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1. Introduction. 

Our main purpose in this article is to prove that the moduli space of solutions 
to the PU(2) monopole equations is a smooth manifold of the expected di- 
mension for simple, generic parameters such as (and including) the Rieman- 
nian metric on the given four-manifold: see Theorem 1.3 in §1.2. In [16] we 
proved transversality using an extension of the holonomy-perturbation meth- 
ods of Donaldson, Floer, and Taubes [12], [13], [22], [68], together with the 
existence of an Uhlenbeck compactification for the perturbed moduli space. 
In [18], [19] we discuss applications of these results to the PU(2) monopole 
program for proving the equivalence between Donaldson and Seiberg-Witten 
invariants conjectured in [74], [47] (see, for example, [18], [52], [53], [54], [56], 
[59]). However, it is an important and interesting question to see whether 
there are simpler alternatives to the holonomy perturbations and this is the 
issue we address here. 

The idea that one should be able to use PU(2) monopoles to prove 
Witten's conjecture concerning the relation between the two types of four- 
manifold invariants was proposed by Pidstrigach and Tyurin in 1994; see 
[16], [19], [18], [52], [53], [54], [56], [59], [71] for work on this program due in- 
dependently to the author and Leness, Pidstrigach and Tyurin, and Okonek 
and Teleman. The idea itself can be informally described quite quickly, 
the key point being that the moduli space of PU(2) monopoles contains 
the moduli space of anti-self-dual connections together with copies of the 
various Seiberg-Witten moduli spaces, these forming singular loci in the 
higher-dimensional moduli space of PU(2) monopoles. In principle, then, 
one should be able to use intersection theory on this higher-dimensional 
moduli space to relate the two kinds of invariants. In practice, despite the 
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simplicity of this basic idea, the difficulties surrounding its implementation 
are daunting. For this program to succeed one needs to know that the mod- 
uli space of PU(2) monopoles — away from the anti-self-dual and Seiberg- 
Witten points — is a smooth manifold of the expected dimension. This 
ensures that these exceptional points are the only singularities and that 
the PU(2) monopole moduli space forms a smooth (though non-compact, 
because of bubbling) cobordism between the links of the singularities. 

For PU(2) monopoles, we would ideally like an analogue of the Freed- 
Uhlenbeck generic metrics theorem for the anti-self-dual equation [15], [23] 
or the generic parameter result introduced by Witten for the Seiberg-Witten 
equations [37], [74]. However, results of this kind for the PU(2) monopole 
equations appear to be much harder to prove. One of the outcomes of 
our joint work with Leness [16] was a proof that one could nonetheless ob- 
tain a useful transversality result via holonomy perturbations by extending 
related ideas of Donaldson and Taubes [12], [13], [68]. Such holonomy per- 
turbations are important when considering three-manifold versions of the 
monopole equations. While all of the intersection theory calculations on the 
moduli space of PU(2) monopoles described in [19] could be carried out using 
holonomy perturbations, the generic-parameter result (Theorem 1.3) estab- 
lished in the present article represents a very significant simplification and 
has been the basis of our continuing work on the project to mathematically 
verify Witten's conjecture [19], [20], [21]. Our generic-parameter approach 
(see §1.3 for an outline) makes essential use of certain unique continuation 
properties for reducible solutions to the PU(2) monopole equations which we 
developed in our earlier work [16], although not the holonomy perturbations 
themselves. 

Issues of transversality also appear to play a significant role in the ongo- 
ing work of Kronheimer and Mrowka to complete a three-dimensional ana- 
logue of the Pidstrigach-Tyurin program and use PU(2) monopoles to prove 
"Property P" for knots, via a comparison of Yang-Mills and Seiberg-Witten 
Floer homologies [36], [40]. Moving outside the realm of low-dimensional 
manifolds per se, a technical issue which plagued the definition of Gromov- 
Witten invariants for general symplectic manifolds concerned the absence 
of generic-parameter transversality results for boundary components of the 
compactification. For semi-positive symplectic manifolds such transversal- 
ity difficulties do not arise [61]. The problem was eventually addressed — 
via an important differential-geometric extension of certain algebraic excess 
intersection theory methods — by Fukaya and Ono [25], Li and Tian [43], 
Liu and Tian [44], Ruan [60], and Siebert [64], using a variety of different ap- 
proaches. A solution was also announced by Hofer and Salamon. In the case 
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of PU(2) monopoles it is already a difficult problem to obtain transversality 
away from the exceptional solutions, even when no bubbling has occurred. 
In general, it is not possible to ensure that the loci of exceptional solutions 
are unobstructed, so we must still use differential-geometric excess intersec- 
tion theory techniques [19] broadly similar to those of [43], [60] and going 
back to ideas of [6], [13], [15], [49], [66]. 

1.1. PU(2) monopoles. 

Throughout this article, X denotes a closed, connected, oriented, smooth 
four-manifold. In order to state our results, we briefly recall the description 
of the moduli space of PU(2) monopoles from [16], [18]. We give X a Rie- 
mannian metric and consider Hermitian two-plane bundles E over X whose 
determinant line bundles det E are isomorphic to a fixed Hermitian line bun- 
dle endowed with a fixed C00, unitary connection Ae. Let (p, W+, W~) be 
a spinc structure on X, where p : T*X —> JIomc(W+ ,W~) is the Clifford 
map, and the Hermitian four-plane bundle W := W+ © W~ is endowed 
with a C00, unitary connection. The unitary connection on W uniquely de- 
termines a Riemannian connection on T*X, via the Clifford map p, and a 
unitary connection on det W+; conversely, a choice of Riemannian connec- 
tion on T*X and unitary connection on det W+ induce a unitary connection 
on W. The connection on W is called spinc if it induces the Levi-Civita con- 
nection on T*X for the given Riemannian metric. 

Let k > 2 be an integer and let AE be the space of L| connections A 
on the U(2) bundle E all inducing the fixed determinant connection Ae on 
det E. Equivalently, following [38, §2(i)], we may view AE as the space of L^ 
connections A on the PU(2) = SO(3) bundle 5u(J5). We shall pass back and 
forth between these viewpoints, via the fixed connection on det E, relying on 
the context to make the distinction clear. Given a unitary connection A on 
E with curvature FA G L^^A2 ® u(£;)), then (F|)o G iLi(A+ ® SU(E)) 
denotes the traceless part of its self-dual component. Equivalently, if A 
is a connection on $u(E) with curvature FA G L|_1(A2 <g>so(5u(.E))), then 
ad~1(Fj) G Lj^^A+Ost^jE1)) is its self-dual component, viewed as a section 
of A+ ® su(E) via the isomorphism ad : su(E) —> $o($u(E)). When no 
confusion can arise, the isomorphism ad : su(E) —> so(sxi(E)) will be implicit 
and so we regard FA as a section of A+ ® $u(E) when A is a connection on 
su(E). 

For an L^ section $ of W+®E, let $* be its pointwise Hermitian dual and 
let (<I> ® <I>*)oo be the component of the Hermitian endomorphism $ ® $* of 
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W+ ® E which lies in $u(W+)■ ® $u(E). The Clifford multiplication p defines 
an isomorphism p : A+ -* su(W+) and thus an isomorphism p = p® idsu(£) 
of A"1" (g) fiu(£7) with su(VF+) ® su(E). 

Let ^ be the Hilbert Lie group of L|+1 unitary gauge transformations 
of £" with determinant one. It is often convenient to take quotients by a 
slightly larger symmetry group than GE when discussing pairs, so let S^ 
denote the center of U(2) and set 0

QE '= S\ x^d^j GE, which we may 
view as the group of I^+1 unitary gauge transformations of E with constant 
determinant. The stabilizer of a unitary connection on E in 0

GE always 
contains the center S^ C U(2). 

We call an L\ pair (A, $) in the pre-configuration space, 

CWV-=AEXLI{W+®E), 

a PU(2) monopole if 6 (A, $) = 0, where the 0(/£-equivariant map 6 : 
Cw,E -> Ll(A+®su(E)) 0 Ll(W- ® E) is defined by 

where D^ : L|(W+ ® £?) -> L|_1(W~ ® -B) is the Dirac operator, while 
r G C00(GL(A+)) and i? G ^(-X^C) are perturbation parameters. We let 
Mw,E '•= ©~1(0) be the moduli space of solutions cut out of the configura,- 
tion space, 

Cw,E -= CW,E/
0
GE, 

by the section (1.1), where u G 0
GE acts by u(A,$) := (u*A,u$). 

As customary, we say that an SO(3) connection A on $u(E) is irreducible 
if its stabilizer in GE is {iid^}, corresponding to the center of SU(2), and re- 
ducible otherwise; we say that a pair (A, $) on (su(-B), T^+®E) is irreducible 
(respectively, reducible) if the connection A is irreducible (respectively, re- 
ducible). We let CWE 

c CWtE be the open subspace of gauge-equivalence 
classes of irreducible pairs. We say that a section $ of W+ ® E has ranfc 
r if, when considered as a section of Homc^"1"'*^), the section $(x) has 
complex rank less than or equal to r at every point x G X, with equality 
at some point; we say that a pair (A, $) on (5u(£'), W+ ® £■) has rank r 
if the section $ has rank r; if (A, $) has rank zero, that is $ = 0 on X, 
we call (A, $) a zero-section pair. We let C^E C CwiE be the open sub- 
space of gauge-equivalence classes of non-zero-section pairs and recall that 
C^E := C^VEnC^ViE is a Hausdorff, Hilbert manifold [16, Proposition 2.8] 

represented by pairs with stabilizer {id^} in 0
GE- Let M^E = Mw,EnCw,E 
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be the open subspace of the moduli space Mw,E represented by irreducible, 
non-zero-section PU(2) monopoles. 

If (A, $) is a PU(2) monopole then (see [16, Lemma 5.21]) 

(-A, $) reducible => (A, $) has rank less than or equal to one. 

However, it is an important observation, due to Teleman [54], [71], that 

(A, $) reducible <£= (A, $) rank one. 

Indeed, counterexamples are easily constructed (at least for the unperturbed 
PU(2) monopole equations) when X is a Kahler manifold with its canonical 
spinc structure [54], [71] (see Appendix A.l). That is, a reducible PU(2) 
monopole necessarily has rank less than or equal to one but in general, there 
exist irreducible, rank-one PU(2) monopoles. If $ = 0, then the PU(2) 
monopole equations (1.1) just imply that A is an anti-self-dual connection 
on SU(JE); the locus of reducible PU(2) monopoles in Mw,E can be identified 
with a union of Seiberg-Witten moduli spaces. 

As we shall see in §2 it is not too difficult to prove that M]^E is a smooth 
manifold of the expected dimension away from the locus of irreducible, rank- 
one solutions using the perturbation parameters (T,I?) alone. However, as 
irreducible, rank-one solutions to (1.1) may be present in M^E^ it seems 

impossible to prove that the entire space M^E is a smooth manifold of 
the expected dimension using these parameters alone. A similar problem 
arises in the proof of transversality for the 'spinc -ASD' equations given in 
[58, Proposition 1.3.5]; a version of these equations can be obtained from 
the equations (1.1) by omitting the quadratic term rp~1($ (8) $*)oo- In the 
proof of [58, Proposition 1.3.5] it is claimed that if A4$ = 0 and $ is rank 
one, then A is reducible [p. 277]: Teleman's counterexample shows that this 
claim is incorrect and he points out an error in their argument [71]. 

On the other hand, the fact that the counterexamples of [71] occur when 
X is a complex, Kahler surface suggests that irreducible, rank-one solutions 
might not be present in the moduli spaces M^E for generic Riemannian 
metrics and compatible Clifford maps, so this is a feature of the equations 
(1.1) which we shall explore further in this article. 

1.2. Statement of results. 

We can now state our Uhlenbeck compactness and transversality results for 
the moduli space of PU(2) monopoles with the perturbations discussed in 
the preceding section. As we remarked earlier, applications of these results 
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to the PU(2) monopole program for proving the equivalence of Donaldson 
and Seiberg-Witten invariants are described in [18], [19]. 

Theorem 1.1. Let X be a closed, oriented, smooth four-manifold with C00 

Riemannian metric, spinc structure (p, W+, W~~) with spinc connection on 
W = W+ © W~, and a Hermitian two-plane bundle E with unitary connec- 
tion on det E. Then there is a positive integer Np, depending at most on the 
curvatures of the fixed connections on W and det E together with C2(E), such 
that for all N > Np the topological space Mw,E is second countable, Haus- 
dorff, compact, and given by the closure ofMw.E in UfcoC^W^-* x Sym^(X) 
with respect to the Uhlenbeck topology, where E-e is a Hermitian two-plane 
bundle overX with det E-£ = det E and C2{E-t) = C2(E)—£ for each integer 
e>o. 

Theorem 1.1 is simply a special case of the more general result proved 
in [16] for the moduli space of solutions to the perturbed PU(2) monopole 
equations in the presence of holonomy perturbations, so no separate proof 
is required. We include the statement here since it is more accessible in the 
absence of holonomy perturbations and because we appeal to it in [19], [20], 
[21]. 

Remark 1.2. The existence of an Uhlenbeck compactification for the mod- 
uli space of solutions to the unperturbed PU(2) monopole equations (1.1) 
was announced by Pidstrigach [56] and an argument was outlined in [59]. A. 
similar argument for the equations (1.1) (without perturbations) was out- 
lined by Okonek and Teleman in [53]. An independent proof of Uhlenbeck 
compactness for (1.1) and other perturbations of these equations is also 
given in [71]. 

The perturbation parameters (T,$) occurring in the statement of 
Theorem 1.3 below appear explicitly in the PU(2) monopole equations 
(1.1) and are described further in §2.1. The perturbation parameter 
/ G C00(GL(r*X)) is a variation of the Clifford map p : T*X -* 
Homc(W/r+, W~) and of the Riemannian metric g on T*X by an automor- 
phism of T*X and is described further in §3; the perturbed PU(2) monopole 
equations with the three perturbation parameters (/, r, i?) are given in equa- 
tion (3.12). Let MJfd denote the moduli space of anti-self-dual SO(3) con- 
nections on BU(E). 

Theorem 1.3. Let X be a closed, oriented, smooth four-manifold with C00 

Riemannian metric g, spin0 structure {p, Wr+,VF~)  with unitary connec- 



Generic metrics and transversality 911 

tion on detW+
; and a Hermitian line bundle detE with unitary connec- 

tion. Then there is a first-category subset V^ of the Frechet space V00 of 
C00 perturbation parameters (/, r, ??) such that for all (/, r, 7?) in V00 — V™ 
the following holds: For each parameter (/, r, i?) in V00 — V^ and Hermi- 
tian two-plane bundle E over X, the moduli space M^E(f, r, i?) o/PU(2) 
monopoles is a smooth manifold of the expected dimension, 

dim Mfysif, r, 0) = dimM*'asd + 2 indc VA - 1 

= -2p1(Su(E))-l(e(X) + <7(X)) 

+ ipiME)) + i((c1(W+) + d^))2 - a(X)) - 1. 

As explained further in §3.1, the Levi-Civita connection on T*X for the 
metric /*g, Clifford map p o /, and unitary connection on det W+ define 
a spinc connection on W. The rest of our article is devoted to proving 
Theorem 1.3. 

