
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 9, Number 1, 3-34, 2001 

The Curvature of Minimal Surfaces in Singular 
Spaces 

CHIKAKO MESE 

1. Introduction. 

Let D be an unit disk in R2 and (M, g) a smooth Riemannian manifold. If 
an immersed surface u : D —> M is minimal, i.e. stationary with respect to 
the area functional 

/   Jdet(Tij)da 

where (Tij)=u*g is the pull back metric on D, then 611 + 622 = 0 with bij 
the components of the vector valued second fundamental form. The Gauss 
equation then gives, 

Kx = KM + &11&22 - &12 < KM 

where K^ is the Gauss curvature of the surface and KM is the sectional 
curvature of the tangent plane to the surface in the manifold. This shows 
that the curvature of a minimal surface is less than or equal to that of the 
ambient space. In this paper, we will show that this fundamental curvature 
property of minimal surfaces also holds in certain singular spaces. 

When a smooth surface E has a conformal metric with conformal factor 
A, it is well known that the Gaussian curvature K^ is given by the formula 

Ks = "2AAl0gA* 

Hence, the condition that the curvature be bounded from above by K reduces 
to the inequality 

A log A > -2K\. 

Our main theorem states that this same type of inequality holds when we 
replace the smooth Riemannian manifold with a complete metric space of 
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curvature bounded from above by K. We will call a map from a surface 
a minimal surface if it is conformal and locally energy minimizing. Recall 
that these conditions on a map are equivalent to minimality in the smooth 
setting. Because our target space can be quite singular, we can only expect 
the following weak inequality: 

Main Theorem. Let X be a conformal factor of the pull back metric under 
a minimal surface u : D —» X where (X, d) is a complete metric space of 
curvature bounded from above by K.  Then for all non-negative tp G C^C(D)P 

/ log XAip > -2K, / ipX. 
JD JD 

The complete metric spaces considered are length spaces, i.e. any two 
points can be joined by a distance realizing curve. Furthermore, we impose 
a curvature bound from above; here, the curvature bound is defined in terms 
of comparing geodesic triangles with comparison triangles in a constant cur- 
vature surface (see Section 3 for the precise definition.) Sometimes called 
Alexandrov spaces with curvature bounded from above, they were studied 
by A.D. Alexandrov [A] in the 1950's and advanced by him and the Rus- 
sian school of mathematicians. They include smooth Riemannian manifolds 
with an upper bound on the sectional curvature but allow singularities of a 
very general type. In fact, no restriction is made on the singularities. If we 
consider a class of Riemannian manifolds with upper bound n on sectional 
curvature and a lower bound on the injectivity radius, the completion by 
Gromov-Hausdorff metric turns out to be these metric spaces of curvature 
bounded from above by K. 

The motivation of this paper is twofold. One, we wish to extend the study 
of minimal surfaces in Riemannian manifolds to spaces with singularities. 
Second, we wish to introduce analytical tools in the study of singular spaces. 

Recently, there has been much interest in the study of harmonic map 
theory for spaces with singularities. A general existence and regularity theo- 
ries of harmonic maps into Riemannian simplicial complexes of non-positive 
curvature was developed in [GS] to solve certain rigidity problems. This 
theory was further generalized for maps into complete metric spaces with 
non-positive curvature by [KS] and independently by [J]. The case of curva- 
ture bounded from above by some constant is treated in [S]. Some examples 
of the application of the harmonic maps into certain singular spaces are 
Wolf's [W1],[W2],[W3] investigations of Teichmiiller spaces and the actions 
of fundamental groups of closed surfaces and Hardt and Lin's [HL] study of 
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neumatic liquid crystals. In light of the these successful studies of the har- 
monic map theory in singular spaces, it is natural to consider an extension 
of minimal surface theory to these settings. 

This paper is organized as follows. In Section 2, we outline Sobolev 
space theory for metric space targets due to [KS]. In Section 3, we recall the 
notion of metric spaces with curvature bounds and derive some inequalities 
for the distance functions that will be important in Section 4. Furthermore, 
we define area for maps into these spaces which allows us to consider the 
Plateau Problem. We note that Nikolaev [N2] is the first to consider the 
Plateau Problem; there he takes a defintion of area that is different from 
ours. Our definition is a natural extension of the definition of area for maps 
into smooth Riemannian manifolds and allows us to use a classical approach 
in the solution of the Plateau Problem. In Section 4, we will prove an 
inequality satisfied by the energy density function e(u) of an energy mini- 
mizing map by a careful consideration of the curvature bound of the target. 
If u : M —> iV is an energy minimizing map between smooth Riemannian 
manifolds, then the Bochner's formula gives 

-Ae(u) = \Vdu\2 - y^^(RN(u*eai u^e^u^e^ u*ep) 

+ ^ RicM(v>*6i, u*Qi) 

where ei,..., en is an orthonormal basis for TM and 0i,..., Ok is an orthonor- 
mal basis for T*iV. In particular, if M is flat and N has sectional curvature 
bounded from above by ft, then 

Ae(ix) > -2hie(u)2. 

We will see that the energy density function of energy minimizing maps into 
metric spaces of curvature bounded from above by ft weakly satisfies the 
above inequality. This inequality will be the starting point of the proof of 
the main theorem. 

Section 5 is devoted to the proof of the main theorem. In Section 6, we 
make a geometric interpretation of the analytical result of Section 5; namely, 
we consider the natural distance function induced by the metric \{dx1+dy2) 
which defines a metric space of curvature bounded from above by ft. In the 
case when the map minimizes area, Professor Nikolaev has pointed out that 
this result follows from the works of Reshetnayk [R1],[R2]. We thank him 
for communicating this observation. 
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2. Sobolev Space Theory for Maps to Metric Spaces. 

Let ft be a compact domain in Rn and (X, d) any complete metric space. In 
[KS], Korevaar and Schoen develop the space W1'2(fi, X). Here we define 
this space and collect some of their results. 

A Borel measurable map u : Q, —> X is said to be in L2(fi,X) if for 
PeX, 

/ d2{u{x),P)dx < oo. 

Note that by the triangle inequality, this definition is independent of P cho- 
sen. For u G Z/2(fi,X), we can construct an e approximate energy function 
e€ : £le —> R, 

.(x) = n|aB.(x)|-l/ *(»(*>'^dS 
JdBJx) £ 

Here Sle is the set of points in fi with distance from the boundary more 
than e and Be(x) is a ball of radius e centered at x. Letting ee{x) = 0 for 
Q, — f)€, we have that e€(x) G I/1(ri) and by integrating against continuous 
functions with compact support, these functions define linear functionals 
Ee : Cc(f2) —> R.   We say u G L2(0,X) has finite energy (or that u G 

Eu = sup        limsupjE,
€(/) < oo. 

