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The Curvature of Minimal Surfaces in Singular
Spaces
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1. Introduction.

Let D be an unit disk in R? and (M, g) a smooth Riemannian manifold. If
an immersed surface u : D — M is minimal, i.e. stationary with respect to

the area functional
/ \/ det(;j)dz
D

where (7;;)=u*g is the pull back metric on D, then b1 + b = 0 with b;;
the components of the vector valued second fundamental form. The Gauss
equation then gives,

Ks = K+ biiboy — b2, < Ky

where Ky is the Gauss curvature of the surface and Kjs is the sectional
curvature of the tangent plane to the surface in the manifold. This shows
that the curvature of a minimal surface is less than or equal to that of the
ambient space. In this paper, we will show that this fundamental curvature
property of minimal surfaces also holds in certain singular spaces.

When a smooth surface ¥ has a conformal metric with conformal factor
A, it is well known that the Gaussian curvature Ky is given by the formula

1
Ky = —ﬁA log A.

Hence, the condition that the curvature be bounded from above by  reduces
to the inequality

Alog A > —2kA.

Our main theorem states that this same type of inequality holds when we
replace the smooth Riemannian manifold with a complete metric space of
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curvature bounded from above by k. We will call a map from a surface
a minimal surface if it is conformal and locally energy minimizing. Recall
that these conditions on a map are equivalent to minimality in the smooth
setting. Because our target space can be quite singular, we can only expect
the following weak inequality:

Main Theorem. Let A be a conformal factor of the pull back metric under
a minimal surface u : D — X where (X,d) is a complete metric space of
curvature bounded from above by k. Then for all non-negative ¢ € C°(D),

/log)\Acp_>_ —2&/ VA
D D

The complete metric spaces considered are length spaces, i.e. any two
points can be joined by a distance realizing curve. Furthermore, we impose
a curvature bound from above; here, the curvature bound is defined in terms
of comparing geodesic triangles with comparison triangles in a constant cur-
vature surface (see Section 3 for the precise definition.) Sometimes called
Alexandrov spaces with curvature bounded from above, they were studied
by A.D. Alexandrov [A] in the 1950’s and advanced by him and the Rus-
sian school of mathematicians. They include smooth Riemannian manifolds
with an upper bound on the sectional curvature but allow singularities of a
very general type. In fact, no restriction is made on the singularities. If we
consider a class of Riemannian manifolds with upper bound x on sectional
curvature and a lower bound on the injectivity radius, the completion by
Gromov-Hausdorff metric turns out to be these metric spaces of curvature
bounded from above by k.

The motivation of this paper is twofold. One, we wish to extend the study
of minimal surfaces in Riemannian manifolds to spaces with singularities.
Second, we wish to introduce analytical tools in the study of singular spaces.

Recently, there has been much interest in the study of harmonic map
theory for spaces with singularities. A general existence and regularity theo-
ries of harmonic maps into Riemannian simplicial complexes of non-positive
curvature was developed in [GS] to solve certain rigidity problems. This
theory was further generalized for maps into complete metric spaces with
non-positive curvature by [KS] and independently by [J]. The case of curva-
ture bounded from above by some constant is treated in [S]. Some examples
of the application of the harmonic maps into certain singular spaces are
Wolf’s [W1],[W2],[W3] investigations of Teichmiiller spaces and the actions
of fundamental groups of closed surfaces and Hardt and Lin’s [HL] study of
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neumatic liquid crystals. In light of the these successful studies of the har-
monic map theory in singular spaces, it is natural to consider an extension
of minimal surface theory to these settings.

This paper is organized as follows. In Section 2, we outline Sobolev
space theory for metric space targets due to [KS]. In Section 3, we recall the
notion of metric spaces with curvature bounds and derive some inequalities
for the distance functions that will be important in Section 4. Furthermore,
we define area for maps into these spaces which allows us to consider the
Plateau Problem. We note that Nikolaev [N2] is the first to consider the
Plateau Problem; there he takes a defintion of area that is different from
ours. Our definition is a natural extension of the definition of area for maps
into smooth Riemannian manifolds and allows us to use a classical approach
in the solution of the Plateau Problem. In Section 4, we will prove an
inequality satisfied by the energy density function e(u) of an energy mini-
mizing map by a careful consideration of the curvature bound of the target.
If u: M — N is an energy minimizing map between smooth Riemannian
manifolds, then the Bochner’s formula gives

%Ae(u) = |Vdu|? - Z(RN(u*ea, Ux€3)UxCq, UxEQ)
a,p

+ Y Ricy(u*6;,u*6;)

where ey, ..., e, is an orthonormal basis for TM and 61, ..., 0 is an orthonor-
mal basis for T*N. In particular, if M is flat and N has sectional curvature
bounded from above by &, then

Ne(u) > —2ke(u)?.

We will see that the energy density function of energy minimizing maps into
metric spaces of curvature bounded from above by k weakly satisfies the
above inequality. This inequality will be the starting point of the proof of
the main theorem.

Section 5 is devoted to the proof of the main theorem. In Section 6, we
make a geometric interpretation of the analytical result of Section 5; namely,
we consider the natural distance function induced by the metric A(dz?+dy?)
which defines a metric space of curvature bounded from above by «. In the
case when the map minimizes area, Professor Nikolaev has pointed out that
this result follows from the works of Reshetnayk [R1],[R2]. We thank him
for communicating this observation.
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2. Sobolev Space Theory for Maps to Metric Spaces.

Let Q2 be a compact domain in R™ and (X, d) any complete metric space. In

[KS], Korevaar and Schoen develop the space W12(2, X). Here we define

this space and collect some of their results.

, A Borel measurable map u : § — X is said to be in L?(Q, X) if for
PeX,

/ & (u(z), P)dz < oo.
Q

Note that by the triangle inequality, this definition is independent of P cho-
sen. For u € L?(Q, X), we can construct an € approximate energy function
e: 2 — R,

2(u(z), u
ee(z) = n|0Bc(z)|™* /BB © L(E);i))dz.

