
COMMUNICATIONS IN 
ANALYSIS AND GEOMETRY 
Volume 8, Number 4, 871-904, 2000 

Curvature Estimates for Minimal Annuli and 
Non-Compact Douglas-Plateau Problem 

Yi FANG AND JENN-FANG HWANG 

In this article we give curvature estimates for minimal annuli with 
convex boundary Li U Lz in parallel planes and apply these esti- 
mates to solve some kinds of non-compact Douglas-Plateau prob- 
lem. The estimates for minimal annuli also give various necessary 
conditions for the existence of minimal surfaces. 

1. Introduction. 

In this article we give curvature estimates for minimal annuli with convex 
boundary Li U L2 in parallel planes and apply these estimates to solve some 
kinds of non-compact Douglas-Plateau problem. The estimates for minimal 
annuli also give various necessary conditions for the existence of minimal 
surfaces. 

To state our results, let us fix some notations first. 
Let Pt = {(x,y,z) G R3; z = t}, Sfa,^) = {(z,y,z) e M3; *i < z < 

£2}, and iS,/(ti,*2) = {(x,y,z) G R3; ti < y < £2}, where ti < £2. Let CR be 
the solid cylinder {(x, y, z) G R3; x2 + y2 < R2}. 

Let A C S(ti,t2) be an embedded minimal annulus such that dA = 
L1UL2, where Li C P^ and L2 C Pt2 are convex Jordan curves. Denote V^ 
the perpendicular projection on a plane TT perpendicular to the xy-plane. 
Let fU := Int(7\(i4)), the interior of 7^(4), and dnw = Ut=ir^ where 

Vf = VniLi), i = 1, 2, and FJ and FJ are arcs connecting FJ and Ff. 
In Lemma 2.1 we estimate |ri|, the length of Fj. We have 

liTI + lial > |rj| + |ri|, 

and 

liTlirjl > (t2 - hf,   |rj| + |rj| > 2(t2 - to. 

Although the proof of the former is a simple imitation of a technique in 
[fanghwang-js], and the proof of the latter comes from elementary Euclidean 
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geometry, the more accurate new estimate to Q leads us to curvature esti- 
mates. 

In Lemma 2.2 we prove that if A C S(ti, £2) H S'(—R,R) and TT is the 
yz-plane, then for any point p G Int(A), 

max{dist(7\(p),rf), dist^fr),!?)} > M^ll^, 

where d = dist(p,95(ti,t2))- Note that aS'fa,^) = ^ U P^, so if p = 
(a:, y, z), then d = min{z — ti,t2 — ^} = min{dist(p, PtJ? dist(p, Pt2)}- 

In Proposition 2.1, using Lemma 2.2 and by projecting on a suitable 
direction we prove an interior curvature estimate for A C S^i,^) ^ C#> 
that is, there is a constant Co > 0, such that for any p e Int(A), the 
Gaussian curvature of p satisfies 

\K(P)\ < 2f, 

where d = dist(p, dS(ti,t2)). 
This curvature estimate gives immediate generalization of the existence 

result of Hoffman and Meeks, [fanghwang-hmQ], to the continuous convex 
boundary case, see Theorem 2.2. 

Proposition 2.2 gives another curvature estimate. It states that if A C 
5(ti, £2) H S'(t'v £2) is a compact minimal annulus such that dA = Li U L2? 
where Li C P^ and L2 C Pt2 are C2 convex Jordan curves, then there is a 
constant Ci such that for any p G A, 

■ \K(p)\<Cu 

where Ci only depends on the height t2 — ti, the width £2 — *IJ 
and the 

boundary planar curvature bound of dA. 
These curvature estimates then lead to compactness theorems, Theo- 

rem 2.1 and Theorem 2.3, which state that some sequence of {An} as in 
Proposition 2.1 or 2.2 has a convergent subsequence. 

As applications of Theorem 2.1 and 2.3, we solve various non-compact 
Dougteis-Plateau problems in Section 3. 

Recall that the Douglas-Plateau problem for two contours is as follows: 
Let Li and L2 be two disjoint Jordan curves in R3

; find a minimal annulus 
A such that dA = Li U L2. 

Let Si and 62 be area minimizing disks (when we say disks, we mean 
that they are homeomorphic to the unit disk in C) such that dSi = Li, 
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882 = 1/2- Let S be the set of rectifiable annulus S such that dS = Li U L2. 
Douglas [fanghwang-dogl] proved that if 

inf {Area(S')} < Area(S'i) + Area(S2), 

then there is an area minimizing (therefore minimal) annulus A such that 
dA = LiUL2. 

If Li and L2 are coaxial unit circles in parallel planes, then it is well- 
known that there is a constant h > 0 such that when the distance between 
the centres is smaller than /i, there are exactly two catenoids bounded by 
Li U L2; when the distance between the centres is equal to fo, there is only 
one catenoid bounded by L1UL2] when the distance between the centres is 
larger than fe, there are no catenoids bounded by Li U £2- Furthermore, by 
Shiffman's third theorem [fanghwang-shl], any minimal annuli bounded by 
L1UL2 must be a rotation surface hence is a piece of a catenoid. Thus there 
are either two, one, or zero minimal annuli bounded by Li U L2 depending 
on the distance between their centres. 

Meeks and White [fanghwang-mwl] generalized the above observation 
to minimal annuli bounded by two smooth convex Jordan curves Li U L2 
in different parallel planes, i.e., there are either two, one, or zero minimal 
annuli bounded by L1UL2. But unlike the coaxial circles case, there are no 
simple criteria to tell us when do we have two, one, or zero minimal annuli 
bounded by L1UL2. 

However, there are some partial conditions, either sufficient or necessary 
to the existence of a solution to some special Douglas-Plateau problems for 
two contours. For example, let us consider the Douglas-Plateau problem 
to the boundary consisting of two Jordan curves Li U L2 in parallel and 
different planes, say Li c Po, £2 C P^, d > 0. 

If Li and L2 are smooth convex, then besides Douglas's sufficient condi- 
tion, Hoffman and Meeks in [fanghwang-hm9] gave a sufficient condition to 
ensure that there are two solutions, i.e., if there is a connected compact non- 
planar minimal surface (could be branched) whose boundary is contained 
in open planar disks bounded by Li and L2, then there are two minimal 
annuli bounded by Li U L2. For the precise statement, please see Theorem 
2.2 below. 

The result of Hoffman and Meeks can be also treated as a necessary 
condition, i.e., let Ci and C2 be smooth convex Jordan curves such that 
Li and L2 are contained in the open planar disks bounded by Ci and C2 
respectively, then there is a connected compact minimal surface (maybe 
branched) bounded by Li UL2 only if there are two minimal annuli bounded 
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byCiUC2. 
There are other necessary conditions. For example, Theorem 2.2 com- 

bined with a J. C. C. Nitsche's result [fanghwang-ni2], page 88, implies that 
the images of perpendicular projection of Li and L2 on the xy-plane must 
intersect if Li and L2 are convex. 

Moreover, Osserman and Schiflfer proved in [fanghwang-osl] that if c, d, 
5i, and 52 are positive constants and 

Li C |(a:,y,2); (x - ^ + y2 < Sf, z<o\9 

L2cUx,y,z);(x--2z)   +y2 <shz>d\, 

are closed curves and they bound a minimal annulus, then 

c2 

Si + 62> yy + rf2- 

Using the basic estimates in Lemma 2.1, in Corollary 2.2 we prove that if S 
is a connected compact non-planar minimal surface (maybe branched) such 
that <9E = Li U1/2 and 

LiC {(x1y1z)]-5i<x- -z <5h z <0J , 

L2 C j(:i;,T/,z);-<y2 < x- -z < 62, z > dj, 

then 
2max{(5i,52}> Vc2 + d2. 

Furthermore, if 

then 

^1 C {(x, y, 0); -5i < x < 5i}, 

L2 C {(x,y,d)i-52 < x-c<52}, 

51 + S2> \/c2 + d2. 

We define Non-compact Douglas-Plateau problem of annular type for n 
boundary curves as follows: 

Let Li, i = 1, • • • , n, be disjoint, embedded proper complete curves, at 
least one of them is non-compact, find a minimal annulus A such that dA = 
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As we have seen, there are many necessary conditions restricting the 
solvability of even compact Douglas-Plateau problems for two contours, the 
solvability of the non-compact Douglas-Plateau problem seems should re- 
quire more hypotheses than the compact case. We will see that in fact in 
our special cases discussed in Section 3, the same condition that ensures 
the existence of solutions for compact cases is also enough for non-compact 
cases. 