/€Cc(fi),0</<l     e->0 

It can be shown that if u has finite energy, the measures ee(x)dx converge 
in the weak* topology to a measure which is absolutely continuous with 
respect to the Lebesgue measure. Hence, there exists a function e(a:), which 
we call the energy density, so that e€(x)dx —^ e(x)dx. In analogy to the case 
of real valued functions, we write |V^|2(a:) in place of e(x). In particular, 

Eu = ! \Vu\2dx. 
Jn 
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Similarly, the directional energy measures \u*(Z)\2dx for Z € TQ can also 
be defined as the weak* limit of measures zeedx, where 

z _ d2(u(x),u(x + €Z)) 
e€{X) — ^ 

Furthermore, for Z G Tfi, 

p*(z)lw = i™ » 

a.e. x G fi. Finally, we have 

|Vu|2= /      |^(Z)|2da(Z). 

This definition of Sobolev space PF1'2(fi, X) is consistent with the usual 
definition when X is a Riemannian manifold. The following theorems allow 
us to use variational methods in the setting where the target space of maps 
is a complete metric space. Note that u^ —> u in L2(fi, X) will mean diu^ u) 
converges to 0 in L2(fi), i.e. 

lim   / d2(uk,u) = 0. 
k-+ooJ 

Theorem 2.1 ([KS] Theorem 1.6.1). // {uk} C W1'2(fi,X) is a se- 
quence with uniformly bounded W1,2(Q, X) norms and u^ —► u in L2(ri, X), 
thenue W^2(n,X) and 

E{u) =liminf E(uk). 
k-+oo 

The following is a generalization of the W1*2 trace theory. 

Theorem 2.2 ([KS] Theorem 1.12.2). Any u G W1'2(fi,X) has a well- 
defined trace map (denoted tr(u)), with tr(u) G L2(dQ, X). If {u^} C 
W1'2(ri,X) is a sequence with uniformly bounded energies and uy. —* u in 
L2(Q,,X), then tr(uk) converges to tr(u) in L2(dQ,X). 

We also have the following Rellich type precompactness theorem. 

Theorem 2.3 ([KS] Theorem 1.13). Let (X,d) be locally compact If 
{ukycWWfaX) satisfy 

/ 
Jn 

d\uk(x), Q)dx + E(uk) < C, 

where Q is a fixed point in X, then a subsequence of {ufc} converges in 
L2(Q,X) to a finite energy map u. 
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Using these theorems, one can solve the following. 

The Dirichlet Problem. Let (X, d) be a complete locally compact metric 
space. LetifreW^faX). Define 

W^2 = {ue W^faX) : tr(u) = trfy)} . 

Let E^ = mi{E(v) : v e Wffl. There exists u e Wj'2 such that E(u) = E^. 

If we assume an upper curvature bound on the target (see Definition 3.1 
in the next section), we get nice regularity properties of the solution. In fact, 
[KS] shows that the solution is Lipschitz when X is non-positively curved 
and [SI] shows that the same holds in the case when curvature is bounded 
from above by some constant provided that the boundary data lies in a small 
geodesic ball. In both cases, the map is Holder continuous to the boundary. 

3. Metric Spaces of Curvature Bounded from Above. 

In this section, we will recall the definition of curvature bounds in a metric 
space, give some technical propositions and define the notion of area for 
maps into these singular spaces. 

3.1. The Definition. 

Definition 3.1. A complete metric space (X, d) is said to have curvature 
bounded from above by K if the following conditions hold: 

(i) (X, d) is a length space; that is, if P, Q e X there exists a distance 
realizing curve connecting P and Q. (We call such distance realizing 
curves geodesies.) 

(ii) Let SK be a surface of constant curvature K. For any three points 
P,Q,R e X (with dpQ + dqn + d^s < -j% ^ K > 0) and choices 
of geodesies 7PQ (of length r), ^QR (of length p) and JPR (of length 
q) connecting the respective points, call a triangle A(PQR) in 5^ 
with vertices P, Q, R and opposite side lengths p, g, r a comparison 
triangle in 5^. For any 0 < A < 1 write Q\ for the point on JQR 

so that d!(Q, Q\) = Xp and d(Q\, R) = (1 - X)p and define Q\ G SK 

analogously to <3A> then 

d(P,Qx)<dSn(P,Qx). 
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Remark. These spaces are sometimes defined in terms of an angle excess 
(see [ABN] for example). The upper angle between geodesies are defined as 
follows: if 7 and a are geodesies having a common point P with R G 7, Q G cr 
and r = d(P,Q), q = d(P,R), we let 0^(7*, q) be the angle at P of the 
comparison triangle A(PQR) of S^. The upper angle between 7 and a is 

a(7,a) = lim sup ^(r,^). 

This definition is independent of K. (X, d) is said to be a metric space of 
curvature bounded from above by n if for every triangle A(PQR) in X (with 
dpq + dqu + dRp < ^), 

a + f3 + 7 < aK + (3K + 7K 

where a,^,7 are the upper angles of A(P,Q,i?) and aKi,l3Kl'yK are angles 
of the comparison triangle in S^. This definition is equivalent to the above 
definition of a curvature bound. 

These spaces are referred to as CAT(K) spaces in literature. If K, = 1, 
then SK is a standard unit sphere S2. Note that if K, > 0, we can make X 
into a CAT(1) space by rescaling the distance function. If K = —1, then SK 

is the hyperbolic plane H2. Again, note that if K < 0, then by rescaling the 
distance function, we can make X into a CAT(—1) space. 

3.2. Technical Propositions. 

This important result is given in [Rl] and will be basis of the propositions 
that follow. 

Theorem 3.2 (Reshetnyak). Let (X,d) be a metric space of curvature 
bounded above by K, and T be a closed rectifiable curve in X (of length less 
than or equal to -^ if K, > 0). Then there exists a convex domain V in SK 

and a map p : V —» X such that (p(dV) = F, the lengths of the corresponding 
arcs coincide, and dsK(x,y) > d(ip(x),(p(y)), for x, y G V. 

Let X be a CAT(K) space and P, Q, P, S G X. If dps, dQR < -5-, then 

there is a unique geodesic between P and S (Q and i?, resp.). We denote 
by Pt (resp.   Qt) the point on this geodesic such that dppt = tdps (resp. 

dQQt = tdgfl). 
Let (X, d) be a CAT(l) space. Given ordered sequence {P, Q, R,S} <Z X 

with dpQ+dQR+dps+dsp < TT. Theorem 3.2 asserts that there is an ordered 
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sequence {P, Q, -R, S} C S2 such that the quadrilateral associated with it 
(i.e. the four ordered points, the geodesies between consecutive points and 
its interior) is convex and 

d(P, Q) = dS2(P, Q), d(Q, R) = d52(Q, R), 

d(R, S) = dS2 (R, 5), d(5, P) = ^52 -(5, P), 

d(PuQs)<dS2(PuQs). 

