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Curvature Estimates for Minimal Annuli and
Non-Compact Douglas-Plateau Problem

Y1 FaANG AND JENN-FANG HWANG

In this article we give curvature estimates for minimal annuli with
convex boundary L; U Ly in parallel planes and apply these esti-
mates to solve some kinds of non-compact Douglas-Plateau prob-
lem. The estimates for minimal annuli also give various necessary
conditions for the existence of minimal surfaces.

1. Introduction.

In this article we give curvature estimates for minimal annuli with convex
boundary L; U Ly in parallel planes and apply these estimates to solve some
kinds of non-compact Douglas-Plateau problem. The estimates for minimal
annuli also give various necessary conditions for the existence of minimal
surfaces.

To state our results, let us fix some notations first.

Let P, = {(:z:,y,z) € R3; z = t}7 S(tlat2) = {(m,y,z) € Rs; 1 <z<
t2}, and S'(t1,t0) = {(z,y,2) € R3; t; <y < tp}, where t] < t3. Let Cg be
the solid cylinder {(z,v, z) € R3; 22 + 42 < R?}.

Let A C S(t1,t2) be an embedded minimal annulus such that 94 =
L1U Ly, where L1 C P;, and La C P,, are convex Jordan curves. Denote P,
the perpendicular projection on a plane 7 perpendicular to the zy-plane.
Let Qr := Int(Pr(A)), the interior of Pr(A), and 90, = U?=1 I'T, where
I'T =Pr(L;), 2 =1, 2, and I'] and I'] are arcs connecting I'T and I'].

In Lemma 2.1 we estimate |[';|, the length of I';. We have

ITT| + T2] > |5 + |T5],
and
ITTIITE] > (t2 —t1)%,  |TT| + T3] > 2(t2 — t1).

Although the proof of the former is a simple imitation of a technique in
[fanghwang-js], and the proof of the latter comes from elementary Euclidean
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geometry, the more accurate new estimate to {2 leads us to curvature esti-
mates.

In Lemma 2.2 we prove that if A C S(t1,t2) N S’(—R, R) and 7 is the
yz-plane, then for any point p € Int(A),

max{dist(P(p),T3), dist(Pr(p),[7)} > (vV2- 1)d2,

where d = dist(p, 0S(t1,t2)). Note that 9S(t1,t2) = Py, U Py, so if p =
(z,9,2), then d = min{z — t1,t2 — 2} = min{dist(p, P, ), dist(p, P,) }

In Proposition 2.1, using Lemma 2.2 and by projecting on a suitable
direction we prove an interior curvature estimate for A C S(t1,t2) N Ckg,
that is, there is a constant Cp > 0, such that for any p € Int(A), the
Gaussian curvature of p satisfies

2
() < 2o,

where d = dist(p, 9S(¢1,t2)).

This curvature estimate gives immediate generalization of the existence
result of Hoffman and Meeks, [fanghwang-hm9], to the continuous convex
boundary case, see Theorem 2.2.

Proposition 2.2 gives another curvature estimate. It states that if A C
S(t1,t2) N S'(t),15) is a compact minimal annulus such that 0A = L; U Lo,
where Ly C P, and Ly C P;, are C? convex Jordan curves, then there is &
constant C such that for any p € A,

|K(p)l _<_. Ch

where C; only depends on the height t2 — ¢, the width t5 — ¢}, and the
boundary planar curvature bound of 9A.

These curvature estimates then lead to compactness theorems, Theo-
rem 2.1 and Theorem 2.3, which state that some sequence of {A,} as in
Proposition 2.1 or 2.2 has a convergent subsequence.

As applications of Theorem 2.1 and 2.3, we solve various non-compact
Douglas-Plateau problems in Section 3.

Recall that the Douglas-Plateau problem for two contours is as follows:
Let Ly and Lo be two disjoint Jordan curves in R3, find a minimal annulus
A such that A = L1 U Ls.

Let S; and Sy be area minimizing disks (when we say disks, we mean
that they are homeomorphic to the unit disk in C) such that 8S; = L,
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0S89 = La. Let S be the set of rectifiable annulus S such that 8S = Ly U Ls.
Douglas [fanghwang-dogl] proved that if

éI’GIfS {Area(S)} < Area(S;) + Area(S2),

then there is an area minimizing (therefore minimal) annulus A such that
0A = L1 U L.

If L; and Ly are coaxial unit circles in parallel planes, then it is well-
known that there is a constant A > 0 such that when the distance between
the centres is smaller than h, there are exactly two catenoids bounded by
L; U Ly; when the distance between the centres is equal to h, there is only
one catenoid bounded by L; U Lg; when the distance between the centres is
larger than h, there are no catenoids bounded by L; U Ls. Furthermore, by
Shiffman’s third theorem [fanghwang-sh1], any minimal annuli bounded by
L; U Ly must be a rotation surface hence is a piece of a catenoid. Thus there
are either two, one, or zero minimal annuli bounded by L; U Ly depending
on the distance between their centres.

Meeks and White [fanghwang-mw1] generalized the above observation
to minimal annuli bounded by two smooth convex Jordan curves L U Lo
in different parallel planes, i.e., there are either two, one, or zero minimal
annuli bounded by L; U Ly. But unlike the coaxial circles case, there are no
simple criteria to tell us when do we have two, one, or zero minimal annuli
bounded by L; U Ls.

However, there are some partial conditions, either sufficient or necessary
to the existence of a solution to some special Douglas-Plateau problems for
two contours. For example, let us consider the Douglas-Plateau problem
to the boundary consisting of two Jordan curves L; U L in parallel and
different planes, say L1 C Py, Ly C Py, d > 0.

If L; and Ly are smooth convex, then besides Douglas’s sufficient condi-
tion, Hoffman and Meeks in [fanghwang-hm9] gave a sufficient condition to
ensure that there are two solutions, i.e., if there is a connected compact non-
planar minimal surface (could be branched) whose boundary is contained
in open planar disks bounded by L; and Lg, then there are two minimal
annuli bounded by L; U Ly. For the precise statement, please see Theorem
2.2 below.

The result of Hoffman and Meeks can be also treated as a necessary
condition, i.e., let Cy and Cy be smooth convex Jordan curves such that
Ly and Ly are contained in the open planar disks bounded by C; and C,
respectively, then there is a connected compact minimal surface (maybe
branched) bounded by L; U Ly only if there are two minimal annuli bounded
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by C1 U Cs.

There are other necessary conditions. For example, Theorem 2.2 com-
bined with a J. C. C. Nitsche’s result [fanghwang-ni2], page 88, implies that
the images of perpendicular projection of L; and Ls on the zy-plane must
intersect if Ly and Ly are convex.

Moreover, Osserman and Schiffer proved in [fanghwang-os1] that if ¢, d,
01, and §y are positive constants and

2
Ll - {(w7y7z); (a:—g-z) +y2 S5%7 ZSO},

2
Ly C {(w,y,Z);(w—gz) +y? <63,z > d},

are closed curves and they bound a minimal annulus, then

c2
01+ 09 > —é-—l-dz.

Using the basic estimates in Lemma 2.1, in Corollary 2.2 we prove that if ¥
is a connected compact non-planar minimal surface (maybe branched) such
that 8% = L1 U Ly and

L, C {(m,y,z);—él Sw—gzgél, zSO},

Ly C {(w7y7z);—62 Sw—gzgéz, de},

then

2max{61, 52} >V c? 4 d2.

Furthermore, if

Ll C {(:B, Y, 0)7_61 S T S 51}7
Ly C {(z,y,d); =02 < x — ¢ < da},

then

01+ 62 > V2 +d2.

We define Non-compact Douglas-Plateau problem of annular type for n
boundary curves as follows:

Let L;, i = 1, ---, n, be disjoint, embedded proper complete curves, at
least one of them is non-compact, find a minimal annulus A such that A =
I':= ?=1 Li.
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As we have seen, there are many necessary conditions restricting the
solvability of even compact Douglas-Plateau problems for two contours, the
solvability of the non-compact Douglas-Plateau problem seems should re-
quire more hypotheses than the compact case. We will see that in fact in
our special cases discussed in Section 3, the same condition that ensures
the existence of solutions for compact cases is also enough for non-compact
cases.

