understood from the
context.
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The smallness of the mean curvature, hence the justification for the
phrase ‘approximately minimal’, will be shown in lemma 3.3.7.

We define N; C M to be the domain which is mapped by X ¢ £ onto the
graph of ®; over .. /45D45 C P;. By abusing notation, we use the same N; g
for ends of M; to denote the corresponding ends of M. Npyforl<k<K
is used to denote the ends of M which arise from the attached catenoidal
ends. Note that Ny may be represented up to Euclidean motion by the
Weierstrass data

0,0,2m) + 78| do

o on Dys.

(3.2) g=w, dh=

3.2. Conformal change of the metric.

The smooth metrics g = 8, Fon M induced by the immersions X CE" M —

[E3 are not good for the purpose of estimating functions and tensors on M.
In this subsection, we construct a metric conformal to g by gluing metrics
defined locally, and then use it to estimate various quantities in the next
subsection.

Firstly, we note that on the unperturbed ends N4 for 1 < <I+1, 2<
q < ny,

_ (1+1g*) |dhf®
o 4gP [dw]?

(3.3) |lw|?(r~2dr? 4 d6?)

using (3.1) and (2.3) with w = re®. Introducing z := ln-f—, we see that
r=2dr? 4+ df? = dx? + dh?. Define a metric x;q = dz? + d6? on Nig. On
the perturbed ends \; 1, define x;,1 similarly using (3.1) and (2.5), (2.6) or
(2.7), respectively, depending upon how we perturb the end N 1.
Secondly, on the attached catenoidal ends N} for 1 < k < K define
ln]—[ +In& a.nd Xk := dz? + d6? using (3.2).
Thirdly, we note that on N for 1 < j < K421, where the gluing occurs,
we have that

8%, > 8®; 0B, 88;\%\ .,
g—(1+(am)>d +2(9 80d ridf; +<r +(80)>d0

using the cylindrical coordinates system (rj,6;,z;) and the function ®;,
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hence if £ :=In %,

A\ 2
g= 522 ((1 + 6 2% (%) ) dz?

G4 0%; 8%, 0%;\2
+2672e% =L L dpdf); + (1 +67%> (-—J-) ) dej?) :

9z 00; 86

Define a metric x; := rj"zg =0"2e¥g on Nj.

Now we define smooth cutoff functions to be used in gluing the metrics.
In the following, B, or E, stands for the connected component of M\ (UN;U
Nk) which arises from B,, or E,,, respectively, where the unions are taken
for1<j<K+I1,1<k<K:

1. ;g :=[26,0]or on N g, :=00n M\N; for1 <i<I+1,1<q<n;,
2. by :=1)[26,6] or on N, := 0 on M\N} for 1 <k < K,

3. ¢ :=¢[2T—6,%] orj —[6,20) orj on Nj, :=0on M\Nj for 1 <j <
K +2I,

4. ¢¥p,, =1=Ym—Ymeron B}, :=00on M\B;, for K+1<m < K+1,
and ¥g, =1—tp—tmon E/,, :=00n M\E], for1 <m < K.

Definition 3.2.1. Define a metric xy = X ~ conformal to g by

K+I I+1 n; K41
X+ = Z Yix; + ZZ"/’z,qu,q + Z VB Tm ’g
=1 g=1 m=K+1
+ Z VEn T &+ Z¢ka
m=1
K+1 I+1 n K+I
I—Z% DI S Z%
i=1 g=1 m=K+1 m=1
A positive function py : M — R is defined by x = p2g. O

With x metric, each end of M is isometric to S! x [0,00), and a neigh-
borhood of the region where the gluing occurs becomes a long cylinder of
length ~ In(62/7) which is almost flat. The remaining region with x metric
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has finite area and uniform geometry, that is nonzero injectivity radius and
bounded curvature.

Now we develop some notation which is conveniently used to denote
various regions of M.

Definition 3.2.2. (1) Define 7j for K+I1+1<j < K+2I by 7; := 77
and 4 :=Iln& for1<j< K +2I.

(2) Define a function z : M — R by z(p) = min{éj,maa:{O In 75;5}}
on Nj, := maz{0, 1n7%} on Njg, = maz{ly,l +In } on N,
and extend it to be continuous and constant on each component of
M\ (UN;;UN; UN) where the unions are taken for 1 < j < K+2I,1 <
1<I+1,1<¢<n;,and 1 <k<K.

(3) Vb, ], Viglb, c] or V[, c] is defined to be the closure of the component
of {p€M:b< z(p) < c} which is a subset of Nj,Niq or N,

respectively.

(4) We define closed curves C;[d] := {p € V;[0,4;] : z(p) = d}, Ciqld] :=
{p € Vi,gl0,00] : z(p) = d}, Cyld] == {p € Vilew, o0 : a(p) = d}.

(5) Define Cp, to be the closure of the component of {p € M : z(p) > 0}

which arises from E,, for 1 < m < K or from B, for K +1 < m <
K+1,and Cl, :={p € Cn : bm — 2 < z(p) < & + 2}. Define Q; for
1 <4 < I+1 to be the closure of the component of M\ UX* {p €
Cm : ©(p) = £} Which arises from NV;, and &, := {p € Q; : z(p) < 2}.

O

Note that €;’s and C,’s cover M and they overlap, if they do, on
V;[0,;]’s. In the language of [K5], we can interpret V;(0, £;] as joining pieces,
Q:\U; V;[0,£5],Cm\ U; V;[0,4;] as standard pieces, and 2, C;, as cores of the
standard pieces. V; 4[0, 00] or Vi[€k, 00] are an end of €); or of Cy,respectively.

Note that £/¢; for any j is arbitrarily close to 1 when 7 is small enough
Recall that M is orientable. We choose a unit normal vector field on X —(M )

and denote it by 7 U, g With x metric, the minimal surface equatlon (1 2),

parametrized by ((Cj), (€q.), (Ecm)) € Zy, X By, X E,, can be written as
(35) (B + 05 * 1A = =207 H, £ = 2077 Q g4

Definition 3.2.3. £, =L,z =0+ p; A% O
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3.3. Estimates for various
geometric quantities of
the approximately minimal surfaces.

Convention. From now on, we assume the following for the indices: 1 <
1<T+1, 1<q¢<n;, 1<j<K+2[,1<k<K,1<m<K+1I. Unless
stated otherwise, all indices are assumed to run through the above range,
for example with sums and unions.

Let ®; be as in subsection 3.1, that is ®; is a function defined on the
annulus {(r;,0;,0) € P; : z < r; < 46} whose graph is a neighborhood
of the region where the gluing occurs. Then, V;[0,¢;] is the image of the
embedding

(3.6) X :[0,45] xSt - E3, (z,0) — (Je % cosb,desin b, &;).

In particular, if we write z = 21,0 = 22, g = ggpdz®dz®, A = Agpdz®da®,
then

aab)f Oap(0e™T cos @) O.p(de " sinb) 0P,
det | 01X —e~®cos®  —be"sinb 9, ®;
0o X —de *sinf de *cosh  Opd,
(3.7) Aw = =
V/det[gar] 5222, [1 4+ -2 (8,87 + 5 22)

For gq, recall (3.4). Now we proceed to estimate ®;. As in [K4], for a

tensor T,

IT : C**(QN By, X
q(p)

where q is a function on 2 C M and B, is the geodesic ball of radius 1
centered at p. We omit ¢ when ¢ = 1.

b

T : C+**(Q,x,q)| := sup
peEN

Lemma 3.3.1. For anyt € N, we have
IV8; : C(V;{0, ], do + d8P, q)|| < C/(2)5”
where ¢ == 2% in V;[0,£;/2] and := ™% in V;[¢;/2,4;].