It is known for more than one hundred years that for some non-compact 
boundaries we can find minimal annuli solving the corresponding "two con- 
tour" Douglas-Plateau problem. A classical example is a minimal annulus 
bounded by two parallel straight lines, a piece of one of Riemann's examples. 
Although a straight line is no longer a Jordan curve, it is a proper complete 
(convex) curve in R3. 

In [fanghwang-f3], it was proved that if Li and L2 are proper non- 
compact complete smooth planar convex curves in parallel planes with 
two symmetries, then there are two minimal annuli A and B such that 
dA = dB — P. Furthermore, A and B are foliated by strictly convex Jordan 
curves. 

In Section 3, we prove the existence of various types of non-compact 
Douglas-Plateau problems. We will show that the symmetric conditions in 
[fanghwang-f3] is redundant, see Theorem 3.1. The proof of Theorem 3.1 
is an application of Theorem 2.1, but we must first prove that there are 
barriers confining the approximate compact minimal annuli such that we 
can use Theorem 2.1, these barriers are established in Lemma 3.1. 

In Theorem 3.2 we prove that there are at least two minimal annuli 
bounded by four straight lines Lj, i = 1, 2, 3, 4, such that Li C P_i and 
L2 C P-i are parallel, L3 C Pi and L4 C Pi are parallel, but Li and L3 
are not parallel, if the distances between Li and L2, and L3 and L4, are 
sufficiently large. 

We will also prove that there are minimal annuli bounded by four parallel 
straight lines in two different parallel planes, if the boundary satisfies some 
kind of Hoffman-Meeks condition. See Theorem 3.3. 
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author also thanks the financial support of Australian Research Council and 
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2. Curvature Estimates for Minimal Annuli.

Lemma 2.1. Let A C Set!, t2) be a minimal annulus such that 8A = L 1 U

L2, where L! C Pt 1 , L2 C Pt 2 are convex Jordan curves. Let 1f be a plane
perpendicular to the xy-plane, 'P1r the perpendicular projection on tt, Then
n1r := Int('P1r(A)) = 'P7r(A) - (U[=lry) is a domain in 1r bounded by ry =
p7r (Li);, i = 1, 2, and r3" and r4, two curves connecting r1 and r2" .

Let IrYI be the arc length o/ry, i = 1,2,3,4. Then

(2.1)

In particular, if A C Set!, t2) n S'(t~, t2), take ?T to be the yz-plane, then
from II'YI ~ t~ - ti, i = 1, 2, we have

(2.3)

and

(2.4)

and

(2.6)

Proof. Select a coordinate system such that 7T is the yz-plane and

'P7r (x , y , z ) = (y,z).

For simplicity, write 07r as 0, 'P1r as P, etc.
By Shiffman's first theorem in [fanghwang-sh1], every level curve An~,

tl < t < t2, is a strictly convex Jordan curve. Thus peA n Pt ) is a line
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segment and AOPt consists of two graphs on V(AnPt), u+(y, z) > u~~(y, z) 
such that 11+(y, z) = t/~(y, z) if and only if (y, z) is one of the two ends of 
V(AnPz). 

We orient the yz-plane such that ((0,1,0), (0,0,1)) has positive orienta- 
tion. Then ft is bounded by Ti = V(A H Ptl), T2 = V(A DPt2), and Ts and 
r4 consisting of the set of end points of V(A fl Pt) such that for any t, if 
(yi,t) € Fs, (2/2^) ^ r4j then yi < 2/2? thus we may say that Ts is the left 
side boundary, r4 is the right side boundary. 

Recall that TT is the yz-plane. Let S2 be the unit sphere in R3 and 
Si := S2 fl TT. Let iV : Int(^4) —> 52 be the Gauss map and p be any interior 
point of A. Since V(p) € Ts U r4 if and only if the tangent vector of A fl Pt 
at p is in the direction ±(1,0,0) and since each A fl Pt is strictly convex, we 
see that V(p) € Ts U r4 if and only if p € N^1(Sl). Since it is proved in 
[fanghwang-mwl] that N is one-to-one and harmonic, we know that N^1(Sl) 
is smooth and its tangent directions are not pointed at ±(1,0,0), therefore 
Ts U r4 = P(iV~1(S'J)) is smooth in its interior. 

Note that for an interior point V(p) of Fs, the tangent line of Fa at 
V(p) € Ts is V(TpA), where TpA is the tangent plane of A at p. Since A is 
minimal, there are points of A at both sides of TPA in any neighbourhood of 
p in R3. Thus since Fs is the left side boundary of ft, there are points of ft 
on the left side of V(TPA) in any neighbourhood of P(p), hence Fs is locally 
on the left side of its tangent line at V(p). If Fs is not convex, then there is 
another point V(pi) G TsnV(TpA). Thus there would be another point P(g) 
in the interior of Ts and is located between V(p) and V(pi) such that V(q) 
is on the left side of V(TpA) and the distance from V(q) to V{TPA) is a local 
maximum, thus TqA is parallel to TpA. Therefore in a small neighbourhood 
of q in R3 there are no points of A on the left side of Tq(A), a contradiction. 
Similarly we can prove that r4 is convex. 

We now prove that V{A) - [fiz=1 Yi is a domain and ft = V{A) - {fi=1 F*. 
In fact iiV{p) & FiL^UFsLO^, thenp £ N-1(S\), there is a neighbourhood 
U of p in R3 such that U n JV"1^) = 0 and V(U n A) is open in TT and 
V{U r\A)n (Fi U r2 U Fs U r4) = 0, i.e., V{p) e Int(V(A)), hence ft = 
Int(V(A)) = ViA) - (Ut=ir0 and dft = Ut=iri' Finally, ft is connected 
since V(A) is connected and |Ji=i ^ does not separate V(A). See Figure 1 
below. 
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it 

ir 

Figure 1 

Since Fi and r2 are straight line segments, Cl is a domain with piecewise 
smooth boundary and dft has only four corner points [Fi n (Fs ur4)] U [r2 n 
(Fs U r4)]. Let 1/ be the outward unit normal vector of dQ. 

Let us consider the graph defined by u = u+. Then u satisfies the 
minimal surface equation div Tu = 0, where Tu = Du/^s/l + \Du^. The 
Gauss map is given by 

N(x,yJz) = 
y/l + \Dv\* 

(1, -Du) (y, z),     (y, z) e Q,     x = u(y, z). 

If V{p) is an interior point of Fs ur4, then since N{p) = (0,6, c), V(N(p)) = 
N(p). Since N(p) is perpendicular to the tangent vector v(p) along N~1(Sl) 
at p, N(p) is also perpendicular to the tangent vector v((V(p)) = V(v(p)) 
along Fs or r4 at V(p), thus u(V(p)) = V(N(p)). We then have that 

v(P(p))=V(N(p)) = N(p) = (Q,b,c). 

Therefore, vN = 1 along the interior of T^ and r4. Thus by the expression 
of N we see that u satisfies the boundary condition 

VTU = -V*N = -i,   on r3ur4. 

First assume that Li and L2 are smooth and strictly convex, then Du exists 
on riUr2. We have 

/   Tumu=      divTtx = 0. 
JdQ, Jo. 
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Now since \Tu • z/| < 1, 

|r3| + |r4| = - /     Tu.u= [     rti#i/<|ri| + |r2|. 
Jr3ur4 Jriur2 

If Li or L2 is only continuously convex, then by Shiffman's theorem AnPt is 
smooth and strictly convex for any t £ (ti, £2). Consider A D S(ti + e, £2 — c), 
0 < e < (£2 — *i)/2, then (2.1) is true to the corresponding IVs of AnS(ti — 
e, £2 + e). Since A is continuous up to boundary, letting e —* 0, we have 
proved (2.1). 

To prove (2.2) we replace Ts by the line segment F^ connecting the two 
end points of Fs, replace r4 by the line segment F^ connecting the two end 
points of r4. Then by comparison principle for minimal surfaces, (Fgl < IFS), 

|r^| < |r4|. Furthermore we replace the four-gon Fi U r2 U F^ U F^ by a 
trapezoid r'lur'^UT^UF^ such that IF^I = IF^J, and |ri'| = |ri|, IF^I = ^ 
and ri and r2 are parallel. 