It is known for more than one hundred years that for some non-compact
boundaries we can find minimal annuli solving the corresponding “two con-
tour” Douglas-Plateau problem. A classical example is a minimal annulus
bounded by two parallel straight lines, a piece of one of Riemann’s examples.
Although a straight line is no longer a Jordan curve, it is a proper complete
(convex) curve in R3.

In [fanghwang-f3], it was proved that if L; and Ly are proper non-
compact complete smooth planar convex curves in parallel planes with
two symmetries, then there are two minimal annuli 4 and B such that
0A = 0B =T'. Furthermore, A and B are foliated by strictly convex Jordan
curves.

In Section 3, we prove the existence of various types of non-compact
Douglas-Plateau problems. We will show that the symmetric conditions in
[fanghwang-f3] is redundant, see Theorem 3.1. The proof of Theorem 3.1
is an application of Theorem 2.1, but we must first prove that there are
barriers confining the approximate compact minimal annuli such that we
can use Theorem 2.1, these barriers are established in Lemma 3.1.

In Theorem 3.2 we prove that there are at least two minimal annuli
bounded by four straight lines L;, < = 1, 2, 3, 4, such that L; C P_; and
Ly C P_; are parallel, Ly C P; and Ly C P; are parallel, but L; and L3
are not parallel, if the distances between L; and Lg, and L3 and Lg4, are
sufficiently large.

We will also prove that there are minimal annuli bounded by four parallel
straight lines in two different parallel planes, if the boundary satisfies some
kind of Hoffman-Meeks condition. See Theorem 3.3.
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author also thanks the financial support of Australian Research Council and
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2. Curvature Estimates for Minimal Annuli.

Lemma 2.1. Let A C S(t1,t2) be a minimal annulus such that 8A = Ly U
Ly, where Ly C Py, Ly C P, are convex Jordan curves. Let m be a plane
perpendicular to the xy-plane, P, the perpendicular projection on w. Then
Qr = Int(Pr(A4)) = Pr(A4) — (ULTT) is a domain in m bounded by T'T =
Pr(Li), i =1, 2, and I'] and I'], two curves connecting I'T and I'].

Let |I'T| be the arc length of TT, i =1,2,3,4. Then

(2.1) ICT]+ T3] 2 T3]+ T7],

(2.2) CFITS| > (2 — t1)%  IT]+ T3> 2(t2 — 2.

In particular, if A C S(t1,t2) N S'(t),1,), take 7 to be the yz-plane, then
from [I'T| <th —t|,i=1, 2, we have

(23 min(C7, 1071 > S22 i, 1),
and
(2.4) min{|r7], 3} > & ttl,)

Furthermore, if A C S(t1,t2) N CRg, then

(2.5) min(7l, 31} > L2 ey, g,
and

| (t2— 12)?
(2.6) min{|T'7|, T3]} > ———-—.

Proof. Select a coordinate system such that 7 is the yz-plane and
Pr(z,y,2) = (v, 2)-

For simplicity, write €, as Q, Pr as P, etc.
By Shiffman’s first theorem in [fanghwang-shl], every level curve AN P,
t1 < t < to, is a strictly convex Jordan curve. Thus P(A N F) is a line
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segment and AN P, consists of two graphs on P(ANP;), ut(y,z) > v (y, 2)
such that u*(y,2) = u~(y, 2) if and only if (y, z) is one of the two ends of
P(ANP,).

We orient the yz-plane such that ((0,1,0), (0,0, 1)) has positive orienta-
tion. Then € is bounded by I'y = P(ANP;,), 's =P(ANP,,), and I'; and
T4 consisting of the set of end points of P(A N P;) such that for any ¢, if
(y1,t) € I's, (y2,t) € I'4, then y; < yo, thus we may say that I's is the left
side boundary, I'4 is the right side boundary.

Recall that 7 is the yz-plane. Let S2 be the unit sphere in R® and
S} :=S5%2Nm. Let N : Int(A) — S? be the Gauss map and p be any interior
point of A. Since P(p) € I's UT'y if and only if the tangent vector of AN P;
at p is in the direction +(1,0,0) and since each AN P, is strictly convex, we
see that P(p) € I's UTy if and only if p € N™1(S}). Since it is proved in
[fanghwang-mw1] that N is one-to-one and harmonic, we know that N—1(S})
is smooth and its tangent directions are not pointed at +(1,0, 0), therefore
I'3UTy = P(N~1(S})) is smooth in its interior.

Note that for an interior point P(p) of I's, the tangent line of I's at
P(p) € I's is P(TpA), where T, A is the tangent plane of A at p. Since A is
minimal, there are points of A at both sides of 7, A4 in any neighbourhood of
p in R3. Thus since I's is the left side boundary of €, there are points of
on the left side of P(T,A) in any neighbourhood of P(p), hence I'z is locally
on the left side of its tangent line at P(p). If I's is not convex, then there is
another point P(p;) € I'sNP(TpA). Thus there would be another point P(q)
in the interior of I's and is located between P(p) and P(p1) such that P(q)
is on the left side of P(T,A) and the distance from P(q) to P(TpA) is a local
maximum, thus Ty A is parallel to T, A. Therefore in a small neighbourhood
of g in R3 there are no points of A on the left side of T;(A), a contradiction.
Similarly we can prove that I'y is convex.

We now prove that P(A) — U;l:l I'; is a domain and 2 = P(A) — U?=1 I;.
In fact if P(p) & T1UT2Ul'sULy, then p ¢ N~1(S]), there is a neighbourhood
U of p in R3 such that U N N1(S]) = @ and P(U N A) is open in 7 and
PUNA)NTUTUT3UTy) = 0, ie., P(p) € Int(P(A)), hence Q =
Int(P(4)) = P(A) — (Ui, I:) and 89 = (Ji_, T;. Finally, Q is connected
since P(A) is connected and Uf=1 I'; does not separate P(A). See Figure 1
below.
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Figure 1

Since I'; and T’y are straight line segments, (2 is a domain with piecewise
smooth boundary and 92 has only four corner points [I'; N (T3 UTy)]U[T2N
(T3 UTY)]. Let v be the outward unit normal vector of 9.

Let us consider the graph defined by uw = u*. Then u satisfies the

minimal surface equation div Tu = 0, where Tu = Du/+/1+ |Du|?. The
Gauss map is given by

1
N(z,y,2) = JTT DR (1, D) (y, 2),

If P(p) is an interior point of I's UT'4, then since N(p) = (0,b,c), P(N(p)) =
N(p). Since N(p) is perpendicular to the tangent vector v(p) along N~1(S})
at p, N(p) is also perpendicular to the tangent vector o((P(p)) = P(v(p))
along I'3 or 'y at P(p), thus v(P(p)) = P(N(p)). We then have that

v(P(p)) = P(N(p)) = N(p) = (0,b,¢).

(y,2) €Q, z=u(y,z).

Therefore, ve N = 1 along the interior of I'3 and I'y. Thus by the expression
of N we see that u satisfies the boundary condition

veTu=-veN=-1, on T3UTy.

First assume that L, and Ly are smooth and strictly convex, then Du exists
on I't UT,. We have

Tuou=/diVTu=0.
o Q
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Now since [Tuev| <1,

Lol + Ll == [ Tuev=[  Tuew<IPif+Iral
T'sUT'y 'y ul'y

If Ly or Ls is only continuously convex, then by Shiffman’s theorem ANP, is
smooth and strictly convex for any t € (t1,t2). Consider ANS(t1 +¢,t2—€),
0 < € < (t2—1t1)/2, then (2.1) is true to the corresponding I';’s of ANS(t; —
€,t2 + €). Since A is continuous up to boundary, letting ¢ — 0, we have
proved (2.1).

