
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 8, Number 5, 1027-1096, 2000 
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4-Manifolds Bounding Seifert Fibrations 
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We compute virtual dimensions of finite energy Seiberg-Witten 
moduli spaces on 4-manifolds bounding Seifert fibrations. The 
key moment is the determination of certain eta invariants. As 
an application of these computations we compute the Proyshov 
invariants of many Brieskorn homology spheres (e.g. E(2,3,6k±l), 
S(2,4fc + 1,4fc + 3), S(3,3fc + 1,3k + 2)). In turn, these lead to 
interesting topological results. For example, we prove that any 
negative definite 4-manifold bounding a Brieskorn homology sphere 
S(2,3,6k + 1) must have diagonalizable intersection form. 

Introduction. 

The technical goal of the present paper is to compute the virtual dimen- 
sions of finite energy Seiberg-Witten moduli spaces for 4-manifolds bounding 
unions of Seifert fibrations. For cylinders over Seifert manifolds these mod- 
uli spaces describe tunnelings between the critical sets of the 3-dimensional 
Seiberg-Witten energy functional. These virtual dimensions were computed 
in [MOY] by identifying the space of tunnelings with an algebraic-geometric 
moduli space and then using a Riemann-Roch counting argument (see also 
[KMO] for a spectral flow approach). 

However, we go beyond mere index theoretic computations and present 
some surprising topological implications of these computations. All the 
needed analytical baggage is almost entirely contained in [Nl] and [N2] and 
we focus our attention mostly to the complex combinatorial and topological 
aspects due to the singular fibers of a Seifert fibration. 

We will follow a strategy similar to the one we used in [N2] where we 
dealt with the slightly simpler problem when the 4-manifold bounds smooth 
S^-bundles over Riemann surfaces. To compute the virtual dimension we 
will use the local description in [MMR] of such moduli spaces. The compu- 
tation splits into two main steps. First, one needs to understand the critical 
sets of the 3-dimensional Seiberg-Witten functional on the boundary. This 
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was accomplished in [MOY] and [Nl] where the critical set was explicitly de- 
scribed and it was shown that (modulo some very explicit exceptions) they 
are Bott nondegenerate. This nondegeneracy is the best one can hope for 
since it essentially says that the asymptotics of a finite energy monopoles 
are determined by a linear equation. In particular, it allows us to avoid 
the introduction of thickened moduli spaces of [MMR] and work in the very 
convenient framework of exponentially weighted Sobolev spaces. 

With this information in hand we can now proceed to compute these 
dimensions and the results of [MMR] reduce this problem to the computation 
of an Atiyah-Patodi-Singer (A-P-S) index for an operator which near the 
boundary has the form 

Above, t denotes the outgoing normal coordinate near the boundary. The 
operator S) further decomposes as 

where j^o is a direct sum 

j^o = (Odd   signature operator) © (a   certain   Dirac   operator) 

and V is an explicit zeroth order perturbation of jfo- An excision argument 
reduces the computation of the A-P-S index of O to the computation of the 
A-P-S index of 

eb-!-*, 

and the computation of the spectral flow of the affine path fio + tP, 0 < 
t < 1. The perturbation analysis employed in [N2] for the computation of 
SF($)o+tV) extends verbatim to the more general case of Seifert fibrations. 
We want only want to mention some special features of this computation. 

First, jjo + tP is not a Dirac operator. It is a complicated zero order 
perturbation of a direct sum and between a Dirac operator and the odd sig- 
nature operator. Moreover, the eigenvalues contributing to the spectral flow 
cross the zero axis in a non-transversal manner and cannot be detected in 
first order approximation. One has to go further up the Taylor expansions 
of these eigenvalues, much like in [FL] and [KK]. There is an added difficulty 
since, unlike [FL] and [KK], the Taylor expansions cannot be expressed in 
purely topological terms. This is in stark contrast with the computations in 
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[KMO] which involve only genuinely Dirac operators and eigenvalues cross- 
ing the axis transversally. 

The eta invariant of ^o is a sum of the eta invariant of the odd signature 
operator and the eta invariant of a certain Dirac operators. The eta invariant 
of the signature operator on Seifert fibrations is essentially a topological 
invariant and was computed in [O]. It can be expressed in terms of the 
classical Dedekind sums (see [HZ]) determined by the singular fibers and 
some topological quantities. The story is quite different for Dirac operators 
since in general their eta invariants are extremely sensitive to the background 
geometry. 

We could not use the adiabatic approach in [N2] since we are not aware 
of an analogue of Bismut-Cheeger-Dai result for fibrations collapsing onto 
orbifolds. Instead, we follow a hands-on approach outlined in Appendix C 
of [N2] which relies on certain algebraic identities satisfied by the Dirac op- 
erators arising in Seiberg-Witten theory. We were able to describe the entire 
eta functions 77(5) of these operators in terms of Riemann-Hurwitz functions. 
The value 77(0) is then expressed in terms of Dedekind-Rademacher sums. 
(We refer to [Ra] for a presentation of these objects.) 

When specialized to tunnelings, our virtual dimension formula looks 
quite different from the formula obtained in [MOY] which involves some 
Hirzebruch-Jung continued fractions. We did not directly proved the equal- 
ity of these two descriptions (although one can conceivably use Rademacher's 
reciprocity law in [Ra] to achieve this) but numerical experimentations show 
perfect agreement. 

It is perhaps worth emphasizing the differences between the present work 
and the closely related [MOY]. We provide information about the moduli 
spaces of finite energy monopoles on any cylindrical manifold bounding a 
Seifert manifold but we do not study the internal structure of individual 
monopoles. By contrast, the result in [MOY] provide almost complete infor- 
mation about the internal structure of an individual finite energy monopole 
on a special cylindrical manifold, but have very little to say about a general 
cylindrical manifold. 

The eta invariant computations in this paper can be used in conjunc- 
tion with the adiabatic analysis in [Nl] to provide upper estimates for the 
Froyshov invariants Ya^c (introduced in [Fr]) of the Brieskorn homology 
spheres S(a, 6, c). In many cases these estimates are optimal and have inter- 
esting topological consequences. For example, we prove the following result 
(Corollary 3.4, 3.9). 

(i)   ^2,3,6fc+l = ^2,4/c+l,4fc+3 = ^3,3s+l,3s+2 = 0; 1^2,3,6^-1 = 8. 
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(ii) X is a A-manifold with negative definite intersection form bounding a 
Brieskom sphere E(2,3,6k + 1) then the intersection form of X must 
be diagonalizable. (The same result is true for E(2,4A; + l,4fc + 3) 
and S(3,35 +1,35 + 2) and it can be proved directly using Donaldson's 
first theorem and the fact proved in [CH] that these Brieskom spheres 
bound contractible manifolds.) 

(iii) If X is a k-manifold with negative definite intersection form q which 
bounds a E(2,3,6k — 1) and q splits as qi © q2 with q2 ^ 0 even, then 
q2 = — E$ and qi is diagonalizable. 

The equality ¥2,3,5 = 8 is proved in [Pr] relying on some very special geo- 
metric features of the Poincare homology sphere E(2,3,5). 

The above result is not entirely obvious even when X is the canonical 
plumbing associated to E(2,3,6fc±l). The plumbing diagrams are described 
in Figure 1, ?? in §3.2. We discovered in conversations with Ian Hambleton 
a simple combinatorial argument establishing these special facts directly 
(Remark 3.5). 

As we have explained in §3.2, in the special cases E(2,3,13), E(2,3,25) 
the property (ii) above is a consequence of Donaldson's Theorem A since 
these homology spheres bound contractible smooth manifolds. However, this 
argument fails for the Brieskorn spheres E(2,3,6k + 1) with k odd which 
cannot bound contractible smooth manifolds because their Rohlin invariant 
is nontrivial. They may bound rational homology balls (as does E(2,3,7)) in 
which case (ii) follows again from Donaldson's theorem, but it is not known 
whether is the case for all k. 

The numerical experimentations suggest another beautiful phenomenon. 
In some sense (explained in §3.3) the Hirzebruch-Jung resolution of a 
Brieskorn sphere is the "most complicated" negative definite manifold it 
bounds. The results quoted above agree with this philosophy and moreover, 
work in progress shows this is also the case for lens spaces. 

The paper is composed of three main sections. Subsection §1.1 lists the 
basic topological and geometric facts about Seifert manifolds used in the rest 
of the paper. In §1.2 we introduce the "adiabatic" Dirac operators which 
as shown in [MOY] and [Nl] play an important role in the 3-dimensional 
theory. Most of this section is occupied with the computation of their eta 
invariants. We also explain how to obtain the eta invariants of the traditional 
Dirac operators (Remark 1.13). 

The first half of Section 2 is a brief survey of the main results in [MMR] 
as they apply to our case. The virtual dimension formula (2.15) is then 
proved in §2.3. 
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The third section is devoted to applications. We begin with a brief 
subsection in which we apply our formulae to tunnelings. We have included it 
for two reasons. First, we solve a problem posed in [KMO], asking to express 
the virtual dimensions of the spaces of tunnelings in terms of Dedekind sums. 
Secondly, for topological applications, we need to know the dimensions of 
the spaces of tunnelings from a reducible monopole to an irreducible one. 
In [MOY] these computations were not explicitly carried out and they are 
indispensable in estimating the Froyshov invariants. 

In the second half of this section we specialize to Brieskorn homology 
spheres E(a, 6, c). Using (in an essential fashion) the adiabatic analysis 
of [Nl] and the explicit knowledge of the eta invariants we produce (often 
optimal !) upper bounds for the Froyshov invariants. These are then applied 
to obtain informations about the intersection forms of 4-manifolds bounding 
such homology spheres. We conclude with a speculative subsection where 
we formulate several conjectures suggested by numerical experiments. 
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1. Differential geometric preliminaries. 

1.1. F-bundles and Seifert fibrations. 

In this paper, as in [FS] or [MOY], we will think of Seifert manifolds as sphere 
bundles determined by complex line F-bundles over Riemann V-surfaces. 

The building blocks of V-manifolds (or orbifolds) are quotients of smooth 
manifolds determined by finite group actions A. V-manifold is obtained by 
gluing together such building blocks. More precisely, according to [Sa] a 
F-manifold of dimension n is a collection 

M = (|M|, (0i)i6i, (Ui)ieI, (GOigj, (&)iej, (^)) 

with the following properties. 

• \M\ is a Hausdorff space. 

• (Ui)iej is an open cover of \M\ such that for any x e Uij := Ui n Uj 
there exists k E I so that x G Uk C Uij. 

• Gi denotes a finite group acting effectively on a connected open set 
Ui C Rn. We assume the fixed point set of Gi has dimension < n — 2. 

• & is a £?i-invariant map Ui —> Ui such that the induced map Ui/Gi —> 
Ui is a homeomorphisms. 

• For any pair (z, j) such that Ui C Uj there exists a diffeomorphism 
(j)ji of C/j onto an open subset of Uj such that the diagram below is 
commutative 

Ui -^ Uj 

4>i <t>3 

Ui —^—> Uj 

Remark 1.1. The effectiveness of the actions of the groups Gi and the 
assumption on the fixed point set are usually not included in the definition 
of an orbifold. As shown in Lemmata 1 and 2 of [Sa] these imply that if 
Ui C Uj C Uk then there exists jki € Gk such that ^ki^ki = <l>kj<i>ji- 

If N = (|JV|,(ya)a€A,(^a),(iya),(^a),(^a)) is another F-manifold 
then a smooth y-map from M to N is a collection (</?, (hi)) with the following 
properties. 
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• tp is a map I —> A such that V^ C V^y) if and only if C/i C Uj. 

• For each i G / ^ is a smooth map C/i —> V^^) such that if C7i C C/j the 
diagram bellow is commutative {a = (p(i), (3 = <p(j). 

Ui -^ Va 

<t>. jt ^(3a 

One can check that the collection (hi) does indeed induce a continuous map 
h: |M|-+|iV|. 

Let G denote a Lie group acting on a smooth manifold F. A F-bundle 
with standard fiber F and structure group G consists of two F-manifolds 

M = (|M|, mieI, (UfreI, (GO*/, mieh.(*ii)) 

S = (\B\, W)i£l, W)i£l, (GOKSI, (^)^/, (^)) 

and a smooth V-map TT = (1/, TT;) : M —> B with the following properties. 

• For every i G I the group G; acts on F as well, its action commutes 
with the action of G and there exists a G^-equivariant homeomorphism 

*i:Ui->Vix F. 

• If Vi C Vj there exists a smooth map gji : V] —* G such that 

Vi X F 3 (*, /) ^ *,. O ^ O *-!(„, /) = (t;, ^(t;)/) G ^ X F. 

Moreover, if Vi c Vj c Vjk then there exists 7^ G G^ (as in Remark 
1.1) such that gki(lki<f>ki(p)) = 9kj(<l>ji(p))gji(p). 

When F is a vector space and the actions of G and G; are linear the bundle 
is called a vector F-bundle. All the functorial concepts related to usual 
vector bundles (direct sum, tensor product etc.) have a F-counterpart. One 
can also speak of F-sections, F-metrics and ^-connections in such vector 
V-bundles. All the above concepts have holomorphic counterparts defined 
in an obvious way. 

