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The classification of exceptional Dehn surgeries on 
2-bridge knots 

MARK BRITTENHAM AND YING-QING WU 

We will classify all exceptional Dehn surgeries on 2-bridge knots 
according to whether they produce reducible, toroidal, or Seifert 
fibered manifolds. 

1. Introduction. 

A nontrivial Dehn surgery on a hyperbolic knot K in 53 is exceptional if 
the resulting manifold is either reducible, or toroidal, or a Seifert fibered 
manifold whose orbifold is a sphere with at most three exceptional fibers, 
called a small Seifert fibered space. Thus an exceptional Dehn surgery is 
non-hyperbolic, and using a version of Thurston's orbifold theorem proved 
by Boileau and Porti [BP], it can be shown that a non-exceptional surgery 
on a 2-bridge knot is also hyperbolic, see Remark 6.3. There has been much 
research into determining how many exceptional surgeries a knot can admit. 
See the survey articles [Go, Lu] for details. 

The purpose of this paper is to classify all exceptional Dehn surgeries 
on 2-bridge knots. Hatcher and Thurston [HT] have shown that there is 
no reducible surgery on hyperbolic 2-bridge knots. We will determine all 
toroidal surgeries and small Seifert fibered surgeries on these knots, which 
will then complete the classification. 

We use [61,... , bn] to denote the partial fraction decomposition l/(6i — 
l/(&2 — ... — l/bn)...). Recall that a 2-bridge knot K is non-hyperbolic if 
and only if K = Ki/q for some 5, in which case K is a (2, q) torus knot, and 
surgery on K is well understood. K is a twist knot if it is equivalent to some 
Kp/q with p/q — [fe, ±2] for some integer 6. Since [6, ±2] = [6 T 1? T2], we 
may assume that b is even. Let if (7) be the manifold obtained by 7 surgery 
on K. We always assume that 7 ^ 00, that is, the surgery is nontrivial. 
With respect to the standard meridian-longitude pair on dN{K), each slope 
7 is identified with a rational number, see Rolfsen's book [R]. The following 
is the main theorem of this paper. Note that part (4) of the theorem is the 
case of surgery on the Figure 8 knot, and is due to Thurston [Th]. It is 
included in the theorem for the sake of completeness. 
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Theorem 1.1. Let K be a hyperbolic 2-bridge knot 

(1) If K ^ -^[61,62] for any &l>&2; then K admits no exceptional surgery. 

(2) If K = K^fc} with |&i|, I&2I > 2; then K^) is exceptional for exactly 
one 7, which yields a toroidal manifold. When both &i and 62 are even, 
7 = 0. 7/61 is odd and 62 is even, 7 = 262. 

(3) If K = K[2n,±2] and \n\ > 1> "^(7) ^5 exceptional for exactly five 
7:  1^(7) is toroidal for 7 = 0, =F4,  and is smaZZ Seifert fibered for 
7 = ^=1^2,^3. 

(4) If K = Kp-2] is the Figure 8 knot, if (7) is exceptional for only 
nine 7: K(7) is toroidal for 7 = 0,4, — 4, and is Seifert fibered for 
7 = -1,-2, -3,1,2,3. 

We will use a result of Hatcher and Thurston [HT] to determine all 
toroidal surgeries on a hyperbolic 2-bridge knot if, see Lemma 2.2 below. 
In general it is more difficult to determine small Seifert fibered surgeries, due 
to the fact that there is no essential surfaces in such a manifold, unless its 
Euler number is 0. Here we will use essential lamination theory developed 
by Gabai and Oertel [GO]. The readers are referred to [GO] for definitions 
and basic properties concerning essential branched surfaces and essential 
laminations, which play a central role in the proof of the theorem. We will 
use Brittenham's criterion [Br], which says that if M is a small Seifert fibered 
space containing an essential branched surface F, then each component of 
M — Int iV(^r) is an /-bundle over some compact surface G. The idea of 
the proof is to construct essential laminations in surgered manifolds whose 
complementary regions are not /-bundles. We will apply some techniques 
developed by Delman [Del, De2] and Roberts [Ro] to construct essential 
laminations in the surgered manifolds. 