Here ). is the set of points in  with distance from the boundary more
than € and B¢(z) is a ball of radius € centered at z. Letting e.(z) = 0 for
Q — Q, we have that e.(z) € L*(Q) and by integrating against continuous
functions with compact support, these functions define linear functionals
E. : C.(Q) — R. We say u € L?(Q,X) has finite energy (or that u €
wi2(Q, X)) if

EY = sup limsup E¢(f) < oo.
FECL(Q),0<f<1  €—0

It can be shown that if u has finite energy, the measures e.(z)dz converge
in the weak* topology to a measure which is absolutely continuous with
respect to the Lebesgue measure. Hence, there exists a function e(z), which
we call the energy density, so that e.(z)dz — e(z)dz. In analogy to the case
of real valued functions, we write [Vu|?(z) in place of e(z). In particular,

Ev = / [Vu|?dz.
Q
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Similarly, the directional energy measures |u,(Z)|?dx for Z € T'Q can also
be defined as the weak* limit of measures Ze.dz, where

P(u(z), u(z +eZ))

A
€e (CB )= 2

Furthermore, for Z € TQ,

[us(2)|(@) = lig AL E ),

a.e. = € (). Finally, we have
Vil = [ lu(2)Pdo(2).
Sn—1

This definition of Sobolev space W12(f, X) is consistent with the usual
definition when X is a Riemannian manifold. The following theorems allow
us to use variational methods in the setting where the target space of maps
is a complete metric space. Note that ur — u in L2(Q, X) will mean d(ug, u)
converges to 0 in L2(Q), i.e.

klim /d2(uk,u) =0.

Theorem 2.1 ([KS] Theorem 1.6.1). If {u;} C¢ Wh2(Q,X) is a se-
quence with uniformly bounded WH2(Q, X) norms and u, — u in L?(Q, X),
then u € WH2(Q, X) and

E(u) = liminf E(ug).
k—o0
The following is a generalization of the W12 trace theory.

Theorem 2.2 ([KS] Theorem 1.12.2). Anyu € WH2(Q, X) has a well-
defined trace map (denoted tr(u)), with tr(u) € L2(0Q,X). If {w} C
W2(Q, X) is a sequence with uniformly bounded energies and up — u in
L%, X), then tr(ug) converges to tr(u) in L2(0Q, X).

We also have the following Rellich type precompactness theorem.

Theorem 2.3 ([KS] Theorem 1.13). Let (X,d) be locally compact. If
{ur} ¢ Wh2(Q, X) satisfy

/Q & (uy(z), Q)dz + E(w) < C,

where Q is a fized point in X, then a subsequence of {ux} converges in
L%(Q, X) to a finite energy map u.
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Using these theorems, one can solve the following.

The Dirichlet Problem. Let (X,d) be a complete locally compact metric
space. Let ¢ € WH2(Q, X). Define

Wy? = {ue Wh(Q,X) : tr(u) = tr(s)} .

Let Ey =inf{E(v):v € WJJ’Q}. There ezists u € W$’2 such that E(u) = E.

If we assume an upper curvature bound on the target (see Definition 3.1
in the next section), we get nice regularity properties of the solution. In fact,
[KS] shows that the solution is Lipschitz when X is non-positively curved
and [S1] shows that the same holds in the case when curvature is bounded
from above by some constant provided that the boundary data lies in a small
geodesic ball. In both cases, the map is Holder continuous to the boundary.

3. Metric Spaces of Curvature Bounded from Above.

In this section, we will recall the definition of curvature bounds in a metric
space, give some technical propositions and define the notion of area for
maps into these singular spaces.

3.1. The Definition.

Definition 3.1. A complete metric space (X, d) is said to have curvature
bounded from above by & if the following conditions hold:

(1) (X,d) is a length space; that is, if P,Q € X there exists a distance
realizing curve connecting P and Q. (We call such distance realizing
curves geodesics.)

(ii) Let Sk be a surface of constant curvature x. For any three points
P,Q,R € X (with dpg + dgr + drs < T/LE if Kk > 0) and choices
of geodesics ypq (of length r), vgr (of length p) and ypg (of length
g) connecting the respective points, call a triangle A(PQR) in S,
with vertices P,Q,R and opposite side lengths p, g, a comparison
triangle in Si. For any 0 < A < 1 write Q) for the point on ygr
so that d(Q,Q») = Ap and d(Qx, R) = (1 — X)p and define Q) € S,
analogously to @), then

d(P,Qy) < ds.(P,Qy).
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Remark. These spaces are sometimes defined in terms of an angle excess
(see [ABN] for example). The upper angle between geodesics are defined as
follows: if 4 and o are geodesics having a common point P with R € v,Q € o
and 7 = d(P,Q), ¢ = d(P, R), we let af,(r,q) be the angle at P of the

comparison triangle A(PQR) of Si. The upper angle between ~ and o is

a(y,0) = limsup o, (r, q).
r,q—0

This definition is independent of k. (X, d) is said to be a metric space of

curvature bounded from above by « if for every triangle A(PQR) in X (with

dpQ + dgr + drp < ),
Ol+,3+’)’_<_a,€+,3,;+")’,€

where «, 3,7 are the upper angles of A(P,Q, R) and ay, Bk, Vx are angles
of the comparison triangle in Si. This definition is equivalent to the above
definition of a curvature bound.

These spaces are referred to as CAT (k) spaces in literature. If Kk = 1,
then S is a standard unit sphere S2. Note that if x > 0, we can make X
into a CAT(1) space by rescaling the distance function. If x = —1, then S,
is the hyperbolic plane H2. Again, note that if & < 0, then by rescaling the
distance function, we can make X into a CAT(—1) space.

3.2. Technical Propositions.

This important result is given in [R1] and will be basis of the propositions
that follow.

Theorem 3.2 (Reshetnyak). Let (X,d) be a metric space of curvature
bounded above by k and T" be a closed rectifiable curve in X (of length less
than or equal to % if K > 0). Then there ezists a convex domain V in S
and amap ¢ : V — X such that (V') =T, the lengths of the corresponding
arcs coincide, and dg, (z,y) > d(e(z), ¢(y)), forz,y € V.

Let X be a CAT(k) space and P,Q,R,S € X. If dpg,dgr < <=, then

K
there is a unique geodesic between P and S (Q and R, resp.). We denote
by P; (resp. Q:) the point on this geodesic such that dpp, = tdps (resp.
dQq, = tdQr).
Let (X, d) be a CAT(1) space. Given ordered sequence {P,Q, R, S} C X
with dpg+dgr+drs+dsp < m. Theorem 3.2 asserts that there is an ordered
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sequence {13, Q,R, S‘} C 5?2 such that the quadrilateral associated with it
(i.e. the four ordered points, the geodesics between consecutive points and
its interior) is convex and

d(P,Q) = ds2(P,Q), d(Q, R) = ds2(Q, R),
d(R,S) = ds2(R, S), d(S,P) = dg(S, P),
d(-Pta Qs) < dS2 (-ﬁta Q~s)~
We will call {P, Q, R, S} a spherical subembedding for {P, Q, R, S}. Sim-

ilarly, when (X, d) is a CAT(—1) space, we can define a hyperbolic subem-
bedding

(P,0,R,8} c H2.
In the propositions below, 0*(-) denotes terms that are nth order in the
specified variables.