Most of the standard operations of calculus can be carried out in the 
context of orbifolds as well.   For example, the Chern-Weil theory has an 
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immediate orbifold extension. We only want to mention here the concept of 
integration which as in the smooth case requires an orientability condition. 
An orbifold 

M = (|M|, (Ui)ieh (Ui)ieh (Gi)i£li ((t>i)ieh i&ij)) 

is said to be oriented if the sets Ui are oriented, Gi acts by orientation 
preserving maps and the gluing maps ^ are also orientation preserving. 
An n-form is a collection u of Gi-invariant n-forms cJ; such that 

Using Remark 1.1 we deduce 

(jfjiUj =Cbi,  VUi C Uj. 

kfik = <l>ji<t>kjVk 

so the above definitions are non-contradictory.  Now choose a partition of 
unity (cti) subordinated to the cover (Ui) and define 

JM       rri W^i JUi 

As in the smooth case one can verify the definition is independent of the 
various choices. 

We will be interested only in compact, oriented 2-dimensional orbifolds 
without boundary and line F-bundles over them. 

If E is such an orbifold then the isotropy groups Gi can only be cyclic, 
d = Zai, a* > 2. These have only isolated fixed points, xi,... ,xn. The 
underlying topological space is a smooth Riemann surface |S|. We can 
represent S as a collection (|S|, a, x) where a = (ai,... , an) are the orders 
of isotropy and x = (xi,..., xn) indicates the location of the singular points. 
The underlying topological space is completely described by the genus g of 
|S| so this orbifold is completely described by the collection (g,a,x). We 
will use the notation £((/, n; <S, x) but in general we will drop any information 
which is either irrelevant or clear from the context. 

Suppose L —> E(#; a, x) is a line ^-bundle. There is a new piece of 
information related to the singularity x namely the representation pi of Zai 

on the fiber C. It can only be of the form Pt(exp(^)) = exp(2^) where 

(1.1) 0</?i <«»,   i = l,... ,n. 
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We again collect this information in the vector /?. It is important to em- 
phasize that the isotropies /? are normalized by the condition (1.1). We can 
now associate to L its rational degree defined as 

degL = J ci(L)eQ. 

As in the smooth case we have 

deg Li ® L2 = deg Li + deg L2 

and that is why we will often use the additive notation for the tensor product 
of line bundles. 

Given an orbifold S(a, x) with a single singular point x (of isotropy a) we 
can construct a line F-bundle HaiX with rational degree 1/a as follows. Let 
|E|ar denote the surface obtained by deleting a small open disk Dx around 
x. The total space of Hx obtained by gluing \Yt\xxCtoDxxC via the map 

Ta : 51 x C £ d\X\x x C -> dDx xC^S1 xC 

where 

TQ(exp(i0),/0exp(i<p)) = (exp(i(-al9 + y?)),pexp(ie)). 

Given a line bundle L —> S(a, 5) with singularity data /? we can form 

One can show (see [FS]) that |L| is a genuine smooth line bundle over |E|. 
Its degree is an integer and we have the following equality 

(1.2) degL = deg|L| + V^. 
i 

The rational degree and the singularity data completely determine the topo- 
logical type of a line ^-bundle. More precisely we have the following result 
(see [FS] for more details). 

Proposition 1.2. Denote by P2C*(S) the space of isomorphisms classes of 
line V-bundles over the orbifold E(a?, x). Define 

T = ra: Ptc*'(E) -> Q © Zai 0 • • • 0 Zan 
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by 

'L(p) i-> (degL,/9i(modai),... ,/3n(modan)) 

and 5 : Q 0 Zai 0 • • • 0 Zan -> Q/Z 6y 

(c,/3i(modai),... ,/Sn(modan)) »-» I c-^— 1 (modZ). 

0 -> Picft(E) -^ Q © Zai © • • • © Zan i> Q/Z ^ 0 

is a s/ior^ exac^ sequence of abelian groups. 

The line bundle with singularity data /3 and rational degree c will be denoted 
byL(cJ). 

A complex 2-orbifold £(#; a) has an associated canonical line F-bundle 
Ks = A1,0T*£. Given a holomorphic line F-bundle L = L(j3) we can form 
the Dolbeault cohomology H*(L) and the Serre duality continues to hold 

The Riemann-Roch theorem hats an orbifold version due to Kawasaki [Kaw] 
(/io(L):=dimff0(L)) 

(1.3) /l0(L)_/i0(Ks-JL) = l-^ + deg|L| = l-5 + degL-y;-. 
~ OLi 

i 

In particular, if L = \L\ is the trivial line bundle we deduce from the Rie- 
mann Roch theorem that /loC^s) = 9- Now, using the Riemann-Roch the- 
orem for Kz we deduce 

deg|Ks| = 2<7-2. 

One can verify easily that the singularity data of K^ are (ai — 1,... , an — 1). 
Hence 

The rational Euler characteristic of E is defined as x(2) = — deg K2 from 
which we conclude 

(1.4) x(S) = 2_2s_E(l-l). 
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A Seifert manifold is by definition the unit sphere F-bundle of a complex line 
^-bundle over a 2-orbifold. More precisely, consider the 2-orbifold £(#, a) 
and the line F-bundle 

such that if fa ^ 0 then g.c.d.(/3i,ai) = 1. The unit sphere bundle S(L) 
of L is a Seifert manifold we will denote by iV(g; 6; c?, /?) where b = deg |L|. 
The collection (g] 6; a, /?) is known as the (normalized) Seifert invariant E 
is known as the base of N. 

The basic topological invariants of a Seifert manifold are known (see 
[PS]). 

Theorem 1.3. IfN = N(g; 6,5, /?)) (m singular points) then 7ri(N) admits 
the presentation 

(a*, &»,«,/, i = 1,... ,5,i = 1,... ,ra ; 

(i.5)     [a,,/] = [&,,/] = fe,/] = ^r^ = z6!!^^ !!» = ^^ 

where f denotes the homotopy class of a regular fiber oriented by the action 
of S1.  The integral cohomology groups are given by 

H (N,Z) - ^ z2g+1   ^   deg]Lo==0 

and 

H2(N,Z) ^ (Pi<?(p)/Z[L]) ®Z2g. 

Moreover, the projection TT : N —> E pulls back line V-bundles on E to 
genuine smooth line bundles on N and the subgroup Pi(?/%[£,] of H^^N, Z) 
can be identified with the image of the morphism 

Pzc*(E) £ {Smooth line bundles on N} ^ H2(N,Z). 
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1.2. Eta invariants of Dirac operators on Seifert manifolds. 

In the sequel, we fix a 2-orbifold E = E(g, m; a, x) and a line V-bundle 

such that 0 < fa < ai and g.c.d^a^Pi) = 1, Vi = 1,... ,m and where 
^ the rational degree of LQ. Denote by AT the associated Seifert manifold 
N = *S'(Lo). We orient it as the boundary of a complex manifold following 
the convention 

outer normal A or (boundary) = or (manifold). 

As explained in [S], the manifold N admits a locally homogeneous Riemann 
metric gjy. The natural S1 action preserves such a metric. We denote 
by C the infinitesimal generator of this action. ( is a nowhere vanishing 
Killing vector field. This metric induces a ^-metric g^ on the base which 
we normalize so that vol(E) = TT. g^ has constant sectional curvature. 
By eventually rescaling the metric gw in the £ direction we can assume 
\C\gN = 1- Now denote by (p the global angular form defined as the gw-dual 
of C- As shown in [MOY] and [Nl] we have a fundamental identity 

(1.6) dcp = -21 * y>. 

Denote by Cl(T*N) the bundle of Clifford algebras generated by (T*N, gN). 
The bundle A*T*iV is naturally a bundle of Cl(T*N) modules (see [BGV]) 
and we denote by 

c : Cl(T*N) -* End (A*r*iV) 

the corresponding Clifford multiplication. The symbol map 

a : Cl(T*N) -> AT*AT, u h-> c(u) • 1, 

is a bundle isomorphism with inverse known as the quantization map. This 
allows us to define an action of AT*AT on itself by 

AT*Ar-+End(A*T*AO,  w *-+cia'1 (u)). 

For simplicity we continue to denote this map with c. We call the resulting 
operation the Clifford multiplication by a form. 

Let (ip)A~ denote the orthogonal complement of the real line sub-bundle 
of T*N spanned by (p. As shown in [Nl] the bundle ((p)± is c(*<p)-invariant. 
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The bundle {(p) equipped with the (almost) complex structure — c(*y>) will 
be called the canonical line bundle of iV and will be denoted by £. We have 
the isomorphism 

In [Nl], §2.2 we showed that R determines a canonical spin0 structure on iV 
with associated bundle of spinors 

(1.7) Soan^^eC 

where C denotes generically the trivial complex line bundle. This allows us 
to identify the space Spinc(A/') of spin0 structures on N with the topological 
Picard group, Pic*(AT). The bundle of spinors corresponding to the line 
bundle L —► N is 

(1.8) SL = S^ <g) L 9* L (8) iT1 0 L. 

As above, we get a Clifford multiplication map c : A*T*N —> End (Sx,). We 
"orient" it using the conventions of [BC] 

c(dvN) = —id. 

On TiV there are two natural gw-compatible connections. The first one 
is the Levi-Civita connection VLC. The other connection V00, called the 
adiabatic connection in [Nl] and [N2] is described as follows. Using the 
decomposition 

T*N = (ip) 0 (ip)1 £ (ip) 0 7r*T£ 

we define V00 as the direct sum of the trivial connection on (p and the 
pullback of the Levi-Civita connection of TE on (</?). 

The line bundle ^~1 comes with a natural hermitian connection induced 
by pullback from the Levi-Civita connection on the base. Thus a connection 
on detSi, = L2 © fir1 can be specified by indicating a connection on L. 
Fix such a connection A. Using the connection S7LC we obtain a Dirac 
operator S)^ on SL while the adiabatic connection V00 induces a different 
Dirac operator, DA- We will call DA the adiabatic Dirac operator. These 
two Dirac operators are related by the equality 

(1-9) DA = VA + ^. 
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DA can be decomposed as 

DA = ZA + TA 

where, with respect to the decomposition (1.8), the operators Z and T have 
the matrix descriptions 

(1.10) 

and 

(i.n) 

ZA = 

TA 

wf 0 
0     -iVf 

b 

bd* 
BA 

0 

We refer to [Nl] for the exact definitions of Z and T. It suffices to say that Z 
uses only derivatives along the fiber direction while T uses only derivatives 
along horizontal directions. Moreover Z and T interact in an especially nice 
manner: 

(1.12) {Z1T}:=ZT + TZ = 0. 

The above equality is responsible (among many other things) for the follow- 
ing nice result. 

Proposition 1.4.  Consider a line V-bundle 

L = L(c, 7) —► S = E(<7, m; 5, x) 

equipped with a hermitian connection A.   Denote by L and resp.   A the 
pullbacks of L and A to iS'(Lo). 

If £ = degLo 7^ 0 then the eta function rji,A (
S
) 

0f the Dirac operator D^ 
on §£ is given by 

(1.13)     %,A(s) = -2*C(s " 1) 
m    ^   (Xi—l tm^H^))^- 

The various quantities which appear in the above formula are defined as fol- 
lows. C(s) is Riemann's zeta function, C(s, a) (a > 0) denotes the Riemann- 
Hurwitz function 

c(«,«) = E ^(n + a)* 



Finite energy Seiberg-Witten moduli spaces 1041 

and for each real number x we have denoted by {x} its fractional part defined 
by {x} G [0,1), x — {x} G Z. In particular, 

p      m 

^(OHg-EO^-Sf) 

where Sf denotes the sum 

^f^}0'(Hw1* a;GR\Z 

if    xeZ 

Proof. Define for i = 1,... , m the aj-periodic function Gi : R —*■ R 

and set G(t) = J^ Gi(t). Note that for any integer n we have 

G(n) = deg \L — nLo| - deg(L — nLo). 

Now set Fi(n) = G^n) - G^-n), F(n) = G(n) - G(-n). 
The connection A on L induces a holomorphic structure on L and we 

denote by L the holomorphic line V-bundle thus obtained. The argument 
in the Appendix C of [N2] extends to the case of Seifert manifolds (because 
of Proposition 5.1.3 of [MOY]). We deduce (where K = K^) 

(1.14) 

%,A(S) = 

y> (feo(ir-L-nLo)-fro(]L + nLp)) + (/io(L - nLo)-/io(ir-L+n]Lo)) 
^-f ns 
71=1 

(Riemann-Roch-Kawasaki) 

_ y^ -(1 - g + deg \L + nLo]) + (1 - g + deg \L - nLo|) 
^-f ns 
n=l 

_ ^ deg |L-nLp| - deg \L + nLo) 

n=l 
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" deg(L - nLo) - deg(L + nLo) + F(n) -E 
-2ndegLo + F(n) 

n=l 
oo 

-E 
71=1 

E2£       ^y ^y Gi(n) — Gi(—n) 

n=l i—\ n=l 

At this point we use the following elementary lemma whose proof can be 
safely left to the reader. 

Lemma 1.5. Suppose f : M —» R is a periodic function of period p G Z+. 