Proof. Recall that ®; := v;f; + (1 — ;) f] where 1); is a smooth cutoff
function which transits from 1 on 2,/75 < r; < to 0 on 7; /6 <1 < Vi

Since f; is analytic and fj|,=0 = Df;|r=0 = 0, we have

fi=0@?), Dfj=0(r;), D™fi=0() for/r<r;<é form>2,
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where D in this proof means &,; or rj_16gj. Note that

fil <Crj on T <1 <27
On the other hand, f; for 7;/6 < r; < 2,/7; can be written as

fi(r;,05) W __dt for1<j<K+1I
i(r;,05) =T; orl1 <5< + ,
AR J e 21 J
2T dt
=T</ ’ for K+I+1<j<K+2I
i /7] Vit -1 oritlitlsys A+

where 7} := 7;{(0,0, —2) +T]71€Cj_,|/2w. (See (3.2).) Then it is easy to see

Ifil £ C1; on /7 <rj <27,
|D™f;] < CTjTj—m onT;/6 <r; <27 form>1.
Now the result follows from the above estimates, the trivial estimates for
1;, and the relation r; = de™". O

As in [K1,4], two metrics x; and x2 are called t-equivalent on a domain
Q by a constant C iff for (z,5) = (1,2) or (2,1), we have

I : CHUXNI <G, It CH QxS C.
If x1, x2 are t-equivalent by Ci, then
I-: CHQx)]l £ @, C)ll- = CHQ x2)l-

Lemma 3.3.2. On ., g and x are t-equivalent by C(t,d). On C;,, T.2g
and x are t-equivalent by C(t,d). On Vj[%i - 1,%], Tj_lg and x are t-
equivalent by C(t). On V;[0,4;], dz? + df? and x are t-equivalent by C(t),
and

lx — (dz? + d6?) : CH(V;[0,4;], dz? + db?, q)|| < C(t)8?,
where g = =2 in V;[0,£;/2] and = e2==4) in V;[¢;/2,4].

Proof. The equivalences of metrics on €2} or on C,, follow easily from defini-
tions. The rest of the assertion follows from definitions, formula (3.4), and
lemma 3.3.1. g

In the following lemmas, n > 1, k are integers assigned to each V; 4[0, oc]
by (3.1). Note that for ¢ = 1 they are related to the unperturbed Weierstrass
data, and that n — k — 1 > 1 by proposition 2.1.2.
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Lemma 3.3.3. When ¢ > 1, or ¢ = 1 and V; 1[0, 00] was originally (i.e.

when é; =0 ) an end of large or moderate amplitude or a catenoidal end, we
have

1A : C*(Vigl0, 0], x, e~ *F1%) || < C(1)5*+.

Note the difference of decay rates depending upon the type of ends. When
V;,1[0, 00] was originally an end of small amplitude,

A : C*(Vi1[0, 00l, x, ™) || < C ()0,
Finally we have
A : C*(V;[0,45],x,9) < C(t)d? for q as in lemma 3.3.1,
A : C* (%, )l < C(¢,6),  [|A: CH(Cruy X < C(t, 8)Tm,
A - C4(Viltx, 0], X)I| < C(t, 8)7.

Proof. For the first inequality with ¢ > 1, we see from (2.3),(3.1) that
A = Re{f(w)w* 1dw?}
= Re{f(w)w* 1} (dz? — db?) + 2Im{f(w)w**'}dzdb.
for some holomorphic f with f(0) # 0. From the holomorphicity of f, we
have ||Ref (or Imf) : C*(Ds, |dw|?)| < C(¢t) which in turn implies
|Ref (or Imf) : C*(V; q[0,00], x)|| < C(t)

The first inequality with ¢ > 1 follows. The case for ¢ = 1 when V; 1[0, 0]
was originally an end of large or moderate amplitude follows similarly,
with perturbed Weierstrass data (2.5). When V;;[0,00] was originally a
catenoidal end, we may consider only the effect of the scaling and get the
result from (2.7).

When V; 1[0, 0o] was originally an end of small amplitude, we have

A = Re {% fi (w)w_"+kdw2}

from (2.6), where fi(w) = (1 + Aw®*1)~lu=kdh/dw. When fo :=
(—2nw*dh/dw)~1, f3 := 1 + Aw™ %=1, we have

§=(—a—if)f2fsw™ ' + fouw” + yfofsw™* ! + (o — iB) fofsw®™ F 7L,
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from which we compute %% to obtain

A = Re{fy*"'dw?} + Re{(—a — if) fsw ™" ?dw?}
+ Re{vfedw?®} + Re{(a — i) frw" 2dw?}

for some holomorphic functions fy, - -- , fz with f;(0) # 0. Arguing as in the
case for ¢ > 1, we obtain

1A : C*(Viale, 2 + 1], )l < CE)(L + |G~ HFHDeln btz ghtle=(E+)z

which implies the result.

On V;[0,4;], the result follows from (3.4), (3.7), and lemmas 3.3.1 and
3.3.2.

On ), we use (2.3),(2.4) with n = k to estimate A locally with |dw|?
metric, and appeal to the equivalence of |[dw|? and g on Dj, the compactness
of this region with respect to the g metric, and finally the equivalence of g
and x in this region.

On C!,, the scaled picture by the order of 7,;! and the equivalence of

Tm2g and x give the result.
On Vi [k, 0], the result follows from (3.2) and (2.3). 0

Lemma 3.3.4.

165" = C4(Vigl0, 00, x, eX*702)|| < C()s™nhD,
1T : CHV;[0, 5], x, €¥°)|| < C(£)6*,
67" : CH(Chy Xl < C(t, )7t
Tt : CH, x)Il < C(¢,6),
16T = Ct (Vilw, 0], x, el < C()(8 /)T

Proof. On V; 4[0, 00] with g > 1, we have from (3.1), (3.3)

1 1+|g|?|dn| 14w | & k1
1 w| = E amw™| |w| = Flw|~™ ),
Pq 4|g| |d<4.’|| | 4|w|™ ke " a ol

F is smooth in Dg, which implies ||F : Ct*(Ds,|dw|?)|| < C(t). Therefore
|F : Ct(V;4[0,00], X)|| < C(¢), and we get the result for p;*. Since Fly=o #
0, % is also smooth in Ds by choosing smaller § if necessary, we get the
result for pg.
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On V; 4[0,00] with ¢ = 1, we work with the perturbed Weierstrass data,
that is (2.5),(2.6),(2.7). When V; 1[0, 00] was originally an end of large or
moderate amplitude, the above calculations are still valid with the perturbed
Weierstrass data (2.5). When V; 1[0, oo] was originally an end of small am-
plitude, we observe from (2.6),(3.3) that

L1 _ L4 1g +gBEPIL+ Awn P
s 41 4 AwrFT]
= P+,

—k
w dh’ |w|—(n—k—1)

We easily see that F' is a smooth function on Ds with F|,—¢ # 0, hence
arguing as in the case for ¢ > 1, we get the result. The result for the case
where V; 1[0, oo] was originally a catenoidal end follows from (2.7).

On V;[0,4;], we have pf! = rl = §¥1¢F which with the equivalence of

x and dz? + d6? implies the result. On V4 [€, o0], it follows from (3.2). On
the rest of M, the results follow easily from definitions. /0

The following corollary with lemma 3.3.2 tells us that the linearized
operator £, is not different much from the flat Laplacian on the joining
pieces and ends.

Corollary 3.3.5. When ¢ > 1, or ¢ = 1 and V; 1[0, 00] was originally an
end of large or moderate amplitude or a catenoidal end,

llog 2|2 : C4(Viq[0, 00], x, e72") || < C()0°".

When g =1 and V; 1[0, oo] was originally an end of small amplitude, (recall
that k + 1 < 0 in this case)

llog 2| A1 : CH(Vi1[0, 00], x, X*FD7)|| < O ()6 24D
When q := e~2® in V;[0, %1], = e~ A7) ip V}[%i,ﬁj],
leg*|Af? - C*(V3[0, 4], x, @)l < C()8”.
Finally

log? A : ot JurHicn, x)ll < C(t,9),

m=1

llog 2| AI* : C4(Vi[tr, o0], x, e 24| < C(2)8”.
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Proof. follows from the previous two lemmas, since p;2|A|* = pZ|A|2 where
| - |y is the length with respect to the x metric.