1.3. Outline of the proof and of the remainder of the article. 

We prove Theorem 1.3 in two steps, both of which have analogues in the case 
of the moduli space of anti-self-dual SO (3) connections over a four-manifold 
X with 6+(X) > 0 (although that constraint is not required here): 

1. For generic parameters (r,??) (and any parameter /), we show that 
the moduli space M^^r,*) of PU(2) monopoles (A,$) with A 
irreducible and $ rank two is a smooth manifold of the expected di- 
mension. 

2. For generic parameters (/,#) (and any parameter r), we show that 
the moduli space M^^/jT,*?) of PU(2) monopoles (A,*) with A 
irreducible and $ ^ 0 contains no pairs (A, $) with $ having rank 
one, that is, M$E{f,T,ti) = M$E(/,T,tf). 

The first result, Theorem 2.2, is proved in §2 using the Sard-Smale theorem 
[65] and Aronszajn's unique continuation theorem [5], together with some 
linear algebra calculations reminiscent of those arising in the proof of the 
Freed-Uhlenbeck generic metrics theorem [23]. The second result, Theorem 
4.1, is considerably more difficult and is proved in §4 using an infinite- 
dimensional analogue, for the family of perturbed Dirac operators VAJ^, of 
the well-known 'period map' argument for the family of operators d+^ [11, 
§VI], [15, Corollary 4.3.15]; see also [23, Corollary 3.21], [67, Appendix B]. 
Combining these two results yields Theorem 1.3. In the case of the moduli 
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space of SO(3) anti-self-dual connections, the first step is accomplished by 
the Freed-Uhlenbeck generic metrics theorem: that is, for generic metrics, 
Mg '*(#) is a smooth manifold of the expected dimension [15, Corollary 
4.3.18], [23, Theorem 3.17]. The second step is achieved by the (finite- 
dimensional) period-map argument: for generic metrics and b+(X) > 0, 
the moduli space M^d(g) contains no reducible connections [11, §VI], [15, 
Corollary 4.3.15]. 

The detailed proof of Theorem 1.3 is, of course, more complicated than 
the preceding synopsis can convey, so we indicate how the remainder of this 
article is organized. Section 2 contains the proof that the moduli space 
of irreducible, rank-two PU(2) monopoles is regular. In §2.1 we define a 
parametrized moduli space of PU(2) monopoles and, assuming this is reg- 
ular away from the loci of reducible or lower-rank PU(2) monopoles, we 
use the Sard-Smale theorem to show that the individual moduli spaces of 
irreducible, rank-two PU(2) monopoles are regular for generic parameters. 
The heart of the first step, then, is given in §2.2, where we show that the 
parametrized moduli space of irreducible, rank-two PU(2) monopoles is reg- 
ular. Section 3 describes the perturbations of the Dirac operator: in §3.1 we 
compute the differential of the resulting family of Dirac operators and in §3.2 
we define the PU(2) monopole equations and associated parametrized mod- 
uli space with the full set of perturbations. Section 4 contains the proof that, 
for generic parameters, the moduli spaces of irreducible PU(2) monopoles 
contain no rank-one pairs. Sections 4.1, 4.2, and 4.3 describe the loci of ir- 
reducible, rank-one PU(2) monopoles in terms of incidence correspondences 
— with infinite codimension — in certain Banach flag and Grassman mani- 
folds, by analogy with standard finite-dimensional constructions of algebraic 
geometry [27]. Section 4.1 describes general incidence correspondences using 
Banach Grassman manifolds and §4.2 reinterprets these correspondences us- 
ing spaces of Predholm operators, which are more suitable for our purposes. 
In §4.3 we define the loci of irreducible, rank-one PU(2) monopoles in terms 
of these incidence correspondences. These rank-one loci are in turn detected 
with aid of the Dirac-operator period map, which is defined and whose differ- 
ential is shown to have the requisite surjectivity properties in §4.4. Section 
4.5 contains a proof of the parametric transversality theorem: the result 
is well-known, but we include the proof as no single reference contains the 
precise statement (and proof) we need. Finally, in §4.6, we complete the 
proof that the moduli spaces of irreducible PU(2) monopoles contain no 
rank-one pairs for generic parameters: we apply the parametric transversal- 
ity theorem to show, in essence, that the loci of irreducible, rank-one PU(2) 
monopoles must have infinite codimension in their respective moduli spaces 
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for generic parameters and so these loci are empty. The stratification of the 
space of Predholm operators (by kernel dimension) [34], employed in §4.6, 
was also used by Maier in [45]. At the beginning of §4.6 we first give an 
outline of the main argument completing the proof of Theorem 4.1, as the 
detailed argument is rather long and technical. 

Theorem 4.1 serves the auxiliary purpose of giving another method of 
completing the gap in the transversality argument used by Pidstrigach- 
Tyurin in their definition of the spinc polynomial invariants [58, §1]; the 
same end is achieved via the holonomy perturbations of [16]. We briefly 
describe this application and Teleman's counterexample in the Appendix, 
together with some facts we need from linear algebra. 

1.4. Other approaches to transversality. 

As we remarked at the beginning of the Introduction, versions of Theorem 
1.1 and 1.3 were proved by the author and Leness in [16] for the PU(2) 
monopole equations (1.1) with additional holonomy perturbations; see [18] 
for a more concise account of this method. The possible presence or absence 
of irreducible, rank-one solutions to the PU(2) monopole equations consid- 
ered in [16] makes no difference to the argument there, as the perturbations 
are strong enough to yield transversality without a separate analysis of the 
locus of irreducible, rank-one solutions. A preliminary version [17] of the ar- 
ticle [16] relied on the incorrect assertion of [58, p. 277] described above and 
used only the perturbation parameters (r, ??). Transversality results for the 
PU(2) monopole equations, with perturbation parameters including (r,^) 
and the Riemannian metric g on T*X, were conjectured by Pidstrigach and 
Tyurin in [56], [59]. 

Teleman has explored another approach to the transversality problem, 
quite different from those of [16], [59], using certain ad hoc perturbations of 
the principal symbol of the linearization of the PU(2) monopole equations 
[71]. Like the PU(2) monopole equations (1.1), the equations of [71] em- 
ploy the perturbation parameters (r, $), together with a term of the form 
YsiP^TiVAXii® ® $*)oo in the curvature equation in (1.1), where {Yi} is a 
finite set of vector fields spanning TX at every point of X and the coefficients 
Ti are in fi0(gl(su(W+))). The approach of [71] illustrates the significance 
of principal-symbol perturbations. However, as noted in the introduction to 
[72], it appears to be difficult or impossible to show that solutions to the 
PU(2) monopole equations of [71] which are reducible on an open subset 
of X are necessarily reducible over all of X, as required by the transversal- 
ity argument in [71]. Indeed, Proposition 3.1.2 in.[71] assumes incorrectly 
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that that the Agmon-Nirenberg unique continuation theorem for an ordinary 
differential equation on a Hilbert space [3] applies to the PU(2) monopole 
equations of [71], as an examination of the hypotheses of [3] reveals; the 
Agmon-Nirenberg theorem is used by Donaldson-Kronheimer in their proof 
of the corresponding unique continuation property for solutions to the anti- 
self-dual equation and by the author and Leness for our proof of a restricted 
unique continuation property for the holonomy-perturbed PU(2) monopole 
equations of [16]. Varying the Riemannian metric g on T*X and the Clifford 
map p : T*X —► Homc(VF+

) W~) by automorphisms / of T*X, as we do 
in §3, perturbs the principal symbol of the Dirac operator; the key applica- 
tion of this perturbation occurs in the proof of Proposition 4.10, where we 
show that a certain partial differential of the Dirac-operator period map is 
surjective. Variations of the Dirac operator with respect to the Riemannian 
metric have been described by Bourguignon and Gauduchon in [7]. Their 
technique, with some enhancements, was recently used by Maier to prove 
certain generic metrics results for Dirac operators on low-dimensional spin 
or spinc manifolds [45]. The variational formulas of [7], [45] were helpful for 
the development of our present article, though the variation of the Dirac 
operator we construct in §3 is quite different from that of [7]. The unique 
continuation property for reducible solutions to the anti-self-dual equation is 
an important ingredient in the proof of the Preed-Uhlenbeck generic metrics 
theorem given in [15] (see their Lemma 4.3.21); it is proved for the PU(2) 
monopole equations (1.1) by the author and Leness in [16] (see Theorem 
4.11 in 4.4 here for a precise statement) and plays an important role in the 
proof of Theorem 1.3 here as well. 

The present article was completed by August 1997, at which time it 
was widely circulated and submitted to a print journal. Shortly after this, 
the author received a preprint [72] from A. Teleman addressing, indepen- 
dently, the issue of transversality for the PU(2) monopole equations with 
perturbations similar to those we employ here. 
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2. Transversality on the complement of the loci of lower-rank 
PU(2) monopoles. 

Let C^E C Cw,E be the open subspace given by gauge-equivalence classes 
of pairs (A, <£) with A irreducible and $ rank two, and set 

M#E:=MwjsnC#tE. 

Our goal in this section is to show that M^^r^) is a regular manifold 
of the expected dimension for generic C00 parameters (T,#): this result, 
Theorem 2.2, is proved in §2.1 under the assumption that the parametrized 
moduli space is regular while the latter result, Theorem 2.1, is proved in 
§2.2. 

2.1. The parametrized moduli space. 

Our argument relies, as with most standard applications in gauge theory 
[15], [23], [37], [74], on the Sard-Smale theorem for a Predholm map of 
Banach manifolds [65]. 

We shall need to be precise here and throughout our article about the 
sense in which a parameter is 'generic'. A subset S of a topological space V 
is called a set of the first category 2 if its complement V — S is a countable 
intersection of dense open sets or, equivalently, if S is a countable union of 
closed subsets of V with empty interior; if V is a complete metric space, then 
Baire's theorem implies that V — S is dense in V [62]. In our applications, 
V will either be a Banach or Prechet manifold (with a complete metric), so 
V — S will always be dense if S is a first-category subset. 

Throughout this section we use a Banach manifold of Cr perturbation 

2A second-category subset is not necessarily the complement of a first-category 
subset — although the term is sometimes inaccurately used that way: it is simply 
a subset which is not of the first category [62]. To eliminate any possible confusion, 
we avoid using the term here. 
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parameters (with r large) given by 

(2.1) V := Cr(GL(A+)) 0 C^A1 ® C). 

We could, of course, also include the space Cr(GL(T*X)) of perturbations of 
the Riemannian metric on X and of the Clifford map in our parameter space 
(2.1), as the latter perturbations are required for our period-map argument 
in §4. However, these additional parameters are not used to prove the main 
result of this section (Theorem 2.2), so we omit them for the sake of clarity. 
In the same vein, the space Cr(GL(A+)) of perturbation parameters r is not 
required in our proof of the main result of §4 (Theorem 4.1), so in that section 
we omit the space Cr(GL(A+)) from the definition of the Banach manifold of 
perturbation parameters used there, again for reasons of clarity. To conclude 
the proof of our main transversality result (Theorem 1.3), though, we can 
clearly assume that the same space of perturbations (containing the three 
types of parameters) has been used throughout sections 2 and 4. 

We define a 0(/£;-equivariant map 

6 := (@i, ©2) : V x Cw,E -> Lfc-i(A+ ®'(*u(E)) 0 £Li(^~ ® E) 

by setting 

(2 2)      Btr #A *) - (^ *' A> ^ •= (^ - rp"1(* 0 **)00) {2.2)       ©(r, 0, A, <P) - ^^ ^ ^ ^J .     ^       VAQ + pWQ       J , 

where (A, $) is a pair on (su(2?), W+&E) and the isomorphism ad : su(E) 2^ 
$o($u(E)) is implicit, 0

QE acts trivially on the space of perturbations V, and 
so &~

1
(0)/

O
GE is a subset ofVxCw,E- We let dJlw,E denote the parametrized 

moduli space &-
1
{$)/

0
GE and let SJl^ := SWw^ n {V x C^). We fix a 

C00 Riemannian metric g on T*X, noting that it is not varied in this section. 
The 0C/£-equivariant map 6 defines a section of a Banach vector bundle 

2J over V x C^E with total space 

so 6 := 6(r, #, •) is a section over C^E of the Banach vector bundle 9J := 

S|(T,^)- In particular, the parametrized moduli space 93!^^ is the zero set 

of the section 6 of the vector bundle QJ over V x C^E. 

Theorem 2.1. T/ie 2:ero set m V x C^ 0/ tfte section 6 is regular and, 

in particular, the moduli space WIWE 
is a smo0^1 Banach submanifold of 

VxC** 
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To preserve continuity, we defer the proof of Theorem 2.1 to §2.2. The 
differential D& := (i)6)[r,i?,A,<i>] 0f the section 6 at a point [T?#, A, $] in 

v X^E 
is siven by 

,2.3) nmSrM.a,^^^ 

where (a,^) e Kerd^ c Ll(A1®su(E))®Ll(W+®E) represents a vector 

in the tangent space (TC$E)[Aj4>] = T[A^C$E and (ST, Si}) e V. Here, c^ 
is the L2 adjoint of the differential 

4* : L£u(au(E)) 0 «RZ -» ^(au^) 0 Li(W+ <8> E) 

of the map 0^^ —> CW;JE?> ^ ^-^ ^(-A> ^)? at the identity. 
The differentials in (2.3) are given explicitly by 

(2.4) DQi (ST, 5$, a, 0) = d+a - (^rp"1^ ® $*)oo 

(2.5) D^ (5r, 5t?, a, 0) = 2?A^ + p(i?)0 + p(a)$ + p^i?)*. 

We have D6(-,d$^C) = 0 for all C e Ifg+1(jefu(£?)) 0 iRz since 6 is ogE- 
equivariant. By the regularity results of [16, §3] we may assume, without loss 
of generality, that the pair (A, $) in C^E is a Cr representative for the point 

[A, <&] in the zero set 6~1(0) C C^E. Since the tangent space (TCyjrE)[A1#\ 

may be identified with Kerd^^ by the slice result [16, Proposition 2.8], we 
have 

£>©(0,0,a,0) := d^(a,</>) = (djj + 4^)(a,0), 

for (a, (/>) e Kerd^*^, so the differential ^©l/oixTC*'"   is f^^holm, where 

{0} x TC^E = T({T,0} x C^). We recall that d^^ and d1^ are the 
two differentials in the elliptic deformation complex for the PU 2) monopole 
equations (1.1). Thus, 6 is a Predholm section when restricted to the fixed- 
parameter fibers {T, #} xC^ C VxC^E and so the Sard-Smale theorem (in 
the form of Proposition 4.3.11 in [15]) implies that there is a first-category 
subset V^ C V such that the zero sets in Cy^E of the sections 6 := 6(T, #, •) 
are regular for all perturbations (r, #) eV — Vfc. Now 



918 Paul M. N. Feehan 

and so for generic Cr parameters (r, #), the moduli space M^^(r, t?) is 
a smooth manifold. Finally, the argument of [16, §5.1.2] implies that the 
parameters (p, r, t?) can be assumed without loss of generality to be C00 if 
X is a smooth manifold. Let 

Voo ._ c00(GL(A+)) x C00^1 0 C), 

denote the Frechet manifold of C00 perturbation parameters. The expected 
dimension of M$E{T, ti) is given by Proposition 2.28 in [16] and is obtained 
by computing the index of the elliptic deformation complex for the PU(2) 
monopole equations (1.1). In summary, we have: 

Theorem 2.2. Let X be a closed, oriented, smooth four-manifold with C00 

Riemannian metric. Then there is a first-category subset V^ C V00 such 
that for all (r, t?) in V^—V^ the following holds: The zero set of the section 

6 := 6(r, i?, •) is regular and the moduli space M^E(T, tf) = 6~1(0) D C^YE 

is a smooth submanifold of of the expected dimension. 