We will call {P, Q, P, 5} a spherical subembedding for {P, Q, P, S}. Sim- 
ilarly, when (X, d) is a CylT(—1) space, we can define a hyperbolic subem- 
bedding 

In the propositions below, 0n(-) denotes terms that are nth order in the 
specified variables. 

Proposition 3.3. Let (X, d) be a metric space of curvature bounded from 
above by K with K = 1 or — 1. Then for {P, Q, P, S} C X (with dpq + dqn + 
dRS + dsp < IT if K = 1), the following inequalities hold: 

For K = 1, 

cos dpQt + cos djiQ1_t > cos dpq cos tdqp + sin dpq sin tdg^ cos a 

+ cos dps cos tdg/z + sin dps sin tdg^ cos /3 

sin(l — £)<ip5 / . , .    7       .   . 7 \ cos dptQt > —^—j^ (cos dpq cos tdqp + sm dpg sm tdqp cos a) 

(3-2) s^fS 
sin taps /       , ,, 7       .   , 7 ^\ 

+ ——-— (cos dps cos tdqp + sm dps sin tdqp cos /?) 
sin aps 

where a = ZPQR and (3 = Z.SRQ and {P, Q, P, 5} is a spherical subem- 
bedding for {P, Q, P, S}. 

For tt = —1, 

cosh dpQt + cosh dRq1_t < cosh dpg cosh tdqp — sinh dpg sinh tdqp cos a 

+     cosh dps cosh tdgi? — sinh dps sinh tdgp cos /? 

cosh dptQt < ; .   ,     PS (cosh dpq cosh tdqp - sinh dpq sinh tdqp cos a) 
smh aps 

+ 7
P5 (cosh dps cosh tdqp — sinh dps sinh tdqp cos /?) 

smh aps 
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where a = Z.PQR and (3 = Z.SRQ and {JP, <5, R, S} is a hyperbolic subem- 
bedding for {P, Q, i?, S}. 

Proof. We will only prove the case when K, = 1 by comparing the distance 
function d to the distance function ^52 of the sphere. The proof of the case 
when K, = — 1 follows analogously by considering the distance function of 
the hyperbolic plane instead of the sphere. 

Let {X, y, Z} e S2 such that dxv + dyz + dzx < TT. We let Yt be 
the point on the geodesic between Y and Z such that dYtz = tdyz and 
9 = Zs2YXZ. We have the following equalities: 

(3.3) cos dyz = cos dxy cos dxz + sin dxv sin dxz cos 0 

ro A\ J sm(l-t)dYZ        ,       , sin tdyz        , 
(3.4) cos dxYt = r—-, cos dxy + -r-3 cos dxz- 

sm dyz sm dyz 

Hence we have, 

cos dpA + cos d^Qi_t = cos dp A COS td^ + sin dpQ sin td^p cos a + 

cos dftg cos tdg^ + sin dfig sin tdg^ cos /?, 

and 

sin(l — t)dpx 
cos dPtOt = —sind—— ^COS dp(3 COS td(5^ + Sin dpQ Sin 'd(5A cos a"> 

H—.    ,     (cos a^^ cos tdfiji + sin a^^ sin tcU^ cos p). 
Sin O/po 

The result follows immediately from Theorem 3.2. □ 

Proposition 3.4. Let (X, d) be a metric space of curvature bounded from 
above by K with n = 1 or -1 and {P, Q, P, S} C X (^itfe dpg + dqn + d^^ + 
dsp < n if K = 1). Furthermore, let a, (3 as in Proposition 3.3.  Then 

(3.6) dpq cos a + dRs cos /? = dg^ - dps + 02(dpQ, d^) 

and for K, = 1, we have 

(3.7) dpq cos a + djR5 cos /? 

> dQR - dps - -dpQdRsd2
QR + 02(dpQ, dp5)03(dQp) 
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and for K = — 1, we have 

(3.8)   dpQeosa + dRscosp 

> dqn - dps + ldpQdRsd2
QR + 02(dpQ, dRs)03{dQR). 

Proof. Once again, we will only prove the case when K = 1 since the case 
K = -1 follows analogously. Again, let {P, Q, R, S} be the spherical subem- 
bedding of {P, Q, R, S}. Assume w.l.o.g, Q = (1,0,0), R = (cos6, sm6,0) € 
52 C R3. Note for any X, Y € S2 C R3, we have that cos d52(X, Y) - X-Y. 
(Here • denotes the usual dot product in R3.) In particular, we see that 
d-R = 0. Let 7 (resp. a) be a unit speed parameterization of a geodesic on 

52 emanating from Q (resp. R) such that, for t > 0, Zs2^(t)QR = a (resp. 
ZS2a(t)RQ = 0). If v(*) = (cost,ant,0), then 7 and a must satisfy: 

7'(0)y(0) = cosa, |7'(0)| = 1 

y(0) • ^(0) = cos(7r - 0),        W'(0)\ = 1. 

Hence, we have that 

and that 

7(0) = (1,0,0) 

y(0) = (0, cos a, sin a) 

7(0) = (-1,0,0) 

^■(O) = (cos 0, cos 0,0) 

a'(0) = (cos p sin 0, - cos p cos 0, sin p) 

(r"(p) = {-cos0,-sm0,O). 

Using the Taylor series expansion, 

t2 + s2 

7(t)-a(s) = cos0 + tcosasm0 + scospsm0 ^—cos9 

-tscosacosPcos0 + tssmasmp + O3(t,s). 
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Let /(£, s) = 7(t) • CF(S). Then again using Taylor series expansion, 

d52(7(*)>^W) = arccos/(0,0) +^—(arccos/)!^) + 5—(arccos/)!^) 

t2 d2 s2 d2 

+ 2"^2(arccos/)l(o,o) + -2-^2(arccos/)l(o,o) 

d2 

+ tSdtd^^TCCOS ^m + ^ S>> 

= 0 — t cos a — s cos /? 

t2 cos 6 — cos2 a cos 8     s2 cos 8 — cos2 /3 cos 0 
+ ~2 siii0 +"2~ sine 

sin a sin 8       n,     x 

smd 

This shows 

dpQeosa + dftgcos/J = d^ - dp5 + 02(dpQ,dRg). 

Hence equation 3.6 follows the above equality. By Cauchy-Schwartz inequal- 
ity, 

.    _     £2sin2a     s2sm2/3 
tssmasmp < 1 , 

and thus we obtain 

t2 s2 

-— (cos 8 — cos2 a cos 8) + — (cos 8 — cos2 (3 cos 8) — ts sin a sin (3 
Zi A 

t2 S2 

= — (cos 8 — cos2 a cos 8) + — (cos 0 — cos2 /? cos 8) — ts sin a sin /? cos 0 

— ts(l — cos 0) sin a sin /? 

> — ts(l — cos 0) sin a sin /? 

> -t5(l-cos(9). 