Definition 3.3.6. The mean curvature function H ¢ grelated to X I M —
E3 is decomposed as follows:

K+2I I+1 I+K
= (h J+h€a)+zh ot D hee,
j=1 m=1

where supph,; C V;[4—1,4], supphe; C NjNUZELQL supp hec,. C Crns
and finally supp hg"g. C M. O

Lemma 3.3.7. When | - || stands for |- : C*(M, x)||, we have

“Pg 2h‘r]|| < C(t,0)7;, ”Pg 2hC_1|| < C(t,9)|g| < C(t, 5)')’1£ iT3s
log *hgg, |l < C(t,8)lé,| < C(t, 6)rat?r,
oy ke, | < Ct,8)lée,| < C(t,6)1pt>r V2,

Proof. Recall that H =3 ZAabg in a local coordinates system. Then
|k j]| < C(2,0) follows from (3.4),(3.7) with lemmas 3.3.1 and 3.3.2. Triv-
ially we have ||h€Q | < Cft, 6)|§Q l, el < C(#,6)|¢;| from Taylor ex-
pansions of X CE : M — E3. By considering the picture scaled back by the

order of 7.;!, we see ||hz, || < C(¢,0)r, —2|¢, |. Combining these results
with lemma 3.3.4, we finish the proof. a

4. Linearized equation.

The general procedure for solving linearized equations. We will
shortly find ourselves in need to solve

Lyp=FE on M

with suppFE C U{_:'IIQ; Following the general approach of [K1-5], we proceed
as follows: we decompose E = E{:ll E; such that suppE; C ;. On each
Q; , we add a linear combination of some (vector) functions w; to E; so
that F; + A; - w; is orthogonal to the Dirichlet approximate kernel, hence we
obtain a unique solution to

Lydpi=FEi+Ai-w; onQ;, ¢;=0 on 0.
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Now we add a linear combination of some functions v; and, we obtain the
exponential decay of ¢; + 3, ©;v; along the joining pieces V;[0,4;] C Q.
Let v; : M — R be a smooth cutoff function which transits from 1 on £
minus small neighborhoods of the boundary to 0 on M\;. Then, we have

I+1
Ly Z ¥ | éi + Z O;v;
i=1 j

I+1 K+21 I+1

=E+> Ai-wit Y Omi+ Y (L] [ 6+ Ojv;
im1 7 i=1 i

on M, where 7; := L, (¢;v;) and for the rest of the paper, [Ly, Y] = L3 —
YL,. Note that the last term on the right hand side of the equation is
supported in Ui;';Ingn, which is to be rewritten as Y E!, with suppE], C C},.
Add a linear combination of some (vector) functions @, to EJ, so that
E! + A, - ©m becomes orthogonal to the Dirichlet approximate kernel, and

we get a unique solution to
Ly =E, + Ap-om onCn.

Let 1!, be a smooth cutoff function which transits smoothly from 1 on C,,
minus small neighborhood of the boundary to 0 on M\C,,. Then

I+1 I+K
Ly (Z ¥i(¢i + Ojv5) + Z "»b;n‘i’;n)

i=1 m=1
I+1 K+2I I+K
=E+2Ai’wi+ Z @jnj+ ZAm"Dm‘l‘E”
=1 j=1 m=1

on M with suppE" C UZILIQ: Then we iterate the process to obtain ¢
which satisfies

I+1 I+1 I+K
Lyp=E+Y Ai-wi+) Omi+ > Apn-@m onM.
i=1 i=j m=1

The reason for the perturbations for unbalancing and reposi-
tioning can now be explained. Consider the linearized minimal sur-
face equation. Recall that Zj h;; is caused by the gluing, and that
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P heq, + Yom hg, and >_; h¢,j are artificially introduced for unbalanc-
ing and repositioning, respectively. For Zj h: ;, a slight modification of the
general procedure produces ¢, and some unwanted terms such that

Lybr = =207 hrj+ Y Ari wit Y Argn - Om+ D Oy

Then we construct ¢£- following the general procedure, and ¢¢ in somewhat
different manner, which satisfy

Lyge=—202Y hei+ ) Aci-wi+ Y Aem-@m+ ) O mj,
Lxde==20 (Y hgg, + 3 hee, ) + 3 Mgy v
+ 2 R Bm DO
with
Ari=Ag;~ 0~ Ay, Rrm—Rg ~0~Rem, ©r5—Op;~ 0~ O,

So for each parameter in Z,, x Z, X £,,, we have & (& = ®r +d¢+ bz which
satisfies
- — -2 -
Lx®pg~ =205 He g

P

Our hope is that all ~ are actually = for some parameter ¢, .
4.1. Linearized equation on joining pieces and ends..

In this subsection, we study the existence, uniqueness, and the decay prop-
erty of solutions of linearized equations on joining pieces V;[0,¢;] and ends
Vi 4[0, 00], Vic[€k, 00]. Note that the linearized operator L, on these domains
is a small perturbation of the Laplacian A, of the flat metric s := dz? + dg?
due to lemma 3.3.2 and corollary 3.3.5. The situation is quite similar to
[K5,Appendix A], but our metric and the 0-th order term on Vj[¢;/2,£;]
show different behavior. Furthermore our strategy of obtaining local so-
lutions on joining pieces is different from that of [K5], and requires us to
analyze our situation more carefully.

Conventions. We use € to denote a constant which can be taken arbitrar-
ily small by choosing smaller § if necessary, and we fix a constant o € (0,1).

Lemma 4.1.1. The smallest eigenvalue for the Dirichlet problem for L, on
any domain of V;[0, ¢;] is no smaller than C’éj"2. In particular, the Dirichlet
problem has a unique solution.
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Proof. By the domain monotonicity and variational characterization of eigen-
values [C], and by lemma 3.3.2, it suffices to show, where V := V}[0, ¢;],

//V $*dzdh < Cé? //V(|V¢|§ _ 4P;2|A|2¢2)dxd0

for any smooth function ¢ vanishing on V. For this, we first decompose

$(,0) = baug(2) + bosc(2,8) bY Pavg(x) == & [ ¢(x,6)d6, and observe
that

¢
/ /V o(@)¢*(z, 6)dzxdf = / /V 4(2)¢2,.(x, 6)dzd8 + 2 /0 4(z)¢2,(2)dz,
2T
#2,.(x,0) < 27 / |Vo(z,8)|2d0 for z € [0,4;],
0

Ba@) <o [ Way(@ds < [[ V6@ O2d30 tor € 0,672,

¢;
$20g(2) < (8 — ) / (Bp(8))2dE < (& — ) / /V Vo (3, 0)|2dzd8

for x € [£;/2,4;]. The above with ¢ =1 or g as in corollary 3.3.5 imply

/ / ¢*dzdd < CE2 / / |Vo|2dzdd,
14 14

/ / Py |APp*dzdd < Cé / / |Vé|2dzds.
14 \4

The result follows. Od

Corollary 4.1.2. If Ly¢1 = Lypa in Q C Vj[0,4;] and ¢1 > @2 on 09,
then ¢1 > @2 on .

Proof. If ¥ := {p € Q : $1(p) < ¢2(p)} is not empty, then L, (¢1 — ¢2) =0
in ' and ¢; — ¢2 = 0 on 9. But, then we should have ¢; — ¢ = 0 in &
by the previous lemma, a contradiction. a

Proposition 4.1.3. Let V := Vj[zo,z1] where 0 < zo < z1 < ¢ with
z1 — zo large enough, say x1 — x0 > {;/4. Or let V :=V, 4[zo, 00] with
zg =0, or V := Vi[zo, 0] with zo = €. Let Ao be an arbitrary number in
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(0,1). Then, there are bounded linear mappings
Ry : CO,a(V, s’e—(l—)\o)(m—mo)) - C2’a(V, s, e—(l—-)\o)(:z:—:z:o)),

Ry : CO%(Vj[zo, 1), 5, e"1720)E@172)) 02V [z, 31], 5, e~ (17 20)(#172))
which satisfy, if ¢ is the image of E by Ry or Ra,
1. Lypp=E inV.

2. For R1, we have ¢g = ag € R on Cj[zo], ¢p = 0 on Cj[z1] if V =
Vjlzo, z1]; otherwise ¢ = ag € R on Cj[zo] or on Ck[zo].