Note that |'4'| = l^'l and 2^31 < |r^| + |r'4| < \T3\ + \T4\ < |ri| + |r2|. 
Now let h — t2 — ti and without loss of generality suppose that |ri| > |r2|, 
thus |r2| = c|ri|, 0 < c < 1, and 2II3I < (1 + c)|ri|. Since 

we obtain that 
(i-c)2|ri|2 + 4fc2<(i + c)2|ri|2. 

Thus 

(2.7) fc2<c|ri|2 = |ri||r2|. 

By comparison principle for minimal surfaces, 

2/*<|r;| + |r;i<|r3| + |r4|<|r1| + |r2|, 

(2.2) is proved. 
If A C 5(ti, £2) n S'(*i, ^), then |ri| < t'2 - if^ so by (2.7) 

c> 
(*,2-*,l)2, 

(2.3) is true. Prom (2.2), 
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(2.4) is true. 
If A C 5(ti, £2) n CR, then ^ - ti < 2JR. By a rotation, we see that (2.5) 

and (2.6) are true. 
The proof is now complete. □ 

Similar arguments as in Lemma 2.1 give us further information of the 
domain Int(P(A)). 

Lemma 2.2. Suppose A C S{ti^t2)^S\—R^IVj is a minimal annulus such 
that dA = Li U L2, where Li C P^i a^d L2 C Pt2 are convex Jordan curves. 
Let TT 6e the yz-plane and Vn the perpendicular projection on TT. Let fi71" = 
Int(7\(A)) 6e tfee domain in TT and dfT = Ff UFJurjurj 6e as in Lemma 
2.1. Letp fee any interior point of A andd= dist (p, dS(ti,t2)). Then 

(V2-l)d2 

d! := max{dist(7^r(p),rj), dist(P7r(p),rj)} > 
R 

Proof, Let us write Q? = Q, etc.. Since Fs and r4 are compact, there are 
93 .€ Fs and 94 € r4 such that \V{p) - 93) = dist(7>(p),r3), \V{p) - 94I = 
dist(P(p), r4). Connecting V{p) and 93, V{p) and 94 by line segments h and 
Z4 to form two subdomains fii and ^2 such that f2 = fii U ^2 U ^3 U Z4 and 
9^1 = Fi U Z3 U Z4 U F^ U F^, 80,2 = r2 U /s U h U Fj U F^, where F^ C F^, 
F/ C Fi, for i = 3, 4. Note that Z3 and Z4 are contained in fi except at end 
points on Fs and r4 so that F^ U F" = Tu and jF7^ + IF^J = [Fil, for i = 3, 
4. See Figure 2 below. 

Let p = (:E,2/,;Z), £1 < 2 < £2.   Let Ti and T2 be the line segments 
connecting V(p) and the two ends of Fi, then 

|Ti| + |r2|<2df + |r/3i + |ri|. 

IT'I 4. IT'I < IT I H- IT 

Figure 2 
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Elementary geometry tells us that 

|ri| + |3b|>2WfM + (z-t1)aj 

' + tti + iril > 2]J^f + (z-t1f = \r^ 1 + ^01 

thus 

Similarly, we have 

2d' + irJi + irli > 2^M + (t2-.)2 = |r2|^7^#. 

Now since d = mm{(z-ti), fa-z)} < fo-h)^ and max{|ri|, |r2|} < 2R, 
by (2.2) and (2.6), 

minflrxli?, |r2|i2} > MM > (^ll! > 2^, 

thus 

Note that VI + x > 1 + (\/2 - l)x for 0 < x < 1, we obtain 

|rilV   nrii^ - |rilv + ir^ -|ri1 ( +   MR ) 
= |ri| + 2(V2-l)^) 

|r2lV     ~lr^ " ' 2| + R ' 
Therefore, 

« + irsl + |r4| > ir.i^Sf* |r^i + ^# 
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But by (2.1) 

we obtain that 

|ri| + |r2|>|r3| + |r4|, 

^(VS-D* 
R 

U 

Prom Lemma 2.2 we obtain an interior estimate of curvature. 

Proposition 2.1 (Interior Curvature Estimate). If A C S(ti,t2)C\CR 
is a minimal annulus such that dA = Li U L2, where L\ C Ptj and L2 C .Pi2 

are convex Jordan curves, then there is an absolute constant CQ > 0, such 
that 

(2-8) \K(p)\ < ^, 

where d = distfa, dS(ti^t2)). 

Proof. Let VQ be the projection on a plane TTQ with normal 

v$ = (cos^, sin^, 0). 

Then by Lemma 2.1 .Int(^(i4)) is a domain bounded by rf, i = 1, 2, 3, 
4. We give an orthonormal basis in TT^, (61,62), such that (v^, 61,62) is an 
positive basis of R3. The convention is that under this coordinate system, 
Fg has a smaller first coordinate than that for F^. Define 

m = dist(7>»(p),ri) - diSt(Ve(p),rl). 

Then / is continuous and f(9 + TT) = —f(0). Thus there exists at least one 
0 = 60, such that /(0o) = 0, i.e., dist(^0(p),rg0) = dist(^0(p),r^) = d'. 

By Lemma 2.2, d! > D := (V2-l)d2/R, where d = dist(p, dS^i^)). 
Thus tltiere is a round disk centred at V(p) of radius greater than or equal 
to r = min{jD,d} contained in Q and p = (u(V(p))^V(p)) is on a minimal 
graph generated by u = u+ or u"~. A theorem of Osserman [fanghwang-osl], 
page 107, says that there is an absolute constant C > 0 such that 

mp)\ < g. 
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Finally by (2.2) and the definition of d, 

4i? > \lf\ + \Te
2

0\ > 2{t2 - ti) > Ad > 4(V2 - l)d, 

we know that mm{D, d} = D. Taking Co = (JF^i we complete the proof. 

D 

Recall that the Gaussian curvature bound ensures compactness, as stated 
in the following summarization appeared in [fanghwang-ands], 

Lemma 2.3 (Compactness Lemma). Let Q be a bounded domain in a 
complete Riemannian 3-manifold N3 and let {Mi} be a sequence of min- 
imally immersed surfaces in Q. Suppose there is a constant C such that 
the Gauss curvature KMi{x) satisfies lifjvf^x)! < C for all i. Then a sub- 
sequence of {Mi} converges smoothly (in the Ck-topology, k > 2) to an 
immersed minimal surface M^ (with multiplicity) in Q, and |i;fM00(^)| < C. 
If each Mi is embedded, then MQQ is also embedded. 

Theorem 2.1. Let {An} be a sequence of embedded minimal annuli con- 
tained in S(ti, t2)nCR such that dAn = L^UL^, where LJ C Pt^ L% C Pt2 

are convex Jordan curves. Then there is a subsequence of {An} converging 
to an embedded minimal annulus A C £(£1, £2) nC# such that dA = L1UL2; 
where Li C Ptu L2 C Pt2 are convex Jordan curves. 

Proof. First observe that as uniformly bounded convex Jordan curves {L™} 
and {L2 } are equicontinuous. 

In fact, by Lemma 2.1, the arc lengths of {Li} and {Z^} are at least 

(^2 — ti)2/R. Since {LJ} and {LV,} are contained in CR and are convex, 
their arc lengths have an upper bound too. 

Thus a subsequence of {LJ}, still denote by {if}, has a convergent arc 
length, i.e., ln := |Ly| -* I > (t2 - ttf/R. 

Since Lf is convex, it has tangent almost everywhere. Let an : [0, ln] —> 
P^i be the embedding of Lf such that |an| = 1 almost everywhere. Define s : 
[0,/] -♦ [0,g by s(t) = lnt/l and (3n : [0,/] -> Ptl by /3n(t) = an(s(t)), then 
\$n\ = In/1 almost everywhere. Thus {/3n} is equicontinuous and uniformly 
bounded. 