Acknowledgment. We are grateful to Alan Reid for some very useful 
comments to an earlier version of this paper. We also thank Steve Bleiler for 
pointing out that the Orbifold Theorem and the Snappea computer program, 
two tools used in an earlier version of the paper, are not considered fully 
proved by many people. The present version has avoided using them in the 
proof. 
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2. Reducible, toroidal, or Seifert fibered surgeries. 

Reducible surgeries and toroidal surgeries on 2-bridge knots are completely 
determined by Lemmas 2.1 and 2.2. Certain surgeries on twist knots are 
shown to be Seifert fibered in Corollary 2.4. 

Lemma 2.1 (Hatcher-Thurston). Let K be a 2-bridge knot Then K(r) 
is reducible if and only if K is a (2, q) torus knot, and r = 2q. 

Proof See [HT, Theorem 2]. □ 

Lemma 2.2. Let K be a hyperbolic 2--bridge knot. 

(1) If K^) is toroidal for some 7, then K = K^fo] for some 61,62- 

(2) // |fcj| > 2 for i = 1,2, there is exactly one such 7.   When both hi are 
even, 7 = 0.  When 61 is odd and 62 is even, 7 = 262. 

(3) If K = K[2n,2] and \n\ > 1; -^(7) ^
S
 toroidal if and only if 7 = 0 or 

-4. For K = K[2n_2], 7 = 0 or 4. 

(4) If K = K[2-2]J then K{^) is toroidal if and only ifry = 0, A, or —4. 

Proof We refer the reader to [HT] for notations. If if (7) is toroidal, there is 
an essential punctured torus T in the knot exterior. By Theorem 1 of [HT], 
T is carried by some E[6i,... , 6^], where [61,... , 6^] is an expansion ofp/q. 
By the proof of Theorem 2 of [HT], we have 0 = 2 — 2g = n(2 — fc), where g is 
the genus of T, and n is the intersection number between dT and a meridian 
of K. Therefore k = 2. This proves (1). The rest follows by determining 
all the possible expansions of type [61,62] for p/q. The boundary slopes of 
the surfaces can be calculated using Proposition 2 of [HT]. By the proof of 
[Pr, Corollary 2.1], an incompressible punctured torus T in the exterior of 
a 2-bridge knot will become an essential torus after surgery along the slope 
of dT. □ 

Lemma 2.3. Let L = ki U £2 be the Whitehead link, which is the 2-bridge 
link associated to the rational number p1/q' = [2,2, —2]. Let £(71,72) be the 
manifold obtained by 7^ surgery on ki. If ji = —1/n and 72 = —1, —2 or 
—3, then £(71,72) is a small Seifert fibered space. 
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Proof. By definition L(oo, 72) is the manifold obtained from 5r3 by 72 surgery 
on ^2. After —1 surgery on £2, the knot fci becomes a trefoil knot in 
L(oo, —1) = S3. Since the exterior of a torus knot is a Seifert fibered space 
with orbifold a disk with two cones, it is easy to see that all surgeries but 
one yield Seifert fibered spaces, each having an orbifold a disk with at most 
three cone points. For this trefoil, the exceptional surgery has coefficient —6, 
yielding a reducible manifold. Thus L(—1/n, —1) is a small Seifert fibered 
space for any n. 