Proposition 3.3. Let (X,d) be a metric space of curvature bounded from
above by k with k =1 or —1. Then for {P,Q, R, S} C X (with dpg+dgr+
drs +dsp < 7 if k = 1), the following inequalities hold:

For k=1,

cosdpq, + cosdrq,_, > cos dpg costdgr + sindpq sintdgr cos a

3.1
(3.1) + cos drg costdgr + sin drs sintdgg cos 8
i —t)d
cosdp,g, > %d)las- (cosdpq costdgr + sin dpg sin tdgr cos )
(3.2) o Ops
sintdpg

d td sin dgg sin tdpg cos
sindps (cosdps costdgr + sin drs QR cos §)

where « = LPQR and B = ZSRQ and {13, Q, R, S} is a spherical subem-
bedding for {P,Q, R, S}.
For k= -1,
coshdpg, + coshdrg,_, < cosh dpg coshtdgr — sinh dpg sinhtdgr cos
+ coshdggcoshtdgr — sinhdgs sinhtdgpg cos B

sinh(l - t)dps
sinh d PS
sinh tdpg
sinh dpg

coshdp,g, < (coshd pq cosh tdQ R — sinh dpg sinh tdgg cos o)

(cosh dps cosh tdgr — sinh dgs sinh tdgp cos ()
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where a = ZPOR and 8 = ZSRQ and {13, Q,R, S } is a hyperbolic subem-
bedding for {P,Q, R, S}.

Proof. We will only prove the case when k = 1 by comparing the distance
function d to the distance function dg2 of the sphere. The proof of the case
when x = —1 follows analogously by considering the distance function of
“the hyperbolic plane instead of the sphere.

Let {X,Y,Z} € S? such that dxy + dyz + dzx < m. We let V; be
the point on the geodesic between Y and Z such that dy,z = tdyz and
0 = Ls2:Y XZ. We have the following equalities:

(3.3) cosdyz = cosdxy cosdxz + sindxy sindxz cosf
sin(1 — t)dyz sintdy z

34 dxy, = —————=cosd dxz.

(3.4) cosdxy, sndyg cosdxy + Sndyy cosdyz

Hence we have,

cos dﬁ@: + cos df%c}l_t = cos dpé cos td@-2 + sin dﬁé sin tdQR cosa +

cosdpg cos tdéiz +sindggsin tdQR cos 3,

and
sin(l — t)dp s . .
55 cosdp 5, = ————S-i-#(cos dpg costdyp +sindpp sintdsp cos )
' sintdp g
Fdﬁpg(cos dpgcostdyp + sindpgsintdy s cos §).
The result follows immediately from Theorem 3.2. a

Proposition 3.4. Let (X,d) be a metric space of curvature bounded from
above by k with k = 1 or —1 and {P,Q, R, S} C X (with dpg+dgr+drs+
dsp < 7 if K = 1). Furthermore, let o, B as in Proposition 3.3. Then

(3.6) dpgcosa + dpscos 8 = dgr — dps + 02(dpQ, dgrs)
and for k =1, we have

(3.7) dpgcosa+ dprscosf

1
> dgr —dps — §dPQdde2QR + 0%(dpq, drs)0®(dgr)
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and for k = —1, we have

(3.8) dpgcosa+ drs cos 3

1
> dgr — dps + §dPQdRSd%3R +0%(dpq, drs)0*(doR)-

Proof. Once again, we will only prove the case when k = 1 since the case
x = —1 follows analogously. Again, let {15, Q, R, 5’} be the spherical subem-
bedding of {P, @, R, S}. Assume w.l.o.g, Q = (1,0,0), R = (cos#,sin8,0) €
$2 c R3. Note for any X,Y € 52 C R?, we have that cosdg2(X,Y) = XY.
(Here - denotes the usual dot product in R3.) In particular, we see that

oR = 9. Let ~ (resp. o) be a unit speed parameterization of a geodesic on

52 emanating from Q (resp. R) such that, for ¢t >0, Zs2v(t)QR = a (resp.
Ls2o(t)RQ = B). If p(t) = (cost,sint,0), then v and ¢ must satisfy:

4'(0) - ¢'(0) = cos e, I (0)] =1
o' (0) - ¢'(8) = cos(m — B), o’ (0)] = 1.

Hence, we have that

~7(0) = (1,0,0)
~'(0) = (0, cos , sin &)

7”(0) = (_1a0> 0)
and that

o(0) = (cosb,cos6,0)
o'(0) = (cos Bsin 6, — cos 3 cos ,sin )
¢"(0) = (- cos 8, —sin6,0).
Using the Taylor series expansion,

2 + 2

fy(t)~cr(s)=cos€+tcosasin9+scos,Bsin()— cosf

_ tscosacos Bcosf + tssinasin B+ 03(¢, 5).
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Let f(t,s) =~(t) - o(s). Then again using Taylor series expansion,

3}
ds2(y(t),o(s)) = arccos £(0,0) + t%(arccos Nl + sg(arccos Hloo

2 52 s? 92
+ 5 g (arceos f)lo,0) + 5 55 (arccos £)o,0)
0? 3
+ts 5155 (arccos f)|(0,0) + 0°(t, s)
=60 —tcosa— scosf3
ﬁcose —cos?2acosf + s_200s0 — cos?Bcosb
2 sin 2 sin 0
sinasinf 4
— ts——— t,s).
ts o + 0°(t, s)

This shows
dpQ cosa+dggcos 3= dQR —dpz+ 02(d13Q, dss).
Hence equation 3.6 follows the above equality. By Cauchy-Schwartz inequal-
ity,
t?sin?a  s2sin?p
2 2

tssinasin G <

and thus we obtain

2 2
g—(cos 6 — cos? acosf) + %(cose — cos? Bcosf) — tssin asin B

t2 2

= —2—(0050 — cos? acosf) + %(cosG — cos? Bcos @) — tssin asin B cos §
—ts(1 — cos@)sinasin

> —ts(1 — cosf)sinasin

> —ts(1 — cosb).

Since, 1 — cos§ = % +0%(9) and 2Ly = 1(1+ 02(9)), we obtain

sinf —
ds2(y(t),0(s)) > 6 —tcosa — scos§ — Es(l——si_n%OSﬁ
tsf 3
>0 —tcosa—scosff — - + ts0°(9).