By Ascoli-Arzela theorem, a subsequence of /?n, still denote by (3nj uni- 
formly converges to a continuous mapping (3 : [0, /]. By (2.6) the image of /? 
cannot be a line segment or a point. Since each /3n is one-to-one except at 
the two ends, (3 defines a Jordan curve Li. Let Di be the domain enclosed 
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by Li and D™ the domain enclosed by LJ, then D™ —> Di. Since each D™ is 
convex, Di is convex. Hence Li is a convex Jordan curve. Similarly we can 
treat {LrJ} and we may assume that a subsequence of {cMn}, still denote by 
{dAn}, has a limit Li U Z^ and la C P^ and L2 C Pt2 are convex Jordan 
curves. 

Let em \ 0 as m —> 00 and A™ = An fl 5(^1 + em, ^2 — em) C CR. Then 
by Proposition 2.1 for fixed m, {^4^} has a uniform curvature bound, thus 
by Lemma 2.3, there is a subsequence {-A5^n} converging in S(ti + em,£2 — 
em) DCR. Thus the subsequence {^mm} converges in the interior of 5(ti, £2) 
to an open minimal surface A. 

Since each AmTri fl P* is a strictly convex Jordan curve in CR fl Pt and 
{Amrn} converges in Ck topology, k > 2, A fl Pt must be a convex Jordan 
curve, thus A is a minimal annulus. 

Now limra-^oo dAm^ = Li U L2- We only need prove that dA = Li U L2. 
In fact, let V^ be the perpendicular projection on a plane TT perpendicular 

to the xy-plane and $7^ = Int(P7r(ylmm)), then by Lemma 2.1, ^4mm consists 
of two simply connected graphs G+ and G~ with continuous boundary. 
Similarly, A consists of two simply connected graphs G+ and G~ on a domain 
in the plane TT. 

Let X+ : D —> R3 and X~ : D —> R3 be conformal embeddings from 
the closed unit disk D for G+ and G~ respectively, normalized such that 
X+(pi) = q™, for three fixed points pi G dD and limTn-.oogf1 = ft € Li- 
Similarly we require the three points condition for X~. 

Since dAmm consists of two convex Jordan curves in dS(ti, £2) n CR, the 
arc lengths of dAmrn is uniformly bounded, hence by isoperimetric inequality, 
the areas of Amm, hence of G+, G~, are uniformly bounded. Now since X+ 
are conformal, fD \DX+\2 is uniformly bounded. Therefore, by Courant- 
Lebesgue Lemma (see Theorem 3 on page 238 of [fanghwang-dhkw]), X+ is 
uniformly continuous and converges on D. 

Similarly we can prove that X~ converges on D. Since G+ —» G+ and 
G" -> G", and d(G+ U G") fl dSfa^) = ^mm converges to Li U L2, and 
the plaiae TT was arbitrary, we see that dA = Li U L2 and ^4 is continuous up 
to boundary and dA = Li U1/2- d 

Remai-k 2.1. The argument used in the proof that A is continuous actually 
gives an alternative proof that a subsequence of {An} converges to a minimal 
annulus without curvature estimates and Lemma 2.3, i.e., via the uniformly 
boundedness of fD |jDXm|2 and the Courant-Lebesgue Lemma, with the help 
of Lemma 2.1 and 2.2. 
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With Theorem 2.1, we can give a generalization of a theory dealing with 
smooth convex boundary developed by Hoffman and Meeks in [fanghwang- 
hm9], and Meeks and White in [fanghwang-mwl], to the continuous convex 
boundary case. 

Theorem 2.2. Suppose Di and D2 are two open disks lying on parallel 
planes, and suppose their boundaries Li and L2 are continuous convex 
Jordan curves. 

1. If A' is a connected non-planar compact (maybe branched) minimal 
surface such that dAf C D1UD2, then there exist at least two embedded 
compact minimal annuli A and B, dA = dB = Li U L2. 

2. A is stable and has the property that for any disks D' C Di and D" C 
D2 with continuous boundaries, if there is a connected compact (maybe 
branched) minimal surface N such that dN = dD' U dD", then N is 
contained in the solid V bounded by A U Di U D2. In particular, if 
A 7^ N, then Int(.A) D Int(iV) = 0. On the other hand, B is unstable 
andInt(5)nInt(JV)^0. 

3. If merely dA' C Di U D2, then there exists at least one embedded 
minimal annulus C such that dC = Li UL2- Such aC is almost stable 
in the sense that the first eigenvalue of the second variation of C is 
larger than or equal to zero. Let N be a connected compact (maybe 
branched) minimal surface such that dN = dD' U dD", then N is 
contained in the solid V bounded by C U Di U D2- In particular, if 
C^N, then Int(C) n Int(JV) = 0. 

4. Furthermore, the symmetry groups of A and B, or C, are the same as 
the symmetry group of Li U L2. 

Proof. If Li and L2 are smooth, or in the cases of existence of A and C 
in conclusions 1 or 3 for merely continuous Li and L25 the theorem is a 
combination of Theorem 1.1, 1.2 of [fanghwang-hm9], and Lemma 2.1 of 
[fanghwang-mwl], with "exact" replacing "at least" in 1. 

In general for the case of Li and L2 are merely continuous, let Symm(LiU 
L2) be the symmetry group of Li U L2. We can construct smooth convex 
Jordan curves LJ and L2 such that limn_»00L5l = Li, Irnin-^ooZ^ = ^2? 
Symm(Ly U 1$) = Symm(Li U L2), and Li and L2 are enclosed in the 
disks bounded by LJ and £2 respectively. Therefore there are correspond- 
ing minimal annuli An and Bn etc., satisfying all the properties stated in 
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the theorem, and being contained in some CR. Using Theorem 2.1 we get 
our limiting minimal annuli A and B bounded by Li U L2, they satisfy all 
properties stated in the theorem, especially, A ^ B. D 

An immediate corollary of Lemma 2.1 and Theorem 2.2 is 

Corollairy 2.1. //£ C S(ti,t2) is a connected compact non-planar minimal 
surface (maybe branched) such that dT, C P^ UP^- Let L{6,t) be the length 
of S fl Pt projected on the plane with normal (cos 0, sin 0,0), for (6,t) £ 
[0, TT] x [ti, £2].  Then for any ti < s < t < £2 and 9 G [0, TT], 

L(0, s) +1(9, t) > 2(t - 3),    L(0, s)L(0, t) > (t - s)2. 

In particular, ifdT, C Siti^t^^S'^,^, thent^—ti > t2—ti- Furthermore, 
if'EcS(ti,t2)nCR, then 

^,<)>max|(iz|)!)(^)!|,   tg^ta). 

Proof First observe that by comparison principle for minimal surfaces SflPt 
is a variety without isolated points, hence we can apply Theorem 2.2. Thus 
we can construct a minimal annulus A(9) C 3(8^) with convex Jordan 
curves boundary in Ps and Pt respectively, which enclose EnPs and EnPt. 
Then by Lemma 2.1 

|r1| + |r2|>2(t-s),   |ri||r2|>(t-s)2, 

where Fi and r2 are the projection of dA(9). Note that we can make dA(9) 
such that 

L(M = |ri|,   Wt) = \r2\. 
Then all the conclusions are trivial by Lemma 2.1. □ 

Corollary 2.2. Let c, d, 5i, and 82 be positive constant numbers. If Yt is a 
connected compact non-planar minimal surface (maybe branched) such that 
9S = Li U Z/2 and 

Li C£>i := {(a:,y,2);-Ji < x - ^z < 5U z < o} , 
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1/2 C Z?2 := j0r,y,2); -S2 < x - -z < 82, z > d\ , 

then 

(2.9) 2max{<Ji, ^2} > \/c2 + d2. 

Furthermore, if 

Li C Di := {(a, y, 0); -5i < x < ffi}, 

L2 C D2 := {(re, y, d); —£2 < ^ - c < ^2} 

(2.10) (Jx + 52 > Vc2 + d?. 

Proof. Let X : M —> R3 be a conformal parametrization of E and consider 
the function 

0 = Xi - -1X3, 

then 0 is harmonic. Thus let R := max{5i,£2}, by maximum principle for 
harmonic functions. 

E C I (re, y, z); — R < x — -z < R \ . 

Since <9E is contained in {^ < 0} U {z > d}, E n 5(0, d) is a minimal surface 
whose boundary Z^ U Z/2 satisfies that 

Li C {(a:, y, 0); -R < x < R],    L'2 C {(a;, y, d); -i? < x - c < it!}. 