E^-E^cc^- 
n=l r=l    ^ 

Using the lemma we deduce 

£ <*(.)-q,(-.) _ g G,W-g.(-r)c(Sir/ai). 
1 n 1 n=l r=l 

The a^-th term in the second sum vanishes since Gi(ai) = C?i(—a^) = 
{Ti/^i}- The first part of the proposition is proved. The second part follows 
from the identities C(0,a) = 1/2 - a = -((a)) (0 < a < 1), C(0) = -1/12 
(see for example Chap. XIII of [WW]). □ 

Remark 1.6. (a) The above result should be compared with the one in 
the smooth case (no singular fibers). Suppose we have different V- 
line bundles Li, L2 on S equipped with connection Ai, A2 which 
pullback to the same line bundle L on N. Correspondingly we get two 
connections Ai and A2 and two adiabatic Dirac operators Di, D2. In 
the smooth case these operators have the same eta invariant which may 
not be the case when singular fibers are present. To put it differently, 
the eta function is sensible to the coupling connection. However, this 
dependence is mild if A^ is another connection on Li then the Dirac 
operators Di associated to A'I has the same eta function as Di. The 
eta function "has only a vague idea" which F-line bundle on E was 
used to construct the Dirac operator. Note that Serre duality implies 
immediately that 7/1,(0) = 7?K-L(0). One can verify this directly using 
the explicit description of the eta invariant. 
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(b) The assumption i ^ 0 in Proposition 1.4 can be dropped although the 
above approach does not cover the case i = 0. In this case iV can be 
represented as a quotient N/Zk where N = S1 x N and Z^ acts freely 
and maps fibers to fibers (Thm. 5.4 in [S]). The identity (1.14) can be 
obtained as in Appendix C of [N2], working equivariantly on N. 

The sum Sf—S^ can be expressed in terms of the Dedekind-Rademacher 
sums introduced in [Ra]. To see this note denote by Qi the inverse of fy 
modulo ai i.e. fyqi = 1 (mod a;). Then 

{^h 
We deduce 

r=l 

7* i rfo 
Oii 

^— ll + j    if   r#q=«7i(ai) 

7* i r A 
Qii 

if   r = qF9*7i (a0 

«Jy + 2§lU 
gi7i 

The second sum vanishes since the function x H-> ((a;)) is odd. We deduce 

ai 

sf = E 
r=l 

7* ± r A 
Q^i i 4 

Using the notations in [Ra] we can rewrite 

3± 5f = a(±A,ai;7i/«<,0)±i((^ 

where 

s(/3,a;x,2/) := ^ ( (a: + /3 
r=l 

3
r + 2/ 

a 
r + y 

a 

The entries a, /? are coprime integers, a > 0 and x, y G 
above expression depends only on x, y modulo Z. 

Thus the eta invariant of DA has the form 

(1.15) riA = 1-280,3; f)-d0,a;D 

Note that the 
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where 

m 

(1.16) 2S(/3,5,7) = Y^ stPi> ai'ililm*0) - 5(~A, OLiWi/oi, 0)) 

771 

= 2^5(A,^;7iM,0). 
t=i 

and 

^^-£((?)) 
The reason why we prefer this alternative description of 77 is due to the 
Dedekind-Rademacher reciprocity law. To formulate it we must distinguish 
two cases. 

• Both x and y are integers. 

(1.17) g(/3, a; s, y) + g(a, /?; y, re) = -- +       ^        . 

• a: and/or y is not an integer. Then 

(1.18) s(/3, a; x, y) + s(a, /?; y, x) 

= ((*)) - m + 2^9  

where fafa) := ^({a;}) and B2(^) is the second Bernoulli polynomial 

B2(z) = z2-z + -. 

Denote by i2(/3, a; x, y) the right hand side in the above reciprocity identities. 
Note that R(a, /?; y, x) = i2(/?, a; x, y). 

The reciprocity law coupled with the identities 

5((/3,l;x,y) = ((/3y + x)).((y)), 

s(/3, a; x, y) = s(/? — ma, a; x + my, y),   Vm G Z 
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and the Euclid's algorithm provides an efficient method of computing 
Dedekind Rademacher sums. For example, 

s(4,7; 2/7,0) = -s(7,4; 0,2/7) + 22(4,7; 2/7,0) 

= -5(3,4;2/7,2/7) + it!(4,7;2/7,0) 

= 5(4,3; 2/7,2/7) - 12(3,4; 2/7,2/7) + J2(4,7; 2/7,0) 

= 5(1,3; 4/7,2/7) - i?(3,4; 2/7,2/7) + B(4,7; 2/7,0) 

= -5(3,1; 2/7,4/7) + J2(l, 3; 4/7,2/7) - 12(3,4; 2/7,2/7) 

+ 12(4,7; 2/7,0)- ((3 • 4/7 + 2/7))((4/7)) +R(l, 3; 4/7,2/7) 

- i2(4,3; 2/7,2/7) + i2(4,7; 2/7,0) 

= 12(1,3; 4/7,2/7) - i2(4,3; 2/7,2/7) + i2(4,7; 2/7,0) 
___3^ 
""28' 

When dealing with reducible solutions of the 3-dimensional Seiberg-Witten 
equations we encounter Dirac operators coupled with flat connections. 

We begin by classifying the topological types of such connections. The 
space of flat connections (modulo gauge transformations) can be identified 
via the holonomy representation with Horn (7ri(iV), S1) = Horn (Hi(N), Sl) 
where for simplicity H*(X) (resp. H*(X)) denotes the homology (resp. 
cohomology of X) with coefficients in Z. 

Given a representation p : Hi(N) —> S1 we obtain a line bundle Lp 
equipped with a flat connection. We get a map 

ci : Horn (H^N), S1) -+ Tors (H2(N)),   p *-> ci(Lp). 

Clearly, if two representations lie in the same component of Horn (Hi (N), S1) 
then they determine isomorphic line bundles. Using the presentation 
(1.5) we see that the component of 1 in Hom(7ri(Air),AS'1) is the group 
Horn (7ri(|S|), S1). We thus get a sequence 

(1.19)    1 w Hom(7ri(|E|),51) ^ Hom(7ri(iV),51) % TOYS(H
2
(N)) -+ 0 

in which TT* (induced by the projection TT : JV —> |E|) is an injection, 
Range (TT*) C ker ci and ci is onto. 

Proposition 1.7.  The sequence (1.19) is exact. 

Proof. Set TTI := 7ri(iV). Since ci is a surjection and the group of components 
of Hom(7ri,51) is finite it suffices to show it has the same cardinality as 
Tors(#2(iV)). 
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For any groups G, A (A-abelian) denote by H*(G, A) the cohomology of 
G with coefficients in the trivial G-module A. The short exact sequence 

leads to a long exact sequence in cohomology 

Using the isomorphisms ^(TTI^A) = Hom(7ri/[7ri,7ri], A) for any abelian 
group A (see for example [Mac]) and the presentation (1.5) we deduce 

coken = Hom(7ri(|S|),51) 

and thus we get a short exact sequence 

1 -> Horn (7ri(|E|), Sl) ^ Horn (TT^JV), S1) -> ker j -* 0. 

Using the universal coefficient theorem we deduce that ker i = Tors (i?2(7ri)). 
To complete the proof of the proposition it suffices to show that 

(1.20) Tors (#2(7ri)) ^ Tors (H2(N)). 

Indeed, of the six Seifert geometries listed in [S], four of them live on con- 
tractible spaces. In these cases N is a ^(TTI,!) and we have a stronger, 
classical isomorphism H2(iri) = H2(N) (see [Mac]). The remaining two 
Seifert geometries are 53 and S2 x R. If the universal cover is S2 x R, then 
the only compact, oriented Seifert manifold covered by S2 x R are S2 x S1 

and RP3#RP3 (see [S]) with fundamental groups Z and respectively Z2*Z2. 
Since #2(Z) ^ H2^1) S 0 and #2(Z2 * Z2) = Z2 0 Z2 ( Thm. VI.14.2 of 
[HS]) the isomorphism (1.20) is trivially satisfied. 

Suppose now that iV is covered by S3. Then TTI is finite so that #1(71-1) 
is pure torsion and, using Cor. IV. 5.5 in [Mac], we get 

H2(7ri) £ Horn (TTI, 51) £ Horn (#1(71-1), S1) S Hifa) & ffi(JV). 

The isomorphism (1.20) now follows from the Poincare duality on N.       D 

Let L —► JV denote a line bundle supporting a flat connection A. In 
particular, there exists a line V-bundle L = L(c, 7) -+ S which pulls back 
to L. A defines a holonomy representation 

hoU : 7ri(iV) -> S1 
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and define Q = 6A € [0,1) by the equality 

exp(27ri0) = hoU(/) 

where / denotes the homotopy class of a regular fiber of N. Consider the 
altered connection B — A + iQy. It has trivial holonomy along regular 
fibers. Using Proposition 5.1.3 in [MOY] we conclude that there exists a 
line F-bundle L' = Z/(c/;7/) -» E and a ^-connection B' on L' such that 

(L, B) = **(!/, B')- 

In particular, L(c,j) = L'ic'^') (modLo) in Pic*(S). Thus 

d - c e ez. 

On the other hand d = deg 1/ can be computed from 

Thus 

(i.2i) ee-ceez. 

We distinguish two cases. 

Case A. £ •£ 0. In this case the equality (1.21) coupled with the restriction 
0 < 0 < 1 uniquely determines 9 by the equality 

(1.22) 0 = {c/i}. 

Case B. £ = 0. In this case the the only pure torsion line bundle (which can 
support flats) are obtained via pullback from V-line bundles of zero 
rational degree. Assuming this is the case, the holonomy 0 can have 
any value and in fact, any flat connection on L is homotopic to one 
with trivial holonomy along fibers. 

The next proposition summarizes the above considerations. 

Proposition 1.8. (a) If £ =^ 0 the quantity 0 = 0(L, A) is an invariant 
of the topological type of L which we will denote by 0(L). The corre- 
spondence 

Pict(E)/Z[Lo] -> S1 
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given by L *-> exp(27ri#(L)) is a group morphism. Moreover, for any 
flat connection A on L and any 6 = 6{L) (modZ) the connection 
A + iOcp is the pullback of a V-connection on the line V-bundle 

(b) If I = 0 there exist flat connections on L iff L is the pullback of a 
degree zero V-line bundle on S. In this case for any flat connection A 
on L the altered connection A + i9(A, L)(p is the pullback of some flat 
connection on a line V-bundle on the base. 

Set again L — 7r*(£(c;7)). The spinor bundle §.£■ has determinant 

detS^^Z2®^-1. 

Si comes equipped with a hermitian connection 5can pulled back from a 
constant curvature connection Bcan on K^, so that B^n has trivial holonomy 
along fibers. 

Any connection B on L induces a connection C = B®2 <g> B^ on det S^. 
We are interested in those connections B such that the corresponding C is 
flat. This is equivalent to solving (modulo gauge transformations of L) the 
equation 

Denote by 1^(L) the space of gauge equivalence classes of B's satisfying 
(1.23). We again consider separately two cases. 

Case 1. ^ ^ 0. It is very easy to construct a particular solution of (1.23). 
It suffices to pick a constant curvature connection AQ on L(c; 7). Denote its 
pullback to N by AQ. Since vol (S) = TT we deduce 

It is clear now that the connection 

~       -      .degif£-2c 
Bo = Ao +1 — <p 

satisfies (1.23). 
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If B e Tl{L) is another solution then the connection 

B/BQ:=B®B$-
1 

on the trivial bundle is flat. Thus any solution B of (1.23) can be represented 
as 

(1.24) B = i?o ® (flat connection on the trivial bundle) 

= Ao ® (flat connection on the trivial bundle) + i —— y?. 

The above description has an ambiguity built-in stemming from a choice of 
a line V-bundle bundle L on E which pulls back to L. We can now be more 
precise about this choice. 

Definition 1.9. Let JV A S denote a Seifert fibration over a 2-orbifold S 
such that t = deg(iV) ^ 0. The canonical representative of a line bundle 
L -> N e 7r*( Pic^E)) is the line F-bundle L = L(c; 7) uniquely defined by 
the requirements 7r*(L) = L and 

~        degi^s-2c 
P(£) := ^      I '   ^ 

A canonical connection on L is the pullback of a connection AQ on the 
canonical representative which has constant curvature 

FA0 = const, dv^- 

We can rephrase (1.24) by saying that any solution of (1.23) has the form 

(1.25)      canonical connection ® flat on the   trivial   bundle + ip(L)ip. 

We immediately see the meaning of p(L): exp(27rip) is the holonomy along 
a nonsingular fiber of an arbitrary connection B ell. 

Case 2. £ = 0 Note first that ci(£) may not be a torsion class. However 
there exist line V-bundle L on E such that ci(7r*L2 ® JT-1) is torsion. This 
is equivalent to 

(1.26) 2degL = degKs,    L e Pic^E). 
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If now L is the pullback of a solution L of (1.26) we can argue as in the case 
t, 7^ 0 to see that once we determine a particular solution of (1.23) any other 
can be obtaining by a twist with a flat connection on the trivial line bundle. 
The problem is one of existence. Pick any constant curvature connection 
AQ. Then its pullback to L will satisfy (1.23). 

The above structural description of the flat connections on a Seifert 
manifold will enable us to compute the eta functions of Dirac operators 
coupled with such connections. More precisely, we have the following result. 

Proposition 1.10. Consider an oriented orbifold E(g, ra; a) with m singu- 

lar points and let LQ denote the line V-bundle LQ = L(£;/3) of degree £ / 0 
such that oti, fy are coprime Vz. Denote by N the associated unit sphere 
bundle equipped with the geometry described at the beginning of this sec- 
tion. Let L G 7r*Pic*(E) be a line bundle on N with torsion ci. Denote by 
L = L(c, 7) —> E its canonical representative, denote another V-line bundle 
over E and denote by L its pullback to N. Equip it with a connection B G 71 
of the form 

B = J5o + ipy 

where p — p{L) = eg
2^~ c and BQ is the pullback of a constant curvature 

connection BQ on L. Denote by 771,(5) = VlBi3) ^he eta function of the 
associated adiabatic Dirac operator DQ on §£. 