Since, 1 - cos0 = §■+ O4(0) and ^=1(1 + O2(0)), we obtain 

t5(l — COS0) 
dS2{'y(t),G(s)) > 8 — tcosa — scos(3 — 

sin0 

> 8-tcosa- scos/3 — + ts03(8). 

Hence we obtain, 

dpQ cos a + dfig cc 

Now inequality 3.7 follows immediately. □ 

dp^ cos a + dR§ cos /3>dQR- dpg - ^dp^dp^QR + 02(dpQ, d^O^d^). 
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Proposition 3.5. Let (X, d) be a metric space of curvature bounded from 
above by K with K = 1 or — 1 and {P, Q, i2, S} C X (with dpq + dqn + das + 
dsp <1T if K = 1). Let do = dqn, di = dps, and k = dptQt where, Pt (resp. 
Qt) is the point on the unique geodesic between P and S (resp. Q and R) 
such that dppt = tdps (resp. dQQt = tdqn). Then for n = 1, we have 

l2t + *?-* < 11 + 11 + 2tWid8 + 02(*)02(Zo, h) 

+ 04(/o, h) + t02(lo, h)03(do, di) + t03(Zo, h) 

and for K, = —1; t/;e Ziave 

't + li-t < 'o + li - Moh4 + 02W02(/o, h) 

+ 04(/o, Zi) + t02(lo, li)03(do, dx) + t03(/o, Zi). 

Proof. Again, we will only prove the case when K — 1. Inequality 3.9 follows 
immediately from Theorem 3.2 if we can prove the same inequality in the 
sphere.   Hence, let {P, Q, R, S} be four points in the sphere with dp^ + 

dQR + dRS + dSP < ^ and let ^0 == dQR> dl = dPSi anci lt = dPtQt where5 Pt 

(resp. Qt) is the point on the unique geodesic between P and S (resp. Q 
and R) such that dppt = tdpg (resp. d^ = tdg^). From equation 3.5, 

fsintdi      ,.      . .      sin(l-t)di       . , \ 
cos /t + cos h-t =    ——— cos(l - t)do + —\    ,       cos tdo    x 

Vsmdi smrfi / 

x (coslo + cosZi) 

fsintdi   .  ,.      . .      sin(l-£)di   .        \ 
+     -± sin(l - t)do + —.    ,       sin tdo    x 

\sintdi smdi / 

x (sin IQ COS a + sin li cos /S). 

By expanding sin do and sin di using Taylor series and then using inequal- 
ity 3.7, we have 

sin Zo cos a + sin Zi cos /? = ZQ COS a + Zi cos /? + 0 (Zo, Zi) 

> do _ dl _ ¥^0 + 02(/o5 /i)03(do) + 03(Zo? Zi) 

Also note that 

72      ;2 

cosZt + cosZi_t = 2 - | - -^ + 04(Zo, Zi). 
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Hence 

2-!-% + o4(Mi) 

= (2-|-| + 04(/o,/i))x 

fsintdi      ,*     ^7      sin(l-t)di T\ 
x      .    ,   cos(l - t)do + —\    /     costdo 

Vsmdi smdi / 

+ [do - d1 - ^ + O^/o, /i)03(do) + 03(Zo, h) 

fsintdi   .  /,     ^7      sin(l-£Wi   . 
x    ^-r- sin(l - t)do + —\      ; 1 sin^o 

Vsmdi smdi 

- cos(l - t)do + —\    - J    costdo = 1 + 02(t) 
i smcti v y 

We now use 

sin td 
sind 

and 

sin 
-r^ sin(l - t)do + Sill(1 ~t)dl smtdo = 2t + 0\t) 
sindi sindi v ; 

to obtain 

-2+f + %+04(*o,ii) 

Vsmdi / sindi uy 

+ | + | + 02(i)02(/o^i) + 04ao,/i) 

2^   2 

= -2 

Hence, 

- (do - di)   -—-sin(l - t)do + —\    , J    sintdo 
\smdi smdi J 

+ tlohdl + 02(t)02(lQ, li) + t02(lo, li)03(dQ, dj + t03(Zo, h). 

-4 + /t
2 + /J_t = -_-[2(smidi cos(l - t)db + sm(l - t)di costdb) sm cx^ 

+ (do - di)(sin£di sin(l - <)do + sin(l - t)di sintdo)] 

+ ll + l21+2tlol1dZ02(t)02(l0,l1) 

+ 04(lo, h) + t02(lo, h)03(do, dx) + t03(l0, h). 
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If we let 

F(x) = 2[sintdi cos(l - t)(x + di) + sin(l - t)di cost(x + di)] 

+ x(sintdi sin(l — t)(x + di) + sin(l — t)di siii^(x + di)), 

then the lemma will follow from the following claim with x = do — di. 

Claim.  There exists a > 0 such that for \x\ < cr; then F(x) > 2sindi. 

Proof of claim. It is easy to check that F(0) = 2sindi, ^(O) = 0. Further- 
more, 

F"(0) = -2(1 - t)2 sintdi cos(l - t)di - 2t2 sin(l - t)di cos tdx 

+ 2(1 — t) sintdi cos(l — t)di + 2tsin(l — t)di costdi 

= 2t(l — t) sintdi cos(l — t)di + sin(l — t)di costdi 

= 2t(l-t)smdi 

>0. 

Since F is a C00 function, the claim follows. □ 

3.3. The Pull-back Inner Product and the Area. 

We make sense of the notion of area for maps u E Wli2(D^X) when X 
has an upper curvature bound. We do this by defining an inner product 
structure on D which generalizes the pull-back metric for a smooth map 
between smooth Riemannian manifolds. The proof of the existence of such 
an inner product structure is an easy generalization of the proof in [KS] for 
maps into NPC space using the following technical lemma. 

Lemma 3.6. Let (X,d) be a CAT(1) space. Let P,Q,R,S G X. Then 

dPR + dQS ^ dPQ + dQR + dRS + dPS + 0(cr)j 

where a = max{d^Q, d2
QR, d2

RS, d
2pS}. 

We use inequality 3.3 to obtain 

cos dpR + cos dqs > - (cos dpg cos dgp + cos dps cos dps 

+ COS dpQ COS dps + cos dgp cos dps) 

+ sin dpq sin dqp cos ZQ + sin dps sin dps cos ZS 

+ sin dpq sin dps cos ZP + sin dpp sin dps cos Z.R). 



The curvature of minimal surfaces in singular spaces 17 

Expanding terms, we obtain, 

dpR + dQR < dpq + dQR + dRS + dpS 

— dpqdqR cos Z.Q — dpsdps cos /.S 

- dpqdps cos ZP - dqndps cos AR + o(a). 