Hence we obtain,
1
dﬁ@ coso + dﬁS’ cos 3 > dQR - deS‘ - §dPQdR§dQR + 02(d}3Q', dRS')Os(dQR)'

Now inequality 3.7 follows immediately. O
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Proposition 3.5. Let (X,d) be a metric space of curvature bounded from
above by k with k =1 or —1 and {P,Q, R, S} C X (with dpg+dgr+drs+
dsp < mif k=1). Let dy = dgg, d1 = dps, and l; = dp,q, where, P; (resp.
Q:) is the point on the unique geodesic between P and S (resp. Q and R)
such that dpp, = tdps (resp. dgg, = tdgr). Then for k = 1, we have

12412, <12+ 12 + 2tloly d2 + 02(£)02(lo, 1y)

3.9
( ) + 04(l0, I) + t02(lo, l1)03(d0, dl) + t03(l0, ll)

and for k = —1, we have

242, <1412 —2tlolyd2 + 0%(t)0%(lo, lh)
+ 0%(lo, 11) + t0%(lo, 11)03(do, d1) + 03 (lo, Lv).

Proof. Again, we will only prove the case when x = 1. Inequality 3.9 follows
immediately from Theorem 3.2 if we can prove the same inequality in the
sphere. Hence, let {P, Q, R, 5} be four points in the sphere with dpg
dQR+dRS+dSP < 7 and let dy = dQR’ d; =dpg, and [ = dPQ Where Pt
(resp. Qt) is the point on the unique geodesic between Pand S (resp. Q
and R) such that dpp, =tdpg (resp. dg, = tdsp). From equation 3.5,

in td in(1 —t)d
cosl; + cosli_s = (Sslirllltdl cos(1l — t)do + &(s}ﬁ% cos tdo> X
1 1

x (coslp + cosly)

sintdy
sin tdj

sin(1 — t)d;
sin d;

x (sin [ cos o + sinl; cos 3).

sin(1 — t)do + sintdo) X

By expanding sindy and sind; using Taylor series and then using inequal-
ity 3.7, we have

sinlgcosa + sinlj cos 8 = lgcosa + I cos B + 03(l0, l1)

lolyd2
> do—dy — 0—3—9 +02(lo, 11)03(do) + 0%(lo, ).

Also note that

l2
cosly +cosli_s =2 — —2t— - —12:-'3 + 04(l0,l1).
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Hence
BBy 4
2— 5—74‘0 (lo, 1)
= 2—5 i +0%(lo, 1)
== 2 2 0,01
X 31.11 td; cos(l — t)dp + M cos tdy
sin d; sin d;

lolyd2
+ (do —dy -2 1 0 4 02(lo, 11)0%(do) + 03 (lo, ll))

N (smtd1 sin(1 — £)dp + s1n(} —t)dy sintdo) -
S sind;

in d

We now use,

sin td;
sin d;

sin(1 — t)d;

— 2
sind; costdp = 1+ 0%(¢)

cos(1 —t)dp +

and

sin tdl

intdo = 2¢ + 02
Snd, sin tdy +0%(¢)

s sin(1 — t)d;
sin(1 - t)do + 2L =01

in dy
to obtain
l2

l2 4
-2+t B +’2—+0 (lo, 1)

=9 (Slntdl OS(]- _ t)d() + Mcostdo)

sind in dp

g3
+ 2+ L 4 0%(8)0%(lo, 11) + 0% (lo, 11)

2 2
sin(1l — t)d;
do — sl —ha1
— (do — dy) ( s s1ntd0)
+ tlol1dg + 0%(2)0%(lo, I1) + t0%(lo, 11)0%(do, dy) + t03(lo, 1r).

smtjl sin(1 — t)do +

Hence,

—2
—4+02+02 = — [2(sin td; cos(1 — t)do + sin(1 — t)d; cos tdp)

+ (do — d1)(sintd; sin(1 — t)do + sin(1 — t)d; sin tdp))
+ I + 12 + 2tlol1 d20%(£)0%(l, 1)
+0%(lo, 11) + t0%(lo, 11)03(do, d1) + t03(lo, I1).
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If we let
F(z) = 2[sintd; cos(1 — t)(z + dy) + sin(1 — t)d; cost(z + d1)]
+ z(sintd; sin(1 — t)(z + d1) + sin(1 — t)d; sint(z + dy)),

then the lemma will follow from the following claim with z = dy — d;.

Claim. There ezists 0 > 0 such that for |z| < o, then F(z) > 2sind;.

Proof of claim. It is easy to check that F(0) = 2sind;, F'(0) = 0. Further-
more,
F"(0) = —2(1 — t)sin td; cos(1 — t)dy — 2t?sin(1 — t)d; costd;
+ 2(1 —t)sintd; cos(1 — t)dy + 2tsin(1 — t)d; costd;
= 2t(1 — t) sintd; cos(1 — t)dy + sin(1 — t)d; costdy
= 2t(1 —t)sind;
> 0.

Since F' is a C° function, the claim follows. O
3.3. The Pull-back Inner Product and the Area.

We make sense of the notion of area for maps u € W12(D, X) when X
has an upper curvature bound. We do this by defining an inner product
structure on D which generalizes the pull-back metric for a smooth map
between smooth Riemannian manifolds. The proof of the existence of such
an inner product structure is an easy generalization of the proof in [KS] for
maps into NPC space using the following technical lemma.

Lemma 3.6. Let (X,d) be a CAT(1) space. Let P,Q,R,S € X. Then
dpp + djs < dpg + djp + dis + dpg + 0(0),
where 0 = max{d%;Q, d2QR’ d4s,d%s}
We use inequality 3.3 to obtain

1
cosdpp + cosdgs > E(cos dpg cosdgpr + cosdpscosdprs

-+ cos dPQ cosdpg + cos dQR Ccos dRS)
+ sindpg sin dgg cos £Q + sin dpg sin drs cos £S5
+ sindpg sin dpg cos ZP + sindgp sin dps cos ZR).
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Expanding terms, we obtain,
dbp + djr < dpg + djp + dks + dps
— dpgdqgr cos £Q — dpsdrs cos LS
— dpgdps cos ZP — dgrdprs cos ZR + o(0).
Now consider ordered points {P, Q, R, S} C R? such that, Q, the quadrilat-
eral associated with it is convex and dpg = |P—-Q|,dor = |Q — R|,drs =
|R — gl,dpg = IP - SI. Letting
/P = /8PQ, £Q = ZPQR,
ZR=ZQRS, /S = /RSP
in R2, we have ZP + £Q + ZR + /S = 4r. Furthermore, /P < /P, ZQ <
£Q,ZR < /R, and £8 < ZS. By the Gauss-Bonnet Theorem,

LP+/Q+ LR+ LS —dr = / dA.
Q
Hence, ZQ — £2Q = 02(dpQ, dgr, drs, dps). We can rewrite equation 3.6:
dpp + d2QR —o(0) < d%?Q + dQQR + d}g + dbg
— dpgdqr cos £Q — dpsdgg cos ZS
— dpgdpg cos /P — dQrdrs cos ZR.