2.2. Smoothness of the parametrized moduli space. 

We prove Theorem 2.1 in this section by showing that the 0(/£-equivariant 
map 6 : VxC^E -> L|_1(A"f(8)su(£'))©L^_1(W~(8)E) vanishes transversely 

and so the parametrized moduli space QJl^^ = &rl{fy/0GE is a smooth Ba- 
nach manifold. We may suppose without loss of generality that (r, #, A, $) 
is a CT representative for a point in 6~1(0) and denote .0(5 := (.D(3)T,I9,A,$ 

for convenience. 
Note that Ran D&2 is a real subspace of L\_1{W~ <g> E) according 

to (2.5): indeed, D&2{8T^a^Q) spans a real subspace as a varies, while 
1)62(^,5^,0,^) spans a complex subspace as Sticj). Hence, 

Ran(jD6) C Lj^A4- ® m{E)) 0 LLiC^" ® E) 

if and only if there exists a non-zero pair (v, iji) such that for all (5r, 5i9, a, (j>) 
we have 

{D&(5T,5$,a,<}>),{v^))L2{x) 

(2.6) = {D&^iSr, 5$, a, 0), t;)L2(x) 

+ Re(£>62(5T, W, a, ^), ^La (x) = 0. 

Suppose that (v,^) € iLi(A+ ® 5U(£!)) © ^LiC^" ® ^ is real L2~ 
orthogonal to RanZ)6, so (v,^) lies in Ker(£>6)* by (2.6).  Then elliptic 
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regularity for the Laplacian JD6(I)6)*, with C7""1 coefficients, implies that 
(v,ip) is in Cr+1 [16, §3]. Moreover, Aronszajn's theorem [5, Remark 3, p. 
248], [31, Theorem 1.8] implies that pairs (V^I/J) in the kernel of D&(D&)* 
have the unique continuation property [16, Lemma 5.9]. 

We begin with a simple observation from linear algebra; though elemen- 
tary, it has an important application in the Freed-Uhlenbeck proof of the 
generic metrics theorem for the anti-self-dual equation (see, for example, 
Lemma 3.7 in [23]). We shall make extensive use of it here. 

Lemma 2.3. Let U, V, W be finite-dimensional Hilbert spaces (either all 
real or all complex) with dimU < dimV. Suppose M G Hom(C/,W) = 
W ® U* and N e Hom(F, W) = W ® V*. If (MP, N)w®v* = 0 for all 
P e Hom(V; U), then RanM 1 RaniV in W and so RankM + Rank AT < 
dimW. 

Proof. Let {vi} be an orthonormal basis for V, with dual orthonormal basis 
{v*} for V* given by v* := (•,!;«), and let {UJ} be an orthonormal basis for 
U. We then have 

0=(MP,N)WG>V* 

= ^(MPvi ® <, NVJ (8) vfiww 
h3 

= Y,(MPvi,Nvi)w. 

Since P G Hom(V,U) is arbitrary, for each i' G {l,...,dimF} and j G 
{1,..., dim t/} we may choose P = P;/j such that Pi'jVi = 0 for all i ^ i' 
and Pi/jVif = Uj, so the preceding identity implies that 

(MUJ, Nv^w = 0,    for all 1 < if < dim V and 1 < j < dimU. 

Hence, (Mu, Nv)w — 0 for all u G U, v G V, and the assertion follows.    □ 

Setting {ST,a,4>) = 0 in (2.4), (2.5), and (2.6) yields 

Re(/0(<W)*,^)L2(X) = 0^    for a11 W € C^A1 ® C). 

Using the identity z = Re(^) + £Re(—z^) for z G C, we see that 

(p(<W)*,^)L2(X) = Re(p(^)$,V)L2(x) +iRe(p(-i^)$,V)L2(x)5 
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and so we obtain the full complex L2-orthogonality condition 

(2.7) {p{M)$,il>)ij*(x) = 0,    for a11 <W € C^A1 ® C). 

Recall that the ranks of sections of the complex bundle W+<g)E and real bun- 
dles su(W+)<&su(E) and A+<&su(E) are defined by considering them as sec- 
tions of Homc(W+'*,£), EomR(su(W+)*,su(E)), and RomR(A+>*,su(E)), 
respectively. 

Lemma 2.4 ([17]). Suppose $ € C0(X, W+®£;) and * 6 C0(X, W®^ 
satisfy (2.7). Tften $ and $, considered as elements o/Honic(W/r+'*, E) and 
Homc(W^~,*,-E,) respectively, have complex-orthogonal images in E at every 
point of X and thus Rankc $(x) + Rankc ^f(x) < 2 at each point x 6 X. 

Proof Since $ is an arbitrary, Cr complex-valued one-form, we obtain the 
pointwise identity (p(tix)&x, 1$x)x = 0 for all ^ G (T*X)X®C. Let {^i, ^2}, 
{^i? ^2} be orthonormal frames for W+Irr, ^"U respectively. The CliflFord 
map is complex linear and restricts to give a complex-linear isomorphism 
[48, p. 89], 

p : (T*X)X ®R C -> Homc(W+, W')x. 

(This is proved as Lemma A.4 in Appendix A.3.) The conclusion now follows 
from the first assertion in Lemma 2.3. D 

Since (A, <&) G C$E by hypothesis and $ is Cr, there is a non-empty 
open subset U C X on which Rankc $(x) = 2, for all x G U. Equation (2.7) 
and Lemma 2.4 imply that Rankc ^(x) = 0 for all x G 17, that is, ^ = 0 on 
C/. Similarly, by varying r we see that (2.4), (2.5), and (2.6) yield 

(2.8) ((tfrjrp-1^ ® $*)oo, <; W) = 0,    for all Sr G Cr(0[(A+)), 

by setting (<$#, a, </>) = 0. 

Remark 2.5. Even though $ solves an elliptic equation, namely (DA + 
p(<#))<I> = 0, and Rankc $(x) = 2 for all a: in the open set [7, it does not 
necessarily follow that Rankc $0*0 = 2 at all points x in X; see [29] and [31, 
p. 668] for counterexamples in the case of harmonic maps. If all the per- 
turbation parameters are analytic and (X, g) is a real-analytic Riemannian 
manifold then $ will necessarily be real-analytic by [50, Theorem 6.6.1], so 
det $ (see §4) will be a complex-valued, real-analytic function and if it van- 
ishes on a non-empty open set, it will vanish identically. However, we cannot 
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constrain our parameters to be real-analytic before applying the Sard-Smale 
theorem (as a space of real-analytic parameters would not have a complete 
metric), so we make no use of real-analyticity here. 

Lemma 2.6 ([17]). If v e C0(A+ ® su(E)) and $ e C70(Wr+ ® E) satisfy 
(2.8), then v,Tp~l{§ ® $*)oo € Hom]Et(A+'*,su(.E)) /ia'ye orthogonal images 
in $u(E) at every point in X and so Rank^ t;(a:)H-RankK($(a:)®$(a;)*)oo < 3 
at each x € X. 

Proof Since 5r € Cr(fl[(A+)) is arbitrary, we obtain the pointwise identity 

{{Sr^rp-1^ ® $*)oo, v>x = 0   for all 5rx e flC(A+|x), 

and any x € X. The conclusion now follows from the second assertion in 
Lemma 2.3. □ 

Lemma 2.7 ([16, Lemma 2.21]). I/* € C0(W+ ® E) and x G X, then 
the following hold: 

1. RankM($(x) ® $*(x))oo = 1 if and only i/Rankc $(x) = 1, 

J2. RankM($(x) ® $*(a;))oo = 3 i/ and onZy i/Rankc $(x) = 2. 

Remark 2.8. Note that if $ is rank two on Jf, then ($ ® $*)oo is rank 
three on X and so (1.1) implies that Fj" is rank three on X when (A, $) is 
a PU(2) monopole: thus, A cannot be a reducible connection on X. 

We can now complete the proof of Theorem 2.1 in either of two ways; 
the interest in the second method is explained in the remark at the end of 
the proof. 

First proof of Theorem 2.1. Since Rankc $(x) = 2, for all x 6 [/, Lemma 
2.7 implies that Rank£($(x) ® $*(a;))oo = 3, for all x E 17, and so Lemma 
2.6 implies that Rank^ v(x) = 0, for all x G 17, since su(F) is rank three and 
thus v = 0 on U. Hence, (v, '0) = 0 on U and so (i;, ^) = 0 on X by unique 
continuation for the Laplacian DGDO*, as desired. □ 

Alternatively, we observe that it is enough to know that ($ ® $*)oo has 
at least rank two at some point of X: 

Second proof of Theorem 2.1.   Since Rankc $(x) = 2, for all x G 17, Lemma 
2.7 implies that Rank£($(rc) ® $*(rr))oo > 2, for all # G C/, and so Lemma 
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2.6 implies that Ranki^ ^rc) < 1, for all x € U, since su(E) is rank three. 
On an open subset Uf C X where v ^ 0, we can write v = w ® b, where 
w e Cr(U\ A+) and b G C^^, J6U(E)), with |6| = 1 on U'. The argument of 
[15, Lemma 4.3.25] and [23, Proposition 3.4, p. 56] now implies that d^fe = 0 
on U'. The connection A is thus reducible on the non-empty open subset 
U* C X, which we may assume to be connected without loss of generality. 
Theorem 4.11 implies that A, and so the pair (J4,$), is reducible on all of 
X — again contradicting our assumption that (A, $) is irreducible. Hence, 
v = 0 on X and so (v, ^) = 0 on X. □ 

Remark 2.9. In conjunction with the variations of the Dirac operator con- 
sidered in §4, a direct approach (avoiding the period map of §4) to the proof 
of our main transversality theorem would work were it not for the fact that 
it seems impossible (using these variations) to show that v has at most rank 
one on some non-empty open subset of X, as used in the second proof above. 

3. Variation of the Dirac operator. 

The second main step in the proof of Theorem 1.3 is to show, for generic 
parameters, that if (A, $) is a PU(2) monopole then the element $ of the 
kernel of the perturbed Dirac operator defined by A cannot be rank one. 
In §3.1 we introduce our full parameter space of perturbations of the Dirac 
operator and compute the differential of the resulting family, while in §3.2 
we describe the corresponding perturbed PU(2) monopole equations and the 
universal moduli space. 

3.1. Clifford maps and Dirac-operator variations. 

In order to describe our variations, it is helpful to have a construction of 
the Dirac operator at our disposal which is as simple as possible. The 
minimal, axiomatic approach employed by Kronheimer-Mrowka [39] and 
Mrowka-Ozsvath-Yu [51] is extremely useful for this purpose, so this is the 
approach we shall follow here. 

Recall that a real-linear map p+ : T*X —> Homc(VF+, W~) defines 
a Clifford-algebra representation p : Clc(T*X) —> Endc(VF), with W := 
W+ 0 W-, if and only if [42], [63] 

(3.1) p+(a)tp+(a) = 5(a, a)idw+,        a 6 C^T**), 

where g denotes the Riemannian metric on T*X. The real-linear map p : 
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T*X —> Endc(W+ © W~) is obtained by defining a real-linear map 

p_ : T*X -> HomcCW, W+),        a ^ p_(a) := -p+Cajt, 

and setting 

0       p.(a)" 
(3-2) PW :=  l        /   x n 

The Clifford algebra representation p : Clc(r*X) -> Endc(W+ © W") is 
uniquely determined by the map />+ : T*X —> Homc(W",", W~) and satisfies 

(3.3) p(a)i = -p(a)    and   p(a)t/9(a) =ff(tt,a)idWr,        a e C^^X). 

We may vary p+ by automorphisms of r*X. If / G C00(GL(r*X)), then 

p+(/(a))tp+(/(a)) = g{f(a)J{a))i&w+ 

= (/*y)(a,a)idw+, 

and we obtain a Clifford map p/)+ := p+ o / : T*X -♦ Homc(Wr+, W^~) 
which is compatible with the Riemannian metric f*g on T*X. Thus, for 
/ G C<x>(0(T*X)), the Clifford map p/)+ is compatible with the given Rie- 
mannian metric g. 

Recall from [48, p. 89] (or Lemma A.4), that the complexification of p+ 
yields an isomorphism 

(3.4) p+ : (r*X) OR C -> Homc(W+, W). 

The space Cr(GL(T*X)) is a Banach Lie group with Lie algebra 
Cr(fl[(r*X)) [23], [55]. Then, for all e G ft^R) and $ G fi0(W+), we 
have 

(3.5) ((0p/>+)(*/))(e)* = ^-(WJc)*, 

where 5/ G Cr(0l(r*X)). 
For the Riemannian metric g on r*X, let Vs be an SO (4) connection 

on T*X. A unitary connection V on W is called spinorial with respect to 
Vs if it induces the SO(4) connection V9 on T*X, or, equivalently, if the 
covariant derivative V on C°0(W) is a derivation with respect to Clifford 
multiplication, p : C^WTX) ® W) -* C00^), so [42], [63] 

(3.6) V„(/JGS)*) = p(V^)$ + /9(/3)Vr,$, 
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for all r] G C^iTX), (3 G ft#(X,R), and $ € C00{W). (Our convention 
differs from that of [51, Definition 4.0.23].) The unitary connection V on 
W uniquely determines a unitary connection on det W+ ~ det W~ in the 
standard way [33]. Any two unitary connections on W, which are both 
spinorial with respect to Vp, differ by an element of Ql{X, iR). Conversely, 
a unitary connection V on a Hermitian two-plane bundle W = W+ © W~ 
over an oriented four-manifold X is uniquely determined by 

• A Clifford map p+ : T*X -> Homc(W+, W') satisfying (3.1) for the 
Riemannian metric g on T*X, 

• An SO (4) connection Vp on T*X for the metric g, which need not be 
torsion free, and, 

• A U(l) connection B on detW"1". 

The resulting connection V on W is then spinorial with respect to Vp. 
Digressing slightly, we recall that the local connection matrix one-form 

of V may be expressed in terms of those of the connections on T*X and 
detT^+. To see this, let {e1} be an oriented, g-orthonormal local frame for 
T*X with dual frame {e*} for TX and let iuku J = 1,2, be the corresponding 
so(4) connection matrices for the SO(4) connections ^V9 over an open subset 
U C X. Let B E ri1(i7,iM) also denote the local connection one-form for 
the U(l) connection on det W+, with respect to a trivialization for det W+ 

induced from that of W+ over U. Prom [28, p. 4] (see also [42, Theorem 
11.4.14]), the local connection matrix one-forms for the spinc connections ^"V 
on W defined by (p^Vg,B) are given by 

J<JSpinc(4)=iwSpin(4)+lBidw+ 

= i iCJ(JJkl ® p(ek Ael) + hB idw+ • 

Although the formula of [28] refers only to spin connections, locally we may 
write W\u = S (Sic N, where 5 is a spin bundle for the local spin structure 
and N is a Hermitian line bundle such that iV02 = det W+|i/. We may then 
write the spinc connections on W\u as tensor products of spin connections 
on S with connection matrix one-forms ^u;Spin(4) and a U(l) connection on 
N with connection one-form ^5, as above. 