For Ry, we have ¢ = ag € R on Cj[z1] and ¢g = 0 on Cj[zo].

3. For Ry,

e Cz’a(V, s,e_(l_)‘o)(z—wo)”
< C(N)||E : CO¥(V, 5,6~ (1) (@==0))||.

For Ro,

lpg : C2%(V, 5,1 0)@1—2))|
< C)||E : C¥%(V, 5,e~(1720)===)y |

4. For Ry, lap| < CQO)IE : C¥(V, s, e~ 0)a—20) .
For Ra, |ag| < C)||E : CO%(V,5,e~(1-20)@1=2)) ||, 0

Proof. By standard theory, it is easy to construct a bounded linear mapping
IA,

CO,a(V’ s, e—(l—/\o)(ft—.’co)) N C2,a(V’ s, e—(l—/\o)(ft—:m)) or

CO’Q(V}[:BO,:cl], s’e—(l—)\o)(xl—m)) N C2,a(v3[mo, 5171], s, e—(l—)\o)(xl—m))

which satisfies 2,3,4, and 1 with A, instead of £,. Then, ia, is the in-
verse of A which is regarded as a mapping from the range of ia, to
CO(V, s, e~(1=20)(z=20)) (or CO""(V}[:cO,xl],s,e“(l—)‘o)(’”l—w)) ). Since the
operator norm of £, — Ay is small (in particular < €) by lemma 3.3.2 and
corollary 3.3.5, we have the result. g
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The map Ry will be used only in the proof of lemma 4.1.5.

In the following proposition, A is the constant used for the range of S&m.
Note that ¢ in the next proposition shows a linear decay in general as is
seen from lemma 4.1.5 and corollary 4.1.2.

Proposition 4.1.4. Let ¥; be the solution to L,v; =0 in Vj[%i,ﬁj] , v =1
on Cj[%i], 7; =0 on C;[¢;]. Suppose

Lyp=0 inV;it;/2,4], é=0 onC;l;].

Then, there ezists ag € R, unique by the construction, such that

(1)
¢; et
||¢+a¢17jicz’a(‘/j[-zl,fj],x,e (1=X(=-4/2))
e.
<C)|¢— avg ¢:C2’°‘(Cj[§-],x)ll,
Cjle;/2]
(2)

lag + avg @] < C(A)éllp— avg ¢ : C>*(C;[4;/2], x)|I-

Cj £;/2 C; fj/2]

Proof. Let Agv; = 0 in V;[¢;/2,4;], ©; = 1 on C;[¢;/2], 9; = 0 on C;[¢;].
Define ¢ by

A3<p=0 inV}[Ej/Z,Zj], (p=¢ on6V}[£j/2,£j].

By standard theory using Fourier expansion on a circle, it is not hard to

see that if a, = — avg ¢, then (1) with O instead of A is satisfied with
C;le;/2]

¥, ay,Vj, s instead of ¢, ay, v;, x, and

||£X(<p + a(pﬁj) : Co’a(‘/}[fj/Z’ ej], s, e—(w—fj)/2)”

< Cs .

¢~ avg p:C>2(C;l¢;/2), 5)
C;l¢;/2]
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If ¢ is the image of —L, (¢ + a,¥;) by R of the previous proposition with
Ao = A, then

¢ +ay0;+ ¢ = b+ (ap + ¢ le;e;/2)T  on Vj[6;/2,45]
by lemma 4.1.1 because they coincide on C;[¢;/2] UC;[¢;] and have the same

image (i.e. 0) by £y. Define ag := ay, + ¢'|c;1¢;/2)- Finally we change all
norms in terms of x by appealing to lemma 3.3.2. O

Lemma 4.1.5. Suppose 0 <t < u < £; with u—t large enough, say u—1t >
2;/4 , and ¢y, ¢, satisfy

£x¢l=£x¢r=0 inV}[t,u],
h—1=¢,=0 onCjlt], d=¢—1=0 onCjy

Then, on Vj[t,u],

u rz—t

¢r -

—x -
]sE,
u—t

<

1 —

u—t

Proof. First consider the case where t < £/2 < u. Let ¢; = (u—x)/(u—t) and
¢r = (z—t)/(u—t). Define E} := —Lyp19p[€/2—1,£/2]oz, E} := —L,p—Et
and E7, F} similarly with ¢, instead of ¢, then

|| EL (EY) : CO%(Vift,ul, s, e_2("”"t))|| <é

| B (B5) : Ot 5,72 | <
In particular, Ei,E{ are in the domain of R; (of proposition 4.1.3), and
EL E5 are in the domain of Ry with Ao = 1/2. For i = 1,2, let ¢k, at be

T

given by proposition 4.1.3 with Ezl and ¢7,a] with E]. Then we observe

oL : CE(Vj[t, u), s, e'(z't)m)“ , lail < CE

¢ : CP(Vilt,ul, 5,2, o} <O,

Ly (85 + @b+ ¢1) = Loy(#] + d5+ ) =0 in Vj[t, o],
¢ +dh+p=1+a) onCltl, =ah onCu,

1+ +or=a] onGft], =1+ay onCfu],
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so by corollary 4.1.2,

¢+ dh+ o1 = (ab + 1)y + abpr in Vj[t,ul,
¢7i + ¢£ +or= a§¢l + (1 + ag)¢r in Vj[t, u]:

hence we obtain

(¢z>= 1 (1+a5 —a} )(¢’1+¢’2+w)

¢r ) (+a)(1+af)—ajay \ —af 1+ai J\ d{+5+e )’
which implies the result (with § chosen small enough). The proofs for other
cases follow similarly. O

4.2. Linearized equation with an arbitrary inhomogeneous term.

Dirichlet problems on C,,,. We need to solve
Ly¢=E inCp, ¢=0 ondCp.

Recall that C,, is obtained from a catenoid with one or two ends removed
( and extended by one or two joining pieces). A catenoid equipped with

2
the metric ]%l—g is isometric to the standard unit sphere minus two points,

hence C,, equipped with the metric l%'—zg can be thought of as a small

perturbation of the unit standard sphere. Then [K1,Appendix B] could
be used to compare low eigenvalues and corresponding eigenfunctions of
Ag, +2o0n S? and A a2, + 2 on Cp,. Note that the above equation could

be rewritten as

2 .
(A a2+ 2)¢ = _|A|2P§E in Cp, ¢=0 on 0Cp.
2

But, |A|?> may possibly vanish on V}[%L -1, %’-] C Cm, which makes the
eqt;ation meaningless. For this reason, we consider a metric on C,, which is
|A|2L61g on VJ[%L -1, %—], where ¢; is a positive constant which can be taken
arbitrarily small.

Dirichlet problems on ;. The situation, however, becomes subtler
when we consider a Dirichlet problem on ; because of the presence of
umbilic points, where |A|?> = 0, and ends. Recall that each end V;4[0, 00]
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is given, up to Euclidean motion, by (2.1),(2.2) with the Weierstrass data
(3.1) for ¢ > 1 or (2.5),(2.6),(2.7) if g = 1. We have

A2 g
2 57 [T +19P)?

|dcu|2 on V; 4[0, 0o] = Ds\ {0},

where ' means the complex differentiation regarding g as a function on Dy,
which shows that #g becomes singular at p;; = 0 iff » > 2. Note that
this phenomenon does not occur with a catenoid since it has n = 1. So we
define a small perturbation of the metric JATFg on an end by the following
formula

(4.1) hog o= g1+ 01

2 —
= B0 on¥i,f0,00) = D),

which can be smoothly extended on the entire Dj.

Motivated by the above discussion, we now define a (nonsingular) metric
on M by slightly perturbing the pull-back of the metric of the sphere.