After —2 surgery on £2, the knot ki becomes a knot in RP3 = L(oo, —2). 
The link L is drawn in Figure 1(a), where the curve C is a curve on dNfa) 
of slope —2, so it bounds a disk in L(oo, —2). Thus a band sum of ki and C 
forms a knot fc^ isotopic to ki in L(oo, —2). The link 1/ = fc^ U £2 is shown 
in Figure 1(b). Using Kirby Calculus one can show that L(—1/n, —2) = 
Z/(—2 — 1/n, —2). The exterior of k^ in 53 is a Seifert fibered space with 
orbifold a disk with two cones, in which £2 is a singular fiber of index 3. Thus 
after —2 surgery on £2? the manifold L(oo, —2) — IntiV^) is still Seifert 
fibered, with orbifold a disk with two cones. The fiber slope on dN(k,

1) is 
6. It follows that all but the 6 surgery on k[ in L(oo, —2) yield small Seifert 
fibered manifolds. In particular, L(—1/n, —2) = Z/(—2 — 1/n, —2) are small 
Seifert fibered manifolds for all n. 

The proof for 72 = —3 is similar. One can show that the band sum of ki 
and the curve C of slope —3 on dNfa) is isotopic to the curve k^ shown in 
Figure 1(c), which is a (3, —2) torus knot. By the same argument as above 
one can show that L(—1/n, —3) = L(—3 — 1/n, —3) are small Seifert fibered 
manifolds for all n. □ 
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Figure 2. 

Recall that a 2-bridge knot K is a twist knot if K = Kp/q, and p/q = 
[2n, ±2] for some n. 

Corollary 2.4. If K — Kp/q is a twist knot with p/q = [2ra, ±2], then K^) 
is a small Seifert fibered space for 7 = =f=l; =F2 and =F3. 

Proof. Consider the case p/q = [2n, 2]. The proof for p/q = [2n5—2] is 
similar. Let L = fci Ufc2 be a 2-bridge link associated to the rational number 
p'/q' = [2, 2, —2]. Notice that after — 1/n surgery on fci, the knot £2 becomes 
the knot K = K[2n,2] ^n S3 = ^(""l/71?00)' Therefore by Lemma 6, if (7) = 
L(—1/n, 7) are small Seifert fibered spaces for 7 = —1, —2 and —3. □ 

3. Delman's construction, and the proof of Theorem 1.1(1). 

For each rational number p/q, there is associated a diagram D(p/q), which 
is the minimal subdiagram of the Hatcher-Thurston diagram [HT, Figure 4] 
that contains all minimal paths from 1/0 to p/q. See [HT, Figure 5] and 
[Del]. D{p/q) can be constructed as follows. Let p/q = [ai,... , a*.] be a 
continued fraction expansion of p/q. To each a; is associated a "fan" Fai 

consisting of a; simplices, see Figure 2(a) and 2(b) for the fans F4 and F_4. 
The edges labeled ei are called initial edges, and the ones labeled 62 are 
called terminal edges. The diagram D(p/q) can be constructed by gluing 
the F^ together in such a way that the terminal edge of Fai is glued to the 
initial edge of Fai+1. Moreover, if aia^i < 0 then Fai and Fai+1 have one 
edge in common, and if aiai+i > 0 then they have a 2-simplex in common. 
See Figure 2(c) for the diagram of [2, -2, —4,2]. Notice that the fans F_2 
and F-4 in the figure share a common triangle. 
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o/o 

Figure 3. 

To each vertex Vi of D(p/q) is associated a rational number ri/si. It 
has one of the three possible parities: odd/odd, odd/even, or even/odd, 
denoted by o/o, o/e, and e/o, respectively. Note that the three vertices of 
any simplex in D(p/q) have mutually different parities. 

We consider D(p/q) as a graph on a disk D, with all vertices on dD, 
containing dD as a subgraph. The boundary of D forms two paths from the 
vertex 1/0 to the vertex p/q. The one containing the vertex 0/1 is called the 
top path, and the one containing the vertex 1/1 is called the bottom path. 
Edges on the top path are called top edges. Similarly for bottom edges. 

Let Ai, A2 be two simplices in D(p/q) with an edge in common. Assume 
that the two vertices which are not on the common edge are of parity 0/0. 
Then the arcs indicated in Figure 3(a) and (b) are called channels. A path 
a in D(p/q) is a union of arcs, each of which is either an edge of D(p/q) or 
a channel. 