Given a unitary connection A on an auxiliary Hermitian two-plane bun- 
dle E, we let VA denote the induced unitary connection on W ® E. The 
corresponding Dirac operator [26, §3.4], 

(3.7) PA:=P+OVA, 
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is defined by the composition of the covariant derivative, VA : C00(W+ ® 
E) -> C00(T*X (g) W+ ® £?), and Clifford multiplication, p+ : ^^(r*^ ® 
iy+® J5) _^ C00(Wr""®£7). If {v*} is a (not necessarily g-orthonormal) local 
frame for T*X with dual frame {vi} for TX, defined by v*^-) = <%, then 
VA = Yli=ivl ® ^A,vi and so X^ has the familiar shape 

4 

t=i 

It is very convenient to keep the unitary connection V on W fixed through- 
out, so while (V,p) necessarily induces an SO(4) connection V^ on T*X, 
we shall not require that V^ be torsion free, that is, we shall not assume V^ 
is the Levi-Civita connection LCV5r for the metric g. However, the relation 
between the Dirac operators defined by (p,B,A) and two different SO(4) 
connections for the metric g on T*X is easily determined: 

Lemma 3.1. Let X be an oriented four-manifold with Riemannian metric 
g on T*X, compatible Clifford map p+ : T*X —► Homc(W+, W"), unitary 
connection B on detW^, and unitary connection A on a Hermitian two- 
plane bundle E over X. If ^V9, j = 1,2 are two SO(4) connections on 
T*X for the metric g, and3^ are the unitary connections on W induced by 
(p,iV9,B), and^VA are the Dirac operators defined by (p^V,A), then 

2VA-
1VA = p+(cr)®idEl 

where 
a := 2V - lV e n1(X,siJi(W+)) 

and p+(cr) G Homc(VF+, W~) is defined by the contraction 

p+ : C^i^X ® Endc(W+)) -►■ Croo(Homc(T^+, W')). 

Proof Since 2V and 1V are unitary connections on W+, then a = 2V—1V G 
fi1(X,u(W^+)), and as they both induce the connection B on det W"1", then 
trcr = 0, so a G fi1(X,5u(VF+)). If {v*} is any local frame for r*X with 
dual frame {vi} for TX, defined by v^Vj) = 5y, then the difference between 
the Dirac operators is given by 

2VA - XVA = f^p+tftfVA,* - 'v^). 

4 

»=1 
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with p+{(j) G HomclW+W"), as desired. Alternatively, the conclusion can 
be inferred from the expression for the local connection matrix one-forms 
for the connections J'V given in the paragraphs preceding the statement of 
the lemma. □ 

Lemma 3.1 allows us to write the Dirac operator in (1.1), defined by 
a Riemannian but not necessarily torsion-free connection V9 as the Dirac 
operator for LCV^ plus an element p+{0) of Homc(VF+, W') = p+(T*X ® 
C). Since we already include a perturbation term p+(#) in our definition of 
the PU(2) monopole equations, we may therefore assume at the conclusion 
of our transversality argument that the Dirac operator corresponds to the 
Levi-Civita connection for the Riemannian metric on T*X by absorbing 
the correction term p+(0) into /0+(#). For the remainder of the article, 
however, the unitary connection on W will be held fixed and so it induces a 
Riemannian but not always torsion-free connection on T*X via (3.6) as the 
metric on T*X is allowed to vary. 

Prom (3.7) we obtain a family of Dirac operators parametrized by 
Cr(GL(T*-X")). Specifically, let T>AJ be the Dirac operator defined by the 
following data: 

• Clifford map p+ o f compatible with the metric f*g on T*X, where 
p+ is a Clifford map compatible with the metric #, and / £ 
C00(GL(T*X)), 

• Unitary connection V on W, 

• Unitary connection A on a Hermitian two-plane bundle E. 

If {v1} is an oriented local frame for T*X with dual frame {vi} for TX 
defined by v^(vi) = Sij, then 

VAj = J2p+(f(vi))VA,Vi 
i=l 

is the corresponding family of Dirac operators. 
The variation of the Dirac operator VAJ induced from (3.5) is given by 

4 

(3.8) (DVA)f(5f)* = YtP+WfWW***' 



Generic metrics and transversality 927 

where $ G QP(W+ ® E). For a given Hermitian metric and unitary con- 
nection on W+ © W", an orientation of X, and a Riemannian metric g on 
T*X, we then take our family of perturbed Dirac operators 

VAJ,* : n0(W+ ® S) -> n0(W- (8) JB) 

to be 

4 

(3.9) Vw := ^ P+{m)VA,Vi + p+(/W), 

for any unitary connection A on E. The unitary connection V on W+ © VF- 

and Clifford map p/>+ : r*X -> Homc(W+,W") induces, via (3.6), an 
SO(4) (but necessarily torsion-free) connection on T*X for the metric f*g. 

Lemma 3.2.  Continue the notation of this section. Then 

(DV)Ajj(6A,5f,6#)<t> 
4 

=Y, p+cwy )v^*+P+(/(M))*+P+(/(W))*. 

We note that a direct variation of the Dirac operator with respect to 
the Riemannian metric g has been computed by Bourguignon and Gaudu- 
chon [7], using a rather different and more elaborate approach than the one 
considered here. Their computation, with some enhancements, was recently 
used by Maier to prove certain generic metrics results for Dirac operators 
on low-dimensional spin or spinc manifolds [45]. It is not known at present 
whether there exists a purely 'generic metrics' transversality result for the 
Seiberg-Witten equations (analogous to the celebrated generic metrics the- 
orem of Freed and Uhlenbeck [15], [23] for the anti-self-dual equation), al- 
though there have been some attempts in this direction [9]. 

Recall that the space Met(X) of all C00 Riemannian metrics on X is a 
contractible, open cone inside the space S'2(T*X) of symmetric, rank-two, 
contravariant tensor fields on X and so, at any metric g G Met(X), it has 
tangent space TgMet(X) = S2(T*X). The technique employed by Bour- 
guignon and Gauduchon constructs spinor bundles which depend implicitly 
on the Riemannian metric (as is standard [42]). Thus, in order to compute 
the differential of their family of Dirac operators parametrized by the space 
of metrics, the family must be pulled back to an equivalent family of op- 
erators acting on a fixed Hilbert space of sections of a fixed spinc bundle. 
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This is the technique employed by Bourguignon-Gauduchon and Maier; a 
similar one was used by the authors in our proof of Theorem 5.11 in [16]. It 
is important to note that the resulting family of operators in [7] is not nec- 
essarily a family of Dirac operators. In any event, their key result, namely 
[7, Theorem 21] (see also [45, Proposition 2.4]), could be used in place of the 
simpler variational formulas (3.8) which we shall employ in the sequel. The 
principal difference for our application would be that variations of g alone 
do not span QI(TX), SO we would need to consider auxiliary variations of 
the Clifford map P+ by elements / € C^^Og^X)). 

3.2. The parametrized moduli space of PU(2) monopoles. 

Although the curvature equation in (1.1) will only play an auxiliary role in 
the proof of Theorem 4.1 (for example, through the local-to-global unique 
continuation result, Theorem 4.11, for reducible PU(2) monopoles), we will 
need a parametrized moduli space as a domain of definition for our infinite- 
dimensional period map. In this section we define PU(2) monopole equations 
containing the full set of perturbations (/, r, $) and define the corresponding 
parametrized moduli space. 

We fix a C00 Riemannian metric g on T*X and set 

(3.10) V := Cr(GL(T*X)) 0 C^A1 ® C). 

As we remarked in §2.1, we could of course include the space Cr(GL(A+)) 
of parameters r in our definition of V in (3.10); we simply omit them for 
convenience here, as they play no role in §3 or §4, just as we omitted the 
parameters / from the definition of V in §2. 

For / e Cr(GL(T*X)), we let pf : T*X _> Endc(W+ 0 W") be the 
Clifford map defined by p/5+ and (3.2). The map pf is compatible with the 
Riemannian metric f*g on T*X in the sense of (3.3) and thus extends, in 
the usual way, to give an isomorphism of real three-plane bundles, 

(3.11) pr.k+J*9->m{W+). 

Let {e1} be an oriented, g-orthonormal local frame for T*X and observe 
that {/(e1)} is an oriented, /*p-orthonormal local frame for T*X, so we 
have induced isomorphisms 

taking e1 A e2 + e3 A e4 >-► /(e1) A /(e2) + /(e3) A /(e4), and similarly for 
the remaining two elements of the standard local frame for A+ := A+'9 
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and the three elements of the local frame for A- := A~^. Note that if 
P+(g) := 5(1 + *g) : A2 = A+ © A" -> A+ is the projection onto 5-self-dual 
two-forms, then 

P+(f*9) = I'1 o P+(g) o / : A2 - A+'f* 

is the projection onto /*^-self-dual two-forms. (We find it convenient to 
use automorphisms / of T*X to vary the metric g on T*X, while Preed- 
Uhlenbeck [23, pp. 51-52] vary the metric on TX by automorphisms of 
TX.) 

Suppose v := E;<j^je* A ej € n2(X,R).  For any $ G C00(W+), we 
see that 

i<j i<j 

= E^PC/^) A /(e*))* = p I E wy/Ce* A e^)) $ 

= p(/(a;))* = (/t»o/)(a;)$. 

Conversely, since ($ ® $*)oo € fi0(su(l¥+)), r e fi0(GL(A+)), and T/ := 
f-loTofe n0(GL(A+<f*9)), we have 

Tfpfl* ® $*)oo = /"V/u"^* ® $*)oo € fi0(A+'/*s). 

For the metric f*g on T*X, compatible CliflFord map pf : A+>f*9 -»■ su(W+), 
and compatible automorphism -ry of A+'^*s, the curvature equation in (1.1) 
is given by 

P+(f*g)FA - Tfpfitf ® r)oo = 0 € n+'f*9(su(E)), 

that is, 

(/-1 o P+(g) o f)(FA) - f-'p-1^ ® $*)oo = 0, 

or equivalently, 

P+(g)f(FA) - p-VC* ® $*)oo = 0 € fi+(su(£)). 

We now define our 0£/.E-equivariant map 

& ■ V x CW)£; -+ LLi(A+ ® (au(£?)) © LJLi(W~ ® ^)) 
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by setting 

The group 0
GE acts trivially on the space of perturbations V and so 

&rl(Q)/0GE is a subset of V x CIV;JS?. We now let dKw,E denote the 
parametrized (or universal) moduli space &rl($)/0GE for the augmented 
space V of perturbation parameters and let SJt^^ := QJlw;^ H (P x C^r0^). 

4. Period maps for Dirac operators. 

In §2 we proved that the moduli space of PU(2) monopoles is cut out trans- 
versely away from the loci of pairs (A, $) with either A reducible or $ rank 
less than or equal to one. In this section we prove the following analogue of 
Proposition 4.3.14 and Corollary 4.3.15 in [15] for the locus of pairs (A, $) 
with A irreducible and $ rank one but not identically zero: 

Theorem 4.1. Let X be a closed, oriented, smooth four-manifold with 
spinc structure (p, W"1", W~) and Hermitian two-plane bundle E. Then there 
is a first-category subset V£ C V00 such that for all (/, r, #) in V00 - V£ 
the following holds: The moduli space M^rE(f^ r, t?) contains no PU(2) 
monopoles (A, $) with both A irreducible and $ rank one. 

The argument we describe here only works for PU(2) monopoles (A, $) 
with A irreducible. Thus, even for generic parameters (/, r, #), the moduli 
space Mw,E{f, T, #) will in general contain points [A, <&] with A reducible and 
$ rank one and these will not necessarily be smooth points of Mw,E{f, r> #)• 
However, it is reassuring to note that the loci of reducible PU(2) monopoles 
— corresponding to moduli spaces of Seiberg-Witten monopoles — cannot 
be perturbed away by the argument we present here: the fact that the PU(2) 
monopole connections A are irreducible is used in an essential way in the 
proof of the key Proposition 4.10. 

Given Theorem 4.1, we can quickly dispose of the proof of Theorem 1.3. 

Proof of Theorem 1.3, given Theorem 4.1. As we remarked at the beginning 
of §2.1 and §3.2, we may assume without loss of generality that the same 
Prechet space of C00 perturbation parameters, 

V00 := ft0(GL(T*X)) x ft0(GL(A+)) x ^(A1 ® C), 
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has been used for the proofs of both Theorem 2.2 and Theorem 4.1. By 
Theorem 2.2, there is a first-category subset Vfc C V such that for all 

p = (/,T,#) G V - Vfc, the moduli space M$E(p) of irreducible, rank-two 
PU(2) monopoles is a smooth manifold of the expected dimension. On the 
other hand, by Theorem 4.1, there is a first-category subset V^ C V such 
that for all p = (/,r,i?) G V - V"^ the moduli space M$E{p) contains 

no irreducible, rank-one PU(2) monopoles, that is, M$E(p) = M^E(p). 

Hence, for aUp G V-Vfc, where Vfc := Vf
{cUV^ the moduli space M$*E(p) 

is a smooth manifold of the expected dimension. D 

The remainder of §4 is taken up with the proof of Theorem 4.1. 

4.1. Infinite-dimensional Grassmann manifolds. 

The period map described in [15, §4.3.3 & 4.3.5] takes values in the Grass- 
mann manifold G(H2(X]R)) of 6~(X)-dimensional subspaces of H2(X;R). 
We shall need to consider an infinite-dimensional version of this construc- 
tion, so it is convenient at this point to recall some properties of infinite- 
dimensional Grassmann manifolds [1, §3.1.8], [34, §1.1]. 

If E is a complex Banach space then the Grassmann manifold G(E) is 
the set of splitting linear subspaces of E and is a complex-analytic manifold 
with tangent spaces 

TKG(E) = Ilomc(K,E/K). 

Recall that a closed, linear subspace K C E splits if K has a closed com- 
plement K' C E such that E ~ K x K' and that any finite-dimensional 
subspace splits. For each integer K > 1, let 

G^(E) := {K C E : K is a ^-dimensional subspace of E}, 

and set P(E) = Gi(E). The spaces GK(E) are connected submanifolds of 
G(E). 

The Grassmann manifolds P(E) and G«(E) define a locus of incident 
planes (or flag manifold) FAC(E) C P(E) x G«(E) by analogy with the usual 
construction in the finite-dimensional case [27]: 

¥K(E) := {(£,K) G P(E) x GK(E) '.IcK}. 
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The locus F/C(E) is a smooth manifold with tangent spaces 

(4.1) 

= {fa, p) G Horned E/£) 0 Homc(K,E/tf) : ^^ = ^    (mod ^)}- 

Given a smooth submanifold X C P(E), we define a locus lK{X) C GIC(E) of 
incident Ac-planes by setting 

^(^-^(Trf^X^cG^E), 

where TTI, ^ are the projections from the flag manifold onto the first and 
second factors: _ ,   . 

F^E) 

TTi / \ 7r2 

P(E) G^CE) 

We then have the following straightforward observations: 

Claim 4.2.  The map 

(4.2) TTI : F^E) -> P(E), (^ K) ^ €, 

is a submersion. 