Definition 4.2.1. Let §; be a constant which is small and independent of
8, 7. Let 1; 4 be a smooth cutoff function on M := M U{punctures} defined
by := 9[1,2] oz on V; 4[0, 00,:= 1 on {puncture},and := 0 elsewhere on M,
and let 1 be a smooth cutoff function which is ¢[£; — 1, £;] oz on V;[0, £;] and
is constant on each component of M\ U V;[0,4;]. Define a smooth metric h
on M by

_ AP |A|2 + 6,
h=4—=—g+ %:%,qhi,q F1-9=> g —p &

i,q
pg : M — R is defined by h = ﬁgg on M, ,53 := 0 at punctures. O

Before giving the following definition, we note

. 8 gl 2
FHIAP = T DIEL o on Viglo,ec] = DA{O),

and we extend f;2|A|* on entire Dj; by this formula. Then, Py 2|AP is
smooth on the entire M. And, we define €);, C,, to be the closures of Q;,Cr,
in M, respectively.
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Definition 4.2.2. Given ¢ >0 , we define the “c-approximate kernel of €2;
(or Cp,)” to be the span of those eigenfunctions of the Dirichlet problem for
An+p52|A? on Q; (or ) which have corresponding eigenvalues in [, &].
O

Lemma 4.2.3. If§, 61, and 7 are small enough, then there exists ¢ > 0 such
that the c-approzimate kernel of §; or Cp, is 3 dimensional, and we can find
a basis f; s, fm,s for 1 < s < 3 such that

I fis = & - T g L2 Qi | <& N fins =& - 7, g L2(Cmy D)l S &

Moreover, we can take ¢ to be arbitrarily small by taking small enough 6, 61, T.

We define f; := (fi1, fi2, fi3) and fom := (Fn1s fm,2, fin3)-

Proof. The proof is basically an application of [K1, Appendix B], which
is thus assumed to be familiar to the reader, and only the proof for ; is
provided since the proof for C,, is similar.

First we construct a Riemannian manifold which is to be compared with
(Q, k). Define a smooth (nonsingular) metric h, g, on M; in a similar man-
ner to the construction of h, ; on M in definition 4.2.1, that is h is a slight

perturbation of J%Eg so that it is not singular at umbilic points and at ends.
By our assumption of no exceptional bounded Jacobi fields, we see that the
kernel of A + ,5572|A|2 on M; is 3-dimensional and spanned by &, - 7, for
s = 1,2, 3, where 7/ is a unit normal vector field of X,-(Mi), and that there ex-
ists some constant cjz, > 0 such that there are no eigenvalues in [—cy7., ¢57,]
except 0. Now, recall that for each j such that V;[0,¢;] C €, there is a
catenoid which contains Vj[¢;/2,¢;] It is divided into two components by
the circle C;[¢;]. Let D; C S? be the closure of the image by the Gauss map
of the smaller component, and h the standard metric of the sphere. We
choose § small enough that there are no low Dirichlet eigenvalues of Aj + 2,
say less than 100. Define L5 on M; U; D; to be Ay, + 5;2|A|? on M; and
Ap+2on Dj;. Then, the kernel of £}, is spanned also by € - 7 for s = 1,2,3
and there are no eigenvalues in [—cy,, cjz,] except 0.

Note that the assumptions (1),(2) of [K1,B.1.4] are satisfied because
(Qu,h) and (M; U; Dj,h) are compact. The use of assumption (3) of
[K1,B.1.4] in finding the C° norm of eigenfunctions of low eigenvalues is
replaced by the following argument: Let f or g be a Dirichlet eigenfunction
of £y, on M;U; Dj or of Ay + 5;%|A? on ), respectively, of low eigenvalue,
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say less than 10. Then,

17 : C°(; U; Dj)|| < C(5,81)IIf : L*(M; u; Dy, b)),
lg : CO)Il < C(6,61)llg - L*(S%, R)|-

The first inequality follows from standard theory. Note the dependency of
the constant upon 6, 1, which follows from the dependency, for example, of
the Sobolev constant upon them. For the second, we first note that

lg : COQ\ U; V2, ))I| < O, é1)llg = L2(Sh, )|

from the uniform control on the geometry of (Q;\U; V;[2, ¢;], h). To estimate
on V;[2,¢;], we observe

A A
(AX + p;2 ((1 + 5) |A|2 + 551)) g= 0 in V7[2, Zj], g=0 on CJ[ZJ]

Now, from lemma 3.3.3 we see that (1 + 3)|A|? + 36, satisfies the same
estimate as |A|2, hence we can apply lemmas 4.1.2,4.1.5 with the above
estimate to conclude

lg : C°(V;[2, 1)1l < C(5, 81)llg = L*(Ei, W)||-
Now, we are going to construct maps
F: C'Ooo(Mz U; Dj) — CSO(Q,), G: Cgo(ﬂz) — Cgo(Mz U; DJ)

which will satisfy the assumption (4) of [K1,B.1.4].

First, we define Z : Q; — Miuj D; by sending each ‘/}[%i‘, ¢;] C Q; into D;
using the Gauss map, by sending V][%J -1, %J] into M; using the projection
maps into P; on the images of X, :M; > E3and X 8 and by identifying
Q:\ Y; V][%L —1,4;] with the obvious domain in M;. Let p : S2 — R denote
the distance function from U;{e;} C S? where e; is the unit normal along
the z; coordinate axis, and define a logarithmic cutoff function g2 : §2 —
R by 9s2(€) := [2,1](log p(€)/log o) where Jj is a small constant to be
determined later in this proof. Define smooth cutoff functions g, on Q; to
be 152 0 'z on V;[0,4;] for each j and 1 on 4\ U; V;[0,¢5], and Yit,u;D; OL
M; U; D; to be ¢z o V. ¢ on U;(N; U D;) for each j, where N C M is the
obvious neighborhood of p; € M;, and 1 elsewhere on M; U; D;. Finally we
define F(f) to be the the pull-back of ¢y, p, f by Z, and G(g) to be the
push-forward of 1 g by Z.
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It is not hard to check that the assumption (4) is now satisfied, arguing
as follows: The region on ; (or on M;U; D;) where vg, (or ¢ ¥,u;D;) is not
1 has arbitrarily small h-area by choosing d; small enough ( regardless of
d,01. This and the dependency upon 4, §; of the constants in the bounds for
the C° norm by L? norm are the reason for the introduction of U; D;). With
05, chosen now, we can ensure that 7 is as close as we like to an isometry on
the region where g, is not 0, by choosing 4,1, 7 small enough. Note that
the change in the h metric on the perturbed end V; 1[0, oc] is small because
of (4.1) and the smallness of the perturbation of the Gauss map which can
be seen from (2.5), (2.6), (2.7).

However, in order to apply the proof of lemma [K1,B.2.2], we need extra
conditions because the operators we are comparing are not exactly Lapla-
cians. When we write £, := Ay, + B, we should have

(52| APF (f1), F(f2)) — (Bf1, f2)] < el fillooll f2lloos
|(BG(91), G(92)) — (5 2|A %91, 92)| < ell fillooll f2lloo

which are easy to check and left to the reader.

With the above setting, the proof of lemma [K1,B.2.2] can be easily
adopted for the current lemma, with || f||3 there replaced by < (Lr+O)f, f >
or < (Ap+ p72|A|? + C)g,g > for some constant C which is smaller than
the lowest Dirichlet eigenvalue of L. Finally we have to compare F (77 - €;)
with D’C,Em €5 of Q;, which is again left to the reader. 4d

Definition 4.2.4. Define w;, : 3;  Rand &p s : Cp = Rfor1 <s <3
o oh 8h
_ £ _ Crm
wi,s(p) == ng——aE; : (p); @ms(p) == pg 6; " (p)-

Note that they are compactly supported. For the convenience of notation
for later use, we let, where -* means the transpose,

Wy = (wi,l,wi,2, Wi B)t, W 1= (‘I’m 1, Wm,2,Wm 3)t- g

Note that hE q, °or hg. is close to a linear combination of p wj,s's or pgwm $'s
for s = 1,2,3. The functlons Wi s, Wm,s Play the role of the so-called substi-
tute kernel [K1,4-5].

Lemma 4.2.5. ||lw;s: CY(Q, x)|| £ C and ||@m,s : CH(Cm, x)|| < C. When

3 3
Kim | [ Bosatods] K= | [ Bomfmede]

s,t=1 s,t=1
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we have 127,(%:23{|(Ki)3,t — Ostly |(Km)st — 0st|} < &, where € can be taken
—s’ _—

arbitrarily small when § is small enough.