Now consider ordered points {P, Q) R, S} G R2 such that, Q, the quadrilat- 
eral associated with it is convex and dpq = \P — Q|, dgj? = |0 — -^1? ^Jfis = 
l-R - S\, dps = \P- S\. Letting 

ZP = Z5PQ,     ZQ = ZPQP, 
ZP = ZgP5,     Z5 = ZP5P 

in R2, we have ZP + Z.Q + ZP + AS = 47r. Furthermore, ZP < ZP, ZQ < 
ZQ, ZP < ZP, and Z5 < Z5. By the Gauss-Bonnet Theorem, 

ZP + ZQ + ZP + Z5-47r= ( dA. 
JQ 

Hence, Z.Q — ZQ = 02(dpq, dqp, dps, dps)- We can rewrite equation 3.6: 
dPR + dqR - o(a) < d2pq + d2qR + d2

RS + d2pS 

— dpqdqp cos ZQ — dpsdps cos ZS 

— dpqdps cos ZP — dqpdps cos ZP. 

Letting A,B,C,D be the oriented vectors pointing to the consecutive ver- 
tices of the Euclidean quadrilateral Q, i.e. 

A = Q- P, B = R-Q 

C = S-R, P = P-5, 

we have that, 

-|P-Q| \Q-R\cosQ-\P-S\ |P-5|cos5 

-|P-0| |P-5|cosP~|Q-P| |P-5|cosP 

= A'B + BC + C-D + D  A 

= (A + C).(S + C) 

= -|A + C|2. 

Here, we have used the fact that ^4 + P + Cr + £) = 0. Hence, 

&PR + d2qR < d2pQ + d2QR + d2
RS + d2pS + o(a). D 

As a result of the above, the directional energy functions satisfy a par- 
allelogram law: 
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Lemma 3.7. Let Qcir and let X be a CAT(1) space. Ifu € W1'2^, X), 
then for any Z, W G r(Tfi), the parallelogram identity 

MZ + W)\2 + \u*(Z - W)\2 = 2K(Z)|2 + 2\u*(W)\2 

holds for a.e. x £ fi. 

Proo/. Use Lemma 3.6 with P = u(x), Q = ^(x + eZ), P = ix(a; + eW), 
5 = ix(a; + e(Z + W)). Divide by e2 and let e -> 0 to obtain 

MZ + W)|2 + K(Z - W)\2 < 2\u*(Z)\2 + 2MW0|2. 

for a.e. x £ Q. Repeat using Z + W and Z — W in place of Z and W to get 
the opposite inequality. □ 

For Z,W e r(rn), we define 

7r(Z)W) = iK(Z + W)|2-iK(Z-W)|2. 

Proposition 3.8.  The operator TT defined above, 

TT : r(TO) x r(Tn) -> L^^R) 

is continuous, symmetric, bilinear, non-negative and tensorial 

Proof The proof is the same as the one given in [KS] (Theorem 2.3.2). 

Definition 3.9. TT as above is the pull back inner product under the map 
u. 

We can now define the area functional A : W1,2(JD, X) —> R by 

A(u) =  /   \/det iTudxldx2 

JD 

=  /  Y(7rtt)ii(7rt4)22-(7rtt)?2^1^2 

where (7r)ij = ^(di.dj). 

Thus, we can formulate: 
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The Plateau Problem. Let D be a disk and T be a closed Jordan curve 
in X and let 

CY = {u G Wl'1{D^X) : U\QD parametrizes T monotonically}. 

There exists u E Cp so that A(u) = ixd{A{v) \ v G Cp}. Moreover, u is 
weakly conformal, i.e. TTH = 7^2 and 7ri2 = 0 = ^i, and Lipschitz in the 
interior of D. / 

We can solve the Plateau Problem for a locally compact CAT{K) space. 
Since the arguments are essentially the same as the classical approach (see for 
example [M]), we omit the proof here. Because conformal energy minimizing 
maps into smooth Riemannian manifolds are minimal, it is natural to define: 

Definition 3.10. Let X be a complete metric space of curvature bounded 
from above by K. We say u : D —> X is a minimal surface if u is a weakly 
conformal energy minimizing map. A = TTH = 7r22 is called the conformal 
factor of the pull back metric under u. 

4. The Energy Density Inequality. 

Before we can prove our main inequality, we will need to prove another 
inequality which is of interest in itself. As mentioned in the introduction, 
this can be seen as a generalization of the Bochner's inequality for harmonic 
maps between smooth Riemannanian manifolds. 

[KS] proves the weak subharmonicity for the energy density of a harmonic 
map when the target is an NPC space. We generalize their result by proving 
the following inequality when the target is a space of curvature bounded from 
above. 

Theorem 4.1. Let u : D —> X be an energy minimizing map into a CAT(K) 

space (i.e. a metric space of curvature bounded from above by K). Then for 
any 77 G C^(D) with 77 > 0, 

(4.1) / |Vt/|2A77 > -2/c / 77|Vu|4. 
JD JD 

If u is minimal (i. e. also weakly conformal) with conformal factor \, then 

I AA77 > -2K I   rjX2. 
JD JD 
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Proof. The case K = 0 is the result of [KS]. We will first prove the above for 
the case when K = 1. Note that the result for ^ > 0 follows immediately 
from rescaling the target distance function. The case K = — 1 is proven 
analogously. 

In the proof below, we prove equation 4.1 for 77 € Cc (D) with 0 < 7/ < 5. 
By rescaling 77, we see that equation 4.1 holds for any non-negative C^ 
function 77. 

For two given points x, y, define 

7]- =mm{r)(x),r](y)}. 

Let UQ and ui be energy minimizing maps such that 

sup    d('Uo,^i)<-. 

We let LQ, Li be the Lipschitz constants of UQ and ui in supp(77) and let 
L = max{Lo,Li}. If\x-y\ < 7^, then d(uo(x),uo(y)), diu^x)^^)) < f. 
Let u^ € W1'2(D1X) be defined by taking the geometric interpolation of 
UQ and ui. In other words, let u^x) be the point on the (unique) geodesic 
between uo(x) and ui(x) such that 

ii(tio(a:),i*i(x)) " ^^        ^        dCtioC^^iCa:)) "        r7W- 

If 77- =77(7/), we consider the ordered sequence 

{uri_ (y), u^ (x), TZl-ry, (x), T/I^. (y)} 

and let t = vW-viy) an(i apply Proposition 3.3. If rj- = r)(x), we interchange 
the roles of x and y and apply Proposition 3.3. Using the shorthand notation, 

It = d(ut(x),ut(y)) 

lrj = d(uT1(x),ur)(y)) 

h-r, = dfai-riix^ui-^y)) 

dx = d(uo(x)Jui(x)) 

dy = d(uo(y),ui(y) 

fj = r)(x)-r)(y), 

we deduce in both cases, 

coslyj + cosli-v > [cosZ^ + cos^i-^] cos(fjdx) 

+ [sin Z^_ cos a + sin Zi-^ cos ^S] 8^(77^) 
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where a = /.PQR and /? = ZSRQ and {P, Q, R, S} is a spherical subem- 
bedding for {u^ (y), u^ (x), tii-^,. (rr), ^i-^. (y)}. By expanding the above, 
we obtain, 