Letting A, B,C, D be the oriented vectors pointing to the consecutive ver-
tices of the Euclidean quadrilateral Q, i.e.

A=Q-P, B
C=8-R, B

o~/
L &

I

we have that,

—|P-Q||Q—-R|cosQ—|P— 3| |R~— S|cosS
—|P-Q||P—S|cosP—|Q—R||R-S|cosR
=A-B+B-C+C-D+D-A
=(A+C)-(B+C)
=—|A+CJ%.
Here, we have used the fact that A+ B + C + D = 0. Hence,
d%’R"'d%gR < d2Pq+d%R+d2Rs+d%:S+o(a). O

As a result of the above, the directional energy functions satisfy a par-
allelogram law:
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Lemma 3.7. Let 2 C R" and let X be a CAT(1) space. Ifu € wi2(Q, X),
then for any Z, W € T'(TQ)), the parallelogram identity

[ua(Z + W) + |ua(Z = W) = 20u(2)  + 2|u(W)?

holds for a.e. x € Q).

Proof. Use Lemma 3.6 with P = u(z), Q = u(z + €Z), R = u(z + W),
S = u(z + €(Z + W)). Divide by €2 and let e — 0 to obtain

[us(Z + W) + [un(Z = W)P? < 20un(Z)]? + 2fus (W) 2.

for a.e. z € (). Repeat using Z+ W and Z — W in place of Z and W to get
the opposite inequality. |

For Z,W € T'(T?), we define
n(Z,W) = ghua(Z+ W) ~ 7hua(Z WP
Proposition 3.8. The operator w defined above,
7 : T(TQ) x I(TQ) — LY, R)

is continuous, symmetric, bilinear, non-negative and tensorial.

Proof. The proof is the same as the one given in [KS] (Theorem 2.3.2).

Definition 3.9. 7 as above is the pull back inner product under the map
u.

We can now define the area functional A : W12(D, X) — R by

Au) = /D /det m,dx'de?
= [ Vmn(mn - (n)de s’
D

where (7T)ij = ﬂu(ai, 6,-).

Thus, we can formulate:
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The Plateau Problem. Let D be a disk and I be a closed Jordan curve
in X and let

Cr = {u € W3(D, X) : u|sp parametrizes T' monotonically}.

There ezists u € Cr so that A(u) = inf{A(v) | v € Cr}. Moreover, u is
weakly conformal, i.e. 7;11 = Tog and w9 = 0 = mo1, and Lipschitz in the
interior of D. /

We can solve the Plateau Problem for a locally compact C AT (x) space.
Since the arguments are essentially the same as the classical approach (see for
example [M]), we omit the proof here. Because conformal energy minimizing
maps into smooth Riemannian manifolds are minimal, it is natural to define:

Definition 3.10. Let X be a complete metric space of curvature bounded
from above by k. We say u : D — X is a minimal surface if u is a weakly
conformal energy minimizing map. A = m; = 79 is called the conformal
factor of the pull back metric under u.

4. The Energy Density Inequality.

Before we can prove our main inequality, we will need to prove another
inequality which is of interest in itself. As mentioned in the introduction,
this can be seen as a generalization of the Bochner’s inequality for harmonic
maps between smooth Riemannanian manifolds.

[KS] proves the weak subharmonicity for the energy density of a harmonic
map when the target is an NPC space. We generalize their result by proving
the following inequality when the target is a space of curvature bounded from
above.

Theorem 4.1. Letu: D — X be an energy minimizing map into a CAT (k)

space (i.e. a metric space of curvature bounded from above by k). Then for
any n € C2(D) withn >0,

(4.1) / Vul2An > 26 / 7|Vt
D D

If u is minimal (i.e. also weakly conformal) with conformal factor X\, then

/ AAn > —2&/ nA%.
D D



20 Chikako Mese

Proof. The case k = 0 is the result of [KS]. We will first prove the above for
the case when k = 1. Note that the result for k > 0 follows immediately
from rescaling the target distance function. The case k = —1 is proven
analogously.

In the proof below, we prove equation 4.1 for n € C2(D) with 0 < n < %
By rescaling 7, we see that equation 4.1 holds for any non-negative C2
function 7.

For two given points z, y, define

n- = min{n(z),n(y)}-
Let up and u; be energy minimizing maps such that
sup d(uo,u1) < T
z€supp(n) 2

We let Lo, L; be the Lipschitz constants of up and u; in supp(n) and let
L = max{Lo, L1}. If |z —y| < 9, then d(uo(z), uo(y)), d(ui(z),u1(y)) < 3.
Let u, € W12(D, X) be defined by taking the geometric interpolation of
uo and u;. In other words, let u,(x) be the point on the (unique) geodesic
between ug(z) and u;(z) such that

d(uo(), un(z)) d(uy(2), w1 (z))
d(uo(z), ua (<)) d(uo(z), ua(z))

If n_ = n(y), we consider the ordered sequence

= n(z) and =1-n(z).

{un_(y), un_ (2), v1-n_(2), v1-n_(y)}

andlett = "iz_)z—n";y) and apply Proposition 3.3. If n_ = n(z), we interchange

the roles of z and y and apply Proposition 3.3. Using the shorthand notation,

Iy = d(us(z), ue(y))
Iy = d(up(z), un(y))
li—p = d(u1-4(2), u1-n(y))
dy = d(uO((I:),’LLl((B))
dy = d(uo(y), u1(y)
7 = n(z) —n(y),
we deduce in both cases,
cosl, + cosli_yp > [cosly,_ + cosli_,,_] cos(7jdz)
+ [sinly_ cosa + sinly_,_ cos f3] sin(7d.)