Proof. The estimates for w; s’s and @, 5’s follow easily from definitions. For
K;, note

/Q powis fipdg = /Q Pawi,s€: - U, g + / Powis(fit — & - 7, ¢)dg.
7 3 ’ Qi ’

Now, we observe that

9 0%
2 =z — 20 & T =2t =
‘/f;i pgw1'7set VCvédg - 8£i,3 /S;i hf)Qi et Vc’éd 661:,8 6s’t’

where the second equality comes from the balancing formula [S2],[KKS]. We
finish the proof by appealing to lemma 4.2.3. The proof for K, is similar
to the above and is omitted. a

Lemma 4.2.6. There erists ¢ > 0 such that for any E in Cg,’g(ﬂi, X), there
exists a unique A € R3 such that pgﬁg_2(E + A - w;) is L2(Q;, h)-orthogonal
to the c-approzimate kernel of );, and also for any E in C?(;:"(Cm, X) , there
exists unique A € R3 such that pgﬁ;2(E + A -&;) is L?(Cpn, h)-orthogonal to
the ¢c-approzimate kernel of Cp,. In fact,

A=— / p2p2Efidh - K;', A=-— / 2Py 2E fmdh - Kt
Q; Cm
where f; and fm, are as in lemma 4.2.3. Moreover, if suppE C Q orcCCy,
then
|A| < CIE: C**(Qi, ), Al < CIIE : C¥*(Crmy X)II-

Proof. We prove only the case E € Co’a(Qi, X) since the proof for the other

loc
case is similar. Given E, define A by the formula given in the statement of

the lemma. Then, we have
/ P3Pg (B + A - w)fidh = /Q PaPa Efigdh+ A - /Q P3Py "wifizdh
Qi 7 %

= / p2py > Efisdh — /Q P25, 2Efidh - Kt /Q P2y 2wi fipdh.
Q; f i
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Now, we see that fQi pgﬁg“2wi fitdh = fﬂi pgwi fi+dg is the t-th column of K,
hence K; -1 fQ pgﬁg_ w; fi ¢dh is a column vector whose entries are all zeros

except the ¢-th row, which is 1. Hence we get fQ pgp_2(E +A-w;) fizdh = 0.
The uniqueness of such A is obvious. The estimate for A follows from lemmas
3.3.4, 4.2.3, 4.2.5 and various definitions. d

Definition 4.2.7. Let ¥; to be as in proposition 4.1.4, and for ; which
contains V;[0, ¢;], define v; : ©; — R to be the trivial extension of

. 1e Z
v [5 ' + 2] ox.
Finally, n; := £L,v;. We have trivially

vj:c’%a(v [62 £2+1] )”50. O

Now we define some norms which are conveniently used in the rest of
the paper.

0.

Definition 4.2.8. Let ¢ be a continuous function which is := e~ (1=22)(z—3)

on V;[¢;/2,¢;] and which is constant on each component of M\ UV;[¢;/2, 4;].
J

Then

I8llz == ll¢ : C>*(M, x, ),
IEllo := ||E : C%*(M, x, e~ (=2V%/2). U

Now we present how to obtain a global solution of the linearized equation
with an arbitrary inhomogeneous term.

Proposition 4.2.9. Suppose ||E|jo < co. Then, there are ¢5 € CE2*(M, x),

loc

Or; €R,Ag;, AEm € R3, unique by the construction, such that
1. Ly =E+Y. Opni+ > Api-wi+ > Agm - ©m in M,
2. llgEll2 < C||E]lo,
3. 10gi| < ClElo, |Agil < ClElo, |Apm| < CTO2N/2|E]|o.

Proof. Define smooth cutoff functions
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1. 9; to be 9[1,2] oz — ¥[¢; — 2,£; — 1] o z on V}[0,£;], and vanish on
M\Vj[Oa ej]a

2. ;4 to be 9[1,2] o z on V; 4[0, 0], and vanish on M\V; 4[0, 0o],

3. 9y to be P[fx + 1, £, + 2] o = on Vi[éy, 0], and vanish on M\Vi[lk, oc].
Let ¢; € Cpog (Vi[0,£31,X), #iq € Cige (Vial0, 001, X): @k € el (Vellk 001, )
be given by R; of proposition 4.1.3 with ¢, E, ¢; o F, ¥+ E, respectively, with
appropriate zo,z; and A\g = (1 — 2))/2. Then,

lbipilla  igpiallas T2 h@illa < ClEo.

Define
Eo = — Z[‘Cxa ViglPig — E[['xa Dok — Z[ﬁx, Yile;
+ (1= Wi =D k- D ¥)E.
Then,
Ly (Z Vi,gPig + Z D@ + Z’%“Pj) = E — Ey,
I Bollo < CllEllo,  suppE c U | Jucr,.
Decompose Fy such that Eg = 3 Eq, + > Ec,, with suppEq, C €] and
suppEc,, C Cl.. Then,
1Eq, : C%*(Q4, )| < CllEllo,  1Be, : CO%(Crmyx)ll < T2V Elo.

Let ¢q, : & — R,Aq,1 € R® and ¢c,, : Cm — R,Ac,,,1 € R? be given by
lemma 4.2.6 with Eq, and Eg,, respectively. Then

(a)

(Ap+ ﬁ;2|A|2)¢Qz = pgﬁ;2(EQi + Ag;1- wj) in Qia ¢q; =0on 301"
(A + 57 2| AP) e, = P26y 2(Bem + Be,1 - @m) in Cry  de, = 0 00 8Cp,

(b) |Aq;1l < CllEollo |Ac1| < CTA=2N72| Eglo.
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We obtain the C%(Q;\ U V}[2,£;]) bound of ¢q, and C°(Cp\ U V;[0, 4; — 2))
bound of ¢c,, from (a),(b) and standard theory, and the C° bounds on
U;V;[0,£;] by lemmas 4.1.2,4.1.5 after rewriting (a) in terms of £,. Hence
by standard theory

I, : €2, )| < CllBollo,  l19c : C**(Comy )| < CTEV2| Ego.

Let ©;1 € R be given by proposition 4.1.4 with ¢q, restricted to Vj %,Zj].
Then

10511 < CllBollo, (40 + > ©s105) ¥,

where the sum is for all j such that V;[0,4;] C Q;. Let

, < C||Eollo-

1. ¥q, =1 onQ\U;V;[0,45], :=[¢;—1,£;—2]ox in V;[0,4;] C &, :=
0 in M\Qi,

2. Yc,, =1 onCn\U; Vj[0,45], :=[1,2] oz in V;[0,£4;] C Cpn, :==0 on
M\Co.

and define
Byi= =Y [Loval (40, + Y 051%) = Y [Lxten] b,
p1:= Y Yo, (¢Q,~ +) .0 ',l'Uj) + Y tenden
Then, suppE; C UQ;|JUC,,, and
IE1llo < CT2(|Eollo,  ll¢1lla < CllEollo-

(Note that the factor 72/2 is obtained from the the difference of de-
cay rates in proposition 4.1.4 and definition 4.2.8). Define inductively
Eni1,0n41, ei,n—l—l,Aj,n+1 from FE, as we get Fj, 1, @i,l, Aj,l from Ej.
Then, for any n > 1,

‘Cx‘Pn =E, 1—E,+ Ee',nnj + ZAi,n ‘Wi + Zﬂm,n Wy in M,

1En—1 = Enllo < 2[[En-1llo < 2(CT%) 1| Eo|lo,

lenllz < CllEn-1llo < C(CT)™ 1| Eollo,

©jals [Ain| < Cl|En-1llo < C(CTM2)™ 1| Eglo,

|Amnl < CTO| B, _ylo < CrO=202(Cr¥2)m=1 || B o
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Define
oo
$p =Y Yigpiqt+ Y Vrpr+ > e+ ¢ns
n=1
o0 oo o0
eE,j = Z ej,'m AE,i = Z Ai,ny AE,m = Z Am,'rv O
n=1 n=1 n=1