I* + ll-n + O4!^, h-rj) < %_ + li-v_ - 2( V cos a + *!_„_ cos /J)^ 

+ 02(7?4)+03(/77_,/i_77_) 

Applying Proposition 3.5 to {?/o(y),^o(^)j^i(^),^i(y)} and t = r/_, we ob- 
tain, 

^ + li-rj. <lo + li+ 2V-lolid2
x + 02(r?_)02(/o, h) 

+ 04(/o, li) + 7?-02(Zo, /^O3^, d^) + 77-03(Zo, /i) 

Applying Proposition 3.4 to {urj_(y)Jur}_(x)^ui-rj_(x)Jui-ri_(y)}i we ob- 
tain, 

-(/^ cos a + /i-^, cos/3) < (1 - 277_)(dy - d^) + O2^., /i_^_)02(dx, dy) 

Thus, the Cauchy-Schwartz inequality gives, 

— (ZT?_ cos a + Zi-r;. cos/3)r)dx 

1 
< -(1 - 277_)7?(^ - c^) + 770%_, /i-l|.)O

d(dlo 4) 

Hence, inequality 4.2 implies 

*? + li-v + 0%, h-v) <l2o + l2i + 2v-lohdl + (1 - 2r/_)77(4 " <£) 
+ 02(7?_)02(/o,/i)+04(/o,/i) 

+ j?-03(io, iO + O2^) + 03(Zo^i) 

Let Z € r(Tf2) be a vector field. By taking y = x + eZ, dividing by e2, and 
letting e —► 0, we deduce that for a.e. x e fi, 

IK),(Z)|2 + |(U1_,),(Z)|2 

< |(«o)*(^)|2 + \(uMZ)\2 + V(\(UQUZ)\2 + |(«i)*(Z)| VK MI) 

- (1 - 2T1)r]*(Z)d2(u(hu1UZ) + 02(i7)02(|(tioMZ)|, |(«i)*(^)|) 

+ (r? + r,4Z))02(\(u0)*(Z)\, {(mUZ^O3(d(uo, m)) + 02(ri*(Z)dx) 
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In the above, substitute r? by tri, divide by t and let t -> 0 to obtain, 

(4.3)    |KMZ)|2 + |(ui_„MZ)|2 

<IM*(^)I2 + IM*(^)I2 

+ 77(|M*(^)|2 + |(«i)*(^)|2)d2(«o,«i) - ^(Z^iuo^MZ) 

+ (r] + r1*(Z))02(\(uoUZ)l\(uMZ)\)tf(d(m,u1)) 

Adding the above equation with Z = dx to the above with Z = dy, we 
obtain for a.e. a; € £1, 

|Vig2 + |Vui_|2<|Vizo|2 + |Vtii|2 

+ r?(|Vuo|2 + |Vui|2)<22(uo, «i) - Vr; • Vd2(«o, «i) 

+ (r? + V?7)02(Vuo, V«i)03(d(«o, «i)) 

If UQ and «i are energy minimizers, then integrating over D gives, 

0<  fd2(uo,u1)&r)+ frjdVuo]2 + \Vui\2)d2(uo,u1) 

+ |»7 + Vr?|c~ f 02(\Vuo\,\Vu1\)03(d{u0,u1)) 

Let u be an energy minimizing map and u^x) = u(x + SW), with |W| < 1. 
Then, dividing by S2 and letting S -> 0, we obtain, 

-2/t/dViilVaiOl2 < J \u,(W)\2AV. 

Adding the above equation with W = dx to the above with W = ^„ we 

obtain 

-2 ! r)\Vu\A< [{VufArj. 

Now if w is conformal, then inequality 4.3 implies 

A,, + Ai_^ < Ao + Ai + r/(Ao + Xi)d2(uo, m) 

- r)«{Z)d2{uQ, ui)»(Z) + (ry + 77*(Z))02(Ao, Ai)03(d(«o, «i)). 

Substituting Z = ^ if VT? ^ 0 and following the same procedure as above 

we obtain 

-2K / 77A2 < / AAry. □ 
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5. The Curvature Inequality. 

In this section, we prove our main result. As mentioned in the introduction, 
if X is a smooth Riemannian manifold of sectional curvature bounded from 
above by ft, then the inequality in the following theorem implies that the 
curvature of the surface is also bounded from above by ft. 

Theorem 5.1. Let u : D —> X be a minimal surface (i.e. a weakly confor- 
mal energy minimizing map) with conformal factor A where (X, d) is a met- 
ric space of curvature bounded from above by ft.   Then for all non-negative 
v e c?{D), 

(5.1) /  logAA</> > -2ft /  ip\. 
JD JD 

Proof. We will prove this for the case of ft = 1. The result ft arbitrary is 
obtained in the same manner as below. Before we proceed with the proof of 
Theorem 5.1, we need the following preliminary lemmas: 

Lemma 5.2. Let X be a conformal factor of a minimal surface u : D —► X 
where X is a CAT(l) space. Then A e Hloc{D). 

Proof. Let K CC D. Since A is bounded locally, we let A be such that 
A < A in K. Choose g e C00{D), non-negative such that A# > A2. Then, 
by Theorem 4.1 we have 

J(\ + g)Act> = J<K-\2 + Ag)>0 

for any </> e C™^). Hence, and A + g is weakly subharmonic in K and is 
a non-negative function. Thus A + g e Hl{K) and A G Hloc(D). □ 

Lemma 5.3. Let X be a conformal factor of a minimal surface u : D —> X 
where X is a C^4T(1) space.  Then for any harmonic function h : D —> R; 

/ /\ip(Xeh) >-2 [ ipX 
JD JD 

2eh. 

Proof. Let w(z) : D —> D be a conformal change of coordinates.   Then 
v = u o w is harmonic.   Let A = \Vv\2 be the conformal factor for the 
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pull-back metric on D under the map v. By Theorem 4.1, 

/ \Azipdz = -2 /  pAs 

JD JD 
dz 

for all non-negative ip € 0^(0). Note that 

A2 = 
dty 

dz 

dw 
dz 

dz. 

X= \V(uow)\ = |VIA| 
dz 

= A 
dz 

Hence, 

/I (A^^A 
dz 

dw 
dz 

dw>-2 I ¥> dit;, 

and we get the desired result by choosing w such that |^| = eh. Hence, let 
w = f e^ where ifr is an analytic function such that Re^ = h. D 

Lemma 5.4. Let X be a conformal factor of a minimal surface map u : 
D —> X where X is a CAT(1) space. Assume A > AQ > 0. Then for any 
harmonic function h : D —► R; 

[ AiplogX>- [ </>(2A+|V(logA+yO|2) 
JD JD 

Proof Since A is bounded away from zero and locally bounded above, we 
can assume that log A G Hloc{D). Let h be any harmonic function. By 
Lemma 5.3 and by the fact that C00 functions are dense in if1, for wny 
non-negative ^ G Hioc{D), 

f Ai/j(Xeh) >-2 [ il)X 
JD JD 

2e\ 
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Let <p 6 C^°(D) be a non-negative function, then 

/ A<p log A = / A<p(\og A + log eh) 

= I AiplogXeh 

= - ZvyVlogAe'1 

-"2/j&A2e'l"/^v(logA+^l2 

= -2 f <p\- J<p\V(log\ + h)\2. 