(4.2)
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where @ = ZPQR and 8 = ZSRQ and {P,Q, R, S} is a spherical subem-
bedding for {u,_(y), un_(z), u1—n_(z), u1—y_(y)}. By expanding the above,
we obtain,
l?, + lf_n + 04(l,,, li—p) £ l?,_ + l%—n— —2(ly_ cosa + ly_y_ cos B)ijd,
+0%(7jdz) + 0% (L, li—y_)
Applying Proposition 3.5 to {uo(y), uo(z), u1(z), u1(y)} and t = n_, we ob-
tain,
o+, <B4+ 2 lohd2 +0%(n-)0%(lo, )
+0%(lo, 1) + n-02(lo, 1)0%(dz, dy) + 1-0°(lo, 1)

Applying Proposition 3.4 to {u,_(y), un_(z),v1—n_(2),u1-n_(y)}, We ob-
tain,

—(ly_cosa+1li_p_cosB) < (1 —2n-)(dy — dz) + 0%(L,_, l1—y_)0?(dz, dy)

Thus, the Cauchy-Schwartz inequality gives,

— (ly_ cosa + lj_y,_ cos B)nd,

1 _
< 5(1 —2n-)ii(dj — d2) + 70%(ly_, li—y_)0%(dy, dz)

Hence, inequality 4.2 implies

I+ By + 0%y liy) S B+ 13 + 2n-lolid3 + (1 — 20-)7(d}, — d3)
+ 0%(n-)0%(lo, 1) + 0*(lo, 1)
+ (n- + 7)0%(lo, 11)0° (dz, dy)
+n-0%(lo, 1) + 0(7jdz) + 0%(lo, 11)

Let Z € T(TQ) be a vector field. By taking y = z + €Z, dividing by €2, and
letting € — 0, we deduce that for a.e. z € (,

|(un)+ (Z) 2 + |(u1-n)«(2)?
< 1(u0)«(2) + 1(u) (D) + 1(|(u0)(Z2) + |(u1)«(2)*)d* (uo, w1)
— (1= 20)nx(Z)d? (w0, u1)+(Z) + 0*(1)0%(|(u0)+(2)], |(u1)+(2)])
+ (1 + 1 (2))0% (| (u0)+(2)], | (u1)(2)1)0%(d(wo, u)) + 0% (14 (Z) d)
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In the above, substitute n by ¢n, divide by ¢ and let ¢ — 0 to obtain,

(43) |(u)s(2)P + |(1-n)+(2)I*
< |(0)s(2)1” + |(un)(2)*
+ 1| (w0)«(2)2 + (1)« (2)P)d (w0, u1) = 1+(2)d* (u0, u1)+(2)
+ (7 + 7(2))0%( (w0)(Z)], |(u1)+(2))0° (d(u0, u1))

Adding the above equation with Z = 0 to the above with Z = 0y, we
obtain for a.e. z € Q,

Vug|? + [Vitr—* < [Vl + [V
+n(|Vuo[? + [V |2)d? (w0, u1) — Vi - Vd? (o, v1)
+(n+ Vn)02(Vuo, VU1)03(d(uO, u1))

If up and uq are energy minimizers, then integrating over D gives,
0% [ duoutn+ [ n(Tuol + Vo) uor )

+ |+ Vnlow / 0%(|Vuol, |Vu1])0° (d(uo, w1))

supp(n)

Let u be an energy minimizing map and u,(z) = u(z + W), with W] <1.
Then, dividing by 62 and letting § — 0, we obtain,

2 / n(Velhu ()P < [ Jun(W) P

Adding the above equation with W = 8, to the above with W = 9y, we
obtain

—2/17|Vu|4 < /|Vu|2An.

Now if u is conformal, then inequality 4.3 implies

Ap + A—p < Ao+ A1+ (o + A1)d? (o, u1)
— 1u(Z)d*(uo, u1)«(Z) + (0 + 1+(2))0%(Xo, A1)0° (d(uo, u1))-

Substituting Z = ]%’TL[ if Vp # 0 and following the same procedure as above

we obtain
-2k / a2 < / AA7. O
D D
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5. The Curvature Inequality.

In this section, we prove our main result. As mentioned in the introduction,
if X is a smooth Riemannian manifold of sectional curvature bounded from
above by k, then the inequality in the following theorem implies that the
curvature of the surface is also bounded from above by «.

Theorem 5.1. Let u: D — X be a minimal surface (i.e. a weakly confor-
mal energy minimizing map) with conformal factor A where (X, d) is a met-
ric space of curvature bounded from above by k. Then for all non-negative
p € C°(D),

(5.1) / log A\ Ay > —2&/ PA.
D D

Proof. We will prove this for the case of kK = 1. The result x arbitrary is
obtained in the same manner as below. Before we proceed with the proof of
Theorem 5.1, we need the following preliminary lemmas:

Lemma 5.2. Let A be a conformal factor of a minimal surface uw: D — X
where X is a CAT(1) space. Then A € HL (D).

Proof. Let K cC D. Since ) is bounded locally, we let A be such that
A < Ain K. Choose g € C®(D), non-negative such that Ag > A2. Then,
by Theorem 4.1 we have

Jo+an6= [o(-x+29) 20

for any ¢ € C°(K). Hence, and X + g is weakly subharmonic in K and is
a non-negative function. Thus A+ g € H*(K) and X € H} (D). O

Lemma 5.3. Let A be a conformal factor of a minimal surface u: D — X
where X is a CAT(1) space. Then for any harmonic function h: D — R,

/ Dp(Aet) > —2/ A%l
D D

Proof. Let w(z) : D — D be a conformal change of coordinates. Then
v = uow is harmonic. Let A = |Vuv|? be the conformal factor for the
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pull-back metric on D under the map v. By Theorem 4.1,

/ A pdz = —2/ ©A\2dz
D D

for all non-negative ¢ € C°(D). Note that

A, = )ﬁ—‘: Do,
dw = (2—1: dz,
A = |V(uow)| = |Vul % =Al%".
Hence,
/'@'(chp))\ dwl|dw —1dw2—2/<p dwl®
dz dz || dz dz

dw

-1
dw,

and we get the desired result by choosing w such that |‘2—1;’| = eP. Hence, let

w= f e¥ where 1 is an analytic function such that Rey = h.