Let Ci C PQ, C2 C Pd be convex Jordan curves such that they enclose Z^ 
and L2 respectively and 

Ci C {(x,y,0); -i2 < x < i2},    C2 C {(a:,y,d); -i? < x - c < i2}. 

By Theorem 2.2, there is a minimal annulus A bounded by Ci and C2. Let 
TT be the xz-plane and T^, z = 1, 2, 3, 4, be as defined in Lemma 2.1. By 
comparison principle for minimal surfaces, Ts and r4 are not line segments. 
Then by Lemma 2.1, 

4i2>|ri| + |r2|>|r3| + |r4|>|J3| + M, 
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where Z3 and I4 are line segments such that Fi U r2 U Z3 U l^ consists of 
the boundary of a convex four-gon in the a^-plane. Elementary calculation 
shows that 

Similarly we can prove (2.10) by requiring that 

Ci C {(:r,2/,0);-5i < x < 5i},     C2 C {(z,2/,d); -S2 < x - c < ^2}. 

Then we have 

2(*i + s2) > |ri| + |r2| > (Fsl + |r4| > l^l + \h\, 

and 

|/3| + |24| = A/(*2 -SI + C)
2
 + d2 + ^{61 - 62 + c)2 + d2 > 2y/c2 + d2. 

D 

To establish the existence of solutions to non-compact Douglas-Plateau 
problem with four parallel straight lines as boundary in Section 3, we need 
another curvature estimate for minimal annuli. 

Proposition 2.2. Let A C S^ij^nS"^,^) be a compact embedded min- 
imal annulus such that dA = Li U L2, where Li C Pt1; L2 C Pt2 we C2 

convex Jordan curves. Let E > 0 such that \K(P)\ < E for anyp e dA, where 
K is the planar curvature. Then there is a constant Ci > 0 only depending 
on t2 — ti, ^ — t'i and E, such that 

\K(p)\ < Cx, 

where K(p) is the Gaussian curvature of A. 

Proof. The proof is a generalization of the proof in [fanghwang-mrl] of a 
special case of this Proposition, the estimates in Lemma 2.1 enables us to 
make this generalization. 

By a homothety, we can assume that ti = — 1, t2 = 1. By a translation 
we can assume that t^ = —i2, t^ = R for some R > 0. 

If the Proposition is not true, then there are minimal annuli Bn C 
S(—1,1) fl S^—R, R) such that dBn consists of two convex Jordan curves 
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in P_i and Pi, whose planar curvatures are bounded by Ey and 3pn 6 Bn 

such that 

-Cn := KBri(pn) < KBn{p),    Vp E 3^     lim KBn{pn) = -oo. 
n—>-oo 

Let Bn = Bn - pn := {p G M3, p + Pn € Bn}. Note that pn = (xn, yn, zn), 
—R < Vn < R, —l- < Zn < I- By a rotation if necessary, we may assume 
that -1 < zn < 0. So that Bn = Pn-Pn C 5(-l,2)n5/(-2P,2P) contains 
the origin, and dBn C P-i-zn U Pi-zn. 

Let Pn = yfCnBn be the homothety of Bn and iiT^   be the Gaussian 

curvature of Pn, then \K^ \ < 1. Let Dm be the ball centred at origin with 

radius m. Then by Lemma 2.3 a subsequence of {Pn} converges in Dm. By 
a diagonal argument, a subsequence of {Pn}, still denote by {Pn}? converges 
to an embedded minimal surface M in R3. M is not a plane, since it has a 
point (the origin) with Gaussian curvature —1. 

Since the Gauss map iV" : Pn —^ 52 is one-to-one and N ^ ±(0,0,1), 
[fanghwang-mwl], we have Jg KgndA > -47r, see [fanghwang-osl]. It 

forces that M must have total curvature at least —47r. 

Since the boundaries of Pn are on Py/c^(-i-zn) an(^ Ry/c^(i-zn) an<^ ^n ~* 
oo as n —> oo, if M has a boundary, it must be that limn->oo y/C^(—l — zn) 
exists in M or limn-^oo y/^niX—Zn) exists in R. Since — 1 < zn < 0, it must be 
lim^oo yJC^(-l - zn) = to exists and dM C Pto- Since Pn fl Pt are convex 
and have uniform planar curvature bound, dM = limn-.oo dBnf\P^Q^^_l_Zr^ 
exists. 

Since dBn has uniform planar curvature bound P, it turns out the planar 
curvature of dM is bounded by Ejy/C^ —► 0, hence dM must be a straight 
line I if dM ± 0. 

If 5M ^ 0, then rotating M around I = dM by TT degree, we get a 
complete minimal surface without boundary, its total curvature is at least 
—STT, and it contains a straight line. But such a surface does not exist by 
classification, see for example [fanghwang-lo]. Thus dM = 0. 

It forces that M must be a catenoid since that it is non-flat completely 
embedded without boundary, and its total curvature is at least —47r. 

Thus M n Po is a circle and since Pn —> M, the length of Pn fl PQ should 
be bounded, i.e., there is an F > 0, such that 

|PnnPo|<P. 

But since Pn fl Pt is a convex Jordan curve for each t 6 (—1,1), and Pn fl 
5(-l,l) nS'(-R,R), recalling that -1 < zn < 0 and applying (2.4) to 
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Bn n S(zn, 1), we have 

D 

Remark 2.2. Since we assume that dA is C2, the estimate is a global one, 
not just interior. But we can only prove by contradiction that the curvature 
of A C S(ti,t2) H S'tfi, £2) has an a prior bound. The ideal proof is to give 
an a prior estimate of curvature bound for A C 5(ti, fe) nS7^, t^) explicitly 
involving the boundary planar curvature of dA, the height £2 — £1, aild the 
width £2 — tp Such a concrete estimate will be useful in many other cases. 

Then we have another compactness theorem. 

Theorem 2.3. // {An} C ^(ti,^) ^ ^(^i?^) ^s a sequence of minimal 
annuli such that dAn = L" U L2; ^here L™ C P^, L2 C Pt2 are C2 convex 
Jordan curves with uniform planar curvature bound E and limr^oo L™ = Li, 
limn-^oo L2 = 1/2; then there is a subsequence of {An} which converges to 
an embedded minimal surface A such that dA = Li U L2. 

Proof Let Dr be the ball centred at origin with radius r, then M3 = 
Um=i^™- Since limn_^ooii = Li, linin-^oo^ = ^2, for m and n large 
enough, An n Dm 7^ 0. By Proposition 2.2 {An} has a uniform curva- 
ture bound, so Lemma 2.3 applied in Dm gives a convergent subsequent 
{Arnn n Dm}, then {i4mm} is a subsequence of {An} which converges to an 
embedded minimal surface A in any compact set. Since limn-.oo LJ = Li, 
Irnin-KX) L2 = L21 we have dA = Li U L2. -   □ 

Remark 2.3. Note that the limit minimal surface A is not necessarily an 
annulus. In fact, it may be even not connected. 

3. Applications to Non-Compact Douglas-Plateau Problem. 

First let us define various boundaries for which we want to solve the related 
Douglas-Plateau problem. 

Let a : R —> R2 be a properly embedded complete convex curve, and 
let L =- a(R). Suppose that L is not a straight line, then R2 — L has two 
components, only one of them is convex. 
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Definition 3.1 (Standard Boundary). We call F := L1UL2 a standard 
boundary if: 

• Li c P_i and L2 C Pi are two continuously embedded, proper, com- 
plete, non-compact, non-flat convex curves. 

• Let Yi C P-i and I2 C Pi be the two convex domains bounded by Li 
and L2 respectively. Let Yi C Po and Li C Po be the perpendicular 
projections of Yi and Li, for i = 1, 2. Then Yi n Y2 is a bounded 
convex domain. 

• There is a connected compact non-planar (maybe branched) minimal 
surface S such that c?E C Yi U Y2- 

Remark 3.1. By Corollary 2.2, the last condition of Definition 3.1 implies 

that YinY2^ 0. We will call this condition H-M condition to Yi U Y2, it 
first appeared in [fanghwang-hm9] by Hoffman and Meeks. 

Let Dr C Po be the disk centred at (0,0) with radius r. It is well-known 
that if r is large enough and Dr C Yi fl Y2, then there is a piece of catenoid 
C such that dC C Yi U Y2. Hence the H-M condition is satisfied. 