□ 
Now we proceed with the proof of Theorem 5.1 in the special case that 

A > AQ > 0. Let 5 > 0 be given. Since VlogA e L2, by the Lebesque Point 
Lemma, 

F=lxeD\Um± f |VlogA(j/)-VlogA(a;)|
2^(y) = o} 

t CT-^UTTO-   JyeBa(x) J 

is of full measure in D. For x € F, let ax be such that 

0 < <JX < -dist(a;, dD) 
o 

and 

/ |Vlog\(y) - VlogX(x)\2dy < 255^1 
JyeB5(Tx(x) 

Note that {Bax(x)}xeF is a collection of closed balls such that {JxeF Bax(x) 
is of full measure in D. By the Five Times Covering Lemma, we can choose 
a disjoint subcollection {-B^.(xi)}g1 such that 

oo 

xeF z=i 
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Let Kp 6 C^ be a non-negative function. Since |logAAy>|, |<^A| G V-^D), 
there exists e such that 

/|logAA^|<(J, 

/ bA| < 5 
./A 

whenever m(>l) < e. On the other hand, since 53£i m(£<rx. (^i)) 5: T
1
") there 

exists iV such that 
oo 

m(  (J   B5aXi (a;*)) < e. 
i=JV+l 

Set A = USiV+i-E^a:-^)- Let {xi}iLi be a partition of unity subordinate 
to {Bs^ixi)}^. Then 

/ A^logA= / + /      logAA^j 
JD JA    JD-A 

>-6 + JD_Jog\A(f2>PXi\ 

N     . 

= -5 + Y, logAA^Xi) 

N 

>-^-E /      (¥'Xi)(2A+|VlogA + V^|2) 
U

JD
-

A 

r N   r 
>-S-2 ^A-MooV/        IVlogA + V^I2 

JD-A i=1 JB5ax. 

r N   r 
> -28-2 / <p\- Moo V /       IVlogA + V/iil2. 

JD ~(JBS,X. 

where {hi} is any collection of harmonic functions in D. For each i, we 
choose hi to be a linear function, bounded uniformly away from 0, such that 
Vhi = -VlogA(xi). Thus, 

N     . N 

Y, |VlogA + V/ii|2 = E/ IVlogA-VlogAOrOI 

N 

<2557rE(T2.. 
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But since {Bax.(xi)} is a disjoint set, X)i=i ^ ^ 1 an<^ thus, 

/  A^ log A > -26 - 255^100^ -2 [ (pX 
JD JD 

Since the choice of 5 was arbitrary, 

/ A^logA> -2 / yX. 
JD JD 

Finally, since the choice of (p G C^0(D) was also arbitrary, we have the 
desired result. The general case can be handled using the following lemma. 

Lemma 5.5. Let fn : D —► R be a decreasing sequence of functions con- 
verging to a non-negative function f such that fn<M for all n = 1,2,... 

/  log/nA^> -2 /  (pfn, 
JD JD 

for all non-negative (p G C^0(D)) we also have that 

I logfA<p>-2 f iff, 
JD JD 

for all non-negative (p G C^0(D). 

Proof We will show: 

lim   hpfn= / cpf 

lim^ / log/nAv? =  / log/A^. 

The first equality follows immediately from the Lebesgue Convergence The- 
orem. To prove the second equality, let g G C00(D) such that Ag > 2M. 
Then 

/(log fn + g)Ay > J ip(-2fn + Ag) > 0. 
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Hence log fn+g is subharmonic. By the mean value inequality (and assuming 
w.l.o.g. that /(0) ^ 0), 

-oo<log/(0) + <7(0) 

<log/n(0) + <7(0) 

< -   /   log/nH-^ 
K JD 

<logM + g. 

In particular, /log/n in uniformly bounded. Let Fn = logM - log/n, and 
F = logM — log/. Then Fn is an increasing sequence of non-negative 
functions. Hence by the Monotone Convergence Theorem, 

lim   [Fn= f F. n^00 J JD 

In other words, we have that 

lim   / log/n = / log/. 

In particular, log/ G i1(-D). For non-negative y? G C^0(JD), we have that 
logfnA(p -» log/Ay? a.e. and |log/nA^| < |A¥?|oo|log/n|. Hence by the 
Dominated Convergence Theorem, we have the desired result as we take 
5-*0. □ 

Now consider the space X x D endowed with the distance function ds 
defined by 

djm z), (Q, w)) = d\P, Q) + 5\z - w\2, 

for P, Q G X and z, w G D. It can be easily checked that (X x JD, ds) is a 
CAT(l) space and us : D -+ (X x D, ds) defined by 

us(z) = (u(z),z). 

is a us is a minimal surface if u is. We let A^ be the conformal factor of 
the pull back metric. Note that A^ is a decreasing sequence of functions 
converging to A and A^ > 5. By the special case above, we have that 

/  A^logAa > -2 /  <p\s, 
JD JD 

for all 5.   Hence by Lemma 5.5, we get the desired result when we take 
£->0. □ 
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6. Surfaces with Conformal Factor A. 

As mentioned in the introduction, when X is a smooth Riemannian mani- 
fold of sectional curvature bounded from above by K, the inequality of The- 
orem 5.1 implies that the curvature of the minimal surface is also bounded 
from above by K. In this section, we will see that this interpretation of 
Theorem 5.1 also makes sense in the setting where X is a metric space of 
curvature bounded from above by K,; we show that the conformal factor A 
induces a metric space on D which has upper curvature bound of K. 

Theorem 6.1. Let (X,d) be a complete metric space of curvature bounded 
from above by K, and let u : D —» X be a minimal surface (i.e. a weakly 
conformal energy minimizing map) with conformal factor A. Let 7 : [0,1] —► 
D be apiecewise C1 curve and let l(j) = J0 y/X('y(t))\jf(t)\dt. For x,y £ D, 
we define the distance between x and y as 

d\(x,y) = inf{l(j) : 7 piecewise C   and 7(0) = re, 7(1) = y}. 

Then (D, d\) is a metric space with curvature bounded from above by K 

(locally if k > 0).  The metric topology is equivalent to the surface topology. 

Remark. The fact that \/A G H^D) follows from the inequality of The- 
orem 5.1. Hence the definition of 1(7) makes sense. The statement that a 
space has curvature bounded from above by K locally means that each point 
is contained in a neighborhood which has an upper curvature bound of K. 