Proof. Prom the description of T^F^E) in (4.1) and of T£P(E) as 
Homc(^E/^), we see that for any {t,K) € FK(E), the differential (which is 
again projection onto the first factor), 

(0TI)«,JO = T(etK)¥K(E) -> r^(E),        (r?, <p) ~ r,, 

is surjective. Indeed, if r] G Homc(^,E/^), then we can choose <p € 
Homc(i;C,E/K) such that ip(jt) = t] and y? is defined arbitrarily on if/A 

so (I}iri\tjc)(ri,<p)=1l' n 

Hence, the locus IK(X) := Trf ^X) C FK(E) is a smooth submanifold with 
tangent spaces 

T{e,K)L(X) = {(V, <P) € TiX © Homc(K, B/K) ■.<p\e = v    (mod K)}, 

where we view T^X as a subspace of Horned, B/£), and codimension 

codim(IK(X);FK(E)) = codim(X;P(E)). 

In the same vein, we have: 
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Claim 4.3.  The map 

(4.3) 7r2 : F^E) '-> G^E), (£, K) » K, 

is a submersion. 

Proof. We see that the differential (which is again projection onto the second 
factor) 

(L>7r2)(W : Ifc^F^E) -> T^G^E)        (r/, tp) » tp, 

is surjective from the description of T^j^F^E) in (4.1) and of T^G^E) 
as HomciK.E/K). Indeed, if (p e }iomc(K,E/K), then we can choose 
77 e Horned,B/i) by setting rj = (p\£, so (D^^K)^ <P) = <P> □ 

Over each point K G GK(E), the projection (4.3) has fibers 

ir^iK) = {ee P(E): e c K} = F(K), 

given by finite-dimensional, complex projective spaces ¥(K) ~ P^-1. 
The image IK(X) C G#C(E) of IK(X) C F«(E) under the projection map 

7r2 : P(E) x GK(E) —► GK(E) is not necessarily a smooth submanifold. For 
this reason, we restrict our attention henceforth to the smooth submanifold 
UX)c¥K(E). 

Remark 4.4. If the Banach space E were finite-dimensional, so E '= Cn+1, 
P(E) = P71, and GIC(E) = G(/c,n + 1), and X C Pn were a complex pro- 
jective variety, then the incidence locus IK(X) C G(Av,n + 1) would be a 
complex projective subvariety with smooth locus I«(X)sm of codimension 
[27, Example 16.6] 

codim(IU(£)sm; G(/c, n + 1)) = codim(Xsm; Pn) - (« - 1), 

where IK{X) has a standard stratification by virtue of its status as a complex 
projective variety. When E is an infinite-dimensional Banach space, as in 
our application, it would suffice for our purposes to show that the image 
IK(X) of lK(X) = 7rf 1(X) under the projection to GIC(E), is contained in a 
countable union of smooth submanifolds of G/C(E) with infinite codimension. 
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4.2. Spaces of Fredholm operators. 

For a non-negative integer n, let Fredn(E+,E_) denote the open subset 
of the Banach space of bounded operators, Homc(E+,E""), consisting of 
bounded, index-n Fredholm operators, where E+ := Z^(W+ ® E) and 
E~ := L^_1(W"" ® E) [34]. While the direct analogue of the period 
map of [11], [15], [23] would use the infinite-dimensional Grassmann man- 
ifold G(E+) as a target space, this is somewhat less suitable for our pur- 
poses since the dimension of KerVAjj might jump due to spectral flow 
as the point [A, $,/,#] varies in C^E x V', consequently, the assignment 

(A, $,/,i9) >-► KBTVAJ^ might not define a smooth map from C^E x V 
to G(E+). However, the assignment (A, $, /,??) i-> KBTVAJ^ does give a 
smooth map from C^g x V to Fredn(E+,E~). Indeed, a map of this form 
is used by Maier [45] (with domain Met(X), the space of all Cr Riemannian 
metrics on T*X). 

Passing temporarily to a more general setting, let E+, E~ be complex 
Hilbert spaces. The subsets 

Fred„5n(E+,E-) := {B e Fredn(E+,E-) : dimcKerB = «} 

are locally-closed submanifolds of Homc(E+,E~). The normal bun- 
dle iVFredtt)ri(E

+,E-) of the submanifold FredK?n(E
+,E") relative to 

Fredn(E+,E'"), and so Homc(E+,E~), has fiber 

ArBFredK}n(E
+,E-) = Homc(KerB,Coker£) 

over a point B G FredAC)n(E
+,E"). The submanifold FredA€)n(E

+,E~) thus 
has complex codimension «(« - n) in Fredn(E+, E~) and we have a smooth 
stratification 

Fredri(E
+,E-) = (j Fred^E^E"), 

K,>n 

with top stratum Fredn}n(E
+,E_). 

Associated with each Fred^n(E+,E~), we have a 'flag manifold' 

FlagKjri(E
+,E-) : = {(£,3) e P(E+) x R:ed/,,n(E+,E-) : £ G KerB} 

cP(E+)xFred/c,n(E+,E-). 

The corresponding projection 

(4.4) TT : Flag/,)n(E+, E") -> Fred/,5n(E
+, E"),        (i, B) i- 5, 
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has fiber over a point B G Fred/C)n(E
+,E~), 

TT'^B) = {££ P(E+) : £ C KerB} = P(Ker B), 

given by a finite-dimensional, complex projective space P(KerB) ~ P^-1. 
Furthermore, we have smooth maps 

(4.5) TT : PredAC)n(E
+, E") ^ G/,(E

+),        B ^ Ker B, 

which are easily seen to be submersions: 

Lemma 4.5. The canonical map n : Pred/C)n(E
+,E~) —> G^E-1") is a sub- 

mersion. 

Proof. We first compute the differential (D^B of TT at a point B G 
FredK)n(E

+,E~). Let Bt be a smooth path in Pred/C)n(E
+,E~) through 

BQ := B. We then have a smooth path of operators B^Bt G Endc(E+) 
giving isomorphisms BJJBJ : (Ker^)1 —► (KerBt)1-, where Ranfi] = 
(KeiBt)1- since Bt is Fredholm and thus has closed range. Let 

Gt := (B\Bt)-
lB\ e Homc(E-,E+) 

be the corresponding smooth path of Green's operators and let 

lit := idE+ - GtBt G Endc(E+) 

be the resulting smooth path of projections from E+ onto Ker Bt. Differen- 
tiating this path yields 

dUt =    dGtB     cdBt 

dt dt dt 
dBt dBt 

So, if SB := (dBt/dt)\t=o and G :— GQ and 11 := IIo, we have 

^B=   dt 
= G(5B)(GB - idE+) 

t=o 

= -G(6B)U e Home (Ker 5, (KerB)±)i 

with SB € TBPredK)n(E
+,E-). Any operator A € Homc(E+,E-) may be 

decomposed as a block-matrix 

A = (^n   ^A : (Ker B)1 © Ker S ^ Ran B © (Ran B)1, 
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with A22 € Homc(Ker B, (Ran B)1-), the normal space to TB Pred/Cjri(E"l;E") 
inHomc(E+,E-). Then, 

Au G Homc(Ker5,RanB) C rjBFred/c?n(E
+

?E-), 

where A12 is regarded as an operator in Homc(E+,E~) by extending by 
zero, so A12 := 0 on (KerS)-1. Indeed, An is a compact operator (since 
dimKerB < 00, so A12 is finite rank) and thus ind(jB + ^12) = indB. 
Moreover, Ran(B + A12) = RanB, so Coker(B + An) = Coker B and thus 
dimCoker(B+Ai2) = dim Coker B implies dimKer(B+j4i2) = dimKerB = 
K. Hence, Bt := B + tAn G FredK)n(E

4", E~) for all t G R and, in particular, 
(dBt/dt)\t=o = An G TBFred^n(E+,E-). Since G : RanB -> (KerB)-1 is 
an isomorphism and we may choose any SB G Home(KerB, Ran B), we see 
that 

Ran(L>7r)£ = {G(6B)U : 5B G rjBFred^n(E+,E-)} 

= Homc(KerB, (KerB)-1) = TKeTBG(E+), 

and so (D^B is surjective, as desired. □ 

Consequently, we have: 

Lemma 4.6.   The space FlagKri(E
+,E_) is a smooth submanifold of 

P(E+) x Fred^(E+E") 

and the canonical map n : Flag/c>ri(E
+,E~) —> FK(E+) is a submersion. 

Proof. Lemma 4.5 implies that the projection, 

TT : P(E+) x Fred/c,n(E+,E-) -> P(E+) x G/,(E
+),        (1,3) *-+ (^KerB), 

is a submersion. So, as F«(E+) is a smooth submanifold of P(E+) x G/C(E
+), 

we see that the preimage 

Flag/c>n(E
+,E-) = 7r-1(F«(E+)) 

is a smooth submanifold of P(E+) x Fred/c?rl(E
+, E~) and that the restriction 

of the projection map is a submersion. □ 
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4.3. The locus of rank-one sections. 

With the general setting of §4.1 and §4.2 at hand, we can now describe the 
locus of rank-one sections in L^_1(VF+ <g> E) and the Dirac-operator period 
map which is to be transverse, in a suitable sense, to this locus. 

Assume k > 4, so that E+ = L|_1(W+(g>£) is contained in C0(W+<S>E). 
Since C0(W+ ® E) = C0(Homc(W+'*,£)), we have a determinant map 

(4.6) det : C0(W+ ® E) -> C0(det E ® det W+),        * h-> det $, 

recalling that det W+ = A2(W+) and detE = A2(£;). If {&, 6} is a local 
unitary frame for £" and {01,02} is a local unitary frame for W+, with 
dual coframe {^1,^2} ^ov W+>* defined by the Hermitian metric via (/>;• := 
(•, fa), then the section det $ of det E ® det W+ ~ Home ((det W+)*, det E) 
is defined in the usual way with respect to these frames by 

*(#) A *($) = (det*)^ A^ G C£i A 6- 

A section $ e C0(VF+ ® J5) then has ranA; one if det $ = 0 and $ ^ 0 on X. 
Locally, any rank-one section $ € C^W"1"®!?) may be written as $ = <^®^, 
for local sections (j) G C0(VF+) and £ G C0(E), though it is generally not 
possible to write a rank-one section globally in this form. 

We can now conveniently define the crank-one locus' X C P(E+) by 

(4.7) X := {[$] G P(E+) : det * = 0}, 

where [$] denotes the line C • $ C E+. Unless we impose further conditions 
on the Riemannian four-manifold X and the bundles W+ and E — such as 
requiring them to be real analytic — the locus of rank-one sections will not 
be a smooth subvariety of P(E+). However, as we shall see in the sequel, 
it suffices to work with the locus Xsm C X of smooth points of X. The 
following lemma provides a simple criterion for point [$] G X to be smooth. 

Lemma 4.7. Suppose [$] G P(E+) is point in the zero locus X = det~'1(0) 
such that {$ ^ 0} is a dense open subset of X. Then the map det : C0(E® 
W+) —> C0(detl2®det W+) vanishes transversely at $ and [$] is a smooth 
point ofX. The tangent space Tj^jX has both infinite dimension and infinite 
codimension in T[$]P(E+), 50 

codim(Xsm;P(E+)) = 00. 
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Proof. Choose a local unitary frame {£1, £2} for E and a local unitary frame 
{^i? ^2} for W+, with dual coframe {<?!>f, ^2} for W+>* defined by the Hermi- 
tian metric on W"1" via ^ := (•, (j)j}. With respect to these local frames over 
an open subset U C X, the section $ and determinant map are represented 
by 

det rC^^glfoC)) -> C^C), 

^ = I (fll     <P12 } ^ Jet $ = ^11^22 ~ ¥>12¥>21, 
yp2i   ^22/ 

with differential 

(I>det)$(5$) = (^11)^22 + ¥>ii(<fy>22) - (^12)^21 - ^12(^21), 

where 

Since {$ 7^ 0} is a dense open subset of X, the union of the comple- 
ments of each of the zero-sets of the functions y?y is a dense open subset 
of U. Now suppose that 7/ G C0(det E ® det VF+) lies in Coker(Z)det)$, so 
((£det)*(<y*),r7)L2W = 0 for all 5$ 6 C0(W+ ® J5). Since {$ ^ 0} is a 
dense open subset of £/, we have 77 = 0 on U and, as J/ was an arbitrary 
open subset of X, we have 77 = 0 on X. D 

Aronszajn's theorem then yields the following useful consequence of the 
preceding lemma. 

Corollary 4.8. // [A, $, /, #] is a point in QJt^^ such that det $ = 0; t/ien 

[$] is a smooth point of the zero locus X = det_1(0) C P(E+); that is, 

tf;/iere TT : ©t^^ —>■ P(E+) is the projection. 

Proof. The hypotheses imply that $ G KQIVAJ^- Thus, Aronszajn's theo- 
rem [5] implies that {$ ^ 0} is a dense open subset of X, so [$] is a smooth 
point of X by Lemma 4.7. □ 

For each integer « > n, the variety X C P(E+) defines crank-one loci of 
incident planes', 

!„(£) := TT-^X) C F/,(E
+)    and   I^X) := ir^tfL)) C GK(E+). 
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Corollary 4.8 implies that we shall only need to consider the incident loci 
tK(3ism) and I«(3£sm).of the smooth part of X. In this case, IK(Xsm) is a 

smooth submanifold of F^(E+) with codimension 

(4.8) codim(L(Xsm); F/C(E
+)) = codim(Xsm; P(E+)) = oo, 

although I«(Xsm) is not necessarily a smooth submanifold of GAC(E
+). 

As we saw in §4.2, the Grassmann manifolds G/C(E
+) or G(E+) do not 

provide suitable target manifolds for our Dirac-operator period map, so we 
instead consider the preimages of the rank-one loci in PredK?n(E

+, E~) using 
the projection (4.5) and then, in turn, in Flag^)rl(E

+,E~). Define 

(4.9) JK(X) := TT-^I^X)) C Pred/c,n(E+, E") C Predn(E+, E"), 

where TT : Pred/C)Tl(E
+,E~) —> G/t(E

+) is the canonical map. The space 
jrK(X) need not be a smooth manifold, so we also define 

(4.10) JK(X) := TT-'iUX)) C Flag.?rl(E
+,E"), 

which is a smooth submanifold since the canonical map 

7r:FlagKin(E+,E-)->FK(E+) 

is a submersion according to Lemma 4.6. This last observation also implies 

(4.11) codim(J/,(Xsm);Flag/,)n(E+,E-)) = codim(I/,(Xsm);F/,(E
+)) = oo, 

courtesy of (4.8). 

4.4. The Dirac-operator period map and its differential. 

Recall that the principal goal of §4 is to show that for generic parameters 
(/, i?) and any point [A,$] in M^^(/,r,^), the section $ in KerD^j^ is 
not rank one. Hence, it is natural to define a 'period map', using the Dirac 
operator, to detect the rank-one loci that we wish to avoid, namely §K(X) 
in Fred^E^E") or JK(X) in Fla&6|n(E+ E"). 