Our first existence theorem is: 

Theorem 3.1. Let T be a standard boundary. Then there exist two embed- 
ded minimal annuli A and B such that dA = dB = F. The minimal annuli 
A and B have the following properties: 

1. For each t G (—1,1), Pt H A and Pt fl B are strictly convex Jordan 
curves. 

2. Int(.A)nInt(B) = 0 . 

3. Let N be a connected compact non-planar (maybe branched) minimal 
surface such that dN C Yi U Y2, then 

Int(^)nInt(iV) = 0,    BDN^Q. 

4. A and B have the same symmetry groups as that ofF. 
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Remark 3.2. If we change the last condition in the definition of standard 
boundary so that <9E C Yi\JY2, then there is at least one embedded minimal 
annulus C such that dC = F. Furthermore, C behaves just like A in the sense 
that they satisfy the same properties in 1, 3 and 4 of Theorem 3.1. 

A limit case of standard boundary is that of straight line boundary, 

Definition 3.2 (Straight Line Boundary). A straight line boundary 
is as follows: 

• F = \Ji-iLi, where Li are straight lines such that Li and L2 are 
contained in P_i and parallel, while L3 and L4 are contained in Pi 
and parallel. But Li and L3 are not parallel. 

• Let Yi C P-i be the open strip bounded by Li and L2, ^2 C Pi be 
the open strip bounded by L3 and L4. Then Yi U Y2 satisfies the H-M 
condition. 

Remark 3.3. Note that since Li and L3 are not parallel, the perpendicular 

projections Yi and Y2 of Yi and Y2 have bounded intersection. 

Theorem 3.2. Let F be a straight line boundary. Then there exist two 
embedded minimal annuli A and B such that dA = dB = F. The minimal 
annuli A and B have all the properties stated in Theorem 3.1. 

Remark 3.4. The Remark 3.2 also applies to the straight line boundary. 

Now let us consider parallel straight lines. It is also an limit case of a 
standard boundary. Indeed if we consider a standard boundary such that 
there is a straight line L C PQ which intersects Li and L2 in exactly one point 
respectively. We may change Li and L2 such that the single intersection 
points of L with Li and L2 go to infinity in opposite directions, and Li 
and L2 both break into two straight lines parallel to L. Thus we give the 
following definition of a parallel line boundary: 

Definition 3.3 (Parallel Boundary). A parallel boundary is as fol- 
lows: 

• F = \Ji=i Li, where Li are parallel straight lines such that Li and 
L2 are contained in P_i, while L3 and L4 are contained in Pi. The 
strip bounded by Li and L3 and the strip bounded by L2 and L4 are 
disjoint. 
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• Let Yi C P-i be the open strip bounded by Li and L2, ^2 C Pi be 
the open strip bounded by L3 and L4 in Pi. Then Yi U Y2 satisfies the 
H-M condition. 

Remark 3.5. By Corollary 2.1, a necessary condition for F = (Ji=i ^ being 
a parallel boundary is that the product of the widths of the strips Yi and 
I2 is larger than 4. 

Given a parallel boundary F as above, we always assume that the straight 
lines Li are parallel to the rc-axis. 

A special case of parallel boundary is a lattice boundary (it defines a 
lattice in the yz-plane): 

Definition 3.4 (Lattice Boundary). Let F be a parallel boundary. Let 
Pi be the intersection points of the Li with the yz-plane. If the p^s are 
the vertices of a parallelogram, then we call the parallel boundary a lattice 
boundary. 

Let F be the parallelogram with pi as vertices. Then we select the 
bisectrice point (the intersection of the two diagonals) of F as the origin of 
R3. 

Our third existence theorem is the following: 

Theorem 3.3. Let F be a parallel boundary, then there exists an embedded 
minimal annulus V such that dV = F. Also V satisfies: 

1. For —l<t<l, PtDV are strictly convex Jordan curves. 

2. Let N be a connected compact non-planar (maybe branched) minimal 
surface such that ON C Yi UY2, then V D N ^ 0. 

3. V is invariant under the reflection (x,y,z) —> {—x,y,z). 

4. If Y is a lattice boundary, then T) is invariant under the rotation of 
angle TT around the x-axis. 

Remark 3.6. In [fanghwang-mrl], Meeks and Rosenberg gave a proof of 
the existence of V with a lattice boundary in order to construct doubly 
periodic minimal surfaces. 
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3.1. Proof of Theorem 3.1. 

The idea for the proof of Theorem 3.1 is to construct sequences of compact 
minimal annuli {An} and {Bn} whose convex boundaries approaching the 
given P. 

Now we approach Li and L2 by convex Jordan curves L* C P_i and 
L^ C Pi such that for any R > 0, there is an NR > 0 such that whenever 
n>NR, 

(3.1) (Li U L*) ncR = (Li U L2) n CR. 

Let Di find D^ be the disks bounded by L^ and L^. We can make L^ and 
L^ such that 

dXcDluDl   Dl
nciDl

n+l,   D
2

ncD2
n+l, 

where E is the surface in the H-M condition. 
By Theorem 2.2 there are two minimal annuli An and Bn, such that 

dAn = dBn = L1
nUL2

n. 
To prove that there are convergent subsequences of {An} and {Bn}, 

we need the following lemma. The proof of this technical lemma is quite 
involved. In order not to interrupt the main argument, at this moment let 
us assume the lemma is true. 

First let us fix some more notations. Let Qa := {(rr,y, z) G M3; x = a}, 
H+ = {(x,y,z) e E3; x > a}, H' = {(x,y,z) € R3; x < a}. Let Wa = 
{(x,y, z)\ —a<x< a}. Denote the xz-plane by PQ. 

Lemma 3.1. Let Yi and Y2 be as defined in Definition 3.1. Let A C 
S(—1,1) be a compact minimal surface. Suppose that dA = C\ U C2 such 
that Ci C Yi; C2 C Y2. T/ien ^e can choose coordinates (x,y,z) such that 
for any a > 0, tfiere is an 5(a) > 0 such that AC\Wa C 5/(—5(a), 5(a)). 
W^e can choose that if a> b> 0, then 5(a) > 5(6). 

And /or any £ € (—1,1), there is an R(t) > 0 such that 

(3.2) ilnPtCC^t). 

Moreover,  we can make that R{t) = R(—t)  and R(s)  < R(t) whenever 

w < 1*1. 
As proved in the proof of Lemma 3.1, we can choose coordinates (rr, y, z) 

of M3, such that if a > 0 is large enough, we have QaHl^ = 0 and Q_anLi = 
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0 or, Qa^Li = 0 and Q-.anL2 = 0, but not both. Without loss of generality, 
we assume that it is the former and keep this convention in this paper. 

By Lemma 3.1, An n 5(-t, t) C CR^ and Bn n S(-t, t) C CR^, hence 
for each t G (0,1), they are uniformly bounded. By Shiffman's first theorem 
[fanghwang-shl], An n Pt and Bn n Pt are strictly convex Jordan curves. 

Now we can use Theorem 2.1 to prove subsequences of {An} and {Bn} 
converge to A and B in the interior of 5(—1,1). In fact, there are sub- 
sequences of {An} and {Bn} which are convergent to embedded compact 
minimal annuli A^ C S(-tmjtm) and Btm c S(-tm,tm) in 5f(-tm,tm) for 
any tm, where tm//lasm—^oo. By a diagonal argument we see that 
subsequences of {^n} and {Bn} converge to embedded minimal surfaces A 
and B. Since for each 5 G (-£m,£m), An fl Ps and Bn n Ps C CR^ is 
uniformly bounded convex Jordan curves and the convergence is smooth, 
AnPs and B nPs are convex Jordan curves. Since for t G (—1,1), A fl Pt 

and B fl Pt are convex, by Shiffman's theorem again, we know that AoPt 
and BnPt are strictly convex, hence A and B are minimal annuli. 

Still denote these subsequences by {An} and {Bn}, we only need prove 
that A and B are continuous up to boundary and dA = dB = F. 

Now by Lemma 2.1 An consists of two simply connected minimal graphs 
over a domain Qn C PQ, say G+, G~. 

Since ^ = G+UG~, .AnnQa and AnnQ_a are the unions of two graphs 
respectively, hence they are simple curves. Similarly, A fl Qa and A fl Q_a 

are simple curves. Thus G+ fl Wa, G' fl Wa, G+ fl Wa, and G" fl W,, are all 
simply connected. 