4.3. Linearized minimal surface equation.

Lemma 4.8.1. For any parameter ((Cj), (€a.)s (§Cm)) € Zyy X Bqy X B,
there are ¢, € C2’°‘(M, X),0:r; € RA; € R3, Arm € R3, unigue by the

loc
construction, such that

1. Ly¢r==2p5 T hrj+ X Ari - wi+ 3 Aryn - Om + 32 Or
2. |lg-ll2 < COr,
3. 10,51 S CPT, |Ari| < CET, |Arm| < CrrB-22/2

Proof. By lemma, 4.1.1, we have ¢; such that

Lydi = —207%hey WV0,6], #;=0 ondV;[0,6].
Then, standard theory and lemma 4.1.1 imply

15 : C>*(V;00, 451, )| < CEr.
Now, proposition 4.1.4 and definition 4.2.7 give a; € R such that
165 + ajuj : C**(Vilt;/2, 5], x,e" A4 < Oy, o] < Ol
If we let
E:=-Y [Ly,¥[1,2 oz — Pt — 2,£ - 1] o 2]($; + ajvy),

then ||E|lo < Cf%r. Let ¢g, ©g,j, Ag i, AE,m be given by proposition 4.2.9
with the above E, and define

br = Z('ML 2] or— "/’[e -2,0— 1] o x)(¢] + ajvj) + ¢E,
©r;:=a; +OFg;, Ari:= AE;, I—XT,m = I—XE,m. O
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Lemma 4.3.2. For any parameter ((Cj), (€a.), (éém)) € Zy, X By X By,
there are ¢¢ € 02’a(M, x),©0¢; € RyA¢; € R3A¢.n € R3, unique by the

loc
construction, such that

1' £X¢< = _2p;2 zhCﬂ’ + ZACJ " Wi + ZACam : (J_Jm + Zec:]nj’
2. |lgcllz < CyilPr,
3. 1¢ — ¢yl < ImlPr, |Acil < Cmbr, |Agm| < CyntrB-20/2,

Proof. Recall that for each joining piece Vj[0,£;], there is associated the
cylindrical coordinates system (r;,6;,2;). For the convenience of notation
in this proof, we define #; : N;NU;11Q; — R by Z;(p) := z(p) in V}[0,;] and
=1-—r;0 —‘C £(p)/d elsewhere. Let Vj[a,b] be defined as in definition 3.2.2
but with Z; instead of z. Note that Vj[a, b = Vjla,b] forany 0 < a < b < ¢;.

Let ¢;1 : 17_,-[—3, ¢;] — R be such that the image of X et ¢j’117<. é-belongs
to X(; (M) with ¢; = 0. Then

(8) 51 : C3(V;[~3,~1], )]l < Cl¢;] and ¢;, vanishes on ¥[~1,4],
(b) 51— 58 7, ¢ CX(W5(-3, 2], )l < Ol 1,

(©) ILxdj1 + 207%he; : CH(V;[=2,-1],x)|| < C|¢;| since it has only
higher order terms in ¢; (recall the mean curvature identity (1.1),
and note that pg = 1 in this region.),

where €; is the unit vector in the positive z; direction (up to sign). Now,
note that Ly (€ - 7. z) = 0 on V;[-3,-2] U V;[-1, %’- -1uU 17}[%74,2]-] and
that & - 7, #is 1 /\/1 + 0-22(9,82 + 9p®2) in V;(0,4;]. By utilizing (3.6),

lemmas 3.3.1, 3.3.2, corollary 3.3.5, and the uniform geometry on 171'[—3, 0],
we have

() 117, g~ 1: COWVi[=3, LDl < & 11§ -7, ¢: C*(V;[-3,4], )]l < C.
(©) 1£x(5+ 7, ) : CL (W12, ~11, )]l < ClGsl. (Note that £y (-7, ) = 0
in this region when ¢; = 0.)

£) 1Ly (e; - Ueg) : CY(V;[¢;/2 — 1,£;/2], x)|| < C7 from explicit computa-
tions.
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For V;[0,4;] C Q, define ¢; 0, Ej1,Ej2: Qi — R by
iz = (¢j,1 — G - ﬁg,g) Y[-3,-2 0%, Lydja+20; hej=Ej1+Ejo
with suppE;1 € %[——3, —1], suppE;2 € Vj[ﬂj/2 —1,4;/2). Then,

(&) 1Bj1: CH(Vi[=3,~1],x)ll < CI¢;* from (b),(c), and (e).

By propositions 4.1.1,4.1.3, and standard theory, we have ¢;3,¢;4 :
V;[0,£;] — R such that

Lybjz = —Ej2 in ‘7}[07 gj]a
¢i3 =0 onC;[0] UC;[e],
Lydja=0 inV;[0,4),
$j4a=0 on Cj [0],
$ja = (€ -V, ¢ onCjll].

$;.3, ;4 satisfy

(h) |I¢j3 - C22(V;[0, 4], x)|| < C€27|¢;] by (f), lemma 4.1.1, and standard
theory,

() |pja — ¢ - z/€| < €|¢j| by lemmas 4.1.2,4.1.5, and (d).
Now we observe
Ly($i2+ i3+ d5a) =0 inVi[;/2,4], ¢ia+dis+dia=0 onClt],
and
() |6/2 - g ](¢j,2 + ¢z + ¢ja) < C&| G| from (d),(h), and (i).
2
Let a; € R be given by proposition 4.1.4 with ¢ = ¢;2+ ¢j3 + ¢;4. Then
5
laj = ¢il < 5161
by (j). If we define ¢;5 : ; — R by
bj5 = b2+ (¢j3+ 6 )¥[1,2] oz + ajvj,

then, ||¢;59[6; — 2,4 — 1] o z||2 < C|¢;] and
£x¢j,5 = —ng;2h€,j +a;n; + Ejyg in Q;
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where Ej 3 := Ej1 + [Ly, ¥[1,2] 0 2](53 + $j4). If we let

== Z (Ej3 + [Lx, %1€ — 2,6 — 1] 0 2]¢j5)

then ||E|lo < Clr. Let ¢g,Og;,Agi, Agm be given by proposition 4.2.8
with the above F, and define

b= $i50ll; — 2,4 — 1oz + ¢,
ec,j = aj + @E,j, Ac’i = AE,i, AC,m = AE,m- Od

Lemma 4.3.3. For any parameter (((j) (Egi), (éém)) € Znyy X Eyp X Eqy,

there are ¢z € C loc *(M,x), ©g; € R, A ; € R3,1_X€m € R3, unique by the
constructzon such that

1. ‘C‘Xd){ = -—2p;2 (Z hE,Qi + Zhg’cm) + ZAE-;z cwi + Z./_\g-’m + Wy +
Zeé',jnj:

2. |légllz < CpalPr,
3. |e§_;J| < 072627-7 IgQ,, - AE’QJ < %72627.’ |§Cm - A"c I <

2y, 027 (3-2V/2,

Proof. By lemma, 4.2.6 and arguments similar to the proof of proposition
4.2.9, there are ¢€ Mg and ¢€ m such that

€m

L_:x¢£, ==2pg 2h€9 +Ag;-wi in€, ¢z, =0 ondy,
£X¢€"’m = —2pg hf,cm + A€7m . wm in Cm, ¢£-:m = 0 on acm,

I8g; : C2*(Qi, )| < CrlPr, |6z, - C¥*(Cony x| < Cal2rG=2V/2,

By the formula of lemma, 4.2.6,
éa, = Ag; =i - /9 heo fidg - K

~ta - /n healeg edg - K + /Q hea, W g 8= fi)ds - K
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where f; = (fi1, fi2, fis), €= (¢1,8,8). Since [, hzq 7, ¢ &g = o,
. by the balancing formula [S2][KKS], we obtain, by lemmas 4.2.3,4.2.5 and
choosing small enough ¢ if necessary,

|€Q,. - Ag’il < &vo%r, and similarly |§cm - Ag‘,cml < Gy B-/2,

Let a; be given by proposition 4.1.4 with ¢ = ¢€-»i restricted on V;[¢;/2,4;] C
Q;. Then,

laj| < Cyat?r, “ (¢g +>a;) tbniu , < Cmlir.