To prove (2.2) we replace I's by the line segment I'; connecting the two
end points of I's, replace 'y by the line segment I'j connecting the two end
points of I'y. Then by comparison principle for minimal surfaces, |I';| < T3],
IT4| < |T'4]. Furthermore we replace the four-gon I'i UT UT5 U T by a
trapez01d Ty Ul"2 UT3 UTY, such that |I‘3| [T |, and |T]| = |T'1], |T%| = |2
and I'] and I'; are parallel

Note that || = |[y| and 2|T'3| < |T%| + [T%| < |Ts| + [T4| < [T1| + T
Now let h =ty — t; and without loss of generality suppose that |T'1| > 9|,
thus [T2| = ¢[Ty], 0 < ¢ < 1, and 2|T3| < (1 + ¢)|I'y|. Since

we obtain that
(1= )21y |? + 4h% < (14 ¢)?|1y )2

Thus
(2.7) h? < ¢y |? = |y ||Ty|.
By comparison principle for minimal surfaces,
2h < |T3| + [T < |Ts| + [T| < [T1] + [T,

(2.2) is proved.
If A C S(t1,t2) NS'(t],15), then |I'1| < t5 —¢t], so by (2.7)
2
gomng
(2.3) is true. From (2.2),
h2 h?

|P2| > = 'FII = t/ t"
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(2.4) is true.

If A C S(t1,t2) NCR, then t;, —t; < 2R. By a rotation, we see that (2.5)
and (2.6) are true.

The proof is now complete. a

Similar arguments as in Lemma 2.1 give us further information of the
domain Int(P(A)).

Lemma 2.2. Suppose A C S(t1,t2) NS'(—R, R) is a minimal annulus such
that 0A = Ly U Ly, where Ly C P, and Ly C P, are convex Jordan curves.
Let  be the yz-plane and Pr the perpendicular projection on w. Let Q™ =
Int(Pr(A)) be the domain in m and OQ™ = I'TUTFUTF UL be as in Lemma
2.1. Let p be any interior point of A and d = dist (p,0S(t1,t2)). Then

d’ = ma.X{dist('Pw(P)a [‘g), dlSt(P”(p)’FZ)} > -(_1—2—%—%2“

Proof. Let us write Q™ = Q etc.. Since I's and I'y are compact, there are
g3 € I's and g4 € T4 such that |P(p) — g3| = dist(P(p),T'3), |P(p) — qa| =
dist(P(p),T'4). Connecting P(p) and g3, P(p) and g4 by line segments I3 and
l4 to form two subdomains €27 and €2 such that @ = Q; UQyUl3 Ul and
80 =T Ul3 Ul UT,UTY, 8Qy =T Ul3 Ul UT; UT,, where I, C T,
I";' c T, for 7 = 3, 4. Note that I3 and /4 are contained in {2 except at end
points on I's and Ty so that I, UT; = I}, and |T%| + |T; | = |T4|, for i = 3,
4. See Figure 2 below.

Let p = (z,y,2), t1 < z < t2. Let T} and T3 be the line segments
connecting P(p) and the two ends of I'1, then

IT1| + | T3] < 2d' + |T5| + |T%.
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Elementary geometry tells us that

T2
i+ 1m0 2 2/ 0 4 o

[ 4(z—t;)?
2d’+|I‘3|+|I‘|>2\/|—1|+(z—t1)2—|F| 1+-%2—1)—

Similarly, we have

" " F 2 4t - 2
2d' + |F3!+ |F4| > 2\/% + (t2 —z)2 = |F2|”1+ (|21.,—2|22)

Now since d = min{(2—t1), (f2—2)} < (t2—t1)/2 and max{|T';|, |T2|} < 2R,
by (2.2) and (2.6),

thus

min{|T"1|R, |T2|R} > > 2d2,

IC1||Ts| o (t2 — t1)®
2 - 2

2d2 2d2 }
XS = = s S 1.
{lFllR IT2|R

Note that v/1+z > 1+ (v/2— 1)z for 0 < z < 1, we obtain

thus

2(v2 - 1)d?
1 > r >
+ o 2 L g 2 'F'( TR
2(v2 — 1)d?
4(ty — 2)2 2(v2 —1)d?
1+ =2 > —-
|Ta|4/1+ T > |To| + 7
Therefore,
4(t2—z)2
d/
4 +|F3|+|I‘4|>|I‘1|’/1+ IF |2 +|I‘2| 14+~ “oE

4
> |Ty| + Do + ———— (\/—
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But by (2.1)
IT1| + [T2| > |T's| + T4,

we obtain that
dl > (\/-2— - 1)d2
— R

From Lemma 2.2 we obtain an interior estimate of curvature.

Proposition 2.1 (Interior Curvature Estimate). If A C S(t1,t2) NCr
is a minimal annulus such that 0A = L1U Ly, where L1 C P, and Ly C P,
are convex Jordan curves, then there is an absolute constant Cy > 0, such
that

CoR?
a’

(2.8) |K(p)| <

where d = dist(p, 8S(t1,t2)).

Proof. Let Py be the projection on a plane my with normal
vg = (cos0,sin 6, 0).

Then by Lemma 2.1 Int(P(A)) is a domain bounded by T¢, i = 1, 2, 3,
4. We give an orthonormal basis in 7y, (e1,e2), such that (vg,e1,ez) is an
positive basis of R3. The convention is that under this coordinate system,
' has a smaller first coordinate than that for I'Y. Define

£(6) = dist(Ps(p), T%) — dist(Ps(p), T'9).

Then f is continuous and f(6 + 7) = — f(8). Thus there exists at least one
6 = 6y, such that f(6o) =0, i.e., dist(Pg,(p), I‘g“) = dist(Pg, (p), I’Z“) =d.
By Lemma 2.2, d > D := (v/2 — 1)d?/R, where d = dist(p, 85(t1, t2)).
Thus there is a round disk centred at P(p) of radius greater than or equal
to 7 = min{D, d} contained in  and p = (u(P(p)), P(p)) is on a minimal
graph generated by u = ut or u~. A theorem of Osserman [fanghwang-osl],
page 107, says that there is an absolute constant C' > 0 such that
K@< 5
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Finally by (2.2) and the definition of d,
4R > |T%| + [T%| > 2(t, — t1) > 4d > 4(V2 — 1)d,

we know that min{D, d} = D. Taking Cp = (7-20_—1)3, we complete the proof.
a

Recall that the Gaussian curvature bound ensures compactness, as stated
in the following summarization appeared in [fanghwang-ands],

Lemma 2.3 (Compactness Lemma). Let 2 be a bounded domain in a
complete Riemannian S-manifold N® and let {M;} be a sequence of min-
imally immersed surfaces in Q. Suppose there is a constant C such that
the Gauss curvature Ky, (z) satisfies |[Kp,(z)| < C for all i. Then a sub-
sequence of {M;} converges smoothly (in the C*-topology, k > 2) to an
immersed minimal surface Mo, (with multiplicity) in Q and |Kpy (z)| < C.
If each M; is embedded, then My, is also embedded.

Theorem 2.1. Let {A,} be a sequence of embedded minimal annuli con-
tained in S(t1,t2) NCR such that DA, = L} UL}, where LT C P,, L} C P,
are convex Jordan curves. Then there is a subsequence of {A,} converging
to an embedded minimal annulus A C S(t1,t2) NCg such that A = L1U Lo,
where Ly C Py, Ly C P, are conver Jordan curves.

Proof. First observe that as uniformly bounded convex Jordan curves {L7}
and {L§} are equicontinuous.

In fact, by Lemma 2.1, the arc lengths of {L}} and {L}} are at least
(t2 — t1)?/R. Since {L?} and {L}} are contained in Cg and are convex,
their arc lengths have an upper bound too.

Thus a subsequence of {L7}, still denote by {L7}, has a convergent arc
length, i.e., I, := |L}| — 1 > (ta — tl)Q/R.