Let v be a vertex on a path a in D(p/q). Let ei,e2 be the edges of 
a incident to v. Then the comer number of v in a, denoted by c(v]a) or 
simply c(v), is defined as the number of simplices in D(p/q) between the 
edges ei and 62- A path a from 1/0 to p/q is an allowable path if it has at 
least one channel, and c(v) > 2 for all v in a. 

Now assume that K = Kp/q is a 2-bridge knot. Then q is an odd number. 
Recall that Kp/q = Kp//q if p

7 = p^1 mod g, and K_p/q is the mirror image 
of Kp/q. We may assume without loss of generality that p is even, and 
1 < p < q. This is because -K'fo-p)/^ is equivalent to the mirror image of 
Kp/q, so the result of 7 surgery on the first is the same as that of —7 surgery 
on the second. Note that q — p and p have different parity, since q is odd. 
The following result is due to Delman. See [Del] and [De27 Proposition 3.1]. 
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Theorem 3.1 (Delman). Given an allowable path a of D{p/q), there is 
an essential branched surface T in S3 — K which remains essential after all 
nontrivial surgeries on the knot K. □ 

Lemma 3.2. // there is an allowable path a in D(p/q) such that c(v) > 2 
for some vertex v in a, then K{^) is not a small Seifert fibered space for 
any 7. 

Proof. It was shown in [Br, Corollary 4] that if F is an essential branched 
surface in a small Seifert fibered space M, then each component of M — 
Int N^F) is an /-bundle over a compact surface G, such that the vertical 
surface dyN^) (also called ciisps) is the /-bundle over dG. It has been 
shown in [Del] that for each vertex v of a there is a component Wv of 
Ss — Int N(!F) such that Wv is a solid torus whose meridian disk intersects 
the cusps c(v) times. In particular, if c(v) > 2 then Wv is not an / bundle 
as above. Since J7 is an essential branched surface in K(7), it follows that 
^(7) is not a small Seifert fibered space. □ 

Lemma 3.3. Suppose p is even, q is odd, and 1 < p < q — 1. If p/q does 
not have partial fraction decomposition of type [ri,^], then D{p/q) has an 
allowable path a such that some vertex v on a has c{v) > 2. 

Proof Let [01,... ,an] be the partial fraction decomposition of p/q such 
that all ai are even. Then ai > 2. If a; = 2 for all i, then p/q = (q — l)/g, 
contradicting our assumption. Thus either some a; < 0, or some a; > 4. We 
separate the two cases. 

CASE 1.    Some a* < 0. 
Let ai be the first negative number. Then a;_i > 0, so there is a sign 

change. By [De2] there is a channel ao in F^^ U Fai starting at a bottom 
edge and ending at a top edge, where Fai is the fan in D(p/q) corresponding 
to ai. Let ai be the part of the bottom path of D(p/q) from the vertex 1/0 
to the initial point of ao, and let #2 be the part of the top path from the 
end point of ao to the vertex p/q. Then a = ai U ao U a2 is an allowable 
path in D(p/q). We need to show that if c(v) = 2 for all vertices v on this 
path, then p/q = [ri, r2] for some ri, r2. 

Consider the vertices on ai. Since c(^) = 2 for all Vi, each vertex Vi is 
incident to exactly one non boundary edge e; of D(p/q), which must have 
the other end on a vertex v! in the top path. If some of these v^ are different, 
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(a) (b) 

Figure 4. 

then since all faces of D(p/q) are triangles, it is clear that some VJ on ai 
would have at least two non boundary edges, which would be a contradiction. 
Similarly, each vertex on 0.2 has a unique non boundary edge, leading to a 
common vertex on the bottom path, so the diagram D(p/q) looks exactly 
as in Figure 4(a). It is the union of two fans Fri and Fr2 with ri > 0, and 
r2 < 0. Therefore, p/q = [ri,^]. 