(a) If p = 0 then 

rlL(s) = -2£as-l) 

+ UM^H7^})^- 
(b) Ifpe (0,1) then 

(1.27)   .,W = deg^-2
degW(C(»,rt-C(8,l-rt) 

-glg^}(c(,{^})-c(,.-{^ 
-£C(s-l,p)-eC(s-l,l-p). 
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In particular, for p = 0 

VL(O) = l-2S0,a,j)-d0,a,j) 

while ifO<p<l 

(1.28)   ,I(0) = ^^^ffl(l-2rt 

771    Oti — 1 

-£g{**}('-'m)-«w>4 
Proof. The case p = 0 is contained in Proposition 1.4 so we will consider 
only the case of fractional holonomy 0 < p < 1. We will follow the same 
arguments and notations as in the Appendix C of [N2] and we deduce 

(1.29) r,(s) = X, 
Y^ dim FM — dim JP_M 

/x>0 p 

where for any /i G R we denoted by i7^ the space of pairs 

a © p e C00^) 0 C00(L ® ^"^ 

satisfying 

(1.30) iVfa = /ia,   ^a = 0, 

(1.31) -iVfp = ^   dB(3 = 0. 

Denote by /~ (resp. by /+) the dimension of the space of solutions of (1.30) 
(resp. (1.31)). We can rewrite (1.29) as 

(1-32) ^HE^ + E^- 

We will only show how to determine /+ since the determination of /~ is 
entirely similar. 

Set for simplicity B^ = B =F i/^^- Note first that Bg/S = 9^±/3 since the 

transition B —»JS^1 does not alter the derivatives along horizontal directions. 

On the other hand, the equation — iV?/3 = (1/3 can be rewritten as 

-iVf ^ = 0. 
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Thus the equations (1.31) are equivalent to 

(1.33) «iVfi!"/? = 0,   ds+l3 = 0. 

If (1.33) admits a nontrivial solution (3 then (3 must be S^-covariant constant 

along the fibers. This implies that the pair (7r*L, J5+) is the pullback of a 
pair (line bundle L^ connection B^ on LM) on the base E. Using the equality 
B+ = BQ + (p — l^)i(p we can determine the curvature of the connection B^ 
from 

FB, = FB0 + 2% - p)idvE. 

so that 

degL^ = degi - £([/, - p) = c - (/x - p). 

Thus /i — p e Z since TT*!^ = 7r*L. If we set n = // — p we deduce LM = 
L — nLo. The connection BM induces a holomorphic structure on LM and we 
can now identify F+ with the space of holomorphic sections of L^. We have 
thus proved 

/^ ¥" 0 =» M ::= n + Pi n € Z,   /+ = /io(i - nLo). 

Similarly we deduce 

/^T T
2
^ 

0 => M = n - Pi n € Z,   /" = /io(^ - i - nLo). 

Using these informations in (1.32) we conclude 

, v _ ^ sign (n + p)ho(L - nLp)     ^ sign (n ~ p)ho(K - L - nLp) 

_ ^ sign (n + p) (M£ ~ n^o) ~ ^o(^ - ^ + ^Lp)) 

(use Riemann-Roch-Kawasaki) 

_ y^ sign (n + p) (-^ deg \K\ + deg \L - nLpj) 

(c = degL, G(n) as in the proof of Proposition 1.4) 

_ ^ sign (n + p) ((deg K - deg \K\)/2) + G(n) - \ deg K + c - nl) 
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(£p=^degK-c) 

= y^ sign (n + p) ((deg(K - deg \K\)/2 + G(n)) 

^^sign(n + p)(n + p) 

Ai \n + p\s 

(Sp:=p+Z) 

=: Si + S2 + S3. 

To compute the first two sums we use the following elementary result. 

Lemma 1.11. For any periodic function f : R —► R of period p € Z+ and 
am/ p G (0,1) define 

/    f   v .     V- sign(fx)f(fx-p) 

Then 

P-1 

^-W(^m)-^-{^ 

Proof of the lemma.   For any p € M \ Z set 

Sj = {z 6 S, ; ±a:>0}. 
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We have 

-f, t n\ = y /(fc) V sign (np + fc + p) = ^ /(fc)      ^      sign (ji) 
V{,J,P)   to * ^l»+(* + P)/Pl'    fro ^ ,e4;P,/P   w

s 

Using Lemma 1.11 we deduce 

and (since Gi is ai-periodic) 

Finally, the third sum can be written as 

s3 = -e(t(s-i,p) + <;(s-i,i-p)). 

To compute 771,(0) we only need to use the classical formulae (see [WW]) 

C(0,a) = i-a,   C(-l,a) = --^ + ia(l--a) Va > 0 

which imply C(0, a) — C(0,1 — a) = 1 — 2a. The proposition is proved.      □ 

Remark 1.12. (a) The formula we have just proved illustrates another 
surprising feature of the eta invariant. The choice of 7 in the above 
proposition is uniquely determined by ci(L). This shows the eta invari- 
ant of an adiabatic Dirac coupled with a flat connection is a topological 
quantity! 

(b) The above results extend to the case £ = 0. In this case p should 
be defined as half the "logarithm" of the holonomy of the twisting 
connection along a regular fiber. 
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As in Proposition 1.4 we can express the eta invariants in (1.28) in terms 
of Dedekind-Rademacher sums. To do this observe that 

(qifii = 1 mod oti) 

=ll^))+v#-^}KHm). 
Oii — 1 

E 
k=0 

cti — l 

+ 1 rfo-m)-K-K^}) 

The last sum is equal to p + ^-^ and thus we deduce 

The last sum (denote it temporarily by 5) can be expressed in terms of 
Dedekind-Rademacher sums. More precisely, since 0 < p < 1 is not an 
integer then 

-2l1((M?))-((^))-(«-^- 
For p e (0,1) and f3q = l mod a define 

F,(«.A7):={^}. 
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Then 

(1.34)   77(0) = ^(degK - deg\K\)(1 - 2p) - lp{\ - p) + l- + mp 

t=l    V cti J      .=1 

Denote for later use 

Sp0, a, 7) = f; s (A, ««;:]^^, -P) 

and 

2=1 

Remark 1.13. (a) We want to point out a delicate fact. Suppose that N 
is a Seifert Z-homology sphere equipped as usual with a Thurston geometry. 
The base of N is an orbi-sphere S. Since H^N) ^ #2(iV) ^ 0 there is a 
unique spin and an unique 5pmc structure and thus in this case all the spinor 
bundles §£ are isomorphic. However there is a plethora of Dirac operators 
and it is very easy to confuse them. We propose below an "accounting" 
method. 

Denote by So the spinor bundle associated to the unique spin structure. 
There are two obvious Dirac operators on So- One is !Do obtained tradition- 
ally using the Levi-Civita connection on TiV and the other is Do obtained 
using the adiabatic connection. They are related by 

A) = 2)o+2>  ^ = deg AT. 

By using different connections on det So = C we can obtain many other. 
Another fundamental pair of examples of Dirac can be obtained in a 

similar way. If we think of Scan defined in (1.7) then 

detScan^detSoOJ?"1. 

Using the connection V~can on fir1 defined as the Levi-Civita connection 
on Kg1 we obtain the operators S)can and Dcan. 

Also, for "any" line bundle L —> N we can regard 

det SL = det Scan ® L2 ^ ST1 ® L2. 
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Thus any connection A on L induces a connection A®2 on L2 and in this 
manner we obtained the operators 2)A and DA we have been studying so 
far. More accurately 

S)A = So ® (V-can ® A02),   DA = A) ® (V-can (8) A02). 

In particular, we have 

Do = Dcan (8) Vcan. 

We have computed eta invariants for two types of Dirac operators. 

• Pullback type 

Dcan ® (TTM)®
2 

where A is a connection on a line F-bundle L —> S. 

• Flat type 

£>can®^2 

where A is a connection on the unique line bundle over iV such that 
y-can ^ ^02 js ^^ jn ^.^jg case there is a unique line bundle on N 

with a unique (up to gauge equivalence) flat connection. The above 
operator is none other than DQIW 

(b) We can say something about the eta invariant of S)o as well. In our 
case the metric on N is normalized so that the regular fibers have length 
27r. We deduce as in §2.3 of [N2] 

r,(Do)-v^o) + l(i2-x)e2Z 

where x = —degKs- If as in [Nl] and [N2] we deform the metric on iV 
along the fibers so that they have length 27rr with 0 < r <C 1 then we can be 
more precise. Denote by Do(r) and S)o(r) the new Dirac operators defined 
in terms of the new metric. Then 

fl(Do(r)) = 77(A)) 

and the considerations of §2.3 in [N2] lead immediately to the equality 

V(Do(r)) + 2h1/2 = TKIDOM) " |(^4 - xr2) + j 4V2   ,   ^>0 
o , e<o 
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Above hi/2 denotes the dimension of the space of holomorphic sections of a 
possible nonexistent holomorphic square root of Kg. When such a square 
root does not exist we set hi/2 = 0. Note that even when such a square root 

exists one verifies immediately that deg \Kj | = — 1 SO there cannot be any 
such holomorphic sections. We conclude 

(1.35) rtSoto) = *7(A>) + ^V - xr2)- 

The invariant //(.Do) can be computed using (1.34) The eta invariant of the 
signature operator on iV equipped with such a metric was computed in [O] 
(watch out for the Seifert invariant conventions there) and it is 

Vsign       — 

where 

Vlign = -y (^4 - Xr2) + I - sign (*) - 45(A a) 

S0,3) := ^ ^ft, a,; 0,0) = S0, a; 0) 

with 5(/3, a;7) defined in (1.16). We deduce 

(1.36) 4T/(3)o(r)) + rjlign = MDo) + | - sign (i) - 45(/3, a). 

This expression is independent r! The reason we considered it is because 
it appears in the definition of the invariant introduced by Proyshov in [Fr]. 
The above expression can be alternatively defined as 

(1.37) F(N) := ci(L)2 - <r(V) - 8mdc®A 

where V is a an oriented simply connected 4-manifold with dV = iV, <T(V) 

is the signature of V, L is the determinant line bundle associated to a spinc 

structure on V and ID,4 is a Dirac operator of this spinc structure extending 
the operator IDQ. The above index refers to the Atiyah-Patodi-Singer index. 
Since iV is a Z-homology sphere we deduce from Rohlin's theorem that 
ci(L)2-(j(y)G8Z. Hence 

(1.38) 477(A)) + ! - sign (£) - 4JS0, a) G 8Z. 

This happens for every Seifert homology sphere E(a) (in the notations of 
[JN]). 
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Example 1.14. Let us consider in some detail the special case of the 
Poincare homology sphere. It is the Brieskorn sphere N = S(2,3,5). The 
rational degree of N is £ = —1/30. The Seifert invariants are described in 
[JN]. (Note they use different conventions for the Seifert invariants). They 
are 

3= (2,3,5),   £=(1,2,4). 

The degree of the canonical class is 

deg Ks = -2 + 1/2 + 2/3 + 4/5 = -1/30. 

The canonical representative of the unique line bundle on N is the trivial 
line bundle on S which has degree 0 and singularity data 7 = (0,0,0). The 
invariant p in this case is 1/2. Using Proposition 1.10 we deduce 

477(A)) = 539/90. 

A simple computation shows that in this case 

^ - sign (£) - 4S(/3, a) = 181/90. 

This shows 

F(S(2,3,5)) = 8. 

agreeing with (1.38). The Proyshov invariant of the Poincare homology 
sphere is also 8. In §3.2 we will describe a general method of producing 
upper estimates for the Proyshov invariants which we believe are actually 
optimal. 

2. Finite energy Seiberg-Witten monopoles. 

Throughout this section, a hat over an object will signal (unless otherwise 
indicated) that it is a 4-dimensional geometric object. 

For example, if iV is a 3-manifold then on the tube R x N there exist two 
exterior derivatives: the 3-dimensional exterior derivative d along the slices 
{t} x N and the 4-dimensional exterior derivative d so that d = dt A dt + d. 
If A(t) is a family of connection on some vector bundle E —> N then we get 
a bundle E —> R x iV and we can think of the path A(t) as a connection A 
on E. We will denote by FA^ the curvature of A(t) on the slice {£} x iV 

while F^ will denote the curvature of A on the tube. 
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2.1. The 4-dimensional Seiberg-Witten equations. 

Let N denote an oriented 4-manifold (not necessarily compact), equipped 
with a Riemann metric g. Denote by * the Hodge star operator defined by 
the metric g and the orientation of N. Fix a connection V on TN compatible 
with g. V need not be the Levi-Civita connection. 

Denote by Spinc(N) the collection of isomorphism classes of spinc struc- 
tures on N. For each a 6 Spinc(N) we denote by deta the associated line 
bundle and by S^ = St © Sr the associated bundle of spinors. Note that 
deta^detSt. 

Denote by 21^ the space of hermitian connections on S^ compatible with 
both the Z2-grading and the fixed background connection V. More precisely, 
A e 2k(iV") if for any a G ft^N), any X e Vect (N) and any ^ e C00^) 
we have 

Vi(c(a)<iP) = c(Vxa)i> + c(a) VJ^ 

where 

c:r*JV->Hom(St,S7) 

denotes the Clifford multiplication. Any connection on det a determines a 
connection in %& and moreover, once we fix a connection AQ G Sl^iV), we 
can identify %L&{N) with ifi^JV). To any connection A G 21^(iV) we can 
associate the Dirac operator 

DA : r(§+) -, r(sr) 

defined as the composition 

r(s*)^r(T*iv<g>st)Ar(sr). 