We therefore define a smooth, 05JE;-equivariant map 

(4.12) P : Cw,E xV-> Fredn(E+, E"),     (A, $, /, 0) ^ VAj^ 

by analogy with [11, §VI], [15, Eq. (4.3.14)]. The map P could obviously 
be defined simply on AE X V, but we shall soon need to consider it as a 
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map on the universal moduli space VttwE c ^WE x ^ ^e maP (4-12) has 
differential 

(DP)A#jf : TA&CW,E 0 TfjV -♦ Homc(E+,E-), 

given by Lemma 3.2, 

(a, ^ 5/, (W) ^ (DV)Aj,4a, Sf, W), 

noting that Tp^j^) Predn(E+,E~) = HomcCE+jE"). We then have the 
following analogue of Proposition 4.3.14 in [15]. 

Proposition 4.9. Suppose (A, $,/,#) represents a point in the universal 

moduli space 9Jl^ E C C^E 
X
 ^' Then the following partial differential is 

surjective: 

(APU*,/,*(0, •) : {0} 0 TffP -> Tp(A^)/j1?) Predri(E
+, E"), 

where (DP(A$,.))ft* = (2?£)AA/^(
0

. O- 

Proposition 4.9 plays a crucial role in the proof of Theorem 4.1. As we 
shall see below, it follows easily from 

Proposition 4.10. Assume (A, <£) is an irreducible, non-zero-section 
PU(2) monopole on X for the perturbation parameters /, i? (and some r). 
Ifte n0(W+ ® E) and i/) e n0(W- ® JS7) safe/y 

(4.13) Re ((DVA)fj(5f, W), ^ ® ^*)L2(X) = 0, 

/or all (5f, Sti), then I/J ® </)* = 0 on X. 

It is important to remember that 

RanCDPjA,*,/,* C Homc(E+,E-) 

is only a reaZ subspace and so if there are elements of the latter tangent 
space which do not lie in Ran(DP),4,<i>,/,tf, then we can only assume there are 
tangent vectors obeying the real L2-orthogonality condition of Proposition 
4.10. Our proof of Proposition 4.10 ultimately relies on the following crucial 
'unique continuation' result for reducible PU(2) monopoles: 

Theorem 4.11 ([16, Theorem 5.11]). Suppose (-A, <&) is a solution to 
the perturbed PU(2) monopole equations (1.1) over a connected, oriented, 
smooth four-manifold X with smooth Riemannian metric g such that (A, $) 
is reducible on a non-empty open subset U C X. Then (A,<&) is reducible 
on X if 
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• $ f£ 0 on X, or 

• $ = 0, and M^d(g) contains no twisted reducibles or U is suitable. 

See [38, p.586] for the definition of a 'twisted reducible' and [38, p.589] 
for the definition of a 'suitable' open subset. A detailed proof of Theorem 
4.11 is given in [16]. Our argument relies on the Agmon-Nirenberg unique 
continuation theorem for an ordinary differential equation on a Hilbert space 
[2], [3] and it generalizes the method used by Donaldson and Kronheimer 
to prove the corresponding unique continuation result for reducible anti- 
self-dual connections [15, Lemma 4.3.21]. The proof of transversality via 
holonomy perturbations given in [16] relies on a refined version of this unique 
continuation property. 

Proof of Proposition 4.10. Suppose ip®(f)*^0oiiX. According to Lemma 
2.4, varying 5$ alone implies that both </> and ip have pointwise complex- 
orthogonal images in E and so they have at most complex rank one at each 
point of the subset U := {(f) ^ 0} fl {ip ^ 0} C X, which we assume is 
non-empty. Over the open subset U C X, the section </> defines a Hermitian 
line subbundle Li := C • </)\u C E\u> Let L2 C E\u be the Hermitian line 
subbundle given by L2 := L^ ~ (E\u)/Li, so L2 ^ (detE\u) <g> L* and 
we have a unitary splitting of Hermitian vector bundles: E\u = Li 0 £2- 
Furthermore, noting that (/>, ip have pointwise complex-orthogonal images in 
JE, we have Ran?/' C L2. 

With respect to this splitting, the unitary connection A\u on E\u may 
be written as 

VA = P7^1    ~b*) : n0(U,Li © L2) -* ^(U, ^ © L2), 

where Ai is a unitary connection on L;, i = 1,2, and b G 01(!7, Z^®-^) is the 
second fundamental form of the pair (Ai, Li) with respect to (A, J5)|c/, and 
6* is the conjugate transpose of b [33, §1.6]. (In terms of holomorphic bundles 
over a complex surface X, the second fundamental form b may be identified 
with an element of Ext1 (£1,1,2).) Clearly, A\u is a reducible connection 
with respect to the splitting E\u = Li ©L2 if and only if b = 0. Since (A, $) 
is irreducible and non-zero-section by hypothesis, Theorem 4.11 implies that 
(A, $)|J7 cannot be reducible and so b ^ 0 on the non-empty open subset 
UcX. 

From Lemma 3.2 and the splitting A\u = Ai © A2 on E\u — Li © L2, 
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we have (over U C X) 

Therefore, 

(DvA)M(6f, 6#)<t>=f^ p+mwyvA**+p+um)* 
i=l 

4 

= 53p+((*/)e*)VAl^ 
*=1 
4 

+j] p+wfiswei)*+p+umw* 
i=i 

where {e^} is a local oriented, orthonormal frame for TX, with dual coframe 
{e*} for r*X. Thus, 

4 

(DVA)w(5f, St)* = YsP+WfY^A^ 
2=1 

(4.14) +p+(fm)<i>+p+w)i>)<i>- 

The first two terms on the right-hand side of (4.4) are in fi0((7, W~ ® Li), 
while the last term is in fi0(?7,l¥" ® L2). Prom (4.4), the fact that the 
sections 0, tp have complex-orthogonal images in E at each point of X, and 
the real L2-orthogonality condition (4.13), we obtain 

Re((DVA)w(5f,5#)c!)^)LHX) = Re(p+((5/)6)(/>,^)L2W = 0, 

for all 5f e C00(gl(T:ifiX)). Since </>, ii/j also have pointwise complex- 
orthogonal images in E, we may replace I/J by iif) above; combining the result- 
ing two real L2-orthogonality equations yields the complex I/2-orthogonality 
identity, 

(p+((5/)6)^^)L2(X)=0, 

for all 5f e Coo(0[(T*-X")), which in turn, therefore, yields the pointwise 
identity: 

(4.15) (p+((5f)xbx)<f)x, ^x)x = 0,        xeU, 
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for all (Sf)x e Ql(T*X)x. Note that 

/9+((<5/)6) € Homc(W+ ®c Lu W ®c L2) 

~ }iomc(W+, W~) ®c Homc(Li, £2) 

and so 

P+((5f)xbx) e Homc(W+, W-)x ®c HomcCLi,^)^ ^ tffrC); 

Since p+((5f)xbx)(l)x and ^ are orthogonal with respect to the full Hermi- 
tian inner product by (4.15), we may use the fact that the complexification 
p+(T*X)x ®R C is equal to Homc(W+

? W-)x ~ flI(2,C) [48, p. 89]. (See 
the proof in Lemma A.4.) Therefore, the identity (4.15) would yield 

Vfc ® #; = 0 e Homc(W+, W-)x, 

for all points x G U at which bx ^ 0. Since ifrx ® </>x ^ 0 for any point 
x e U by assumption, this would imply that 6 = 0 on U and so A\u would 
be reducible, a contradiction. Hence, the open set U C X must be empty 
and thus if) ® (/>* = 0 on X, as desired. □ 

We can now conclude the proof of Proposition 4.9: 

Proof of Proposition 4.9. Suppose (A, $,/, 1?) represents a point in the 
universal moduli space 9Jt^£. For convenience, we denote p := (/,#) and 
<fy? := (J/, ##). If {</>a}aGN is an orthonormal basis for the Hilbert space E+ 

and {¥>&}&eN is an orthonormal basis for the Hilbert space E~, then {</>& ® 
(^a}(a,6)GNxN is an orthonormal basis for the Hilbert space Homc(E+,E~), 
where 0* = (.,^a>. If Ran(Z)P)A^,p(0, •) = Raii(D£(il,*,-))p § 
^P(A,$,p) Fredn(E+,E~), then there are sections (/> G E+ and cp G E~, so 

(p ® 0* G Homc(E+, E") = r^p Predn(E+, E"), 

with (/? ® 0* ^ 0 on X such that 

Re((JDP(A, *, .))p(^), ^ ® ^W) = 0. 

for all 5p. Hence, for all 5p we have 

Re((i3PA)p(^)(/>,^)L2w=0 

and then Proposition 4.10 implies that (p ® (f)* = 0, a contradiction. Hence, 
the differential (.DP(A, $, -JJp is surjective, as claimed. □ 
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4.5. The Sard-Smale theorem and transversality. 

We shall need a special form of the Sard-Smale theorem [65] for our proof of 
Theorem 4.1. The result is well-known and is essentially Proposition 4.3.10 
in [15], but we shall require a more detailed statement than that given there, 
so we summarize the relevant discussion from [15, §4.3.1 & §4.3.2] and prove 
the precise version we need here. 

Let C, P, and T be C00 Banach manifolds. Suppose M. c C x V is a 
C00 Banach submanifold and that the restriction ^M\V : M. —> V of the 
projection vrp : C x V —> V onto the second factor is Predholm. Let 

PiMcCxP^F 

be a C00 map which is transverse to a C00 Banach submanifold J C J7. 

Proposition 4.12. Continue the notation of the preceding paragraph. Then 
there is a first-category subset Pfc C P such that the following holds. For all 
p in P — Pfc, we have 

• M := irM'-pip) is a C00 manifold of dimension md(7rM',v)p < 00
J 

• P := £(•, JP) : M —> J7 is transverse to the submanifold J C T, 

• Z    :=    P~"1(c7)    C    M   is   a   C00   submanifold   of  codimension 
codim(Z;M) = codim(17; J7). 

Remark 4.13. When C is finite dimensional and J has finite codimension 
in J7, the preceding result is proved in [1, §3.6B]. 

Proof. The proof is similar to those of Propositions 4.3.10 and 4.3.11 in [15] 
(see [15, p. 143]). The first item follows immediately from the Sard-Smale 
theorem [65], for some first-category subset Pfc C P. The hypotheses imply 
that the preimage 

Z\=P-\J)C:M<ZCXV 

is a C00 Banach submanifold of M. Let p be a regular value of the projec- 
tions 

nz-v :ZcCxP^P, 
7rM;V :McCxP->P, 
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so p eV -Vfc, for some possibly larger first-category subset Vic C V, and 
let (c, p) be any point in the fiber 

Z := TTzlpip) = P^pTHJ) = P-\J), 

and let h = P(c,p) € ^r. Similarly, let M := 7r^|;7?(p) and note that Z and 
M are C00 manifolds. 

Note that T^Z and T^p)M are subspaces of TCC 0 TPV. By choice of 
p eV -Vic and by hypothesis, respectively, the maps 

(4.16) (D7rz;v)(c,p) : T^Z -> TPV, 

(4.17) (^£)(c,p) : T^p)M -> T^JT _ ThF/ThJ, 

are surjective and 

rcM © {0} = (I>7rM?>)^p) (0) C T(C)P).M, 

r(CiP)2 = (L»P)^P)(T, j) c r(C)P)M 

where TCM ~ TCM © {0} C TCC © {0}. We claim that the map P : M -> F 
is transverse to J C ^ so the preimage Z = P_1(J') is a C00 manifold of 
codimension codim(Z;M) = codim^; F). 

Suppose 6h E ThT. By (4.17) there is a tangent vector (8c, 8p) € T(CtP)M 
such that (DP)(CtP)(5c,5p) = Sh (mod ThJ). According to (4.16), given Sp, 
there is a tangent vector of the form (5c', 5p) € T^C^Z and so 

(5c - 5c', 0) = (5c, 5p) - (5c', Sp) € TCM © {0} C T^p)M. 

Since (DP){C}P)(5c', 5p) € ThJ (because P"V) = z) and p = £(-iP)ithis 

gives 

(£>P)c(5c - ^c') = (DP){CtP)(5c - 5c',0) 

= (DP){CtP)(5c,5p) - (DP){C;P)(5c',5p) 

= 5h   (mod Tfc J). 

Hence, the composition of the differential and quotient map, 

(DP)P : TCM -» rh^ -f ThF/ThJ, 

is surjective, as desired. □ 
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4.6. The Sard-Smale theorem and semi-Kuranishi models. 

We shall use Proposition 4.12 to prove Theorem 4.1. As the detailed argu- 
ment is technical and lengthy, we shall first outline the basic idea (under 
some simplifying assumptions) and establish a few notational conventions 
that will be useful in this section. 

The space C^YE x V is a, principal 0£/£-bundle over the base manifold 

^WE x ^- The parametrized period map P may then be viewed as a section 
of the associated Banach vector bundle 

(<% xVx Fredn(E+,E-))/0^ 

U
W,E 

x ^ 

In order to obtain a Predholm projection map onto the parameter space 
P, we need to restrict the base of the preceding bundle to the universal 
moduli space 371^E C C^E ^V. Oi course, the space 9tt^£ is not neces- 
sarily a smooth manifold, so in the argument below we replace small open 
neighborhoods in QJl^^ by 'thickened universal moduli spaces' containing 

the smooth locus of WIWE 
as finite-dimensional submanifolds. Temporarily 

assuming VRIWE 
ls smooth, for the purposes of this outline, we thus consider 

the Banach vector bundle together with a Predholm projection map: 

(OT^ x Predn(E+, E-))/0££ gj^o 

and 
W,E 

JJiW,E 

It is rather cumbersome to phrase the transversality argument in terms of 
sections of vector bundles rather than maps of Banach manifolds, although 
this can be done. So, before proceeding further, we restrict to slice neigh- 
borhoods in CWE 

and ^WE-> 
which for simplicity we continue to write as 

CWE 
and yrfwE here, abusing notation slightly, rather than introduce new 

symbols. With respect to such a trivialization, we then have a parametrized 
period map and a Predholm projection: 

P m^ C C$E xV^ Fredn(E+, E"), 

nmr •M^E cC$ExV->V. 
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Fix an integer AC > n \— ind X^,/,^ and temporarily assume, again for the 
purposes of this outline, that the rank-one locus J«(Xsm) C Fredn(E'f,E~) 
is a smooth submanifold. If the parametrized period map P : 9tt^£ —> 
Predri(E

+,E~) is transverse to the locus ^(^sm) C Predrl(E
+,E~), then 

Proposition 4.12 implies that the period map P := £(-,p) from the fiber 
7r^(p) = M^0

E(p), 

P:M^(p)^FYedn(E+,E-), 

will be transverse to JAC(Xsm) C Predn(E+, E~) for all p G V — Pfc, for some 
first-category subset Vic, and so 

codim(p-1(J/c(Xsm);M^E;(p)) = codim(QFK(Xsm);FYedn(E+,E-)) = oo. 

Since M^E{p) is a finite-dimensional smooth manifold and P~1(J«(3Csm)) is 

a smooth submanifold with infinite codimension, the subset P~1(J«(3tsm)) 
is necessarily empty. Hence, after repeating this argument for each integer 
K>n and observing that the subset 

K>n 

r*,0 = {[A, $] e Myy^p) : Ker DA,P contains some rank-one \I>} 

is empty for generic p G P, we will have shown that for generic p G P, the 
moduli space M^rE(p) contains no rank-one pairs. 

Given this outline, we now proceed to the detailed proof of Theorem 4.1. 