where g, is the smooth cutoff function defined in the proof of lemma 4.2.9.
Let 7¢,, be also the cutoff function from lemma 4.2.9 and define

= - z[‘cx, "/JQ,] (¢€,1 + zajvj) - z[ﬁx’ ’lpcm]ng,m’

Then, ||E|jo < 0'72827'1"“’\/ 2. Let ¢, A, ./_XE,m, ©F,; be given by proposi-
tion 4.2.9 with the above F, and define

b =Y o (¢g,~ +y aj'“j) + Y dendec, + 98

Az = Aé"i'*‘AE,i, lié:

6 i 1—\ AE,m) @

£ =0 + Ok O

Proposition 4.3.4. For any parameter
((Cj), (a:)s (Ecm)) € Zoy X By X By,

there are ® loc *(M, x), ©.¢; € R, Az € Ra,-"g,g‘,m € R3, unique by
the constructzon such that

1. Ly®, = 29g2H+Z@¢§JnJ+ZA<§ w,-l-ZACEm Om  in M,

2. “q)c,glh S 0(71772)627-’

316G — O, g1 < 3nlPr, g — Apgl < dmlr, en — Azl <
3y 27 (G272
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Proof. Define

Beg=¢rtdctdn  Opg;=0ni+0¢+ 0z

Az, =Ai+Ac;+ Az A =Arm+Aem+ Az

XX & ¢.&m

where all ¢’s, ©’s, A’s, A’s are from the previous three lemmas. ( We take

large enough 2 in terms of C, large enough ~; in terms of C,ys, and large

enough £ in terms of C,~y;, 2 so that our claim holds.) a
5. Nonlinear Term and the Main Theorem.

5.1. Nonlinear term.

For a function ¢ on M such that X - cEe = =X £t ¢1'/'c £ is an immersion, the
nonlinear term Q, ¢, is defined from the mean curvature identity (1.1)

1
- = —2
Queo =Py Hegs—rg Heg — 5£x9
where H c g,H £ are mean curvature functions related to X X cEp TE

spectively. As in [K1], a pointwise rescaling T of a tensor T 1s defined by
|Ty|x = |T'| where the length in the left is with respect to x and in the right
is with respect to g.

Lemma 5.1.1. If ¢ € C;;2(M,x) and |pA| < 1 on M, then X

et gb =~ is an immersion, and if in addition

¢Ep T

loc

Ay : COXM, )| S C and |[(V§)y : CO*(M,x)|| < C,
then
19, £ 4lla < C{llog Axll, - 18llaz + 125 " Axllas - IV llg
+ipg? - (VA)xllas - 18llgs + 1Vadllar } {ll6Allas + (V)xllas}
where || - |lq = |- : C%*(M, x,q)|| and q,q1,- ,qs are arbitrary functions

satisfying g2 - g2 =q3 - Qu=¢q5- g6 = g7, q7-qs =g

Proof. follows from [K1, Appendix C] by similar arguments to the ones in
[K1,V.1.3]. a
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Proposition 5.1.2. Suppose ||¢|ls < v3€?T where 3 is a constant to be

determined in the proof of Theorem 5.2.1. Then, XZ £4 = X £t qbfz’c gis
an immersion and ’ ’ ’

1Q¢ g 4llo < CT=C=M/4|ig|13 < Or37%/.

Proof. We first note that
Ay=pA, (VA)=piVA =5 (VxA+T*A)

where T := V — V, is the difference tensor of the two connections and * is
the contraction. Since

IT : CY (M, x)|| < CllpgVpg* : CHM,x)| < C,
from lemma 3.3.4, we obtain from lemmas 3.3.3, 3.3.4 that
lAx : CH (M, x, q)l £ C

where ¢ := e~(2»=%¥=1z on V; ;[0,00] when ¢ > 1 or ¢ = 1 and V;;1[0, o]
was originally an end of large or moderate amplitude or a catenoidal end,
= e~ ("=2%=2)2 on V; 1[0, 00] when V;1[0, c0] was originally an end of small
amplitude (recall that —n — 1 < k < —1 in this case), ¢ := 1 on
(VY UUV;[0, 3], := 274/ on Vj[3,4], i= e on Cp, 1= e 240
on Vi[fk, 0] and that

”(VA)X : CI(M> X Q2)” < C

where g := e~ @3nk=1)z op Vi q[0,00] when ¢ > 1 or ¢ = 1 and V;1[0, o]
was originally an end of large or moderate amplitude or a catenoidal end,
:= ¢~ (2n=3k=3)2 op V1[0, 0o] when V; 1[0, 00] was originally an end of small
amplitude, g2 := € on (UQ) J(UV;[0, %i]), = e3~% on w[%i,ej], = e2m
on C,, := =375 on Vj[¢, o0].

When ¢ : M — R is an arbitrary function,

I(Ve)x : CH(M, x, @)l < Clig : C**(M, x, 39|,

where § := e™* on M\(UV;4[0, oc] U UV, o0)), := %12 on V; 4]0, o],
e~ % on Vj[lk,00], whose proof follows from (V¢), = psV¢ and lemma
3.3.4. Since ngb = V?(qb +T x V¢,

V24 : CY(M, x, 9)|| < Cll¢ : C>*(M, x, q)|l-
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From lemma 5.1.1 and the above estimates, we get for any arbitrary function
g: M —-R

1Qcz4: C°(M, x, )| < Cllé : C>*(M, x, I

where G := €® on M\ (UV; 4[0, oo] U UVi[lk, 00]), := e=(*=*=1D) on V; [0, 00],
:= e~ %+2% on V;[fk, 00]. The result follows. O

5.2. Proof of the main theorem.

Theorem 5.2.1. If 7 is small enough, then there are

and ¢ € C®°(M) with small || |2 norm such that XQESQ : M — E3 given

by X, » =X, >+ @V, »is a minimal immersion.

CEe TAETYE

Proof. Fix o/ in (0, @) and define

Bry = {6 €GB (M, x09) 19 C(M, 03, < 187}

where ¢ is the function in definition 4.2.8 and ~3 is a constant to be de-
termined in the middle of this proof. Because of 0 < o/ < a < 1 and the
behavior of norms at ends, B,, is compact in

= {qs € Cf(;j"(M, xo,ﬁ) g : C>* (M, Xo,5 D < oo},

where § := e¥* on _UV4[0,00], := eNze~(1=208/2 on V[0, o0], := § on
M \(UV, 4[0,00] [J UV [£k, 00]) for a small positive constant N. So, Z,, X

s X B, X By, is a compact convex subset of the Banach space ]RK +2I
R3(I+1) x R3E+D) v,

Now, consider the map

T 2 Zy, X Byy X Eqy X Byy — RE+2T o R3U+D) o RIUK+]) o y
which sends ((Cj)a (gﬂi) ) (E-E:m) ,qS) to

((Cj O~ @C,E,¢,j) ’ (59 —Aegi— Ak ¢,i) ;

({"m —Apem By, m) Ot <P¢,§,¢) :
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where

Az @

O g ¢EM “¢E

¢E3 CED
are the ones in proposition 4.3.4, and

O go Medoir Moo mr Pes

are the ones in proposition 4.2.9 with £ = Q CEd By reviewing the con-

struction, it is not hard to see that J is continuous and that

3
ICJ' O gi = Ocgsi| < 171827 + O/,

'59' ~Aegi T Aega
m| < _7252 (B=23/2 0727_7/4 A

2,5/4,

‘&m Begm=Begs,
. o 2 2,.5/4
|25+ ee gt O (Myx05.) | < O + O3/,

So, by takixlg 7 small enough and 3 large enough, we see that J sends
Zyy X Bqyy X By, X B,y into itself. Then, by the Schauder fixed point theorem

[GT, Theorem 11.1], there is a fixed point, say ((gj) , (Eﬂz) , (Ecm) , gﬁ) of
J. By the definition of J, we have

OfiTOies =" AcgitAcs™

Aeem B fom =" =gy

which immediately imply
Ly(¢) = —2p; He g — 2Q, f9) on M

Hence, X » :M — E3isaminimal immersion. C* follows from standard

@37
theory. O
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