There is a natural quadratic map 

g:r(St)-,End(St),   ^ ^ qty), 

defined by 

In terms of Dirac's bra-ket notation r(^) can be alternatively described as 
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Note that for each ^ the endomorphism qfy) is symmetric and traceless. The 
quantization map from the exterior algebra to the Clifford algebra extends 
the Clifford multiplication to a map 

c: A*T*#->End(Sa). 

This map has the property that c(u;) is a traceless, skew-symmetric endo- 
morphism of St for any ^-self-dual real valued 2-form u;. 

The Seiberg-Witten equations (associated to the spirf structure a) are 
equations for a pair $, A) = (spinor in St, connection in 2l^(iV)). More 
precisely, they are 

_      r DAj,   =   0 

In the remaining part of this subsection we will make further additional 
assumptions on the geometry and the topology of N and explain how this 
affects the Seiberg-Witten equations. 

More precisely, assume the manifold N can be decomposed as 

N = NoU [0, oo) x N 

where /VQ is a compact oriented 4-manifold with boundary dNo = N. We 
will denote by t the (outgoing) longitudinal coordinate on the cylindrical 
part of N. 

Fix a tubular neighborhood (—1,0] x N of iV in iVo, a metric g on N and 
a connection V compatible with g, not necessarily the Levi-Civita connection 
of g. We assume that along the infinite cylinder (—1, oo) x N the metric g 
is a product metric g = dt2 + g. We fix a connection V compatible with g 
such that along the above cylindrical end it has the form 

V = dT A dt + V. 

We denoted by dT the ^-gradient of r where r : N —> [0, oo) is a smooth 
function which coincides with the canonical projection [0, oo) x N —» [0, oo) 
on the infinite neck. 

Note that the spinc structure a induces a spin0 structure a on N = ONQ. 

Denote by S^ —> N the associated bundle of spinors and by c : T*N —> 
End (iV) the corresponding Clifford multiplication. As in the 4-dimensional 
case we can define ^(N). 
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Fix a reference connection AQ G 21^ (N) which along the neck is equal to a 
product connection dt®dt + Ao, AQ e WLa^N). Now define the configuration 
space £ as the set of pairs (/0, AQ + ia) := (^, ^4)=(spinor, connection) such 
that (^, ia) G L^(S 0 iT*iV) and 

Vi^ 0 idT (iPA} G L2(S* © iA^N). 

We denoted by iar the contraction by dT. For brevity, will denote the ele- 
ments of € by the generic symbol C. 

Definition 2.1.     (a) A finite energy solution of (SWU) is a solution (^, ji) 

such that (^, ^4 - ^4o) € C 

(b) A Seiberg-Witten tunneling is a finite energy solution on N = Rx N. 

There is an infinite dimensional group 0 acting on the configuration 
space, more precisely 

S = {76Map(^,51);7eI?^}. 

The group & acts (on the right) on £ and transforms finite energy solutions 
to finite energy solutions. Define 

9JI := {(^, A) finite energy solutions ofSW}/®. 

In this section we want to analyze the the Fredholm properties of the defor- 
mation complex naturally associated to 9Jt when iV is a Seifert fibration. 

We conclude this subsection with a simple but crucial observation which 
reveals the dynamical feature of the Seiberg-Witten equations on cylinders. 

Note that if we set J = c(<ir) then J induces isomorphisms 

(2.1) S+I^SJIJ^S, 

and 

(2.2) c(a) = Jc(a),  Va G Q^N) ^ ^([O, oo) x TV). 

A connection A G %la(N) is said to be in a temporal gauge if idT (A — AQ) = 0 
along the infinite neck [0, oo) x iV. 

Assume now that (^, A) is a finite energy solution of (SW) such that A 
is in a temporal gauge. Along the neck we can write 

^ = ^(t),   i = Ao + ia(^) 
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where 4) = io \N, i>{t) € ?{%), a(t) e £ll(N), Vt > 0. Then (along the 
neck) 

(2.3) F+ = h(Fa + *ia) + dtA(ia + *Fa)} 

where A§ + a(t) is the connection on the line bundle det a restricted to the 
slice {£} x AT, Fa — -Fyio+ia denotes is curvature and * denotes the Hodge 
star operator on N. Ao + ia(t) induces a Dirac operator 

Da = Da{t):r(Sa)^T(Sa). 

Using (2.1) and (2.2) we deduce that along the neck 

DA = J(dt-Da). 

The equality (2.3) now implies 

c(F+) = c(*Fa + id). 

Consequently, along the neck, in a temporal gauge, the Seiberg-Witten equa- 
tions can be rewritten as 

r    i> = Da^ 
(2'4) 1 ic(a)    =    qty) - \c{*Fa)   • 

The right-hand-side of (2.4) arises when one considers the three dimensional 
counterpart of the Seiberg-Witten equations. 

2.2. The 3-dimensional Seiberg-Witten equations. 

To formulate these equations we need to consider a new configuration space. 
Fix a connection AQ € ^(iV) and define 

£ = {(</>, A) ; (</>, (A - M) £ L1*^ 0 irW)}. 

For brevity, its elements will be denoted by the symbol C and we will often 
write C = (^ a) instead of (?/>, AQ + io) whenever no confusion is possible. 
There is an energy functional £ : £ —► R defined by 

(2.5) C(^ A) = l- [ a A (FAo + FA) + l- [ fa DA^) dvg. 
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The gauge group 

0-{7GMap(iV,51); 7 G Z2'2} 

acts on C and moreover 

gfr-1 • (I/J, A)) - <£(V>, A) = - [ 7-^7 A FAo = 27ri / 7-^7 A ci(Ao) 

where we denoted by ci (>io) the 2-from representing the first Chern class of 
det a associated to AQ via the Chern-Weil construction. The L2-gradient of 
<S is (see [Nl] or [MOY]) 

where we tacitly identified qfy) with a purely imaginary 1-form via the 
Clifford multiplication. The 3-dimensional Seiberg-Witten equations can 
now be described as 

^)=o^{c(^:°w. 
We see that (2.4) can be rewritten as a gradient flow equation 

(2.6) C = V<£(C). 

This last equation suggests that as t —► 00 C(t) converges to a critical point 
of (£. Assuming the finite energy condition this can be proved for arbitrary 
N using the techniques of [MMR]. However, unlike the Yang-Mills situation, 
the nature of critical points and the manner in which they are organized are 
less transparent in the Seiberg-Witten case. This is the reason why we will 
concentrate on a special case. 

In remaining of the section N will be assumed to be a Seifert 
fibration determined by the line V-bundle bundle LQ = L(£,(3) 
of rational degree £ ^ 0 over the V-surface E(<7, a), S1 ^-> iV —» 
E equipped with the metric described in §1.2 J4S background g- 
compatible connection on N we choose the adiabatic connection 
V00. 

Fix a line bundle L H-> N which, as explained in §1.2, determines a spin0 

structure with associated bundle of spinors §£. Using the decomposition 
Sjr, = (£_1 ® L) © L we can represent any section ^ of SL as I/J = ip- 0 V;+. 
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In terms of a local, oriented orthonormal frame (£, Ci, C2) with dual coframe 
{ip, tp1, tp2) the Seiberg-Witten equations can be rephrased as (see [Nl] or 
[MOY]). 

(2.7) 

= 0 

= 0 

-(KM2 - |V'-|2)=FA(Cl,C2) - ^can(Cl,C2) 

i^+ = ?®FA(Ci + iC2,C) 

where e = 2-1/2(y?1 + i</p2), and Fcan denotes the pullback of the curvature 
of -KE equipped with its Levi-Civita connection. Set 

e = {{i>,A)e<L; V#0}. 

The configurations in C* are called irreducible. As in [M] one can show 
that 03 := <£/0 is a metric space and, moreover, OS* = <£*/© is a Banach 
manifold. This is proved using the existence of local slices for the ©-action 
exactly as in the Yang-Mills case. For every configuration C G <£ we will 
denote by [C] its image in 93. 

The solutions of (2.7) are explicitly described in [MOY]. Here are the 
relevant facts. 

Fact 1.   If ci(L) is not torsion then (2.7) has no solutions. 

Assume now that ci(L) = K G Pic*(S)/Z[Lo] and define 

£« = { E G Pic^E) ; 0 < deg£ - \ degi^s 

E = /c mod ZpLo] 1. 

< -degifs, 

For each E e RK set u(E) = degi? - - degiiTs. Note that since £ ^ 0 the 
map i/ : RK —»- Q is injective. We will often identify i^ with its image in <Q> 
via v. Now set 

R- = {EeRK] v{E) < 0,  deg 1^1 > 0} 

R+ = {EeRKi u(E) > 0,  degl^ - E\ > 0} 
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and 

^ := -R« u R* • 

Fact 2. Any irreducible solution ((£, ^4) of (2.7) is gauge equivalent to 
the pullback of a pair (</>, B) where B is a connection in a V-line bundle 
E -> S in i?^ such that <£ = ^_ 0 ^_ is a section of C00^"1 ® E ® E). 
The connection J5 defines holomorphic structures in if-1 ® E and E. (/>_ is 
an antiholomorphic section of K"1 ® £" while ^+ is a holomorphic section 
of E. Moreover, exactly one of </>_ or <f>+ is zero according to the identity: 

^^(|^|2-|^+|2)dt; = 1/(^)^0. 

Thus 0+ = 0 iff i/(E) > 0 and <£_ = 0 iff u(E) < 0. Pairs (<£_ 0 ^+, B) as 
above are known as vortex pairs on E corresponding to the IMine bundle 
E. If ^(E) < 0 we say we have a holomorphic vortex on E while if u(E) > 0 
we say we have an antiholomorphic vortex on E. 

The irreducible part (mod 0), denoted by 9JI* consists of #RK compo- 
nents 

^Gi?« n€i/(i2«) 

The component DJtn = SDt^n corresponding to a choice u(E) = n < 0 is 
diffeomorphic to a symmetric product of deg |JB| copies of S. If n = z/(J5) > 0 
the moduli space is isomorphic to a symmetric product of deg \K — E\ copies 
of E. Each component is Bott nondegenerate as a critical set. 

Fact 3. The reducible solutions consist of pairs (0, A) where A is a connec- 
tion on E satisfying (1.23). Modulo 0 they form a space 9Jt£ homeomorphic 
to the jacobian J(|E|) which is a 23-dimensional torus. If there exist degen- 
erate reducible (i.e. ker DA ^ 0) then invariant p of L —> N must be zero. 
In this case the degenerate solutions can be identified with the Brill-Noether 
locus consisting of all holomorphic line F-bundles of degree deg KY,/^ which 
admit nontrivial holomorphic sections. 

Fact 4. If in the definition of (£ we fix the reference connection such that 
(S = 0 on the reducible part of 9JI then the energy along the component 
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RK,E can be expressed as const.i/(E)2/£, where const is a certain positive 
universal constant irrelevant in the sequel. 

Associated to each component 9JI there is a deformation theory which 
we now proceed to describe. We will concentrate only on the irreducible 
part <£*. Since ci(L) is torsion the energy functional <£ is gauge invariant 
and thus it descends to a well defined functional 

€ : 03* -> R. 

The group (5 is a Hilbert-Lie group and its Lie algebra can be identified 
with the space g := L2'2(iV, iR). The exponential map has the form 

0 3i/^(exp(i/):iV->51). 

The tangent space to the orbit O^A through C = (</>, A) of the right action 
of 0 is the range of the infinitesimal action operator 

£ = £c : 0 -+ ^ := ^(SL) ® L^iTW),  if >-> -if 0 id/. 

The tangent space to 03* at [C] can be identified with the orthogonal com- 
plement to the tangent space to the orbit OQ and ultimately with the kernel 
of ££, the adjoint of £c. An integration by parts shows 

£*(V> 0 io) = -id*a + Dm U, ipV  W>« id 6 X. 

We can use the affine structure of <£ to linearize V(£ at a given configuration 
C = (<^, A) and we obtain the unrestricted hessian at C 

fie id 
= jt |t=o V(£(^ + H, A + tid) = 

DA^ + c(id)^ 
-i * da + g((/>, iji) 

The term <?((/>, ip) is formally defined by the equality 

?(&^) := jt |t=o 9(0 + WO 

where we regard g as a quadratic map g : §£ —> iT*N. 
The stabilized hessian of <£ at C = (</>, A) is the unbounded operator on 

L2(SL 0 i(A1 0 A0)T*N) defined by 

fie 
' ip © id ' " Sj    £' ^©ia 

.    if    . £*    0 .     if     . 
DAIP +   c(ia)(t>-if(f) 

—i * da + idf   +   g((/>, -0) 

id*d +   i3m((j),ijj/ 
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In [MOY] it is shown that if [C] e DJlKln then the kernel of the stabilized 
hessian ^c is naturally isomorphic to the tangent space TrnSJl^n. Now 
define 

fio 
f id 

i/ 

and V = Vj, by 

V* id 

Li/ 

^      o 
0     -*d 
0 d* 

c(id)<£ - i/0 

i 3m (<f>,ip) 

0 " " V- " 
d id 
0 .i/_ 

Note that #0 = £)o(C) is an elliptic selfadjoint operator for any C G £ and 
^c = fio + V<i>- For every C 6 £ define SF(C) e Z as the spectral flow of 
the path flo(C) + t7^, t G [0,1]. 