Since L7 is convex, it has tangent almost everywhere. Let oy, : [0,1,] —
Py, be the embedding of LY} such that |&,| = 1 almost everywhere. Define s :
[0,1] = [0,1,] by s(t) = lnt/l and B, : [0,1] — P, by Bn(t) = an(s(t)), then
|Bn| = 1n/1 almost everywhere. Thus {8,} is equicontinuous and uniformly
bounded.

By Ascoli-Arzela theorem, a subsequence of 3,, still denote by ,, uni-
formly converges to a continuous mapping 3 : [0,]. By (2.6) the image of 3
cannot be a line segment or a point. Since each 3, is one-to-one except at
the two ends, 3 defines a Jordan curve L;. Let D; be the domain enclosed
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by L; and D7 the domain enclosed by LT, then D} — D;. Since each D7 is
convex, D; is convex. Hence L; is a convex Jordan curve. Similarly we can
treat {L%} and we may assume that a subsequence of {9A4,}, still denote by
{0A,}, has a limit L; U Ly, and L3 C P, and Ly C P, are convex Jordan
curves.

Let €, \, 0 as m — oo and AT = A, N S(t1 + €m,t2 — €m) C Cr. Then
by Proposition 2.1 for fixed m, {A7'} has a uniform curvature bound, thus
by Lemma 2.3, there is a subsequence {A7} } converging in S(t1 + €m,t2 —
€m)NCgr. Thus the subsequence {An,,, } converges in the interior of S(t1, t2)
to an open minimal surface A.

Since each A,,,, N P; is a strictly convex Jordan curve in Cgp N P; and
{Am,.} converges in C* topology, k > 2, AN P, must be a convex Jordan
curve, thus A is a minimal annulus.

Now lim,,—,00 OAm,, = L1 U Ly. We only need prove that 04 = L1 U Ls.

In fact, let P, be the perpendicular projection on a plane 7 perpendicular
to the zy-plane and QF = Int(Pr(Am,,)), then by Lemma 2.1, A, . consists
of two simply connected graphs G} and G, with continuous boundary.
Similarly, A consists of two simply connected graphs G* and G~ on a domain
in the plane 7.

Let Xt : D — R3 and X, : D — R3 be conformal embeddings from
the closed unit disk D for G}, and G,, respectively, normalized such that
X+ (p;) = ¢, for three fixed points p; € D and limpy, 0 q” = ¢ € Ly.
Similarly we require the three points condition for X,.

Since OAn,,, consists of two convex Jordan curves in 8S(t1,t2) N CR, the
arc lengths of 84, is uniformly bounded, hence by isoperimetric inequality,
the areas of A, hence of G}, G, are uniformly bounded. Now since X,
are conformal, [, |DX;|? is uniformly bounded. Therefore, by Courant-
Lebesgue Lemma (see Theorem 3 on page 238 of [fanghwang-dhkw]), X is
uniformly continuous and converges on D.

Similarly we can prove that X, converges on D. Since G}, — G and
G, — G~, and 8(G} UG;,) NO8S(t1,t2) = OAm,, converges to L U Lo, and
the plane 7 was arbitrary, we see that 84 = L1 U Ly and A is continuous up
to boundary and A = L; U Lo. O

Remark 2.1. The argument used in the proof that A is continuous actually
gives an alternative proof that a subsequence of {A,} converges to a minimal
annulus without curvature estimates and Lemma 2.3, i.e., via the uniformly
boundedness of [, |DXm|? and the Courant-Lebesgue Lemma, with the help
of Lemma 2.1 and 2.2.
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With Theorem 2.1, we can give a generalization of a theory dealing with
smooth convex boundary developed by Hoffman and Meeks in [fanghwang-
hm9], and Meeks and White in [fanghwang-mw1], to the continuous convex
boundary case.

Theorem 2.2. Suppose Dy and Do are two open disks lying on parallel
planes, and suppose their boundaries Ly and Ly are continuous convez
Jordan curves.

1. If A’ is a connected non-planar compact (maybe branched) minimal
surface such that 8A' C D1UDs, then there exist at least two embedded
compact minimal annuli A and B, 0A = 0B = L1 U Ls.

2. A is stable and has the property that for any disks D' C Dy and D" C
Dy with continuous boundaries, if there is a connected compact (maybe
branched) minimal surface N such that 8N = 8D’ UdD", then N is
contained in the solid V' bounded by AU D; U Dy. In particular, if
A # N, then Int(A) NInt(N) = 0. On the other hand, B is unstable
and Int(B) NInt(N) # 0.

3. If merely 8A' Cc Dy U Dy, then there exists at least one embedded
minimal annulus C such that 0C = Ly ULy. Such a C is almost stable
in the sense that the first eigenvalue of the second variation of C is
larger than or equal to zero. Let N be a connected compact (maybe
branched) minimal surface such that ON = 0D’ U dD”, then N is
contained in the solid V bounded by C U Dy U Dy. In particular, if
C # N, then Int(C) NInt(N) = 0.

4. Furthermore, the symmetry groups of A and B, or C, are the same as
the symmetry group of L1 U Lo.

Proof. If L1 and Lo are smooth, or in the cases of existence of A and C
in conclusions 1 or 3 for merely continuous L; and Ls, the theorem is a
combination of Theorem 1.1, 1.2 of [fanghwang-hm9], and Lemma 2.1 of
[fanghwang-mwl1], with “exact” replacing “at least” in 1.

In general for the case of L; and Ly are merely continuous, let Symm(L;,U
Ly) be the symmetry group of Ly U Ly. We can construct smooth convex
Jordan curves LT and L% such that lim,_,o L} = Ly, lim,—00 L} = Lo,
Symm(L} U L3) = Symm(L; U Ly), and L; and Ls are enclosed in the
disks bounded by L} and L3 respectively. Therefore there are correspond-
ing minimal annuli A, and B, etc., satisfying all the properties stated in
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the theorem, and being contained in some Cg. Using Theorem 2.1 we get
our limiting minimal annuli A and B bounded by L; U Lo, they satisfy all
properties stated in the theorem, especially, A # B. O

An immediate corollary of Lemma 2.1 and Theorem 2.2 is

Corollary 2.1. If¥ C S(t1,t2) is a connected compact non-planar minimal
surface (maybe branched) such that 80X C Py, U Py,. Let L(0,t) be the length
of ¥ N P; projected on the plane with normal (cos@,sin@,0), for (6,t) €
[0, 7] X [t1,t2]. Then for anyt; < s <t<ty and 0 € [0, 7],

L(8,s) + L(0,t) > 2(t — s), L(6,s)L(8,t) > (t— )2

Thus ( 2 ( 2

t—1t1 tg—1

L(9, tl) ) L(9, tg) } , te (t11t2)'

In particular, if 0¥ C S(t1,t2)NS'(t],15), then th—t] > to—t1. Furthermore,
if ¥ C S(t1,t2) N CR, then

L(,t) > max{

(t—t1)? (2—1)°
2R ’ 2R

L(4,t) > max{ } , tE(t1,t2).

Proof. First observe that by comparison principle for minimal surfaces XN P;
is a variety without isolated points, hence we can apply Theorem 2.2. Thus
we can construct a minimal annulus A(f) C S(s,t) with convex Jordan
curves boundary in P, and P, respectively, which enclose ¥ N P; and XN P;.
Then by Lemma 2.1

IT1|+|Ta > 2(¢ - s), [TullTe| > (¢~ s)?,

where I'1 and I's are the projection of dA(#). Note that we can make 9A(6)

such that
L(@, 3) = |F1|7 L(o’ t) = |F2|'

Then all the conclusions are trivial by Lemma 2.1. O

Corollary 2.2. Letc, d, §1, and 62 be positive constant numbers. If ¥ is a
connected compact non-planar minimal surface (maybe branched) such that

0X =L ULy and

Ly ¢ Dy i={(2,9,2);—81 Sz — =2 < 8y, 20},
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Lyc D := {(m,y,z);—62 <z-— Ly < dg, 2> d},
d

then

(2.9) 2max{d1, 2} > V2 + d2.
Furthermore, if

LicCc D, := {(Il?, Y, 0);—51 <z< 51}1
Ly C Dy = {(z,y,d); =02 <z — c < &p}
then

(2.10) 01 + 02 > V2 + d2.