Proof The fact that d\ defines a length space and the statement about 
the equivalence of the topologies follow from the work of Reshetnyak [R3] 
and the weak inequality of Theorem 5.1. (Reshetnyak considers a metric 
X(dx2 + dy2) where log A is a difference of two subharmonic functions.) We 
need to show the curvature bound. It is sufficient to consider the cases 
K; = — 1, K = 0 and K = 1. The general case then follows by simply scaling 
the distance function d of X so that the curvature is either K = — 1,0 or 1. 

We let Ao-, (logA)^ be symmetric mollifications (i.e. mollification by a 
symmetric mollifier) of A, log A and let A*7 = e(logA)<T. Also let D* = {z e 
D : \z\ < 1 — cr}. By applying Theorem 5.1 with ip the mollifier, we have 

AlogA^ = A(logACT) 

(6.1) " ~2KK 
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for every z € Da. By Jensen's inequality, A^ > A0^. Hence, for K = —1 or 
K = 0, 

^:AlogA'<«. 

Thus for K — —\ and K = 0, (D0-, X<T(dx2 + dy2)) is a smooth Riemannian 
surface with curvature bounded from above by 1 and 0, respectively. Fur- 
thermore, since A is subharmonic, \a > X. This implies that d0" > d\ where 
d0" is the distance function induced by Xa(dx2 + dy2). Combining this with 
the fact that A0" —» A in H1, it is easy to check that d*7 —» d\. 

Prom the above discussion, the curvature bound for the case K, = — 1 and 
K, = 0 follows easily: Let x,y,z € D and let yt (resp. yf) be the point on 
the geodesic from y to z with respect to the distance function d\ (resp. d0") 
so that d\(y,yt) = td\{y,z) (resp. d(J{y,y^) = td<T(y,z)). 

Claim. jFbr y^ and yf defined above, we have d\{yt,yt) —> 0 as a —> 0. 

Proof. Assume ft = — 1. Consider the geodesic triangle A^y^y^z) with 
respect to d*7. By using the curvature bound of (DG\da) we have 

As cr -> 0, d(T{y,z) -+ d\(y,z), d<J{yuy) -> d\(yuy) = tdx{yyz) and 
d<7(yt1z) —»• d\{yt,z) = (1 — t)dx(y1z). Hence the right hand side of the 
above inequality converges to 1 and since dA^t, yf) < d0"^, y^), this proves 
the claim. The case ft = 0 is proved analogously. □ 

For ft = —1, we want to show that 

,   , /       x      siiih(l — t)d\(x,y)      _   _ ,      N 
coshdx(x,yt) <      sinhdA(a;ij/)      coshdA(x,y) 

+ sinh(l-yA(,,z)cosh^ 
sinhaA(x,^J 

which is equivalent to showing the triangle comparison property of Defi- 
nition 3.1.   Since (Da

:d
cr) has curvature bounded from above by —1, we 
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have 

coahiTfrtf) <Sinh(V"T("^)coshd-(x?y) v 'ytJ -      sinh^^y) v '"' 
sinh(l-tK(,?,) 

sinh^(rr^) v '   ' 

and the desired inequality follows by taking a —> 0 and using the claim. The 
proof for K = 0 follows analogously. 

Now we treat the case K = 1. First we show (D,d\) has curvature 
bounded from above by 2. Let Dr(zo) = {z : \z — zo\ < r} C D. Since 
(D*, d?) is a smooth Riemannian surface, by the isoperimetric inequality of 
[Hu], 

(  / VKds )   >\4x- (       (klogX^+dxdy )   /        Aada:dy 
\JdDr(zo) J \ JDr(zo) J   JDr(zo) 

> ( 47r - 2 / A^dxdy J  / A^dxdy 

where (AlogA0")+ = max{—AlogAa
?0}. By taking a —* 0, we have 

f / \/Ads J   > 47r / Adrrdy - 2 (  / Adrcdy )   . 
\JdDr(zo) J JDr(zo) \JDr(zo) J 

[R2] says that if a surface with a metric X(dx2 + dy2) has an isoperimetric 
inequality for disks Dr(zo) of the form 

L2 > An A - KA
2 

where L is the length of dDr(zo) and A is area of Dr (ZQ), then the surface has 
an upper curvature bound of K. This implies (D, d\) has an upper curvature 
bound of 2. 

Let us call k the best curvature bound of (D,d\) if for every geodesic 
triangle T with diam(T) < -5- and angles a, /3, 7, 

a + /? + 7 < <** + /?* + 7* 

where a^, /?£, 7*. are angles of a comparison triangle in Sk- By the above, 
we know that k < 2. We wish to show k < 1. Suppose not, i.e. 1 < k < 2. 
We need the following claim to obtain a contradiction. 
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Claim. Suppose 1 < k' < k. There exists a constant C^/ > 1 such that 
for any geodesic triangles Tk C S/c and Ty C SV with same side lengths 
and the sum of side lengths less than -j=, we have area(Tk) < Ck^h'^reaiTy). 

Furthermore, C^^ —> 1 as k' —> k. 

Proof Let a, 6, c be the side lengths of geodesic triangle T C £&. From 
spherical geometry, as a -> 0, b —> 0 or c —► 0, area(T) approaches the 
area of a Euclidean triangle with side lengths a, fe, c. Thus if T^ C Sk and 
Tfc^i C 5^/ are geodesic triangles with side lengths a*, 6$, c* and if they form 
a maximizing sequence of the ratio 

area^j) 
area(Tfc/?i) 

then we can extract a subsequence so that a;/ —► a > 0, 6^ —> b > 0, 
c;/ —► c> 0. Thus, 

area(fA;) 
Ck9k' = area(Tfc/) 

where Tk C S^Ty C 5^/ are geodesic triangles with side lengths a, fe, c. The 
last assertion is obvious. □ 

Let T be any geodesic triangle and let a, /?, 7 be the angles of T.  Ety 
Gauss-Bonnet (see [R3], Theorem 8.1.7), we have 

a + f3 + 7 < — - / A log Xdxdy + TT 
2 7T 

Xdxdy + TT 4 r 
= area(r) + TT 

Let Tk be a the comparison triangle in Sk- Clearly, 

area(T) < area(Tfc). 

By claim, for 1 < kf < k and comparison triangle TV in SV, 

area^fc) < C/b^/axea^/). 

We note that C^k' is independently of T chosen. We choose kf sufficiently 
close to k so that Ck^' < kf. Applying Gauss-Bonnet on Ty C SV, we 
obtain, 

area(Tfc) < A/area^/) < afc/ + /3fc/ + 7^/ — TT 
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where ak'iPk'ilk' are angles of TV. Thus, 

ot + P + 7 < <xw + Pk' + Ik'- 

Since T can be chosen arbitrarily, this implies that the best curvature bound 
for (D,d\) is k'. This contradiction implies that the best curvature bound 
is not greater than 1. □ 
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