This spectral flow can be computed exactly as in Sec. §3.3 of [N2]. 
More precisely, suppose C G 9Jl/c,n- Thus C is the pull back of a vortex pair 
((/>- ©0+, B) corresponding to a F-line bundle L^ —> S in i?^ with ^(LE) = 
n. 5 induces a holomorphic structure on this bundle and we denote by Lc 
the resulting holomorphic V-line bundle. If we set e(£) = (1 + sign (£))/2 we 
then get 

(2.8) SF(C) -{ 
-l-s(e)-2ho(KE-Lc)   if   n< 0 

-1 - e(£) - 2ho(Lc)   if   n > 0 

2.3. Virtual dimensions. 

In this subsection we will compute virtual dimensions of finite energy moduli 
spaces. We will rely heavily on the techniques of [MMR]. 

Consider a 4-manifold N with a cylindrical end isometric to [0,00) x N 
where iV is disjoint union of Seifert manifolds {Nj ; j = 1,... , n} of rational 
degrees £/, singularities (aj,(3j) over Riemann surfaces S^ of genera gj. TO 

ease the notational burden we will consider only the case n = 1 (i.e. the 
boundary is connected). Thus we will drop the index j in the notation of 
the above objects. Assume N has m singular fibers with with singularities 
(aj). 

Fix a spinc structure a on N. This induces a spinc structure a on N 
determined by a line bundle L. The metric and compatible connections on 
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the end of iV are prescribed as indicated in §2.2. This means that as back- 
ground connection on N we use the adiabatic connection V00. Consider a 
finite energy, irreducible, solution C = ((^, A) of the Seiberg-Witten equa- 
tions associated to the structure a and we assume that along the neck it is 
in temporal gauge 

c = {t^c(t) = ^(t),A(m- 

The techniques of [MMR] work with no essential changes in the Seiberg- 
Witten context and show that [C(t)] converges to [Coo] € QJtz,, where by 
DJIL we denoted the Seiberg-Witten moduli space determined by the spinc 

structure a on iV. The first conclusion we draw from this fact is that L 
must be a pulled back line bundle e since otherwise 9JIL = 0. Suppose this 
is indeed the case and set K = ci(L). 

The moduli space 9Jl« is a disjoint union 

an* = \JfotK9n. 
n 

Assume first that the configuration CQO is irreducible 

Coo 6 Wt^ni?)- 

Again, to ease the notation we set C = Coo- For simplicity assume n < 0 so 
that is C = (</>_©, </>+, A) then </>_ == 0. The configuration C is pulled back 
from a vortex pair (</>,!?) corresponding to a V line bundle L^ = L{c^) 6 

We are interested in describing a neighborhood of C in the moduli space 
of finite energy solutions and we will begin as in [MMR] by studying a 
simpler problem. 

Define 9Jl([C]) as the moduli space of finite energy solutions with asymp- 
totic limit [CQO]. We want to understand the structure of a small neighbor- 
hood of C G 97l([C]). More precisely, we would like to compute the virtual 
dimension of such a neighborhood. This is achieved using Kuranishi's de- 
formation picture of the moduli space which requires a suitable functional 
framework. 

By Fact 2, all the irreducible monopoles are Bott nondegenerate and 
the convergence to any irreducible asymptotic limit is exponential. This is 
a very fortunate situation since we can completely avoid the introduction 
of the thickened moduli spaces and instead we can use the very convenient 
weighted Sobolev spaces L^f where w is a very small positive number (see 
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also [MMS]) The resulting deformation complex can be described exactly as 
in Chap. 8 of [MMR] and is 

(2.9) 0 An   Xx ^ X2 -> 0. 

where XQ is the Lie algebra of the group of gauge transformations on N 
exponentially converging to 1 along the neck 

Xo = ^2(iA0T*iVr). 

Xi is the tangent space to the space of configurations of the 4-dimensional 
equations 

Xi = L^2(St©iA1r*iV). 

X2 is the space of "obstructions" 

X2 = L1J(§7®iAlT*N). 

£ = ££ is the infinitesimal gauge group action at C and sw is the lineariza- 

tion at C of the SW-equations on iV". 
We can now form the operator 

6w:X1-+X2@Xo,   6w = sw®£*w 

where *w denotes the L^-adjoint of £. This is an elliptic operator and a com- 
putation d la [MMR] (Chap. 8) shows that along the neck it exponentially 
approaches 

where 

a ^©id 

if 

Ow = something x (Vt — Ow) 

DAip +   c(ia)(f> - ifcf) 
~i * da + idf   +   q((j), ip) 

id* a — 2wif     +   Dm (faip) 

and [0,i4] = [C]. Note that lhi(Coo) = Ow U=o- Ow is a Predholm operator 
and its index (over M) is equal to the virtual dimension of a small neighbor- 
hood of [C] in Wi([C]). We conclude as in §3.4 of [N2] that the index of dw 

is equal to the Atiyah-Patodi-Singer index (ind^ps) of Ow. 
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Denote by A the anti-selfduality operator on N 

A = d+ © <f : ift1^) -^ ifi2(iV) 0 iO0(iV). 

Using the connection A and the sipin0 structure a we can form the Dirac 
operator 

bk: r(S+) - r(sr). 

Along the neck the direct sum N^ = D^ © A has the APS* form 

J\f = something x (Vt — ^o(Coo)) • 

Using the excision formula in [N2] we deduce 

(2.10) mdAps(dw) = mdAps(Af) - SF&o -> fli) - 5F(fli -> O^) 

where ^^(^ -> 5) denotes the spectral flow SF(A + t(jB - i4), t G [0,1]). 
All the indices and the spectral flows above are real quantities. 

We now proceed to determine the three terms in the right-hand side of 
the above formula. 

Arguing as in the Appendix D of [N2] we conclude that the third term 
above vanishes. The second spectral flow can be rewritten as 

(2.11) SFfto->fii) = SF([q). 

We denote by pasd (resp. pjir) the index densities of A (resp. D^) 

pasd = ~(e(N) + L(N)). 

where e(iV") and L(iV') denote respectively the Euler and the L-genus forms 
on N constructed using the Levi-Civita connection. Also 

pdir = 2A (V0) A exp Qci (det a) j 

where on det a we used the connection induced by A. The factor 2 appears 
since we are interested in the real index of D. The A-genus form is computed 
using the metric compatible connection V0 which along the neck has the 
product form dt 0 dt + V0. We denote by c(A) the form 

2wA 
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on N where A denotes the induced connection on deta. 
On a 4-manifold the above equality has a simpler form 

^r = i(c(i)2-L(V0)). 

The £ invariant of ifo is the sum €(A \N) + 2^(DA) (the factor 2 is present 
for reality reasons). 

t&o) = 2(dimRker^0 "" Vrign + 2V(
D

A)) 

where r)sign denotes the eta invariant of the odd signature operator.   We 
deduce 

mdAps(Af)= / (pa8d + Pdir)-€(fio) 
JN 

- -\ Le - KLL - **•)+1 //2(i) - L(*0)) 

- - dimR ker ijo - V(
D

A) ■ 

In [Nl] and [MOY] it is shown that the kernel of ^o is isomorphic to 

H0(N, M) © H^N, R) © ker DA,  ker DA ^ #0(Lc) + H0^ - he). 

Using the equality (1.15) we deduce 

mdAps(6w) = ~(x(N) + sign (N))/2 + \ [ (c2(i) - L(V0)) 

- dime tecDA - I(2p + 1) - | + 2S0, a- 7) + d0, a- 7). 

Using (2.10) and (2.11) we deduce 

(2.12)   ind (0W) = -\{x{N) + sign (iV)) + \ J^{A) - L(V0)) 

- (dime ker DA + SF{[C))) - |(1 + 2g) - | + 5(^ 3;7) + d(A 5;7). 

This formula can be further simplified using (2.8) (with n < 0). We have 

dime kerZ?A + SF{[C}) = hQ{hc) - ho(Ks - Lc) - 1 - e(e) 
(Riemann-Roch-Kawasaki) 

= deg|Lc|-p-e(€). 
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We can replace the integral of L(V0) with the integral of L(iV) plus a correc- 
tion term given by a transgression. This correction term can be computed 
exactly as in the proof of the second transgression formula of [N2] and we 
get (assuming the radius of a regular fiber of AT is 1) 

(2.13) / L(V0) - / L(iV) = %(* - X) 

where x == ~~ deg K^. The signature eta invariant of N was computed in [O] 
and is given by 

op 9 - 
Vsign = -sign (£) - j(e2 - x) + 3 - 45(A a) 

where, as in Remark 1.13 

771 

i=i 

We deduce from (2.13) 

/ L(V0) + Vsi9n - f L(N) = e/3 - sign (£) - 4S0, S). 
JN JN 

The term 

Vsign - i UN) 
JN 

is equal to —sign (N) so that we deduce 

/ L(V0) = sign (iV) + | - sign {() - 4S(/3, a). 
JN 6 

If we use this equality in (2.12) we deduce 

-mAAPstPv) = \i c\A) - -A{2X{N) + 3sign(iV)) 
4 JN 4 

+ {g + e(t) - deg |Lc|) - \{2g + 1) - \{l/Z - sign {€)) 

(2 - I + 2S0, a,7) + d0, a, 7) + S0, a). 

= d(a)-i + ^) + !^-^-deg|Lc| 

+ 2S0, a; 7) + d0, a, 7) + S0, a), 
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where 

^■■=\L c
2(i)-i(2x(JV) + 3sign(JV)). 

Note that d(a) is precisely the expression computing the virtual dimensions 
of Seiberg-Witten moduli spaces on closed manifolds. 

To find the virtual dimension dim^C) of a neighborhood of C in the 
entire moduli space SJl we only have to add the dimensions of the asymptotic 
limit sets dim 971^ = 2deg |Lc| (recall that we have assumed n < 0). 

(2.15) dim^C) = d(a) - 1 + e(€) + ^^ - ^ + deg |LC| 

+ 2S0, a, 7) + d0, a, 7) + S0, a). 

We can now define the boundary correction term 

"([q) - 4 + s(£)" ^T^ + 2S^ *'f) 

+ d(/3,a,7) + 5(/5,a) + deg|Lc|? 

where [C] 6 9Jl/c,L) where L —> E is a V-line bundle in i?K with singularity 
data 7. The case when the asymptotic limit C satisfies u(C) > 0 (that is 
<f)+ = 0) can be safely left to the reader. The only changes in UJ(C) occur at 
the term deg |Lc| above which should be replaced with deg \K — Lc|. 

When the boundary of N has several components (all Seifert manifolds 
of various types) then the asymptotic limit of a finite energy solution on N 
is a collection of solutions of the Seiberg-Witten equations on each of the 
components. The corresponding correction term is the sum of the correction 
terms determined by each component. 

We conclude by considering the case when C is an irreducible finite energy 
solution on iV with asymptotic limit C = C^ a nondegenerate reducible. We 
argue exactly as in [N2]. Set p = p(L) as in §1.2 and denote by Lu = L(c, 7) 
the canonical representative of L. 

The convergence to such a nondegenerate reducible continues to be 
exponential (see [MMS]) and thus we can use the same functional framework 
as above. Assume for simplicity the boundary has only one component. We 
distinguish two cases. 

• P(I)^0. 
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We have to compute the APS index of a new operator Ow which along the 
neck has the form 

where this time 

a 

Ow = something x (V* — Ow) 

DAiP 

i/ 
—i * da + idf 
id*d — 2wif 

(The spinor part (/) of the asymptotic limit [C] = [(/>, A] is zero and thus 
Vj, = 0.) Thus 

mdaps(dw) = indaps(Af) - SF((1 - t)Oo + tOw). 

The spectral flow contribution is easy to determine. The only eigenvalue of 
Otw contributing to the spectral flow is — 2wt l^o with a single eigenfunction 
^ © id © i/, where ^ = 0, id = 0 and / = 1. Hence 

m&aps{Ow) = indapS(Af) + 1. 

The index of Af can be determined as above using instead the eta invariant 
of the adiabatic operator coupled with the flat connection A € T^{L) deter- 
mined in §1.2. The nondegeneracy condition also implies kerD^ = 0. The 
eta invariant of DA is twice its ^-invariant. Since dimp, j^o = bo(N)+bi(N) = 
1 + 2g we deduce from (1.34) 

mdApS(6w) = 1 - (x(N) + sign (N))/2 + -I (c2(i) - L(V0)) 
4 JN 

- \^9 + 1) " \(AzgK- deg \K\){1 - 2p) + lp{l - p) 

- - - mp + 2Sp(p, a, 7) + FP{S, /?, 7). 

Again we have 

L L(VU) = sign (iV) + - - sign {£) - AS{f3, a). 
N 6 

We deduce 

m.&APs{Ow) = d(a) + 
l-2g     t- sign {I) 

+ £p(l - p) — mp 

-(degtf-deg|.fi:|)(l-2p) 

+ 25P()S, a, 7) + Fp{&, $, 7) + 30, S). 
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To obtain the virtual dimension of a neighborhood of C in the entire moduli 
space we need to add the dimension of a neighborhood of CQO inside the 
reducible torus and subtract the dimension of its isotropy group. This leads 
to a correction by 2g — 1 and we deduce 

dim^C) = d{cr) + ured(C) 

where 

oWQ = ^^ f^1 + ^ - P) - mP 
-i(degK-deg|K|)(l-2p) 

+ 5(A of) + 2SP0,5,7) + Fp{a, fr % 

• p = 0. 

In this case we should use the first part of Proposition 1.10. A computation 
as above leads to 

uVeeKQ = ^^ - ^"Si
4
Sn(£) + 25(/3, a,7) + d(&5;7) + S& a). 