Proof. Let X : M — R3? be a conformal parametrization of ¥ and consider

the function c

d
then ¢ is harmonic. Thus let R := max{d, d2}, by maximum principle for
harmonic functions,

¢=X1—=Xs,

YcC {(:c,y,z); —RS.’IJ—';;-ZSR}.

Since 0% is contained in {z < 0} U {z > d}, ¥N.S(0,d) is a minimal surface
whose boundary L U Lj satisfies that

Ly c {(z,9,0,-R<z <R}, LjC{(z,y,d);—R<z—c<R}.

Let Cy C Py, C2 C Py be convex Jordan curves such that they enclose L}
and L, respectively and

C1 c{(z,4,0;-R<z <R}, CyC{(z,y,d);—R<z-c<R}

By Theorem 2.2, there is a minimal annulus A bounded by C; and C5. Let
7 be the zz-plane and I';, ¢ = 1, 2, 3, 4, be as defined in Lemma 2.1. By
comparison principle for minimal surfaces, I's and I'4 are not line segments.
Then by Lemma 2.1,

4R > |T'1| + |Ta| > T3] + [Ta| > |l3] + |lal,
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where I3 and l4 are line segments such that I'y U Ty U l3 U Iy consists of
the boundary of a convex four-gon in the zz-plane. Elementary calculation

shows that
ll3| + ll4| = 2v/ c? +d2.
Similarly we can prove (2.10) by requiring that
C1 C {(z,y,0);-01 <z <81}, CoC{(z,y,d);—0a <z —c<d}.
Then we have
2(01 + d2) > |T1| + [T2| > |T3| + |T4| > |la] + |14,

and

lis| + |la] = /(82 — 81 + €)% + @2 + /(01 — 03 + €)% + d2 > 2/c2 + d2.

a

To establish the existence of solutions to non-compact Douglas-Plateau
problem with four parallel straight lines as boundary in Section 3, we need
another curvature estimate for minimal annuli.

Proposition 2.2. Let A C S(t1,t2)NS’'(t],t5) be a compact embedded min-
imal annulus such that A = L1 U Lo, where Ly C P, Ly C P, are C?
convez Jordan curves. Let E > 0 such that |k(p)| < E for any p € A, where
k is the planar curvature. Then there is a constant C; > 0 only depending
on tg —t1, th —t] and E, such that

K (p)| < C1,

where K (p) is the Gaussian curvature of A.

Proof. The proof is a generalization of the proof in [fanghwang-mrl] of a
special case of this Proposition, the estimates in Lemma 2.1 enables us to
make this generalization.

By a homothety, we can assume that ¢; = —1, t2 = 1. By a translation
we can assume that tj = —R, th = R for some R > 0.

If the Proposition is not true, then there are minimal annuli B, C
S(—1,1) N S'(—R, R) such that OBy, consists of two convex Jordan curves
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in P_; and P;, whose planar curvatures are bounded by F, and 3p, € B,
such that

—Cn = Kp,(pn) < KB.(p), Vp€ Bp; lim Kp, (pn) =—

Let B, = B, — pn := {p € R3, p+ p, € B,}. Note that p, = (Zn, Yn, Zn),
—R <y, <R, -1 < 2, < 1. By a rotation if necessary, we may assume
that —1 < 2z, < 0. So that B, = B, —p, C S(-1,2)NS'(—2R, 2R) contains
the origin, and 8B, C Py , UP_,,.

Let B, = \/C,B, be the homothety of B, and K 5, be the Gaussian
curvature of By, then |K E‘nl < 1. Let D,, be the ball centred at origin with

radius m. Then by Lemma 2.3 a subsequence of {B,} converges in Dp,. By
a diagonal argument, a subsequence of {Bn}, still denote by {Bn}, converges
to an embedded minimal surface M in R3. M is not a plane, since it has a
point (the origin) with Gaussian curvature —1.

Since the Gauss map N : B, — S? is one-to-one and N # +(0,0, 1),
[fanghwang-mw1], we have || 5, Kp dA > —Am, see [fanghwang-os1].
forces that M must have total curvature at least —4.

Since the boundaries of B,, are on P VCrn(—1—27) and P /T (1=2n) and C,, —

00 as n — oo, if M has a boundary, it must be that limy_co vCpn(—1 — 2,)
exists in R or lim,, 00 v/Cn(1—2y) exists in R. Since —1 < z, < 0, it must be
limy 00 v/Cr(—1 — 2,) = to exists and OM C P, Since B, N P; are convex
and have uniform planar curvature bound, M = lim, 00 OB,NP /C(~1
exists.

Since 8B,, has uniform planar curvature bound E, it turns out the planar
curvature of &M is bounded by E/+/C, — 0, hence &M must be a straight
line I if OM # 0.

If M # 0, then rotating M around | = &M by 7 degree, we get a
complete minimal surface without boundary, its total curvature is at least
—8m, and it contains a straight line. But such a surface does not exist by
classification, see for example [fanghwang-lo]. Thus OM = 0.

It forces that M must be a catenoid since that it is non-flat completely
embedded without boundary, and its total curvature is at least —4.

Thus M N P, is a circle and since B,, — M , the length of B,,N P, should
be bounded, i.e., there is an F' > 0, such that

—‘Zn)

IBnnPO|SF~

But since B, N P; is a convex Jordan curve for each t € (—1,1), and B, N
S(-1,1) N §(—R, R), recalling that —1 < z, < 0 and applying (2.4) to
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B, N S(zy,1), we have

VCi(l=2)? _ VCa _
R =R %

|B, N Po| = /Cp|B. NP, | >
O

Remark 2.2. Since we assume that 94 is C2, the estimate is a global one,
not just interior. But we can only prove by contradiction that the curvature
of A C S(t1,t2) N S'(t),t5) has an a prior bound. The ideal proof is to give
an a prior estimate of curvature bound for A C S(¢1,t2) NS’'(t}, t5) explicitly
involving the boundary planar curvature of A, the height t3 — t;, and the
width t) — ¢]. Such a concrete estimate will be useful in many other cases.

Then we have another compactness theorem.

Theorem 2.3. If {A,} C S(t1,t2) N S'(¢),t5) is a sequence of minimal
annuli such that A, = L} U L3, where L} C P,,, L} C P, are C? conves
Jordan curves with uniform planar curvature bound E and lim,,_,o LT = Ly,
limy, o, L} = Lo, then there is a subsequence of {A,} which converges to
an embedded minimal surface A such that 8A = L, U Lo.

Proof. Let D, be the ball centred at origin with radius r, then R3 =

o 1 D Since limp oo LT = Ly, limpoo L = Lo, for m and n large
enough, A, N D, # 0. By Proposition 2.2 {A,} has a uniform curva-
ture bound, so Lemma 2.3 applied in D,, gives a convergent subsequent
{Am, N Dy}, then {A,,.} is a subsequence of {A4,} which converges to an
embedded minimal surface A in any compact set. Since lim,_,oo LT = Lq,
limy, oo LG = Lo, we have 0A = L1 U Ls. O

Remark 2.3. Note that the limit minimal surface A is not necessarily an
annulus. In fact, it may be even not connected.

3. Applications to Non-Compact Douglas-Plateau Problem.

First let us define various boundaries for which we want to solve the related
Douglas-Plateau problem.

Let o : R — R? be a properly embedded complete convex curve, and
let L = a(R). Suppose that L is not a straight line, then R? — L has two
components, only one of them is convex.
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Definition 3.1 (Standard Boundary). Wecall ' := L;UL9 a standard
boundary if:

e Ly C P_; and Ly C P; are two continuously embedded, proper, com-
plete, non-compact, non-flat convex curves.

e Let Yy C P_; and Y2 C P; be the two convex domains bounded by L
and Lo respectively. Let ¥; ¢ Py and L; C Py be the perpendicular
projections of Y; and L;, for i = 1, 2. Then ¥; N Y3 is a bounded
convex domain.

e There is a connected compact non-planar (maybe branched) minimal
surface ¥ such that 0¥ Cc Y1 UYs.