CASE 2.    Some ca > 4. 

In this case there is a channel ao with both ends on the bottom path. 
Construct an allowable path a = aiUaoUa2 with ai, 0^2 in the bottom path. 
Similar to Case 1, it can be shown that each vertex on c^ has a unique non 
boundary edge leading to a common vertex v^ on the top path, so D{p/q) 
looks like that in Figure 4(b). In this case p/q =■ [n,^], with both n > 0. 

□ 

Corollary 3.4. Let K be a 2-bridge knot   If K ^ #[61,62] for an2/ &i>&2, 
then K(j) is non-exceptional for all 7. 

Proof K is not a (2, q) torus knot, otherwise K = Ifpgii] = #[2^1] • Hence 
by Lemmas 2.1 and 2.2, #(7) is irreducible and atoroidal. By Lemmas 
3.3 and 3.2, #(7) is not a small Seifert fiber space. Therefore, #(7) is 
non-exceptional. d 
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Figure 5. 

4. Surgery on twisted Whitehead links, 
proof of Theorem 1.1(2). 

A twisted Whitehead link is a two bridge link L associated to a rational num- 
ber [2, r, —2] for some r ^ 0. See Figure 5 for a twisted Whitehead link with 
r — —6. When r = ±2, L is a Whitehead link. It has been determined ex- 
actly which 2-bridge link complements contain persistent laminations [Wu]. 
The next lemma shows that if |r| > 2 then there is a persistent lamination 
with some desired property. 

Recall that a slope 7 of a knot K is an integral slope if it intersects the 
meridian of K exactly once. 

Lemma 4.1. Let L = ki U ^2 be a twisted Whitehead link associated to the 
rational number p/q = [2,r, — 2]. Let £(71,72) be the manifold obtained by 
7; surgery on ki. If \r\ > 2; and one of the 7; is not an integral slope, then 
£(71572) is not a small Seifert fiber space. 

Proof. By considering the mirror image of L if necessary we may assume 
that r < 0. If r is even, then [2, r, —2] is a partial fraction decomposition 
with even coefficients, and r < -4. There is an allowable path in D(p/q) 
with two channels, as shown in Figure 6(a), where r = —4. If r is odd, then 
p/q = [2, r +1,2], in which case D(p/q) also has an allowable path with two 
channels. See Figure 6(b) for the case r = —3. 

Let J7 be the essential branched surface in the link exterior associated 
to the above allowable path in D(p/q)1 as constructed in [De2]. There is 
one solid torus component VJ in S3 — IntN^F) for each fc;, containing ki as 
a central curve. From the construction of J7 one can see that each channel 
contributes two cusps, one on each dVi. Actually from [De2, Figure 3.5] we 
see that the two cusps corresponding to a channel are around two points 
of L on a level sphere with same orientation.  Since each ki intersects the 
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(a) (b) 

Figure 6. 

sphere at two points with different orientations, those two cusps must be 
around different components of L. One is referred to [Wu] for more details 
about surgery on 2-bridge links. 

As the allowable path above has two channels, each Vi has two meridional 
cusps. Thus F remains an essential branched surface after surgery on L. 
Moreover, since one of the 7; is non-integral, after surgery Vi becomes a 
solid torus whose meridional disk intersects the cusps at least four times. 
By [Br, Corollary 4], the surgered manifold is not a small Seifert fiber space. 
□ 
Corollary 4.2. Let K = K^j^ be a two bridge knot with |&;| > 2 for 
i = 1,2. Then K^) is exceptional for only one 7, which yields toroidal 
manifold. When both bi and 62 are even, 7 = 0. Ifbi is odd and 62 is even, 
7 = 262. 

Proof. By Lemmas 2.1 and 2.2, if (7) is irreducible, and it is toroidal for 
exactly one 7 as described in the corollary. So it remains to show that ^(7) 
is never a small Seifert fiber space. 