O

Lemma 5.4. Let A be a conformal factor of a minimal surface map u :
D — X where X is a CAT(1) space. Assume X > X\o > 0. Then for any

harmonic function h : D — R,

/ Aplog ) > —/ 92\ + |V (log X + R)|?)
D D

Proof. Since A is bounded away from zero and locally bounded above, we
can assume that logA € HL (D). Let h be any harmonic function. By
Lemma 5.3 and by the fact that C* functions are dense in H!, for any

non-negative ¥ € H. (D),

/D Apeh) > 2 /D WAZeh
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Let ¢ € C°(D) be a non-negative function, then
/ Aplog A= / Ap(log A + log ¢)
= / Agplog AeP
= —/th . Vlog Ae?
=— / % . V(Aeh)
= —/v (52) - VOt - go'—v(%f;;ﬁ
> —2/A—‘:hx2 h_ /golV(logA +h)[?
- -2/@ - /(p]V(log)\ R
a
Now we proceed with the proof of Theorem 5.1 in the special case that

A= Ao > 0. Let § > 0 be given. Since Vlog\ € L2, by the Lebesque Point
Lemma,

. ) —
F= {w € D';li% —3 /yeB.,(z) [Vieg A(y) — Vieg A(z)|*du(y) = 0}
is of full measure in D. For z € F, let o, be such that
0<o; < %dist(:c, oD)
and
/ Vlog A(y) — Vlog A(z)dy < 255ma2,
YEBso, ()
Note that {B,,(z)};cF is a collection of closed balls such that U.er Bo.(z)

is of full measure in D. By the Five Times Covering Lemma, we can choose
a disjoint subcollection {By,, (z:)}32; such that

U Bo.(@) € | Boa, (@0)-
i=1

zeF
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Let ¢ € C° be a non-negative function. Since |log \Ay)|, || € L1(D),
there exists € such that

/ |log AMAg| < 4,
A

/|¢A|<5
A

whenever m(A) < e. On the other hand, since } 72, m(Bo,_(2:)) < T, there
exists N such that

m( U Bsgzi (.’l:z)) < €.
i=N+1

Set A =2y 4 Bso, (zi). Let {x:}X, be a partition of unity subordinate
to {Bso,, (zi)}X;. Then

/ AcplogA=/+/ log A\Ayp
D A D-A

N
2—6+/ log AA ;
s (wa)

=1

=0+ Z / log AA(px:)

=1

> 65— ;/ (ox:) 2\ + |V log A + Vs [?)

>—-0- 2/ A — |<p|°°Z/ |Vlog>\+\7h|2

i=1

2-25—2/ cp)\—|(p|002/ [Vlog A + Vhi|?.
D i=1 Y Bsoz;

where {h;} is any collection of harmonic functions in D. For each i, we
choose h; to be a linear function, bounded uniformly away from 0, such that
Vh; = =V log A(z;). Thus,

Z/ |Vlog/\+Vh ?= Z/ |V log A — Vlog A(z;)]
B

=1 50;; (1:1

< 2507 Z O

=1
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But since {B,,, (z:)} is a disjoint set, SN 02 <1 and thus,

i=1"x;
/ Aplog A > =24 — 256|p|eo™ — 2/ PA
D D
Since the choice of § was arbitrary,

/Acplog)\z—2/ P
D D

Finally, since the choice of ¢ € C(D) was also arbitrary, we have the
desired result. The general case can be handled using the following lemma.

Lemma 5.5. Let f, : D — R be a decreasing sequence of functions con-
verging to a non-negative function f such that f, < M for allmn = 1,2, ...

If

/ IngnASOZ _2/ Sofnr
D D

for all non-negative p € CX(D), we also have that

/D log fAp > —2 /D of,

for all non-negative p € C°(D).

Proof. We will show:

lim [ f, = / of
n—o00
nlinolo log frlp = /longgo.

The first equality follows immediately from the Lebesgue Convergence The-
orem. To prove the second equality, let g € C°°(D) such that Ag > 2M.
Then

/ (log fn + 9)A¢p > / o(—2fn + Ag) > 0.
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Hence log f,,+g is subharmonic. By the mean value inequality (and assuming
w.lo.g. that f(0) # 0),
—oo < log £(0) + g(0)
< log £n(0) + g(0)

1
S—/logfn+g
T™JD
<logM +g.

In particular, [log f, in uniformly bounded. Let F,, = log M — log f,, and
F = logM —log f. Then F, is an increasing sequence of non-negative
functions. Hence by the Monotone Convergence Theorem,

lim /Fn=/ F.
n—00 D

In other words, we have that

lim log fn = / log f.
D D

n—oo

In particular, log f € L*(D). For non-negative ¢ € CS°(D), we have that
log foAp — log fAp a.e. and |log frAp| < |Ap|eo|log fr|. Hence by the
Dominated Convergence Theorem, we have the desired result as we take
6 — 0. O

Now consider the space X x D endowed with the distance function ds
defined by
d3((P,2), (@, w)) = d*(P, Q) + 6|z — w/?,
for P,Q € X and z,w € D. It can be easily checked that (X x D, ds) is a
CAT(1) space and us : D — (X x D, d;) defined by
us(2) = (w(2), 2)-

is a us is a minimal surface if u is. We let A5 be the conformal factor of
the pull back metric. Note that A\s is a decreasing sequence of functions
converging to A and A\s > §. By the special case above, we have that

/ AplogAs > —2 / PAs,
D D

for all . Hence by Lemma 5.5, we get the desired result when we take
6 — 0. ‘ O
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6. Surfaces with Conformal Factor .

As mentioned in the introduction, when X is a smooth Riemannian mani-
fold of sectional curvature bounded from above by &, the inequality of The-
orem 5.1 implies that the curvature of the minimal surface is also bounded
from above by k. In this section, we will see that this interpretation of
Theorem 5.1 also makes sense in the setting where X is a metric space of
curvature bounded from above by k; we show that the conformal factor A
induces a metric space on D which has upper curvature bound of «.

Theorem 6.1. Let (X, d) be a complete metric space of curvature bounded
from above by k and let uw : D — X be a minimal surface (i.e. a weakly
conformal energy minimizing map) with conformal factor A. Let~:[0,1] —

D be a piecewise C' curve and let [(y) = fo VA (t)|dt. For z,y € D,
we define the distance between z and y as

d(z,y) = inf{l(7) : v piecewise C* and v(0) = z,v(1) = y}.

Then (D,dy) is a metric space with curvature bounded from above by K
(locally if k > 0). The metric topology is equivalent to the surface topology.

Remark. The fact that vA € HL (D) follows from the inequality of The-
orem 5.1. Hence the definition of I(y) makes sense. The statement that a
space has curvature bounded from above by & locally means that each point
is contained in a neighborhood which has an upper curvature bound of k.