Remark 3.1. By Corollary 2.2, the last condition of Definition 3.1 implies
that Y1 N Y3 # (. We will call this condition H-M condition to Y; UYs, it
first appeared in [fanghwang-hm9] by Hoffman and Meeks.

Let D, C Py be the disk centred at (0,0) with radius r. It is well-known
that if r is large enough and D, C ¥; N Y3, then there is a piece of catenoid
C such that 9C C Y; UY;. Hence the H-M condition is satisfied.

Our first existence theorem is:

Theorem 3.1. Let I be a standard boundary. Then there exist two embed-
ded minimal annuli A and B such that 0A = OB =TI'. The minimal annuli
A and B have the following properties:

1. For each t € (—-1,1), P.N A and P; N B are strictly conver Jordan
curves.

2. Int(A) NInt(B) =

3. Let N be a connected compact non-planar (maybe branched) minimal
surface such that 9N C Y1 UYy, then

Int(4) NInt(N) =0, BNN #0.

4. A and B have the same symmetry groups as that of T.
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Remark 3.2. If we change the last condition in the definition of standard
boundary so that 8% C YUY 5, then there is at least one embedded minimal
annulus C such that 8C = I'. Furthermore, C behaves just like A in the sense
that they satisfy the same properties in 1, 3 and 4 of Theorem 3.1.

A limit case of standard boundary is that of straight line boundary,

Definition 3.2 (Straight Line Boundary). A straight line boundary
is as follows:

o' = 21=1 L;, where L; are straight lines such that L; and Lo are
contained in P_; and parallel, while L3 and L4 are contained in P;
and parallel. But L; and L3 are not parallel.

e Let Y; C P_; be the open strip bounded by L; and Lg, Y5 C P; be
the open strip bounded by L3 and Ls. Then Y; UY5 satisfies the H-M
condition.

Remark 3.3. Note that since L; and L3 are not parallel, the perpendicular
projections Y, and Y3 of ¥; and Y, have bounded intersection.

Theorem 3.2. Let I' be a straight line boundary. Then there exist two
embedded minimal annuli A and B such that 0A = OB = I'. The minimal
annuli A and B have all the properties stated in Theorem 3.1.

Remark 3.4. The Remark 3.2 also applies to the straight line boundary.

Now let us consider parallel straight lines. It is also an limit case of a
standard boundary. Indeed if we consider a standard boundary such that
there is a straight line L C Py which intersects Liand Ly in exactly one point
respectively. We may change L; and Lo such that the single intersection
points of L with L and L, go to infinity in opposite directions, and I
and L2 both break into two straight lines parallel to L. Thus we give the
following definition of a parallel line boundary:

Definition 3.3 (Parallel Boundary). A parallel boundary is as fol-
lows:

o' = U?=1 L;, where L; are parallel straight lines such that L; and
Lo are contained in P_;, while L3 and L4 are contained in P;. The
strip bounded by L; and L3 and the strip bounded by Lo and L4 are
disjoint.
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e Let Y7 C P_; be the open strip bounded by L; and Lg, Yo C P; be
the open strip bounded by L3 and L4 in P;. Then Y; UY; satisfies the
H-M condition.

Remark 3.5. By Corollary 2.1, a necessary condition for I = U?=1 L; being
a parallel boundary is that the product of the widths of the strips Y7 and
Y5 is larger than 4.

Given a parallel boundary I as above, we always assume that the straight
lines L; are parallel to the z-axis.

A special case of parallel boundary is a lattice boundary (it defines a
lattice in the yz-plane):

Definition 3.4 (Lattice Boundary). Let I" be a parallel boundary. Let
p; be the intersection points of the L; with the yz-plane. If the p;’s are
the vertices of a parallelogram, then we call the parallel boundary a lattice
boundary.

Let F' be the parallelogram with p; as vertices. Then we select the
bisectrice point (the intersection of the two diagonals) of F' as the origin of
R3.

Our third existence theorem is the following:

Theorem 3.3. Let T’ be a parallel boundary, then there exists an embedded
minimal annulus D such that 0D =T'. Also D satisfies:

1. For -1 <t <1, P.ND are strictly convex Jordan curves.

2. Let N be a connected compact non-planar (maybe branched) minimal
surface such that BN C YUYy, then DN N # .

3. D is invariant under the reflection (z,y,z) — (—z,y, 2).

4. If T is a lattice boundary, then D is invariant under the rotation of
angle m around the x-azis.

Remark 3.6. In [fé,nghwang-mrl], Meeks and Rosenberg gave a proof of
the existence of D with a lattice boundary in order to construct doubly
periodic minimal surfaces.
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3.1. Proof of Theorem 3.1.

The idea for the proof of Theorem 3.1 is to construct sequences of compact
minimal annuli {A4,} and {B,} whose convex boundaries approaching the
given T'.

Now we approach L; and Ly by convex Jordan curves L. C P_; and
L2 C Pj such that for any R > 0, there is an Ng > 0 such that whenever
n > Np,

(3.1) (LLUL2)NCg = (L1 U Ly) N Ck.

Let D} and D2 be the disks bounded by L. and L2. We can make L and
L2 such that

8L c DLuD:, D, cCD},, DicCDi,

where X is the surface in the H-M condition.

By Theorem 2.2 there are two minimal annuli A, and B,, such that
0A, =0B, = LLUL2.

To prove that there are convergent subsequences of {A,} and {B,},
we need the following lemma. The proof of this technical lemma is quite
involved. In order not to interrupt the main argument, at this moment let
us assume the lemma is true.

First let us fix some more notations. Let Q, := {(z,y,2) € R; z = a},
Hf = {(z,y,2) € R% z > a}, H = {(z,y,2) € R}z < a}. Let W, =
{(z,y, 2); —a < = < a}. Denote the zz-plane by F.

Lemma 3.1. Let Y, and Ys be as defined in Definition 3.1. Let A C
S(—1,1) be a compact minimal surface. Suppose that 0A = C1 U Ca such
that C; C Y1, Co C Ys. Then we can choose coordinates (z,y, z) such that
for any a > 0, there is an S(a) > 0 such that ANW, C S'(—S(a), S(a)).
We can choose that if a > b > 0, then S(a) > S(b).

And for any t € (—1,1), there is an R(t) > 0 such that

(32) ANP, C CR(t)~

Moreover, we can make that R(t) = R(—t) and R(s) < R(t) whenever
|s| < [¢.

As proved in the proof of Lemma 3.1, we can choose coordinates (z, y, z)
of R3, such that if a > 0 is large enough, we have Q,NL2 = @ and Q_,NL; =
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@ or,Q,NL; =0 and Q_,NLs = O, but not both. Without loss of generality,
we assume that it is the former and keep this convention in this paper.

By Lemma 3.1, A, N S(—t¢,t) C Cr(y) and B, N S(—t,t) C Cpy), hence
for each ¢t € (0, 1), they are uniformly bounded. By Shiffman’s first theorem
[fanghwang-sh1], A, N P; and B,, N P; are strictly convex Jordan curves.

Now we can use Theorem 2.1 to prove subsequences of {A4,} and {B,}
converge to A and B in the interior of S(—1,1). In fact, there are sub-
sequences of {A,} and {B,} which are convergent to embedded compact
minimal annuli A;,, C S(—tm,tm) and By, C S(—tm,tm) in S(—tm,tm) for
any t,, where t,, /' 1 as m — oco. By a diagonal argument we see that
subsequences of {A,} and {B,} converge to embedded minimal surfaces A
and B. Since for each s € (—tm,tm), An N Ps and B, N Ps C Crit,,) is
uniformly bounded convex Jordan curves and the convergence is smooth,
AN P, and BN P, are convex Jordan curves. Since for ¢t € (—1,1), ANP;
and BN P; are convex, by Shiffman’s theorem again, we know that AN B,
and BN P, are strictly convex, hence A and B are minimal annuli.