Since K is a knot, at least one of the bi is an even number. We may 
assume without loss of generality that 61 = 2n for some integer n, because 
^■[biM] *s ecluivalent to if[62,61]? by turning the standard diagram for the first 
knot upside down. 

Let L = ki U k2 be a 2-bridge link associated to the rational number 
p/q = [2,62? —2]. Notice that after — 1/n surgery on fci, the other component 
k2 becomes the knot K = K[271,62] • Therefore, doing 7 surgery on K is the 
same as doing —1/n surgery on fci, then doing some 7' surgery on ^2- Since 



The classification of exceptional Dehn surgeries on 2-bridge knots     107 

\ 

\ 

^ \ 

P2 N, 

Figure 7. 

N, 

—1/n is non integral, and |&2| > 2, the result follows from Lemma 4.1.     □ 

Corollary 4.3. Let K = ^[&,±2] with \b\ > 2. If 7 is a non integral slope, 
then K(pf) is not a small Seifert fiber space. 

Proof. As above, if (7) = 1/(7, ±1), where L = £[2,6,-2] • Since 7 is non 
integral, the result follows from Lemma 4.1.  The result also follows from 
[Br]. D 

5. Roberts' construction of essential branched surfaces. 

In [Ro] Roberts constructed branched surfaces in certain knot complements, 
which can be extended to essential branched surfaces in if (7) for all 7 in 
an infinite interval. We will describe her results and construction in this 
section, and apply them to surgery on twist knots in the next section. 

Let E(K) = S3 - IntN(K) be the exterior of a knot K in S3, let R' 
be a (possibly non orientable) compact surface in Ss with dR! = K. Let 
R = R'nE(K). 

Let S be a surface in E(K) which has interior disjoint from J?, and has 
a single boundary curve OS = ai U bi U ... U an U 6n, where bi are mutually 
disjoint arcs on J?, and a; are arcs on T = dN(K). By specifying a cusp at 
each &i, the union of R and S becomes a branched surface B = (R,S) in 
E(K). The cusps will be assigned in such a way that each a; on T is one 
of the four types indicated in Figure 7. Note that dB is a train track on T, 
and each component of T — dB is a digon, i.e a disk with two cusps. 
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Remark. The pictures on Figure 7 are mirror images of that in [Ro, Figure 
22]. Thus for example, type Pi here is of type Ni in [Ro]. Apparently we are 
using different coordinate systems. This paper adopts the convention that 
the meridian-longitude pair (ra, I) on T is chosen so that when K is endowed 
with the same orientation as that of Z, the linking number lk(m,K) = 1, 
measured using the right hand rule. See [R]. With this convention, types 
Pi, P2 in Figure 7 will have positive contributions to any slope 7 carried in 
the train track. 

Let N(B) be a regular neighborhood of the branched surface B in E(K) 
with the natural /-bundle structure. A surface of contact is a properly 
embedded compact surface P in N(B)^ transverse to the /-fibers, with dP C 
dvN(B) U T, such that the intersection of dP with each component of the 
vertical surfaces dvN(B) is either empty or a single arc. 

Let pi, p2j ni, 712 be the numbers of a; of type Pi, P2, ^i, ^2 respectively. 
Let r be the slope of dR on T. Let 

x 
J={r + (pi- ni)—- + (p2 - n2)x | x > 0} 

Then Roberts' theorem [Ro, Theorem 2.3] can be stated as 

Theorem 5.1 (Roberts). IfB= (R^S) constructed above is an essential 
branched surface in E{K), and has no planar surface of contact, then B 
extends to an essential branched surface B1 in if (7) for all slope 7 G J. 