3. Applications. 

3.1. Tunnelings. 

We want to apply the virtual dimension formula formula to the special 
situation of tunnelings. Consider a Seifert fibration N with oriented Seifert 
invariant (#;l,a,/?). In this case N = Rx N has two boundary components 
N± := d±N = {±1} x iV" which have opposite orientations. Denote by 
(#; £±, a±, /?±) the oriented Seifert invariant of iV±. We identify N with N+ 
and thus we have the following identities 

£_ + e+ = 0, 3±- = 5, p+ = 0 

and 

(3- = a- f3=(ai- fa,... 7am-/3m). 

Consider a tunneling C with irreducible asymptotic limits 

[c±]emK±,L±(N). 
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Set n± = u(L±). Clearly ft_ = K,+ = K. In [MOY] it is shown that 

sign(n_) =sign(n+). 

Assume for simplicity that both n± < 0. Set k = deg(L_j- — degL_)/£ = 
(n_^ — n-)/L Since L± —^ E pull back to the same line bundle we deduce 
that k € Z. In fact, £+ = L_ + fcLo (where N is viewed as the unit sphere 
bundle of LQ). 

We can now use the equality (2.15) which gives the virtual dimen- 
sion of the space of tunnelings between SDfl/Cjn:fc Denote this dimension by 
r(«;.n_,n+). We have 

r{n\nun2) = \ f c(a)2 +a;([C_]) +c*;([C+]). 
*JN 

The integral term can be computed via transgression exactly as in the third 
transgression formula in [N2] and we obtain 

ijO'- 
nL —n+ 

Thus we get 

T(K; n_, n+) = "- T "+ + a;([C-J) + w([C+)). 
n2 — n j 

The last formula can be made a little bit more transparent. Denote by 7± 
the isotropies of L±. If 

7- = (7i>--- >7m) 

and c = degL_ then degL+ = c + k£ and the data 7+ are determined by 

7+ = (7i~> • • • ,7m) where 7^ = ai • {^ i}. 

The correction term can be further simplified since ^_ + £+ = 0, e(£-) + 
e(£+) = 1 and S0-, a) + 30+, a) = 0. We conclude 

T(K; n_, n+) =    "       + + deg |L_| + deg |L+| 

+ S0-,ai7-) + S0+,a,1+) 
+ d0-,a,i-) + d0+,8,i+): 
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Numerical experiments show that the above formula is in perfect agreement 
with the alternative description in [MOY]. 

Suppose now that the limit 07+ is a nondegenerate reducible. Set as 
above n_ = v(CJ) and denote by r(C_?C+) the virtual dimension of the 
space of tunnelings from the component of C_ to the component of (7+. We 
distinguish two cases. 

Case A. n_ < 0. Arguing as above we deduce 

+ d(/3_, 3; 7_) + deg |Lc_ | + 8+{p) 

where 

5+{p) = ep(l -p)-mp- \{degK- deg \K\){1 - 2p) 

+ 2^(/3+,a,7+) + Fp(a,/?+57),   ifp^O 

and 

<$+(p) = 25(/3+, 5,7+) + d(/?+, a; 7+),    when p = 0. 

Case B. n_ > 0.   The dimension formula is obtained from the above by 
performing the change 

Lc_->#s-Lc-.. 

Of course one should replace 7+ with the singularity data of K^—L but 
as explained in Remark 1.6 this has no effect on the eta invariants and 
thus the overall contributions of the intervening Dedekind-Rademacher 
sums is unchanged by such a substitution. 

3.2. Proyshov invariants of Brieskorn spheres. 

As in [MOY], we want to consider in some detail the special case of the Seifert 
homology spheres E(a, 6, c) where a, 6, c are pairwise coprime integers > 2. 
The variational theory for the Seiberg-Witten energy functional on these 
manifolds is as simple as one can hope for. In particular, using the tunneling 
information in the previous section and our knowledge of eta invariants we 
will be able to produce estimates for the Froyshov invariant of such homology 
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spheres. We begin by surveying the geometric facts which will be relevant 
in the sequel. 

E(a, 6, c) is a Seifert fibration over an orbi-sphere S. We orient it as the 
link of the complex singularity 

{xa + yb + zc = 0 ; \x\2 + \y\2 + \z\2 <s}c C3. 

As such, its rational degree is negative £ = — ^ and its singularity data are 

a = (a,&,c),   0=(Pufafo) 

with /Si determined by the congruence 

-r-i- = 1 (mod a;). 

The canonical line bundle Ks has rational degree 

i      f1     1     1 

\a     b     c 

Consider the "simplex" 

(x,y,z)eZ%i - + | + - < -, x < a, y < 6, z < cj . 

To a point p = (x,y,z) G A(a, 6, c) we associate a line F-bundle Lp —> S 
with deg|Lp| = 0 and singularity data (x,y,z). Define the "energy" of a 
point p by 

E(p) := (degLp - i deg^)   /£ = v{Lvf/£. 

Using the description of the critical set of the Seiberg-Witten functional we 
deduce that to any p G A(a, 6, c) we can associate a pair of irreducible solu- 
tions (C+(p), C_(p)) of identical energy E{p) (we deliberately omitted the 
normalization constant in Fact4, §2.2). C+(p) corresponds to a holomor- 
phic vortex on Lp while CL(p) corresponds to an antiholomorphic vortex 
on Ks — Lp. Any irreducible solution belongs to such a pair. We will denote 
the unique reducible solution by CQ. The discussion at the end of §1.2 shows 
this is nondegenerate. 

For each p G A (a, 6, c) set 

n±(p) = -r(C±(p),Co) 
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where r is described in the previous subsection. The dimension formulae 
coupled with the Serre duality for the Dedekind-Rademacher sums (Remark 
1.6) show that 

(3.1) n_(p) = n+(p). 

Now we can form two Laurent polynomials 

peA(a,6,c) 

Note that according to (3.1) P+6iC = P^. Set PaAc = P+biC. The polyno- 
mial 2Paiblc can be regarded as the Poincare polynomial of the (irreducible) 
Seiberg-Witten-Floer homology of E(a, b, c) (negative gradings are allowed). 
Theorem 10.1.1 of [MOY] shows it is an odd polynomial. 

We include below a few examples 

^2,3,5 = 0 

^2,3,7 = T-1 

^,3,11= T"1 

-P2,3,13 = T 

-P3,3,17 = T 

P3,5,7 = T + T-1 

Ps^i^T^ + T + T-1 

Pz,5,i3 = T3 + T5 + T9 

P5,7,9 = 2T + T3 + T7 + T9 + T25 

Given a Laurent polynomial 

p(r) = 5>nr" 
nez 

we define its set of gaps r(P) by 

r(P) = {m e Z+ ; a_(2m+1) = 0} 

and set 

m(P) = minr(P). 

For P = Pa,6,c the invariant ra(a, 6, c) := ra(Paj&)C) coincides with the integer 
m defined at the beginning of Section 3 in [Pr]. Denote by Ya^c the Proyshov 
invariant of E(a, 6, c) defined in [Pr]. 
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Theorem 3.1. For any Seifert homology sphere S(a, 6, c) we have the fol- 
lowing inequality 

(3.2) Yafrc < Zafrc := 8ra(a, fc, c) + Fa?6jC 

where Faj6)C is the invariant F(E(a, 6, c)) defined in (1.36) and (1.37) at the 
end of§l.k 

Proof. We begin by briefly recalling the definition of the invariant Y. We 
describe only the case of Z-homology spheres. 

Suppose N is a Z-homology sphere. Fix an arbitrary metric g on N. 
By suitably perturbing the Seiberg-Witten equations on N using as usual a 
1-form u on iV as perturbation parameter we can arrange that the energy 
functional has only one nondegenerate reducible solution and the irreducible 
solutions are isolated and nondegenerate.The resulting gradient flow on M x 
N can also be perturbed to be in a Morse generic situation. 

Denote by S the set of irreducible solutions and by 9 the reducible one. 
For every a E S denote by i(a, 9) the dimension of the space of tunnelings 
from a to theta (if this space is nonempty). Define m as the smallest nonneg- 
ative integer such that there are no tunnelings a —» 9 with i(a, 9) = 2m+1. 
Denote by rjdir the eta invariant of the Dirac operator on N (obtained canon- 
ically from the Levi-Civita connection) and by rjsign the eta invariant of the 
odd signature operator. Note that these eta invariants depend on g. Set 

Y(N, g) := 8m + 4r/^r + r]sign 

and define the Froyshov invariant Y(N) by 

Y(N) = mf{Y(N,g,v)-g,v}. 

From the definition it is clear that one can obtain upper estimates on Y(N) 
as soon as one can produce a concrete example of a metric on iV and per- 
turbation v satisfying the required nondegeneracy conditions and moreover 
the quantities m, r)sign and rjdir are explicitly computable. 

We present below one such instance when N = S(a, 6, c). As metric on 
N we use the deformation of the Thurston metric discussed in Remark 1.35. 
This is obtained by a rescaling along the fibers the Thurston metric so that 
the fibers become very short, of radius « r <£ 1. Denote this metric by gr 

and let S denote the spinor bundle associated to the unique spin structure on 
N. For any connection A on det S we can now construct two Dirac operators: 
the Levi-Civita induced ID^ and DA,r induced by the adiabatic connection 
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on TW, as in Remark 1.13. Correspondingly we get two Seiberg-Witten 
equations: SWfeg formulated in terms of SD^r and the adiabatic equations 
SW^d. Denote by Sreg(r) (resp. Sad(r) the set of irreducible solutions of 
SWfeg (resp. SW^d.). SWreg has a unique reducible the obvious one. In 
[Nl] we established the following facts. 

Fact 1. Sld is independent of r. Denote this set by 5ac/. This set is de- 
scribed at the beginning of this subsection. 

Fact 2. S^eg —» Sad as r —> 0 in any Sobolev norm defined in terms of 
the metric gi. Moreover, the rates of convergence can be estimated 
effectively in terms of r. 

Note that the hessians of SW^d at solutions a G Sad are invertible but 
the norms of their inverses depend upon the metric gr. In [Nl] we also 
established 

Fact 3. The eigenvalues of these hessians are bounded away from zero by 
a constant independent ofr. 

The last fact implies that any a e Sad admits a neighborhood containing 
for each r <C 1 an unique solution of SWr which must be nondegenerate. 
Thus, for r <S 1, we have a bijection 

(3.3) <l>r : S%eg -* Sad. 

The map <f>r is also compatible with the gradings. To show this we need a 
bit more notations. 

For any a € S^eg denote by Hreg(a,r) the hessian of SWfeg at a. De- 
fine HadiPir) similarly. Additionally, we have two hessians Hreg{6,r) and 
Hadi^^r) at the trivial solution 6. 

(j)T preserves the gradings if 

(3.4) SF(Hreg(a,r) -> Hreg(f3,r)) = SF(Had(M^r) -> Had(MP),r)) 

and 

(3.5) SF(Hreg(e, r) -► Hreg(a, r)) = SF(Had(P, r) -> Had(M*)> r)). 

The equality (3.4) follows from the fact that H^ed(a) is very close to 
Hr

ad{(t)r(a)) and both operators are invertible. Hence 

SF(HTed(a)^Had{cl>r(a))) = 0. 
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To prove (3.5) it suffices to show that 

(3.6) SF(Hred(e) -► Had(e)) = 0. 

This spectral flow was analyzed in §2.3 of [N2] and it was shown to be zero. 
The upshot of the previous discussion is that in order to compute the 

ingredient m in the definition of Y(X!(a, &,c),£r) we may as well use the 
adiabatic Seiberg-Witten equations. We see that it coincides with m(a, 6, c). 
The inequality (3.2) is now obvious. □ 

We now associate to any negative definite Z-quadratic form q an integer 
Q(q) defined by 

@(q) = vk(q) + max{<z(£,£) ; £ characteristic vector}. 

We list below a few properties of this invariant. 

PI 0(g) is divisible by 8. 

This follows from the arithmetic properties of the characteristic vectors 
described e.g. in [Se]. 

P2 @(q) < rk (q) with equality if and only if q is even. 

Indeed, one has equality above iff 0 is a characteristic vector i.e. q is 
even. 

P3 @(q) > 0 with equality iff q is diagonal. 

This highly nontrivial result is proved in [E]. 

P4 If q = qi © 52 and #2 is even 

G(q) = e(gi) + G(q2) = 6(5!) + rk («,). 

P5 If M is a 4-manifold with boundary a Z-homology sphere N and if the 
intersection form q of M is negative definite then 

0(g) < Y(N) 

where l^iV) denotes the Proyshov invariant of iV. 

This is Theorem 1 in [Pr]. 
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For every triple (a, 6, c) of pairwise coprime integers > 2 denote by ra^c the 
intersection form of the Hirzebruch-Jung plumbing (see [HNK] or [NR] for 
a definition) associated to the Brieskorn homology sphere S(a, 6, c). raj6)C is 
negative definite and set 

(3.7) ea,65C := e(ra,6,c). 

Note that Theorem 3.1 and P5 imply the following inequality 

(3.8) o < eaAc < yflj6|C < zaAc. 

The following topological result is now obvious. 

Proposition 3.2. Suppose E(a, 6, c) is such that Za^c ^ 0.  Then 

Moreover, if X is a A-manifold with negative definite intersection form q 
and dX = E(a? 6, c) then q is diagonalizable. 

Naturally, one may ask whether there exist E(a, 6, c/s with Z = 0. We 
present below a few values of Z. 