Proof of Theorem 4.1. Recall that in order to obtain a Predholm projec- 
tion map — thus permitting an application of the Sard-Smale theorem [15, 
§4.3.1 &; §4.3.2], [65] in the form of Proposition 4.12 — we need to restrict 
our attention to the universal moduli space of irreducible, non-zero-section 
PU(2) monopoles: 

Mw,E ■= {(A,*,P) € <% x V : 6(4*,P) = OWGE. 

Let (Ao,<&o,Po) be any point in 9Jl^^. The space 9Jt^£ is not necessarily 
smooth so we first construct a semi-Kuranishi model for an open neighbor- 
hood (Ao,$o,Po) in 9Jt^?£. Let 

V := LjU(A+ <g>su(£)) 0 LLi(w'+ ® E) 
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and observe that the map 

S:C^xP-,V 

is right semi-Fredholm, in the sense that its differentials are right semi- 
Predholm operators, having closed range and finite-dimensional cokernel 
(though not finite-diinensional kernels) [10, Definition XI.2.3 & Proposition 
XL2.10]: 

Claim 4.14.  The map 6 : C^E x V —> V is right semi-Fredholm. 

Proof. One can see this by observing that the differentials 

have right Green's operators defined by 

= (^©)|A,*,P) ((^@)(A,*,P)(^6){A,$,P))
-1 : V -> T^C*^ © TPV. 

Let II^Sj,) denote the L2-orthogonal projection from V onto the finite- 
dimensional subspace 

H?A*,P) := (Ran(Z)6(.)p))(j4,$))
± C V, 

and let nf^ ^ v := id — Il(A&,p) be the L2-orthogonal projection from V 
onto the subspace Ran(Z)6(-,p))(>i)$). Then, 

(D&)(A&#) 0 G(A,$,p) = id - ^(A^p) : V -^ V 

and so is right semi-Fredholm by [10, Definition XI.2.3], as 11^$,p) is a 

finite-rank operator and thus compact. □ 

We now consider the pair of maps 

(4-18) n^0)Po) o 6 : C&k x V - (B^,^^)-1- n V, 

(4.19) n(A,0$0,po) o 6 : C$E x V - H^^. 

By construction, the differential of the stabilized canonical map (4.18) is 
surjective at the point (AQ, $o5po) and thus also on some open neighborhood 



Generic metrics and transversality 949 

U(Ao,$o,po) 0f t*16 P0int (^OJ^O) Po) in C^E 
x P- An open neighborhood 

of (Aoi$OiPo) in VJlwE ^s t':ien given by the zero locus of the finite-rank 
obstruction map (4.19) in the C00 Banach manifold 

(4.20) M{Ao^po) := W(AO,*O,PO) n (nfAO)$0)Po) o S)"1^) C C^ x V, 

comprising a thickened, parametrized moduli space. Let .'*': 

7rM;V : ^W(AO,$O,PO) -^ ^ 

denote the restriction to M(A0,$0,p0) of the projection from C^E 
X
 ^ onto 

the second factor, and let 

HJAO^O) 
: = Ker(£e(.,po))(Ao,*o) 

(4.21) = Ker(n^o^05po) o DS^po))^^ 

= KeT(DirM;v)(Ao&ojpo) C r(Ao^0)C^E 

be the Zariski tangent space to the fiber M^rE(po) at the point (J4O>$O)- 

Note that the differentials 

(4.22) (DnM;v)(A&ffi) : T^A^^M^AO^Q^PO) -* ^P 

are Predholm and that H/Ao ^     s is finite-dimensional. 
We now consider the period map: 

(4.23) P : M{Aot*0M) - Predn(E+,E"). 

The map P^o, ^o, •) : V -^ Predri(E
+, E~) is a submersion by Proposition 

4.9 and in particular a submersion at the point po, but it does not follow that 
the same is true for the map (4.23) at the point (AQ, $O,PO) since the tangent 
space T^Ao^o^-M^o^po) does not necessarily contain the subspace 

{0} e TPOV c TlAofio)c$E e TPOV, 

as required by the hypotheses of Proposition 4.9. To circumvent this problem 
and permit an analysis of the preimage of SK(Xsm) in A^(^0)^0)p0), we use 
a second stabilization technique similar to that employed by Donaldson for 
the anti-self-dual equation [11], [15, §7.2.2]. 

Claim 4.15.  There is an equality of vector spaces, 

(4.24) T(Ao^po)M{Ao^po) + ({0} 0 TP0V) = Hf^^ 0 TP0V, 
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and an isomorphism of vector spaces, 

(
H

(AO^O,PO) 
e rPo^)/r(Ao^o,Po)^(Ao^o,Po) 

(4.25) ^ CoteT(D7rM;v){Ao,*oj>o)i 

and so T{Ao^po)M(Ao^po) has finite codimension in H^^^j 0 TPQV. 

Proof. For every tangent vector 

5p e Ran(JD7ryw;p)(Ao^o,Po) c TpoPi 

there is a corresponding tangent vector (a,<f),5p) in T(>i0>$0ip0).M(i40j$0>p0). 
so the equality (4.24) follows. Since the differential (4.22) is Fredholm, the 

cokernel 

(Ran(Z)7r^;p)(Ao^0)p0))    ~ CokeT(D7rM;v)(Ao^oipo) 

is finite dimensional. Indeed, using the isomorphisms 

TP0V ^ R3ii(D7rM;V){Ao^0iPo) 0 CokeT(D7rM;<p){Ao^po), 

T
{AO,*OJ>O)

M
{AO,*<HPO) - (Ker(L)7r^;P)(Ao^o,Po))±©H(Ao^o,Po)' 

~ Ran(i)7r<M;^)(A0)$0)P0) © H(i4oi^0|Po), 

(the second isomorphism above being due to (4.22)), we obtain the iso- 
morphism (4.25). The assertion on codimension follows from the fact that 
dimCoker(jD7r^;p)(Ao^0)PO) < oo, since the projection TTM-P is Fredholm. 

□ 
Proposition 4.9 asserts that the differential 

(AP)(AO,$O,PO) : {0} © Tpo? "> Tz(Ao,*o*o) Predn(E+, E") 

is surjective and so the same is true for 

(DP){AO,*O,PO) ■ HjAo,*0)PO) © TP0V - Tp{AQ^>po) Predn(E+, E"). 

Claim 4.15 and its proof imply that 

H(Ao,*o,Po) e ^Po^ 

- H(AO>*O,PO) © (Ker(^7r^;p)(Ao,*o,Po))± © CokeT(DTvM;-p)iAo^0tPo) 

^ T(AO,*O,PO)
M

(AO,*O,PO) © Cokei(DirM;V)(Ao,*o,Po)- 
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Define a finite-dimensional subspace 

-F(Ao,*o,Po) := (DP)(Ao,io,Po) (CokeT(DlTM;v)(Ao,*o,p0)) 

and let 

*: F(Ao,*o*o) -* TP(AO,*O,PO) Predn(E+,E-) = Homc(E+
5E-) 

denote the inclusion. Although the differential 

(DP)(AQ,*offio) : T(AO&O,PO)
M

(AO&O,PO) -* TP(AO,$O,PO) Fredn(E+, E") 

need not necessarily be surjective, the following linear map is surjective by- 
construction: 

(4.26) i + (£>Z)(AO,$O,PO) 
: F(AO,$O,PO) © T(AO,$O,PO)

M
(AO&O,PO) 

where, for all (f, 5m) € F{Ao^po) 0T{AO^0IPQ)M{AO^^PO), we set 

{i+ (DP){Ao^po)) (f,«m) := .(f) + (DP){Ao^po)(5m). 

Define a stabilized period map 

(4.27) t + P: F{Ao^po) x M{Ao^po) -> Predn(E+, E") 

by setting (t+P)(f,m) := t(f)+P(m), for all (f,m) inF^Ao^OiPo)xM{Ao^0iPoy 
(We should write Homc(E+, E~) for the image space in (4.27), but when f is 
close enough to the origin in .F(AO,$O,PO)> ^^ P0^ ^(f)+£(m) lies in the open 
subset Predn(E+,E_) since P(m) lies in Predn(E'f,E~).) By construction, 
the differential (4.26) of the stabilized period map (4.27) is surjective at the 
point (0, AQ, $OJPO) and so there are an open neighborhood of the origin, 

and, in the definition (4.20) of M(Aoi$0#0), a possibly smaller open neigh- 

borhood ZY(AO,<S>O,PO) of the point (AQ^O^PO) in C^E 
X
 ^> suc^ ^at the 

restriction 

(4.28) t + P: 0{Ao^po) x M(Ao^po) -> Predn(E+, E") 

of the map (4.27) is a submersion. 
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Suppose K > n is an integer. Because the smooth map (4.28) is a sub- 
mersion, the preimage 

•A/(Ao,#o,Po) := (0(Ao,Zo,Po) X M(AO,$O,PO)) 

(4.29) n (t + P)-1(FredKtn(E+, E")) 

is a smooth submanifold of 0(>io,$o,po) X
 -^(AO^O^O)' 

W
^ (finite) real codi- 

mension 

(4.30) codimR (A^0^0>po); 0{Ao^po) x M{AQ^P0^ = 2K(K - n), 

and so 

K>n 

is a countable, disjoint union of smooth submanifolds. 

Claim 4.16.  The following smooth map is a submersion: 

(4.31) c + P: A/^CPO) ^ ^edK,n(E+, E"). 

Proo/. Let (^4, $,p) be a point in A/j^ $opo)- Prom the definition (4.29) of 
the submanifold Af,K

A ^ ^ and the fact that the map (4.28) is a submersion, 
we see that 

T
(A*,P)^V*O,PO) = W+ £»£*,) (r(l+P)(A)*,P)FredK)n(E+,E-)), 

as the tangent space to the preimage is the preimage of the tangent space. 
Hence, it follows trivially that 

(D(L + P)){AM (T(Af*^^^ 

which yields the claim. □ 

While the manifold PredK)rl(E
+,E~) contains the rank-one locus 

JAC(Xsm), the latter space is not necessarily smooth and so it is convenient 
at this point to shift our attention instead to the smooth rank-one locus 
J«(Xsm) in the flag manifold FlagAC>n(E

+, E") covering Fred„)n(E+, E"). Re- 
call that the canonical projection 

Flag/Cjn(E
+,E-) - PredK,n(E+,E-) 
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has finite-dimensional fibers P(Ker B) ^ P*-1 over points 

SeFred^^E"). 

Then the submersion (4.31) then lifts to a smooth map 

(4.32) t + P : M^0tP0) -. FlagK)n(E+, E"), 

though not necessarily to a submersion, given by 

(f,A,$,p)^(L + m,A,<S>,p), 

where 

(t+B(M,*,p) == mxf)+p(A*,p)) = mxf)+VA,P). 

The proof of the next lemma is the key application of Proposition 4.12. 

Lemma 4.17. Continue the above notation. Then there is a first-category 
subset Vfc C V, depending on (AQ, <I>0)PO), such that for all p € V — Vfc, the 
thickened moduli space <M(Ao,$o,po)\p := ^JU-viP) ^ ^(Ao^o^o) contains no 
points (A, $,p) with $ rank one. 

Proof. Prom its definition, a countable union of first-category subsets of V 
is again a first-category subset, so it will suffice to consider a single open 
neighborhood of a point (fi,i4i,*i,pi) inJVg^^, as the space JV/j^ ^0}Po) 

is paracompact and so we may repeat the argument below for each element 
of a countable open cover. 

We introduce a third stabilization, this time for the map (4.32), yielding 
a submersion onto Flag^^E"1", E~). Let {<&i,a}£=i be an orthonormal basis 
for the kernel of (L + P)(fi, Ai, $i,pi) = ^(fi) + £Ui,pi and let 

(4.33) TT^^) : E+ -+ Ker(t(f) + VAjP) 

be the smooth family of L2-orthogonal projections from E"1" onto Ker(6(f) + 
P^p), parametrized by the points (f,A,$,p) in N?^^ y Let z := 
(zi,..., zK) e CK and define a smooth map 

(4.34) t + P : C« x ^0)$0ip0) - Flag(t)n(E+, E") 

by the assignment (z, f, A, $,p) i-> (t + ^(z, f, A, $,p), where 

(t + P)(z, f, A, *,p) := t(f) + P(z, A, $,p) 

:= ([* + T(M,*,)(E2=i2«*i^)], t(f) + ^,P). 
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(Again, we should really use an open neighborhood of the origin in C* rather 
than all of C* in the definition of the map (4.34), so the vector in E+ is 
non-zero and defines an element of P(E+); however, the map is clearly well- 
defined for z near zero and that is all we shall need below.) Note that when 
(z, f) = (0,0), the term (L + P)(z, f, A, $,£>) simplifies to 

(4.35) =£(J4,*,P) 

G ¥(KeiVAiP) x Pred/Cjri(E
+,E-), 

with P(Ker VA,p) C P(E+). 

Claim 4.18. The map (t + P) of (4.34) is a submersion at the point 
(0,fi,j4i,*i,pi). 

Proof. From (4.34) we have (t + £)(0,fi,i4i,*i,pi) = ([*i], t(fi) + VAl^1). 
The map (4.31), given by (f,j4, $,p) *-> L(f) + VA^ is a submersion at 
(fi,i4i,$i,pi). Hence, if Bt is a smooth path in Pred^n(E4",E~) through 
Bi := L(fi) + ©AIJUJ 

we may choose a smooth path (ft,-Atj^tjPt) in 

J\f?Ao ^o x, passing through (fi, Ai, $i,pi), which maps to the smooth path 
Bt near £ = 1 via (4.31), so 

Bt = L(ft)+VAt,Pt. 

Using (4.33), define a smooth path of projections onto Keri?* C E+ by 

n :=7r(ft,i4t>*ilpt)>    tnear !• 

Then, TTI = id on KerBi and {7rt(*i,a)}5=i is a basis for KerB^ = 
Ker(^(ft) + VAupt) near * = 1> since {*i,a)}5=i was chosen to be a ba- 
sis for KerBi. Now suppose *t is a smooth path in E+ through $i such 
that Bt^bt = 0, so ([^t],Bt) is a smooth path in Flag^n(E+,E~). Because 
^, $t £ Ker 5^, near t = 1 we can write 

a=l Q!=l 

with Za(t) = 0 when t = 1. Hence, near £ = 1, the path ([#*], I?*) through 
(t+P)(0, fi, Ai, $irpi) in the image, FlagK)n(E

+, E~), lifts to a smooth path 
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(zt,fuAu$upt) in the domain, C* x A/^o ^Qpoy through (0,fi,ili,$i,pi) 
with 

(t + £)(^ift,^t,*t,ft) = ([*t],Bt). 

In particular, we have 

d 
-(L + P)(zufuAu$upt)    ^ = ^([%},Bt) dt 

d 
t=i     dt t=i 

Since the smooth path (j^J^-Bt) through (t + P)(0, fi,-Ai,$i,pi) was ar- 
bitrary, we see that £ + P is a submersion at (0, fi, Ai,$i,pi), as desired. 
□ 

By Claim 4.18, the map (4.34) is a submersion at the point 
(0, fi, j4i,$i,pi) and so is a submersion on an open neighborhood of this 
point in C* x Af?A $ p \- Rather than introduce further notation, we may 
suppose without loss of generality (see the remark at the beginning of the 
proof of the lemma concerning first-category sets) that the map (4.34) is a 
submersion on its entire domain C* x Aff*  ^ „ x. 