The construction of the extended branched surface is as follows. Let 
T x / be a small neighborhood of T in E{K) with T = T x 0, such that 
B Pi (T x /) = dB x /. Add the digons T x 1 - B to S, and branched so that 
the cusps on the two edges of each digon lie on different sides. The definition 
of J guarantees that the train track dB on T can be split to produce a curve 
C of slope 7 on T. Split dB x / accordingly and, after Dehn filling, cap 
off C by a meridian disk in the Dehn filling solid torus, so that one obtains 
a branched surface B1 in #(7). It was shown in [Ro] that B, carries an 
essential lamination in ^(7). 

Denote by E{B) the exterior of B in E(K\ i.e E{B) = E(K) -Int N(B). 

Corollary 5.2. For any 7 G J, the manifold E(B) is homeomorphic to a 
component W of the exterior of By in if (7), with horizontal surface of B 
identified to the horizontal surface of Bj on dW. 
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Figure 8. 

Proof. Examine the above construction. After adding the digons of T x 1 — B 
to 5, the branched surface is topologically homeomorphic to B U (T x 1), 
which cuts off a region isotopic to E(B). Clearly this region is not affected 
by the later changes, and its horizontal surface is the restriction of that on 
E(B). D 

6. Surgery on twist knots, and the final proof. 

As noticed earlier, any twist knot can be written as if[2n,±2] for some n, 
because if 6 is odd then K[b^] = ^[6_i,_2]- Since K^n-2) is the mirror 
image of K^nfi]) we need only consider knots of type K^nfi]- We can also 
assume that n ^ 0,1, otherwise the knot is a trivial knot or a trefoil knot. 

Lemma 6.1. Let K = Kpnfi] be a twist knot with n ^ 0,1. Then if (7) is 
not a small Seifert fiber space for all 7 < —4. 

Proof A knot K = K^nfi] has two spanning surfaces as indicated in Figure 
8, where 2n = 4. The first surface is a punctured Klein bottle, and the 
second one is a punctured torus. 

Let R be the punctured Klein bottle of Figure 8(1) in the knot exterior. 
Add a disk S to R such that the boundary of S is the circle indicated in 
Figure 8(1). The boundary of S consists of four arcs ai Ubi Ua2U625 where 6; 
lies on R, and a* on the torus T = dN(K). The arrows at the arcs fy indicate 
the side of the cusp. This determines the branched surface B = (R, 5), and 
hence the type of ai on T. One of the a* (the one on top) is of type Pi, 
and the other one of type N2. Using the notation in Section 5, we have 
Pi = ri2 = 1, and p2 = ni = 0. By calculating the linking number between 
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Figure 9. 

K and dR, one can see that dR has slope r = — 4 on T. Therefore, 

J = {r + (pi - m)——- + (p2 - n2)x | re > 0} = {-4 + —— - x \ x > 0} 
x + 1 x + 1 

= {_4 " ^TT 'x > 0} = ("^ "4) 

We need to show that B is an essential branched surface in E(K). It is clear 
that N(B) is topologically a solid torus. By examining the cusp on dN(B), 
one can see that the exterior of B is the same as that of the surface in Figure 
9, with cusp the boundary of the surface F. Note that dF runs along the 
meridian of the solid torus N(F) 2n — 1 times. Hence E(B), the exterior 
of 5, is a solid torus with a single cusp running along the longitude 2n — 1 
times. Since n / 0,1, it is easy to see that E(B) satisfies all conditions for 
B to be essential, i.e, E{B) is indecomposable, and the horizontal surface 
on dE(B) is essential. One also needs to check that the branched surface 
B satisfies all the intrinsic essentiality properties, i.e, it has no disk or half 
disk of contact, it contains no Reeb branched surfaces, and it fully carries a 
lamination. This is straightforward. 

To apply Roberts' theorem, we also need to show that B = (it!, S) has no 
planar surface of contact. Assume that P is a compact surface embedded in 
N(B), transverse to the /-fibers, with dP C dvN(B)UT. Cutting along the 
two arcs &i, 62 along which S is glued to i2, the branched surface B becomes 
two surfaces S and Rf = R — bi U 62- Let u, v be the number of times that 
P intersects an /-fiber of S and R' respectively. Then the gluing at bi gives 
the equation v = u + v + w, where w is the number of times dP passes the 
cusp at bi. So u = w = 0, and P lies in N(R). Since R is nonplanar, P can 
not be planar. 