Still denote these subsequences by {A4,} and {B,}, we only need prove
that A and B are continuous up to boundary and 84 = 0B =T.

Now by Lemma 2.1 A, consists of two simply connected minimal graphs
over a domain Q,, C P}, say G, G,,.

Since 4, = GFUG,,, A,NQ, and A, NQ_, are the unions of two graphs
respectively, hence they are simple curves. Similarly, ANQ, and AN Q_,
are simple curves. Thus GF NW,, G, NW,, Gt NW,, and G~ NW, are all
simply connected.

Let 2, = QNW,, then Q, is bounded and has piecewise smooth boundary
as proved in Lemma 2.1, hence 02, has finite length. Also by Lemma 3.1,
AN W, is also bounded, thus we know that Gt N W,, G~ N W, have finite
area.

Let D be the closed unit disk in C and X,, : D — R3 be a conformal
embedding of G;f "W, such that for three fixed points p; € 8D, X, (p;) = ¢,
where g; € G N (L1 U Le) N W, i = 1, 2, 3. Since A, — Li U Lo, this
is alway possible. Since G;} — G, the areas of G;f N W, are uniformly
bounded and by the conformality of X, |, D |DX,|? are uniformly bounded.

By Courant-Lebesgue Lemma, G N W, = X,,(D) converges to (Gt U
(L1U Ly))NW, and is continuous up to boundary. Similar argument for G~
also holds. Thus we see that d(ANW,) N (P-1 U P;) = (L1 U Ly) N W, for
all a > 0 large enough. Moreover, it is clear that 8.4 C P_; U P;. Therefore
O0A = L1 U Ly and similarly 88 = L; U Ly and they are continuous up to
boundary.

Let N be a connected non-planar compact (maybe branched) minimal
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surface such that 8N C YUY 5. Let V, be the solid bounded by A, U DU
D2, and V be the solid bounded by AUY; UY,. We know that N C V,,
and Int(A,)NInt(N) = @. Since V, — V, N C V. By the comparison
principle for minimal surfaces, either 4 = N or Int(A)NInt(N) = 0. Since
N is compact and A is not compact, Int(N)NInt(A) = @. In particular,
Int(X)NInt(A) = 0. ‘

Since B, N N # 0, lim, o, B, = B, and N is compact, we know that
BN N 0.

In particular, Int(X)NInt(B) # 0. Thus A # B.

Let V. be the solid bounded by B,UDXUD2, and V"’ be the solid bounded
by BUY;1UY 5. Then since V! C V,, lim,—00 Vp, = V, and lim,, oo V! = V7,
V' Cc V. By the comparison principle for minimal surfaces, we have that
Int(A)NInt(B) = 0.

By Theorem 2.2, we can construct the approaching sequences {A,} and
{B,} such that they have the same symmetry groups as that of I, thus the
limits, .4 and B, have the same symmetry groups as that of I'.

The proof of Theorem 3.1 is complete except that we still need prove
Lemma 3.1. ]

The idea for the proof of Lemma 3.1 is to construct various barriers
and use the comparison principle for minimal surfaces. To establish these
barriers, let us quote a Lemma in [fanghwang-chm)].

Lemma 3.2 (Lemma 4 in [fanghwang-chm)]). Let Lo consist of two
non-collinear rays emanating from the origin in the plane Py, and let Ly
be their vertical translation into the plane Py. Then LoU L1 is the boundary
of a unique properly embedded minimal surface contained in the convez hull
of LoULy. This minimal surfaces is a graph over an infinite strip and hence
is simply connected.

Remark 3.7. As pointed out in the proof of Lemma 3.2 in [fanghwang-
chm], A is asymptotic to a flat strip as it diverges to infinity.

Proof of Lemma 3.1. First we claim that 171 U }72 is contained in an un-
bounded domain €2 with four rays as boundary. And if we adjust the angles
between the boundary rays of {2 we can assume that there is a straight line [
contained in Q. Note that this implies that R3—£) consists of two unbounded
convex domains.

In fact, since ¥3 N Y is convex and bounded, there are exactly two
unbounded components on Li—1Lyand Lo — L. Say a; C Iy - Lo, 3; C
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Li— I~/2, i =1, 2, are the four unbounded components. Take a point on each
of these unbounded components, say p € a1, P’ € as, q € 81, ¢ € B2. Since
L; are convex, there are straight lines passing through these four points such
that L; are on the same side of these lines. Denote these lines by lp, by, g,
and [y

Ifl and y interset, then Y1 is contained in a wedge 2 (a convex domain
bounded by two rays issuing from one point) bounded by rays in I, and ly. If
I, and I, are parallel, then since Liis non-compact convex, Y1 is contamed
in the strlp S bounded by I, and . Since L, is non-flat, we can find a
wedge 2 such that Yl C Q. Slmllarly, there is a wedge Q2 D Ya.

Since Y; NYs is compact, by parallel translations or, if necessary, vary
the angles of the wedges, we can assume that 8Q; N 92 = {P, Q}. Take Q
to be the domain bounded by rays in 90 U9 issuing from P and @, then
clearly ¥; U Y, C Q. By enlarging € if necessary, we can assume that the
straight line I which is the bisector of the line segment PQ is contained in .
Take [ as the z-axis, then the coordinate system of (z,y, 2) satisfies that if
a > 0 large enough, we have Q,NLy =0 and Q_,NL; =0 or, QaNL; =0
and Q_, N Ly = 0, but not both.

Denote the two components of 9 by ! and I2.

Now let A C S(—1,1) be a compact minimal surface such that 0A =
Ci1UCy, C1 CYy,Cy CYs. Then C;N Ly =0 and CoN Ly = (. See Figure
3 below.

Figure 3
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We first prove that for any a > 0, there is an S(a) > 0 such that
ANW, c S'(-5S(a), S(a)).
We use the barrier in Lemma 3.2.

(3.3) rn(riuts) =0.

Now let us parallel translate ! along the z-axis into P_; and P; and call
them 1!, and !} respectively. By Lemma 3.2, there is a minimal graph M
bounded by 1!, and {}. By (3.3), AN (1L, Ul}) = 0. By the comparison
principle for minimal surfaces, AN M = (. Thus for any a # 0, there is an
R! > 0, such that ANW, is contained in the half-space {y < Rl}. Since M
is continuous, we can select R! such that it is nondecreasingly continuous
respect to a.

Similarly, using I2 to make minimal graph M’, we can find an R2 > 0
such that P(A) N W, is contained in the half-space {y > —R?} and R2? is
nondecreasingly continuous respect to a. Take S(a) = max{Rl, R2}, we
have proved that AN W, c S'(-S(a),S(a)) and S(a) is nondecreasingly
continuous respect to a.

Next, the minimal graph M bounded by I1,Ul} is contained in the convex
hull of I* ;Ul}. Let P be the perpendicular projection on the zy-plane. Then
P(M) is contained in the convex domain bounded by I!. Similarly, P(M")
is contained in the convex domain bounded by 2. Therefore, P(M) N (Y; U
Y2) = 0 and P(M’) N (Y1 UYs) = @. Parallel moving /! and I? to L! and
L? along the +y-direction and denote the non-convex domain bounded by
L' UL? by &, then by the Remark 3.7 we can make

(3.4) (P(M)UPM)NQ =0, PA) cC.

Still denote L! by !, L? by I2.

Let I, = {(z,y,2); * = u,z = 0}. We have proved and made the con-
vention that L1 Nl_g =0, LeNlg =0 for d > 0 large enough.

Let ©; be the unbounded convex domain bounded by part of I} UI2 Ulj.
Then 81 = I'y UTy, where I’y C 11 UI? consists of two rays issued from the
intersections of Iy with I U2, and I'y is the line segment in I between the
two intersection points.