Let Qa = finWa, then Qa is bounded and has piecewise smooth boundary 
as proved in Lemma 2.1, hence d£la has finite length. Also by Lemma 3.1, 
A n Wa is also bounded, thus we know that G+ fl Wa, G~ D Wa have finite 
area. 

Let D be the closed unit disk in C and Xn : D -» R3 be a conformal 
embedding of G+fl Wa such that for three fixed points pi G dD, Xn(pi) = <#, 
where % G dG+ n (Li U L2) nWa, i = 1, 2, 3. Since a^n -> Li U L2, this 
is alway possible. Since G+ -> G+, the areas of G+ fl Wa are uniformly 
bounded and by the conformality of Xn, JD \DXn\2 are uniformly bounded. 

By Courant-Lebesgue Lemma, G+ nWa = Xn(D) converges to (G+ U 
(Li UL2)) fl Wa and is continuous up to boundary. Similar argument for G~ 
also holds. Thus we see that d(A fl Wa) n (P_i U Pi) = (Li U L2) n Wa for 
all a > 0 large enough. Moreover, it is clear that dA C P_i UPi. Therefore 
dA = Li U L2 and similarly dB = LiU L2 and they are continuous up to 
boundary. 

Let TV be a connected non-planar compact (maybe branched) minimal 
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surface such that dN C Yi U ¥2- Let Vn be the solid bounded by An U D* U 
D*, and V be the solid bounded by AuYi UF2. We know that AT c Vn 

and Int(^4n)nlnt(iV) = 0. Since yn -> V, N C 7. By the comparison 
principle for minimal surfaces, either A = iV or Int(^l)nInt(iV) = 0. Since 
iV is compact and A is not compact, Int(iV)nInt(»4) = 0. In particular, 
Int(E)niInt(^4) = 0. 

Since Bn n iV ^ 0, limn_,oo 5n = ^B, and JV is compact, we know that 
BnN^Q. 

In particular, Int(E)nlnt(tf) ^ 0. Thus ^4 ^ B. 
Let V^ be the solid bounded by BnUD^UD^ and V be the solid bounded 

by BuFi UF2. Then since V^ C K, lim^oo Vn = V, and lim^oo V^ = V, 
Vf C V. By the comparison principle for minimal surfaces, we have that 
lnt(^)nlnt(0) = 0. 

By Theorem 2.2, we can construct the approaching sequences {An} and 
{Bn} such that they have the same symmetry groups as that of F, thus the 
limits, A and Z3, have the same symmetry groups as that of F. 

The proof of Theorem 3.1 is complete except that we still need prove 
Lemma 3.1. □ 

The idea for the proof of Lemma 3.1 is to construct various barriers 
and use the comparison principle for minimal surfaces. To establish these 
barriers, let us quote a Lemma in [fanghwang-chm]. 

Lemma 3.2 (Lemma 4 in [fanghwang-chm]). Let Lo consist of two 
non-collinear rays emanating from the origin in the plane Po; and let Li 
be their vertical translation into the plane Pi. Then LQULI is the boundary 
of a unique properly embedded minimal surface contained in the convex hull 
of LQULI. This minimal surfaces is a graph over an infinite strip and hence 
is simply connected. 

Remark 3.7. As pointed out in the proof of Lemma 3.2 in [fanghwang- 
chm], A is asymptotic to a flat strip as it diverges to infinity. 

Proof of Lemma 3.1. First we claim that Yi U Y2 is contained in an un- 
bounded domain fi with four rays as boundary. And if we adjust the angles 
between the boundary rays of Q, we can assume that there is a straight line / 
contained in fJ. Note that this implies that R3—ft consists of two unbounded 
convex domains. 

In fact, since Yi fl Y2 is convex and bounded, there are exactly two 
unbounded components on Li — L2 and L2 — Li. Say a; C Li — L2, /?; C 
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L1 — L21 i = 1, 2, are the four unbounded components. Take a point on each 
of these unbounded components, say p G QJI, p' G #2, q G /?i, q' e fa. Since 
Li are convex, there are straight lines passing through these four points such 
that Li are on the same side of these lines. Denote these lines by Zp, Z^/, lq, 
and Iqf. 

If Zp and lpt interset, then Yi is contained in a wedge Cti (a convex domain 
bounded by two rays issuing from one point) bounded by rays in lp and lpf. If 
lp and lpf are parallel, then since Li is non-compact convex, Yi is contained 
in the strip S bounded by lp and lpf. Since Li is non-flat, we can find a 
wedge fli such that Yi C fli. Similarly, there is a wedge 0,2 DY}. 

Since Yi n Y2 is compact, by parallel translations or, if necessary, vary 
the angles of the wedges, we can assume that dCti n 30,2 = {P, Q}» Take Q 
to be the domain bounded by rays in dOi 1)80,2 issuing from P and Q, then 
clearly Yi U Y2 C O. By enlarging O if necessary, we can assume that the 
straight line Z which is the bisector of the line segment PQ is contained in O. 
Take Z as the rr-axis, then the coordinate system of (x, y, z) satisfies that if 
a > 0 large enough, we have Qa n L2 = 0 and Q_a fl Li = 0 or, Qa fl Li = 0 
and Q-a n L2 = 0, but not both. 

Denote the two components of 80 by Z1 and Z2. 
Now let A C 5(—1,1) be a compact minimal surface such that dA = 

Ci U C2, Ci C Fi, C2 C Y2. Then Ci fl L2 = 0 and C2 fl Li = 0. See Figure 
3 below. 

Figure 3 



898 Yi Fang and Jenn-Fang Hwang 

We first prove that for any a > 0, there is an S(a) > 0 such that 
AnWacS'(-S(a),S(a)). 

We use the barrier in Lemma 3.2. 

(3.3) /1n(yiuy2) = 0. 

Now let us parallel translate I1 along the z-axis into P_i and Pi and call 
them Zli and Zf respectively. By Lemma 3.2, there is a minimal graph M 
bounded by l^ and l\. By (3.3), dA fl (l^ U l\) = 0. By the comparison 
principle for minimal surfaces, A D M = 0. Thus for any a 7^ 0, there is an 
i?^ > 0, such that AnWa is contained in the half-space {y < i?^}. Since M 
is continuous, we can select R* such that it is nondecreasingly continuous 
respect bo a. 

Similarly, using I2 to make minimal graph M', we can find an R2 > 0 
such that V(A) fl Wa is contained in the half-space {y > —R2} and R2 is 
nondecreasingly continuous respect to a. Take ^(a) = max{i^,i^}, we 
have proved that A fl Wa C S/(—S(a)^S(a)) and 5(a) is nondecreasingly 
continuous respect to a. 

Next, the minimal graph M bounded by ZijUZj is contained in the convex 
hull of l}_iUl{. Let V be the perpendicular projection on the xy-plane. Then 
V{M) is contained in the convex domain bounded by ll. Similarly, V(Mf) 
is contained in the convex domain bounded by I2. Therefore, V{M) fl (Yi U 
Y2) = 0 and V{M') n (Yi U Y2) = 0. Parallel moving ll and Z2 to L1 and 
L2 along the iy-direction and denote the non-convex domain bounded by 
L1 U L2 by O7, then by the Remark 3.7 we can make 

(3.4) (P(M) U V{M')) n tf = 0,    P(i4) C fi7. 

Still denote L1 by Z1, L2 by Z2. 
Let /w = {(#, y, z); x = n, 2: = 0}. We have proved and made the con- 

vention that Li n l-d = 0, L2 H la = 0 for d > 0 large enough. 
Let fii be the unbounded convex domain bounded by part of I1 U I2 U Id. 

Then dfti = Fi U r2, where Fi C I1 U Z2 consists of two rays issued from the 
intersections of Id with I1 U Z2, and r2 is the line segment in Zd between the 
two intersection points. 

Similarly, let 0,2 be the unbounded convex domain bounded by part of 
fiufiul-d- Then 80,2 = TaUF^ where Fs C Z1UZ2 consists of two rays issued 
from the intersections of l-d with I1 U/2, and r4 C l-d is a line segment. See 
Figure 4 below. 