It now follows from Theorem 5.1 that B extends to an essential branched 
surface /?7 for all slopes 7 < —4. By Corollary 5.2, E(B) can be considered 
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as a component of the exterior of S7. Since E(B) is a solid torus with a 
cusp running along the longitude |2n — 1| > 3 times, it is not an /-bundle. 
Therefore, by the result of Brittenham [Br], if (7) is not a small Seifert fiber 
space for all 7 < —4. □ 

Lemma 6.2. Let K = Ki2n,2] be a twist knot with \n\ > 2. Then K^) is 
not a small Seifert fiber space for all 7 > 0. 

Proof. The proof is very similar to that of Lemma 6.1, only instead of using 
the non orientable surface in Figure 8(1), we use the orientable surface R in 
Figure 8(2). As a Seifert surface of K, the boundary of R has slope 0. Also, 
the arcs ai, a2 are now of type P2 and iVi, so pi = n2 = 0, P2 = ni = 1, and 

J = {r + (pi - m)—7-7 + (P2 - n2)x \x>0} = {0 ^— + x I x > 0} 
X + I X + 1 

= {^1 l*>0} = (0,oo) 

The exterior of the branched surface B = (i?, S) is the same as that of a 
band with 2n twists. Since |n| > 2, it is not an /-bundle. Therefore, one 
can use the argument in the proof of Lemma 6.1 to obtain the conclusion. 
□ 

Proof of Theorem 1.1. Parts (1) and (2) are exactly Corollaries 3.4 and 4.2. 
For part (3), consider the knot Kpnp]- By Lemma 2.2 and Corollary 2.4, 
surgeries with 7 = 0,4 are the only toroidal ones, and 7 = —1, —2, —3 are 
Seifert fibered. By Corollary 4.3, Lemmas 6.1 and 6.2, there are no other 
small Seifert fibered surgeries. Since no surgeries on Kpnfi] are reducible 
(Lemma 2.1), all surgeries with 7 ^ 0, —1, —2, —3, —4 are non-exceptional. 
Since K[2n-2] is the mirror image of if[_2n,2]> the result follows. 

Part (4) follows from the well known result of Thurston about surgery 
on the Figure 8 knot [Th], which is stronger as the non-exceptional surgeries 
are shown to be hyperbolic. The result as stated can also be proved using 
the techniques in this paper: As toroidal and reducible surgeries are known, 
we only need to deal with small Seifert fibered surgeries. By [Br] all non- 
integral surgeries on K = Zf[-2,2] are not small Seifert fibered. By Lemma 
6.1 if (7) are not small Seifert fibered for 7 < —4. Since K is amphicheiral, 
this is also true for 7 > 4. □ 
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Remark 6.3. Boileau and Porti [BP] proved a version of Thurston's Orb- 
ifold Theorem, showing that the geometrization conjecture is true for mani- 
folds which admit a finite group action whose fixed point set is a non-empty 
1-manifold. Using this result one can show that non-exceptional surgeries on 
2-bridge knots are also hyperbolic. The proof is as follows. A p/q 2-bridge 
knot can be obtained by taking two arcs of slope p/q on the "pillowcase", 
then joining the ends with two trivial arcs. Prom this picture it is easy to see 
that K is a strongly invertible knot, i.e. there is an involution 9? of 53 such 
that ip{K) = K, and the fixed point set of ip is a circle S intersecting K at 
two points. The map ip restricts to an involution of E{K) = 53 — Int N(K), 
which can be extended to an involution (p of the surgered manifold. Since (p 
has fixed point set a nonempty 1-manifold, the result follows from [BP]. 
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