Consequently, the locus 

*&o.*o*) := (C* X ■A^,»o«)) n (' + ft-\UX**)) 

is a C00 Banach submanifold of C^ x N?*  ^     v Let 

C 0{AoMtPo) X AVO.SCPO)' 

and observe that we have a countable disjoint union of subsets: 

'A'W*o,Po) = U MtM&o,Poy 
K>n 

Of course, the unstabilized period map (4.23) also lifts to a map, 

(4.36) P : M^0iP0) -> FlagK>n(E+, E"), 

defined, as in (4.32), by setting 

P(A,$,P) := (I+P)(O,A,$,P) = m,VA,P) = m,m,*,p))- 

(Note that the preimage P~1(J/c(^sm)) in -^(A $ p ) consists 0f points 
(A, $,p) such that KevVAp contains some rank-one section, whereas the 
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preimage P    (J^(Xsm)) in M^AQ $     > consists of points (A, $,p) with $ a 
rank-one element of KerX^p.) 

Note that by (4.35) we have 

(4.37) = ({0} x {0} x M^0tPo)) n (t + B-HK^sm)) 

= ({0} x {0} x Mfa^nZfa^y 

Let TTCXM-.V be the projection to the factor 'P from the C00 Banach subman- 
ifold 

C x ^o^o?po) c C6 x F(Ao^0)Po) x CJ^ x p, 

and similarly define TTA/-.^ : •A/'MO,$O,PO) "^ ^* ProPosition 4-12 now implies 
that there is a first-category subset Vic C P such that for each p eV — Vic, 
the preimages 

(4.38) C* x ^0)$0)Po) |p := vc^riv) n (C« x ^Ajlo)), 

where ^.^^Ip := ^(p) n^i#0>po), and 

(4.39) ^0)$o>po)|p := (t+ a.,p)r1(J«(Im)) n (C" x A^0I$0IPO)|P) 

are smooth submanifolds; the parameters p E V — Vfc are regular values 
of the projections defining the above two preimages, which are C00 and 
Predholm. 

Claim 4.19. The manifolds C" x M'^Ao^0iP0)\p and Z*AO&QM)\P 
have the 

following dimension and codimension, respectively: 

(4.40) ^^ (C" X M^^ lp 

= dimE F(Aoi$0)Po) + 2K + dimH}AO)$0iPo) - 2/c(/c - n) < oo, 

(4.41) COdimR (^••««)lp; CK >< JS/&o.*M»> IP) 

= codim(lK(Xsm);FlagK)n(E
+,E-)) = oo. 

Jn particular, £^4,^) \p is empty. 

Proof. According to (4.29) and (4.38) we have 

CK x ^Ao^0iPo)\p 

= (CWCPO) x >WO,PO)IP) n(t + P(-,p))-1(R:edK,n(E+,E-)). 
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Hence, the expression for the dimension of C* x Jsf^A § \ \p follows from 
the facts that 

codimR (fYed^n(E+, E"); Predn(E+, E")) = 2K(K - n), 

(just as in the derivation of (4.30)) in conjunction with Proposition 4.12 
applied to the submersion (4.28) given by L + P_ on O(^0j$0}P0) x M(A0,$0,PQ) 

and the genericity of p, the fact that dimR ^(AO^O.PO) 
= dimM0(Ao,^o,Po)5 

and the fiber dimension formula implied by (4.21), namely 

dimA^,*^)!, = dimH^o^0jPo). 

The equality in (4.41) follows from the fact that the map £ + P(-,p) is a sub- 
mersion on C* x J\f^A ^ Jp according to Claim 4.18 and Proposition 4.12, 
for generic p. The infinite-codimension assertion for Z^A ^ Jp follows 
from (4.11). Thus, Z?A $ X is a smooth manifold of negative dimension, 
by (4.40) and (4.41), and so is empty. □ 

Prom (4.37), we see that (for any p G V) we have 

^?J4o,*0)Po)lP
n£(-»P)"1(li«(3Esm)) C 2(V<I>O,PO)IP> 

and so, as Z^A ^     J^ is empty according to Claim 4.19, the intersection 
MtAQ$o#o)\p n£(*^)~1(J«(^sm)) must be empty as well. Therefore, the 
thickened moduli space M>(Ao&otfo)\p contains no points (^4, $,p) with $ 
rank one, when dime Ker 2?^ = ^ and p G Vic. Repeating this argument 
for all K > n yields the desired conclusion, recalling that a countable union 
of first-category subsets of V is again a first-category subset. This completes 
the proof of Lemma 4.17. □ 

Since we have an inclusion 

* o 
9%5£ n M(Ao^o,Po) C M{Ao,3>o,Po) 

of an open neighborhood of the point (AQ, <I>O,PO) in the parametrized mod- 
uli space QJl^r^ into the thickened, parametrized moduli space M^AQ^0^Q)^ 

Lemma 4.17 implies that M^E{p)r\M^A1Q^0^P0) \p contains no points (^4, $, p) 
with $ rank one, when p G V — Vfc We now repeat this process for 
every point (i4i,$i,pi) in 9ft^£, using appropriate open neighborhoods 

M(Ai&i#i) 0f (-^IJ^IJPI) in CWE 
x ^' an^ obtaining a first-category sub- 

set for each such neighborhood. Since C^E x V is a paracompact Banach 
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manifold, we may pass to a collection of open neighborhoods in C^r^ x V 

which gives a countable open covering of 9Jt^£. A countable union of first- 
category subsets of V is again a first-category subset, so this process yields 
the desired set V{c C V in the case of Cr parameters. That is, for each Cr 

parameter p E V — Vic the moduli space M^E{p) contains no irreducible, 
rank-one PU(2) monopoles. The argument of [16, §5.1.2] then allows us to 
reduce to the case of C00 parameters. This completes the proof of Theorem 
4.1. □ 

Remark 4.20. It is well-known that a Dirac operator VA • fi0(W+®F) — > 
fJ0(W~ ® F) defined by fixed spinc connection on W and unitary connec- 
tion A on a Hermitian vector bundle F over a closed four-manifold has 
CokevVA = 0 when indVA > 0 and the connection A is generic; see, for 
example, [48, Lemma 6.9.3] for a proof using the Sard-Smale theorem when 
F is a line bundle. This and related vanishing results for harmonic spinors 
are proved directly in [4], without appealing to the Sard-Smale theorem. 

Appendix A. PU(2) monopoles on Kahler surfaces 
and Spinc polynomial invariants. 

A.l. Rank-one, irreducible PU(2) monopoles on Kahler surfaces^ 

The observation that the statement and proof of Proposition 1.3.5 in [58] 
is incorrect is an important one due to A. Teleman [54], [71] for the the- 
ory of spinc polynomial invariants and for the developing theory of PU(2) 
monopoles. The transversality results given in [58, §1], which underly the 
Donaldson-Pidstrigach-Tyurin theory of spinc polynomial invariants, rely on 
[58, Proposition 1.3.5]. For completeness, we review Teleman's counterex- 
ample here. 

We first recall the form of the PU(2) monopole equations on a Kahler 
manifold (see [8], [52], [53], [54], [74]). Let (X, J,g) be a four-manifold with 
almost-complex structure J, Hermitian metric #, and corresponding Kahler 
form u. The canonical spinc structure is defined by 

Wctn:=A0'0eA0'2,        W-n:=A°>\ 

where A*^ = A^(T*X), and p : T*X -> Endc(W0 is the standard Clifford 
multiplication of [26], [48], [63]. A straightforward modification of Witten's 
description of the solutions to the U(l) monopole equations on a Kahler 
surface [48], [74] then yields the following form of the (unperturbed) PU(2) 
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monopole equations [52], [53] (see also [8]), 

*A,0 = -i(a®i9)o, 
(A.l) i^2 = i(/?®a)o, 

ik9FA = -i((a ® a)o - *g(P ® /3)o), 

for a pair (A, $), where A is an SO(3) connection on su(£7), inducing a 
unitary connection on S via the fixed unitary connection Ae on det E, and 

$ := (a, /?) € ^(W+n ®E) = n0>0(E) 0 fi0'2(£;). 

Now suppose E is a Hermitian two-plane bundle with holomorphic structure 
BA over a Kahler surface X with H0(E) ^ 0 and that a is a holomorphic 
section of E. If the holomorphic structure c^ on E is indecomposable, then 
one finds from (A.l) that the triple (A, a, 0) defines an irreducible, rank-one 
PU(2) monopole on X. 

A.2. The definition of spinc polynomial invariants. 

The basic idea underlying the definition of spinc polynomial invariants is 
due to Donaldson [14]. The construction of spinc polynomial invariants and 
their development and application to smooth four-manifold topology has 
been carried out by Pidstrigach and Tyurin in their series of articles [57], 
[58], [73]. To the best of our knowledge, all results concerning smooth four- 
manifold topology which have been proved using spinc polynomial invariants 
have been proved independently using either Donaldson invariants or, more 
recently, Seiberg-Witten invariants. Nonetheless, as the spinc -ASD equa- 
tions can be viewed as precursor to the PU(2) monopole equations, the spinc 

polynomial invariants at least have some historical interest. The spinc -ASD 
equations can be viewed (the original definition of [58] uses a slightly dif- 
ferent trace condition for the unitary connection on det E) as the following 
variant of the PU(2) monopole equations (1.1): 

P+(g)f(FA) = 0, 

(A.2) (VAtf + p{f(d)))$ = 0. 

The moduli space 

NwMfig,*) ■= {(A$) : Eq. (A.2) holds}/0GE 
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of spinc -ASD pairs is defined in the same way as the moduli space 
Mw,E(fi 9-) T, ft) of PU(2) monopoles, with N^E{f^ g, ti) denoting the space 
of spinc -ASD pairs (A, $) where is A irreducible. In [58, §1] the moduli 
space NyyEifidi^) ^s used to define invariants of smooth four-manifolds. 
As we remarked in §A.l, Teleman has pointed out that the proof given by 
Pidstrigach-Tyurin in [58] that N^^f^g^) is a smooth manifold of the 
expected dimension (see Proposition 1.3.5 and Corollaries 1.3.6. 1.3.7, and 
1.3.8 in [58]), for generic (3,1?), is incorrect. We note that variations of the 
Dirac operator VAJ + p(fW) with respect to / E Ct0(GL(T*X)) are not 
used in [58], while the one-form 1? is assumed to be purely imaginary (a 
unitary perturbation of the U(l) connection on det W"1"), rather than com- 
plex as we suppose here. Just as in the proof of our main transversality 
result, Theorem 1.3, for the moduli space of PU(2) monopoles, the principal 
difficulty one needs to address is the possible presence in N^^f.g^) of 
irreducible, rank-one pairs. The proof of Theorem 4.1 carries over, with one 
slight change, to give: 

Theorem A.l. Let X be a closed, oriented, simply-connected,smooth four- 
manifold with C00 Riemannian metric g, spin0 structure (p, VF"1", W~), and 
Hermitian two-plane bundle E. Then there is a first-category subset V™ C 
V00 such that for all (/, 1?) in V^-Vg the following holds: The moduli space 
NyPE(f,g1'd) contains no spin0 -ASD pairs (A, $) with both A irreducible 
and $ rank one. 

Proof The only difference — and this is the reason for the additional con- 
straint on 7ri(X) — is that our unique continuation result for reducible 
PU(2) monopoles, Theorem 4.11, must be replaced by the corresponding 
unique continuation result for reducible anti-self-dual SO(3) connections [15, 
Lemma 4.3.21]. The remainder of the proof is otherwise identical to that of 
Theorem 4.1. □ 

Given Theorem A.l, the remainder of the argument of [58, Proposition 
1.3.5] yields: 

Theorem A.2. Let X be a closed, oriented, simply-connected, smooth four- 
manifold with C00 Riemannian metric g, spin0 structure (p, W+, W~) with 
spin0 connection, and a Hermitian line bundle detE with unitary connec- 
tion. Then there is a first-category subset V™ of the Frechet space V00 of 
C00 perturbation parameters (/, 1?) such that for all (/, 1?) in V00 - V^ the 
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following holds: For each parameter (/, i?) in V00 — V^ and Hermitian two- 
plane bundle E over X, the moduli space N^^f^g^) of spin0 -ASD pairs 
is a smooth manifold of the expected dimension, 

dimNfrtE(f,g,-&) = -2Pl(su(E)) - %(e{X) + v{X)) 

+ ipiME)) + i((c1(W+) + dCE))2 - a(X)) - 1. 

Remark A.3. 1. The holonomy perturbations of [16] can be used to 
give an alternative, direct proof of Theorem A.2, without addressing 
the possible presence or absence of irreducible, rank-one spinc -ASD 
pairs in the moduli space N^^f^g^). 

2. The constraint on the topology of X in the hypotheses of Theorem 
A.2 can be relaxed by taking account of the possible presence of the 
'twisted reducible' anti-self-dual SO(3) connections of Kronheimer- 
Mrowka [38, §2] with a little more care. 

A.3. Some linear algebra. 

When proving Theorem 1.3, our transversality result for the PU(2) monopole 
equations (1.1), we used the following well-known, elementary fact: 

Lemma A.4 ([48, p. 89]). Let X be an oriented, Riemannian, smooth 
four-manifold with spin0 structure {p^W^,W~). Then the Clifford map 
p : T*X —> Homc(W+,PF~) extends to an isomorphism of complex vec- 
tor bundles, 

p : T*X ®R C -+ Homc(W+, W'). 

The applications arose, specifically, in the proofs of Lemma 2.4 and 
Proposition 4.10. The lemma is also an essential ingredient in the stan- 
dard proofs of transversality for the perturbed Seiberg-Witten equations 
(see, for example, [37], [48], [74]). Hence, though elementary, we include a 
proof here as we are not aware of a reference. 

Proof of Lemma A.4. Suppose x G X. We need to show that the complex- 
linear map 

p : (T**)* ®R C -> Homc(Wf, W')* 

is an isomorphism and, for this purpose, it is very convenient to use the 
quaternion model for (complex) Clifford multiplication [42], [63]. Thus, we 
employ the identifications of complex vector spaces, W^^ = H © 0 and 
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W-\x = 0®M. Moreover, with this identification, (T*^ = R4 = H acts 
onPVr|a. = HeHby 

p(v){(f>+, (/>") = (W>-, -#+),    for all v E H and (</)+, </>-) G H 0 H, 

while i e C acts by — / e H on the right, commuting with Clifford multipli- 
cation on the left; we give H its standard basis {1, /, J, K} over R. 

Since (T*^)^ OR C and Homc(VF+, W")^ both have complex dimension 
four, it suffices to show that p is surjective. Thus, by complex linearity, it is 
enough to show that for a given unit-norm $ G W+\x and \I/ G W"^, there 
is a v G (r*^)^ ®M C such that p(v) = * ® (•, $) or, equivalently, that 

(A.3) p(i;)* = *. 

Suppose we are given $ = ((/>,0) G W4"^ and * = (O,^) G W~\x. Then, 

/9(t;)* = t;(^, 0) = (0, -v</)),    for all v G H. 

We want to show that p{y)$ = \I> for some v G M, that is, 

(A.4) (0)-#) = (0,^). 

But since H acts transitively on itself by quaternionic multiplication, we can 
find v G H so that (A.4) — and hence (A.3) — holds. This completes the 
proof. □ 
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