Similarly, let 2 be the unbounded convex domain bounded by part of
1UI2Ul_g. Then 89 = I'3UL'y, where I's C I1UI2 consists of two rays issued
from the intersections of I_4 with 11 U2, and Ty C I_g4 is a line segment. See
Figure 4 below.

We construct two minimal graphs G; and G2 by solving Dirichlet prob-
lems for minimal surface equation on the domains €23 and 9, with the
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boundary data:

(751 —1 on Fl Uy = 1 on F3
up = oo on Iy ug = —oo on Iy4.

Figure 4

Such minimal graphs exist and are unique. For example, let 2, be the
domain {(z,y) € Q1; ¢ < a}, then 8Q, = T'p UT, UT?, where T, is the
segment in /, between the intersection points of i, with I'y; T is Ty N{z < a}.
Then clearly when a large enough, we have

TS| > [T2| + |Tal.

By a theorem of Jenkins and Serrin [fanghwang-js], there is a unique solution
ug for the Dirichlet problem of minimal surface equation with the boundary
value:

Uy = —1lonTIY,
Ug =00 on 'y UT,.
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Now if ¢ > a, then by comparison principle for minimal surfaces, u. < ug in
Q. For any p € €, if a is large enough then p € Qq. Let ¢, /* co then {uc, }
is a decreasing sequence, by the monotone convergence theorem [fanghwang-
js], there is & u = limp—00 Uc, Which solves our Dirichlet problem. By the
maximum principle in [fanghwang-nil], page 256, sup,>4.1 |u1(z,y)| and
sup,<_q1 |u2(z,y)| are finite. Hence by Theorem 3 of [fanghwang-hwal],
the solution is unique.

An important property for G; is that lim|z )| —oco ui(z,y) =Fl, i =1,
2, see [fanghwang-mr2], Theorem 3.1. Thus by (3.4), for any ¢ € (-1,1),
there is an Ry (t) > 0 such that

By the construction of G;, 8A N 8G; = 0 and P(AN HF) C P(G1) = M,
P(ANH-,)) C P(G2) = Q. By the comparison principle for minimal
surfaces, we conclude that ANG; = 0, for i = 1, 2. Since P(AN(Y1NYz) # 0
and P(Gi) N (Yin Y3) = 0, i = 1, 2, by the maximum principle AN P; C

gl(t)ﬂHle(t), Ry(t) > d, for any t € (—1,1). Then we have S(Ri(t)) > 0,
such that AN P; C WRl(t) N Sl(—S(Rl(t)), S(Rl(t))

Take R(t) = max{v2Ri(t), V2S(Ru1(t))}, then AN P, C Cg). Since
G; and G are continuous, R;(t) is nondecreasingly continuous respect to ¢.
Thus R(t) is nondecreasingly continuous respect to 2.

The proof of Lemma 3.1 is complete. a

3.2. Proof of Theorem 3.2.

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1. The key
point is that we can confine approaching minimal annulus sequences {An}
and {B,} by four minimal barriers, i.e., the minimal graphs as in Lemma
3.2, using the eight rays issuing form the four intersection points of Li,i=1,
2, 3, 4. Thus Lemma 3.1 is true for a straight line case. The other arguments
are either exactly the same as the arguments in the proof of Theorem 3.1 or
are slightly variations of them. a

3.3. Proof of Theorem 3.3.

We start with L1 being the convex curve consisting of the two line segments
(L1 U Ly) N Cy, and two round arcs smoothly connecting the two pairs of
end points, note that we use the same arcs up to a translation or reflection.
Similarly define L2. By this construction, L and L2 are invariant under the
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reflection about the yz-plane and have uniformly bounded boundary planar
curvature.

If T is a lattice boundary, then we can make L2 to be the image of L}
under the rotation of angle 7 around the z-axis.

By Theorem 2.2, there are embedded minimal annuli B, bounded by
LLUL2 such that Int(B,)NInt(X) # @, where ¥ is the minimal surface in the
H-M condition of Definition 3.3. Moreover, By, has the same symmetry group
as that of LL U L2. Note that there is an R > 0 such that B, C S'(—R, R)
and by the construction, we see that L U L2 have uniform boundary planar
curvature bound and lim, .. L1 U L2 = T'. Hence we can apply Theorem
2.3 to conclude that there is a subsequence of {B,} which converges to an
embedded minimal surface D such that 0D =T..

Since B,’s satisfy the symmetry conditions in Theorem 3.3, D also sat-
isfies the symmetry conditions.

It remains to prove that D is an annulus and satisfies the other properties
claimed in Theorem 3.3.

To establish that D is an annulus, it is sufficient to prove that DN P, is
a strictly convex Jordan curve, for any —1 <t < 1.

Since B, N X # () and X is compact, we see that DN X # 0.

We observe that P,ND is the smooth limit of a sequence of strictly convex
Jordan curves. If P,ND is compact, then it must be a convex Jordan curve.
Thus the only thing left to be proved is that D N P, must be compact.

Note that P; N D is invariant under the reflection about the yz-plane.
If P, N D is not compact, then clearly P, N D N {z = *s} # @, for any
s > 0, otherwise P, N D is bounded. This forces that P, N D consists of
two graphs generated by uniformly bounded functions y;(z,t) and ya(z,t),
Y1 2 Y2, —00 < = < oo, or in the limit case, y1 = y2. Let y and y3
be the functions defined by P; N By, then y7 is concave and y3 is convex.
Since y1(z) = limp—o0 ¥}, y2(z) = lim,—0yg, in C* topology, Yk > 0,
y*(z) = yP(—x), i = 1, 2, y1 is concave with maximum y;(0,%) and yo is
convex with minimum y5(0,¢). By Lemma 2.1

(1—-)2 (t+1)? S 1
4R? ’ 4R? [ T 4R¥

ly1(0,t) — y2(0,t)| > max{

for -1 <t < 1. If P,ND is not compact, then y; and y2 are both defined
on (—oo,00), and y; is concave, y, is convex. Thus P, N D is the union of
two parallel straight lines which are parallel to the z-axis.

Consider the arc length functions

L(t) = the arc length of P,ND, and L,(t) = the arc length of P, N B,,.
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Then L,(t) — L(t) when n — oco. By [fanghwang-osh], L, is convex with
respect to t. We see that if for some —1 < ¢y < 1, L(tg) = oo, then
Ly (to) — oo and there is a closed interval containing ¢p in (—1,1) such that
on which L,(t) — co. Thus we can assume that the set

{te (-1,1) | P, N D is not compact}

contains an open interval in (—1,1). Hence there are —1 < t; < t3 < 1
such that P, N D consists of two straight lines parallel to the z-axis for
t; <t < tg. Thus D is contained in a ruled minimal surface. Since the only
non-planar ruled minimal surface is the Helicoid and its generating straight
lines are not parallel, D is contained in two planes P; and P, such that
LiULyUL3ULy C PyUP,. Now since D is embedded, we have that P; is
the plane containing L; U L3, P; is the plane containing Ly U L4. But by the
comparison principle for minimal surfaces, EN(P,UP,) =0, and ZND =0,
a contradiction. This contradiction proves that P; N D is compact.

As before, once we know that P;ND is convex for —1 < t < 1, then it is
strictly convex by quoting Shiffman’s first theorem.

The remaining properties claimed in Theorem 3.3 can be proved in the
same way as in the proof of Theorem 3.1.

The proof of Theorem 3.3 is complete now. a

Remark 3.8. There are other cases of boundaries such that similar lemma
as Lemma 3.1 is true, thus with H-M condition, there are two solutions. For
example, L; becomes two parallel straight lines and Y1 NYj is bounded, etc.

Is the solution in Theorem 3.3 unique? Similar questions can be asked.
For example, are there other solutions besides the two given in Theorem 3.1
and 3.27 is there a theory about non-compact smooth convex boundary as
that established by Meeks and White in [fanghwang-mw1]|? Furthermore,
can the theory of Meeks and White, together with its generalization to non-
compact cases (if it is generalizable), be generalized to the continuous case?
We would like to know the answers.
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