We construct two minimal graphs Gi and G2 by solving Dirichlet prob- 
lems for minimal surface equation on the domains Oi and Q2, with the 
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data: 

f «i = -1 on Ti f U2   = 1 on Ts 
\ ui   = oo on r2; \ «2 = —oo on r4. 

Figure 4 

Such minimal graphs exist and are unique. For example, let fia be the 
domain {(x,y) e Hi] x < a}, then 0«a =' r2 U ra U Ff, where ra is the 
segment in la between the intersection points ofla with Fi; FJ is rin{x < a}. 
Then clearly when a large enough, we have 

|r?|>|r2| + |ra|. 

By a theorem of Jenkins and Serrin [fanghwang-js], there is a unique solution 
Ua for the Dirichlet problem of minimal surface equation with the boundary 
value: 

ua = -1 on Ff, 

Ua = oo onr2ura. 
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Now if c> a, then by comparison principle for minimal surfaces, uc < ua in 
fja. For any p € fii, if a is large enough thenp G Sla. Let cn / oo then {uCv) 
is a decreasing sequence, by the monotone convergence theorem [fanghwang- 
js], there is a u = linin—oo t^ which solves our Dirichlet problem. By the 
maximum principle in [fanghwang-nil], page 256, sup^+x \u\(x,y)\ and 
supa;<_d_1 \u2{x,y)\ are finite. Hence by Theorem 3 of [fanghwang-hwal], 
the solution is unique. 

An important property for Gi is that X\m.\^yy[^00Ui{x,y) = =Fl, i — 1, 
2, see [fanghwang-mr2], Theorem 3.1. Thus by (3.4), for any t e (-1,1), 
there is an Ri(t) > 0 such that 

G1nPtcH-i{t)]   G2nPtcH±Ri{ty 

By the construction of Gu dA 0 8^ = 0 and V(A n H+) C P(Gi) = fii, 
V(A fl JJrd) C P(G2) = ^2. By the comparison principle for minimal 

surfaces, we conclude that AnGi = 0, for i = 1, 2. Since V^nfan^) ^ 0 
and V(Gi) fl (Yi fl Y^) = 0, * = 1, 2, by the maximum principle A fl P* C 
Hni{t)nH±RiitV Ri(t) > d, for any t G (-1,1). Then we have S(#i(t)) > 0, 

such tha.t A n Pt C WRl{t) H ^(-^(PiW), 5(Pi(t)). 
Take R(t) = max{^Pi(t), ^5(Pi(t))}, then A n Pt C C^). Since 

Gi and G2 are continuous, Ri(t) is nondecreasingly continuous respect to t. 
Thus P(t) is nondecreasingly continuous respect to t. 

The proof of Lemma 3.1 is complete. □ 

3.2. Proof of Theorem 3.2. 

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1. The key 
point is that we can confine approaching minimal annulus sequences {An} 
and {Bn} by four minimal barriers, i.e., the minimal graphs as in Lemma 
3.2, using the eight rays issuing form the four intersection points of Li, i = 1, 
2, 3, 4. Thus Lemma 3.1 is true for a straight line case. The other arguments 
are either exactly the same as the arguments in the proof of Theorem 3.1 or 
are slightly variations of them. d 

3.3. Proof of Theorem 3.3. 

We start with Z£ being the convex curve consisting of the two line segments 
(Li U L2) n Cn, and two round arcs smoothly connecting the two pairs of 
end points, note that we use the same arcs up to a translation or reflection. 
Similarly define L^ By this construction, Li and Z£ are invariant under the 
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reflection about the yz-plane and have uniformly bounded boundary planar 
curvature. 

If F is a lattice boundary, then we can make 1% to be the image of Z^ 
under the rotation of angle TT around the rr-axis. 

By Theorem 2.2, there are embedded minimal annuli Bn bounded by 
L* UZ^ such that Int(jBn)nInt(E) ^ 0, where E is the minimal surface in the 
H-M condition of Definition 3.3. Moreover, Bn has the same symmetry group 
as that of L* U Z£. Note that there is an R > 0 such that Bn C 5/(--R, R) 
and by the construction, we see that L* U L^ have uniform boundary planar 
curvature bound and linin-.oo L^U L^ = T. Hence we can apply Theorem 
2.3 to conclude that there is a subsequence of {Bn} which converges to an 
embedded minimal surface V such that dV = F. 

Since B^s satisfy the symmetry conditions in Theorem 3.3, V also sat- 
isfies the symmetry conditions. 

It remains to prove that V is an annulus and satisfies the other properties 
claimed in Theorem 3.3. 

To establish that V is an annulus, it is sufficient to prove that V fl Pt is 
a strictly convex Jordan curve, for any —1 < t < 1. 

Since Bn fl S ^ 0 and E is compact, we see that V D E 7^ 0. 
We observe that Ptftf) is the smooth limit of a sequence of strictly convex 

Jordan curves. If Pt HV is compact, then it must be a convex Jordan curve. 
Thus the only thing left to be proved is that V D Pt must be compact. 

Note that Pt D V is invariant under the reflection about the y^-plane. 
If Pt fl V is not compact, then clearly Pt fl V fl {x = ±5} 7^ 0, for any 
s > 0, otherwise Pt D V is bounded. This forces that Pt fl V consists of 
two graphs generated by uniformly bounded functions yi(x,t) and y2(x,t)J 

Hi !> 2/2, —00 < x < 00, or in the limit case, yi = 2/2- Let yf and 2/2 
be the functions defined by Pt fl JBn, then yf is concave and y^ is convex. 
Since yi(x) = limn^oo:*/i\ 2/20*0 = limn-ooi/J, in C^ topology, Vfc > 0, 
2/f(a:) = 2/f(—a;), z = 1, 2, 2/1 is concave with maximum 7/1 (0, £) and 2/2 is 
convex with minimum 2/2(0, £). By Lemma 2.1 

|2/1(0,t)-2/2(0,t)|>max(il^,(^l>    1 

4#2   '    4R2    J - 4R2' 

for — 1 < t < 1. If Pt n © is not compact, then 2/1 and 2/2 are both defined 
on (—00,00), and 2/1 is concave, 2/2 is convex. Thus Pt H 2? is the union of 
two parallel straight lines which are parallel to the x-axis. 

Consider the arc length functions 

L(t) = the arc length of Pt fl D,    and   Ln(t) = the arc length of Pt D Sn. 
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Then Ln(t) —> L(t) when n —* oo. By [fanghwang-osh], Ln is convex with 
respect to t. We see that if for some —1 < to < 1, L(to) = oo, then 
Ln(h) —» oo and there is a closed interval containing to in (—1,1) such that 
on which Ln(t) —> oo. Thus we can assume that the set 

{t € (-1,1) | Pt n V is not compact} 

contains an open interval in (—1,1). Hence there are — 1 < ti < t2 < 1 
such that Pt fl V consists of two straight lines parallel to the rr-axis for 
ti < t < t2. Thus V is contained in a ruled minimal surface. Since the only 
non-planar ruled minimal surface is the Helicoid and its generating straight 
lines are not parallel, V is contained in two planes Pi and P2 such that 
Li U L2 U L3 U L4 C Pi U P2. Now since V is embedded, we have that Pi is 
the plane containing Li UL3, P2 is the plane containing L2 UL4. But by the 
comparison principle for minimal surfaces, En (Pi UP2) = 0? and EflD = 0, 
a contradiction. This contradiction proves that Pt fl V is compact. 

As before, once we know that Pt fl© is convex for — 1 < t < 1, then it is 
strictly convex by quoting Shiffman's first theorem. 

The remaining properties claimed in Theorem 3.3 can be proved in the 
same way as in the proof of Theorem 3.1. 

The proof of Theorem 3.3 is complete now. □ 

Remark 3.8. There are other cases of boundaries such that similar lemma 
as Lemma 3.1 is true, thus with H-M condition, there are two solutions. For 
example, Li becomes two parallel straight lines and Yi HY^ is bounded, etc. 

Is the solution in Theorem 3.3 unique? Similar questions can be asked. 
For example, are there other solutions besides the two given in Theorem 3.1 
and 3.2? is there a theory about non-compact smooth convex boundary as 
that established by Meeks and White in [fanghwang-mwl]? Furthermore, 
can the theory of Meeks and White, together with its generalization to non- 
compact cases (if it is generalizable), be generalized to the continuous case? 
We would like to know the answers. 
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