Proof. The fact that d) defines a length space and the statement about
the equivalence of the topologies follow from the work of Reshetnyak [R3]
and the weak inequality of Theorem 5.1. (Reshetnyak considers a metric
A(dz? + dy?) where log ) is a difference of two subharmonic functions.) We
need to show the curvature bound. It is sufficient to consider the cases
k =—1, k=0 and k = 1. The general case then follows by simply scaling
the distance function d of X so that the curvature is either x = —1,0 or 1.

We let A, (log ), be symmetric mollifications (i.e. mollification by a
symmetric mollifier) of ), log X and let A7 = el°%8Ns_ Also let D7 = {z €
D :|z| < 1—oc}. By applying Theorem 5.1 with ¢ the mollifier, we have

Alog A7 = A(log A\s)
> =2k,

Ao\ o

(6.1)
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for every z € D?. By Jensen’s inequality, A, > A?. Hence, for k = —1 or
k=0,

L Nloga7 <k

gxe O8N =

Thus for k = —1 and & = 0, (D, \°(dz? + dy?)) is a smooth Riemannian
surface with curvature bounded from above by 1 and 0, respectively. Fur-
thermore, since A is subharmonic, A > A. This implies that d° > d) where
d? is the distance function induced by A’ (dz? + dy?). Combining this with
the fact that A — X in H1, it is easy to check that d° — d.

From the above discussion, the curvature bound for the case xk = —1 and
k = 0 follows easily: Let z,y,z € D and let y; (resp. yJ) be the point on
the geodesic from y to z with respect to the distance function dy (resp. d%)
so that dy(y, y:) = tda(y, 2) (resp. d?(y,vf) = td?(y, 2)).

Claim. For y: and y{ defined above, we have dy(yt,yf) — 0 as 0 — 0.

Proof. Assume k = —1. Consider the geodesic triangle A(y:,vy,2) with
respect to d°. By using the curvature bound of (D?,d?) we have

sinh(1 — t)d?(y, 2)
sinh d’ (y, 2)
sinh td? (y, z)
sinh d?(y, z)

coshd? (yz,y7) < cosh d? (yt,y)

cosh d? (yt, 2).

As 0 — 0, d°(y,2) — da(y,2), @°(y,y) — da(y,y) = tda(y,2) and
d°(yt,2) — dx(yt,2) = (1 — t)da(y,2). Hence the right hand side of the
above inequality converges to 1 and since d(yz, y7) < d°(yt, y7), this proves -
the claim. The case k = 0 is proved analogously. O

For k = —1, we want to show that

sinh(1 — ¢)dx(z, y)
sinh dy(z,y)

sinh(1 — t)dx(z, z)
sinh dy(z, z)

coshdy(z,yt) < coshdy(z,y)

coshdy(z, 2)

which is equivalent to showing the triangle comparison property of Defi-
nition 3.1. Since (D?,d”) has curvature bounded from above by —1, we
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have

sinh(1 — t)d?(z, y)
sinh d° (z, y)

sinh(1 — t)d°(z, z)
sinh d°(z, 2)

coshd’(z,y7) <

coshd’(z,y)

coshd’(z, z)

and the desired inequality follows by taking ¢ — 0 and using the claim. The
proof for x = 0 follows analogously.

Now we treat the case k = 1. First we show (D, d)) has curvature
bounded from above by 2. Let D,(z9) = {z : |z — 20| < r} C D. Since
(D?,d°) is a smooth Riemannian surface, by the isoperimetric inequality of

[Hu],

2
/ VXods | > |4m — / (Alog \7)tdzdy / A dzdy
8D, (z0) Dr(z0) D, (20)

>|l4r -2 / Aodzdy / Adzdy
D, (20) Dr(z0)

where (Alog A%)T = max{—Alog A\?,0}. By taking o — 0, we have

2 2
Vads | >4r / Mzdy — 2 / Mzdy | .
8D (20) D, (20) Dr(z0)

[R2] says that if a surface with a metric A(dz? + dy?) has an isoperimetric
inequality for disks D, (2g) of the form

L? > 47 A — kA?

where L is the length of 0D, () and A is area of D,(zp), then the surface has
an upper curvature bound of . This implies (D, dy) has an upper curvature
bound of 2.

Let us call k£ the best curvature bound of (D, d,) if for every geodesic
triangle T with diam(T') < % and angles a, 8, v,

a+B+y< o+ B+ Yk

where ag, Bk, 7 are angles of a comparison triangle in Si. By the above,
we know that k < 2. We wish to show £ < 1. Suppose not, i.e. 1 <k < 2.
We need the following claim to obtain a contradiction.
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Claim. Suppose 1 < k' < k. There ezists a constant Cy s > 1 such that
for any geodesic triangles Ty, C Sk and Ty C Sk with same side lengths
and the sum of side lengths less than %, we have area(Ty) < Cy g area(Ty).

Furthermore, Cjy — 1 as k' — k.

Proof. Let a,b,c be the side lengths of geodesic triangle T' C Sx. From
spherical geometry, as a — 0, b — 0 or ¢ — 0, area(T") approaches the
area of a Euclidean triangle with side lengths a,b,c. Thus if T} ; C Sk and
Ty ; C S are geodesic triangles with side lengths a;, b;, ¢; and if they form
a maximizing sequence of the ratio

area(Tk,;)
area(Ty ;)

then we can extract a subsequence so that ay — a > 0, by — b > O,
¢y — ¢ > 0. Thus,

_ area(Ty)
kb = area(T)
where Ty, C S, Tir C Sy are geodesic triangles with side lengths a, b, c. The

last assertion is obvious. O

Let T be any geodesic triangle and let «a, 3,7 be the angles of T. By
Gauss-Bonnet (see [R3], Theorem 8.1.7), we have

a+B+7< -—%/Alog)\d:rdy+7r
T

< / Adzdy + 7
= a::ea(T) +7
Let T} be a the comparison triangle in Si. Clearly,
area(T) < area(Tk).
By claim, for 1 < ¥’ < k and comparison triangle Ty in Sk,
area(Ty) < Cy rarea(Ty).

We note that Cj i is independently of T' chosen. We choose k' sufficiently
close to k so that Cp i < k’. Applying Gauss-Bonnet on Tpr C Sk, we
obtain,

area(Tk) < k'area(Tk:) < oy + IBk' + Y — 7
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where ay/, i, vk are angles of Ty,. Thus,
a+ B+ <o+ B+

Since T can be chosen arbitrarily, this implies that the best curvature bound
for (D,d)) is k’. This contradiction implies that the best curvature bound
is not greater than 1. a
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