(a, b, c) F 8m z 
(2,3,5) 8 0 8 

(2,3,7) -8 8 0 

(2,3,11) 0 8 8 

(2,3,13) 0 0 0 

(2,3,17) 8 0 8 

(3,5,7) 0 8 8 

(3,5,11) 0 8 8 

(3,5,13) 8 0 8 

(5,7,9) 0 0 0 

The periodicity displayed in the first part of the table is a manifestation 
of a more general result. 
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Proposition 3.3. Denote by Qk, Ffc and respectively Zk the quantities 

P%Zfik+\, F2,3,6fc+i and respectively Z2,3,6k+i- Then 

(3.9) Qk 
_ f jT-1   ,   k = 2j-l 

I     jT   ,   k = 2j        ' 

In particular, Zk = 0 /or all k > 1. 

Sketch of proof. Let us first point out that a weaker version of (3.9) is 
established in [MOY]. Computing the Dedekind sums may in general be a 
very daunting task. The singularity data of S(2,3,6k + 1) are 

a = (2,3,6A; + 1) and £=(1,1,*;). 

The "simplex" A(2,3,6k + 1) is easily described since 

■       „ 5 6k 
degKs = -- + 

6     6k+ 1 

is extremely small. The points in A(2,3,6k+1) have the form (0,0, z) where 
z is a nonnegative integer such that z/(6k + 1) < degKs/2. Moreover, the 
invariant p of the unique line bundle over E(2,3,6k + 1) is 1/2. 

The computation of the quantities n±(p) and F reduces essentially to 
computing Dedekind-Rademacher sums of the form 

s(A;,6fc + l,r,0) and s(fc,6fc + l,r,-l/2) 

where r is a rational number. At this point the reciprocity law comes in very 
handy. Denote by R the reciprocity function defined by (1.17) and (1.18). 
Then 

s(fc, 6k + 1; a:, y) = —s(6k + 1, fc; y, x) + i?(fc, 6k + 1; JE, y) 

= —5(1, k] y + 6rr, x) + R(k, 6k + 1; x, y) 

= s(fc, 1; re, y + 6x) — i2(l, fc;, y + 6x, x) + R{k, 6k + 1; x, y) 

= ((fey + 6kx)) - ((y + ex)) - i2(l, fc;, y + 6x, x) 

+ R(k,6k + l;x,y). 

Above we used the usual continuous fraction decomposition of k/(6k + 1) 
which,  from a computational point of view,  is more efficient than the 



1086 Liviu Nicolaescu 

-2«- 
-7 -2 

—•- 

1 U k-1 

Figure 1: The plumbing diagram of E(2,3,6k + 1) 

Hirzebruch-Jung continuous fraction decomposition. In this case the lat- 
ter requires k steps (see Figure 1). Obtaining the identities (3.9) and (3.10) 
is now an elementary, albeit tedious, accounting job. □ 

From Proposition 3.3 and 3.2 we deduce immediately the following con- 
sequence. 

Corollary 3.4. If X is a smooth ^-manifold with negative intersection form 
bounding S(2,3,6fc + 1) then its intersection form must be diagonalizable. 

Remark 3.5. The above corollary implies that r2)3j6fc+i is diagonalizable. 
This consequence is not entirely obvious but it can be proved directly. We 
present below a simple argument discovered in conversations with Ian Ham- 
bleton. 

Set for simplicity Ik = r2,3,6fc+i. More explicitly, 1^ is given by the 
plumbing diagram in Figure 1. Note that rk(Ik) = 4 + fc — 1. Ji=4(-1) 
since all odd, unimodular, negative definite forms of rank 4 are so. Its matrix 
is 

A = 

-1111 
1-200 
10-30 
10      0-7 

with inverse 

5 = - 

42 21 14 6 
21 11 7 3 
14 7 5 2 
6 3 2 1 
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The matrix of 2^ can be written in block form 

Ak = 
A   IS 
L   N 

where 

L = 

0 0 0 1 
0 0 0 0 
0   0   0   0 

and 

N = 

-2 1 0 0 0 
1-2100 
0      1-210 

According to [HNK], Lemma 1.4, the matrix Ak is equivalent (as Z-quadratic 
forms) to 

C = 4(-l)®(-LBLt + N). 

A simple computation shows that 

LBIS^ 

-1   0   0   ••• 
0    0   0   ••• 

Thus —LBIS + N is the matrix of the intersection form (—l|fc — 2) given by 
the diagram 

-1      -2 
•   — • 

-2       -2 
•   —   • . 

fc-2 

Using the same trick again, we can split off the isolated —1 in the above 
diagram and one can verify immediately the identity 

(-l|m)^(-l)e(-l|m-l). 

This shows inductively that the form Ik is diagonal. 
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Remark 3.6. As pointed out to the author by S. Akbulut and R. Fin- 
tushel, the Brieskorn spheres £(2,3,13) and £(2,3,25) bound contractible 
smooth manifolds and in these cases Corollary 3.4 follows from Donaldson's 
first theorem ([DK], Thm. 1,3.1). Also, as indicated by Nikolai Saveliev, 
£(2,3,7) bounds a rational ball (with 2-torsion in its first homology) and in 
this case the Corollary 3,4 also follows from Donaldson's first theorem. 

The properties P1-P5 and Theorem 3.1 have another interesting topo- 
logical consequence. 

Proposition 3.7. Suppose Za^c < 8 and X is a A-manifold with the fol- 
lowing properties. 

(i) dX = £(a,&,c) 

(ii)  The intersection form q of X is negative definite and splits as q = 
qi 0 q2 where q2 ^ 0 is even. 

Then q2 = — E&, qi is diagonal and Ya^c = 8. 

Warning. The above proposition does not prove Za^c = 8 =» Ya^c = 8. It 
only shows this is the cases provided £(a, 6, c) bounds a manifold satisfying 
(ii) above. 

Proof Indeed, from P4 we deduce 

e(?i) + rk(ft)<8. 

By P3 @(qi) > 0 so that rk(<?2) < 8 which forces q2 = —Eg. In particular 
Q(qi) = 0 so that qi must be diagonal according to P3. Hence 6(g) = 8 
Using P5 and (3.8) we deduce 

8 - e(q) < YaAc < ZaAc < 8. D 

We can also prove a counterpart of Proposition 3.3. 

Proposition 3.8. Denote by Qk, F^ and respectively Zk the quantities 

^2,3,6^-1; F2,3,6A:-i and respectively Ztflfik-i- Then 

(3.11) Qk = {    jT   ^   k=:2j + 1 
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-^ 8 

Figure 2: The plumbing diagram of S(2,3,6k — 1) 

In particular, Zk = 8 for all k > 1. 

Proof. Follows the same lines as the proof of Proposition 3.3.   The only 
difference now is in the Seifert invariants of E(2,3,6k — 1). They are 

a = (2,3,6k-l),   £=(1,2,5*?-!). 

The Dedekind-Rademacher reciprocity law drastically reduces the computa- 
tions using the following continuous fraction decomposition of (5k — I)/(6k — 

i) 

i SJfe-l 
6A: - 1      1 + -i, 

5— T 

□ 

Corollary 3.9.      (i) l^efc-i = 8 for all k > 1. 

(ii) If dX = S(2,3,6fc — 1) and the intersection form q of X is negative 
definite and splits as q = qi@q2, #2 7^ 0 even, then qi is diagonalizable 
and q2 = —E$. 

Proof To prove part (i) we will show that the Hirzebruch-Jung plumbing 
^2,3,6fc-i satisfies all the conditions in Proposition 3.7. Since i^Aefc-i = & 
this will prove the equality l2,3,6A;-i = 8. 

The intersection form r2j3)6fc-i can be read from the plumbing diagram in 
Figure ??. Arguing as in Remark 3.5 we deduce that r2)3j6fc-i = diagonal© 
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(—Es). Thus 1^2,3,6^-1 = ^2,3,6A;-i = 8- The second part of Corollary 3.9 is 
a special case of Proposition 3.7. □ 

Remark 3.10. The case k = 1 in the above corollary was first proved in 
[Pr]. 

Remark 3.11. Set 

dx = 0 dn = 4 + 12 + • • • 8n - 12 = 4(n - l)(n - 2) + 4 

and define 

n 

Dn{T) = Y,Tdk- 
k=i 

Numerical experimentations reveal a beautiful structure of the polynomials 

Pk := -P^fc+Mfc+a- More Precisely t,:ieysllow 

P^T) := ACT) = T,   Pfc(T) = Pfc.x + TD^T). 

Here are the first few of the polynomials Pk 

T 
T5 + 2T 

rplS + 2^5 + 3^ 

r25 + 2 Jl3 + 3J5 + 4r 

J41 + 2^25 + 3^13 + 4T5 + 5T 

Numerical experimentations also show that F2)4fc+i,4fc+3 = 0 so that 
^2,4A;+i,4fc+3 = ^2,4fc+i,4A;+3 = 0. Thus, the only negative definite 4-manifolds 
which can bound E(2,4fc + l,4fc + 3) must have diagonalizable intersection 
form. One can give an alternative proof of this fact. More precisely, ac- 
cording to [CH] the Brieskorn manifold E(2,4A; + l,4fc + 3) bounds a con- 
tractible manifold J5(2, 4fc + 1,4fc + 3). If X is negative definite and bounds 
£(2,4k + l,4fc + 3) then 

M = X U -5(2,4fc + 1,4fc + 3) 

is closed and negative definite and, by Donaldson's theorem, its intersection 
form is diagonal. A strikingly similar pattern is observed for the polynomials 
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^3l3s+i,3s+2- We list the first few of them (5 = 1, ...,4) and let the reader 
deduce the recurrence 

T 
T7 + 2T 

T19 + 2T7 + 3T 

Again Fs^k+i.sk^ = 0 so that ^3,3^+1,3^+2 = 0. This agrees again with the 
conclusions of [CH] where it is established the spheres E(3,3fc + 1,3k + 2) 
bound contractible manifolds. 

3.3. Concluding remarks. 

The results we have established so far raise the following natural questions. 

• Is it true that Ya^c = Za,b,c = ®a,6,c for all (a, 6, c) ? 

The inequality (3.8) shows the answer is positive provided one can establish 
only the purely number theoretic identity 

To answer this question a more manageable description of Za^c and Oa>&)C 

(defined by (3.7)) is highly desirable. 

• Remark 3.11 suggests the following question 

Is it true that any E(a, 6, c) which bounds a smooth contractible 
manifold must have Y^6}C = 0 ? 

• Another number theoretic problem with possible interesting topological 
implications is the following. First define an equivalence relation on the 
space of negative definite Z-quadratic forms as folios. 

Ql ~s 92 ^=> qi © mi (-1) ^q2@m2 (-1) 

for some nonnegative integers mi, 7712. 

Is it true that for any K > 0 there exist only finitely many ~s- 
equivalence classes of negative definite Z-quadratic forms    q 
satisfying @(q) < ft? 
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In [E] it is proved that the answer is positive if K < 16. Recently, M. Gaulter 
has shown in [Gau] that the result continues to hold for K < 24. If the answer 
to the above question were positive this would mean that the invarinat © 
can be regarded as a " measure of complexity" of a negative definite quadratic 
form, i.e. the larger @(q) the further is q from being diagonalizable. The 
equality Ya^c = Za^c = @a,b,c conjectured above would then mean that 
the Hirzebruch-Jung resolution is the "most complicated" negative definite 
4-manifold bounding a given Brieskorn sphere! 

• The Euler characteristic of the Seiberg-Witten-Floer homology of 
X!(a, b, c) (with the Thurston metric) is 2Pa^c(—1). Following [Cl-2] and 
[KM] define 

a(a,6,c) = 2P0,6lc(-l) - gFaj6,c. 

(The negative sign in front of Fa^c follows from our "orientation" of the 
Dirac operator which, although is the canonical one in the sense of [BC], it 
is not the one traditionally used in Seiberg-Witten-Floer theory.) Note that 

a(2,3,6k + 1) = -k = a(2,3,6fc - 1) = -k. 

The calculations in [FSt] imply that 

a(2,3,6k ± 1) = i<7(2,3,6k ± 1) = A(2,3,6k ± 1) 
8 

where cr(a, 6, c) denotes the signature of the Milnor fiber of S(a, 6, c) and 
A(a, 6, c) denotes the Casson invariant of S(a, 6, c). 

We now define for any oriented homology 3-sphere iV and any good 
metric g on N (in the sense of [Mar]) the quantity 

a(N,g) = x(N,g)-lnN,g) 

where x(N, #) denotes the Euler characteristic of the Seiberg-Witten Floer 
homology of (N,g) (defined in [Mar]) and 

F(N,g) = Iridirig) + rjsignig)- 

The wall crossing formula of [Mar] and the variational formulae for the eta 
invariants show that a(N,g) is independent of the metric and thus it is a 
topological invariant of N. 

In [KM], P.Kronheimer and T. Mrowka conjectured that this invariant 
coincides with the Casson invariant and announced a proof of its validity 
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when TV is a Brieskorn 3-sphere. In this case the conjecture is equivalent to 
an interesting number theoretic identity 

-a(a,6,c) + 2Pflffe>c(l) = --Faf6fC. 

The left hand side can be expressed in terms numbers of lattice points inside 
some convex regions of Z3 (see [FSt], [HZ]) while the right hand side is 
expressed in terms of Dedekind-Rademacher sums. In [N3] we prove the 
above identity (for arbitrary a, 6, c) using a lattice point count. 
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