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The existence of conformal metrics with constant
scalar curvature and
constant boundary mean curvature

ZHENG-CHAO HAN! AND YANYAN L2

1. Introduction.

Let (M,g) be an n dimensional compact, smooth, Riemannian manifold
without boundary. For n = 2, the Uniformization Theorem of Poincaré says
that there exist metrics on M which are pointwise conformal to g and have
constant Gauss curvature. For n > 3, the well known Yamabe conjecture
states that there exist metrics on M which are pointwise conformal to g and
have constant scalar curvature. The Yamabe conjecture has been proved
through the work of Yamabe [Y], Trudinger [T], Aubin [A], and Schoen
[S1]. See Lee and Parker [LP] for a survey. See also Bahri and Brezis [BB],
Bahri [B], and Schoen [$2-3] for works on the problem and related ones.

Analogues of the Yamabe problem for compact Riemannian manifolds
with boundary have been studied by Cherrier, Escobar, and others. In
particular, Escobar proved in [E2] that a large class of compact Riemannian
manifolds with boundary are conformally equivalent to one with constant
scalar curvature and zero mean curvature on the boundary. See also [E3]-
[E5] for related results.

From now on in the paper, (M, g) denotes some smooth compact n di-
mensional Riemannian manifold with boundary, unless we specify otherwise.
We use M* to denote the interior of M, and OM the boundary of M. We use

Lg to denote Ag—c(n) Ry, where c(n) is 4“_——82_ 21) , Bg to denote i_'__n - 2hg,

ov 2
where v is the outward unit normal on M with respect to g, and kg to de-

note the mean curvature of M with respect to the inner normal (balls in
R™ have positive mean curvatures).
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Let u > 0 be some positive function on M, and consider the metric
§ = u*/(2g. The scalar curvature R; can be calculated as

4(n—1)u_1v_+_§ u
—_ n— gUy

R; =

n—2
and the mean curvature hg can be calculated as

2

n
u~ "2 B, u.
n—2 g

(]

Thus the boundary value problem

—Lgu = n(n — 2) Ru(+2)/(n=2), u>0, in M°,
(1.1) 9
Byu = cu™ (v=2) on OM,

for some constants R and c, is equivalent to saying that (M, §) has constant
scalar curvature in M° and constant mean curvature on OM. We remark
that R can be taken to be 0, or 1 after scaling.

Consider the following eigenvalue problem on (M, g):

— Lgp = Ay, in M°,
Byp =0, on OM.

Let A1(M) denote the first eigenvalue. It is well know that

fM (’v‘Plz + c(n)Rg‘/’z) + 1%2 faM hg‘Pz.

AL(M) =
(M) = T8 o) Jo 2

We say that a manifold M is of positive (negative, zero) type if \1(M) > 0
(< 0,=0). This notion is conformally invariant. The R will be scaled to 1,
—1, or 0, according to whether M is of positive, negative, or zero type. We
will use M., to denote the set of solutions of (1.1) in C2(M).

Consider ) )
_Ju (IVgpl? + ¢(n)Ryy?)
= s
(Jalel=2) =
for ¢ € HY(M)\ {0}. It is clear that, up to some harmless positive constant,
¢ € My for any positive critical point of the functional Q.
The Sobolev quotient of (M, g) is given by

Q(M, g) = inf{Q(p) | v € H'(M)\ {0}}.

Q(¥)
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It is clear that Q(M, g) is positive if the first eigenvalue of —L, is positive,
is negative if the first eigenvalue of —L, is negative, and is zero if the first
eigenvalue of —L, is zero.

Cherrier proved in [C] that, similar to the Yamabe problem, Q(M, g) is
achieved if

where (S7, go) denotes the standard half sphere. In the same paper he also
showed the regularity of solutions to such problems. For a large class of
manifolds, Escobar established (1.2) in [E2], thus showed M # ¢. In [E3],
Escobar obtained existence of solutions of (1.1) for the case of R = 0 and
c an arbitrary constant. More recently, Escobar showed in [E4] that, under
the same hypotheses as in [E2], there exist ¢t > 0 and ¢~ < 0 such that
M+ # ¢ and M. # ¢. Naturally one wonders whether M, # ¢ for all
c € R™. We proposed in [HL1] two conjectures concerning this. Before
stating the conjectures and the main result there, we first give the following
natural subcritical approximation of (1.1), introduced in [HL1],

* c
®e. Byu = culPtV/2) on M,

{ — Lgu = n(n — 2)u?, u>0, in M°,
herece Rand 1 < p < (n+2)/(n—2). Let M, . denote the set of solutions
of (*)p,c in C2(M). Here, we have set R = 1 to restrict ourselves to the case
for manifolds of positive type. As is well known, the existence problems are
more difficult for this case.

Conjecture 1. Let (M, g) be a smooth compact n dimensional Riemannian
manifold with boundary of positive type. Then for all c € R, M. # ¢.

Conjecture 2. Let (M, g) be a smooth compact n dimensional Riemannian
manifold with boundary of positive type which is not conformally equivalent
to the standard half sphere. Then for all€ > 0, there ezist positive constants
do = 60(M, g,¢) and C = C(M,g,¢) > 0 such that

1/C<Su@) <C,  VoeM; |lullgan <G,

for all u € (Utnt2)/(n-2)-s0<p<(n+2)/(n—2) Yie|<eMpsc) -

We have established in [HL1] both Conjecture 1 and Conjecture 2 when
(M, g) is a smooth compact n (n > 3) dimensional locally conformally
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flat Riemannian manifold of positive type with umbilic boundary, and have
shown in [HL1] that Conjecture 1 can be deduced from Conjecture 2. We re-
call that M has umbilic boundary if every boundary point is umbilic, i.e., the
second fundamental form at the point is a constant multiple of the metric.
In this paper, we establish Comjecture 1 when (M, g) is a smooth compact
n (n > 5) dimensional Riemannian manifold of positve type with at least
one non-umbilic point on M. More precisely, we have

Theorem 1.1. For n > 5, let (M, g) be a smooth compact n dimensional
Riemannian manifold of positve type with at least one non-umbilic point on

OM. Then M. # ¢ for all c € R.

Remark 1.1. Further existence results will be given in a forthcoming paper
[HL3].

In the remaining of this section, we describe our approach to the proof
of Theorem 1.1 and the issues involved.

We establish Theorem 1.1 by variational methods. It is easy to verify
that a nontrivial critical point of the functional

I(u)=% /M [IV’u|2 (” 21) 2]+3;—2 hg u?

is a solution of (1.1). It is known that I € Cz(Hl(M), R).
We find a nontrivial critical point of I(u) using the following Mountain
Pass Lemma of Amborsetti and Rabinowitz [AR].

Mountain Pass Lemma (MPL). Let X be a Banach space and I €
C1(X,R). Suppose that I(0) = 0 and that there exists 0 # up € X such that
I(up) < 0. Let T denote the set of continuous paths in X connecting 0 and
ug and define Inp = inf,ersup,e, I(u). Suppose that Imp > 0 and that I
satisfies the (PS) condition at level Ip. Then Iy is a critical value of I.

The nonlinearities in our functional I are of critical growth. It is known
that, in general, the (PS) condition is not satisfied in the presence of such
nonlinearities. However, it will be verified in Appendix A (see Lemma 1.2
below) that I satisfies the (PS) condition below certain threshold level S..
Recovery of compactness of (PS) sequences below certain threshold level
was used by Brezis and Nirenberg in [BN], and has since been used in many
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contexts. Our contribution lies in reducing the verification of I,,,’s staying
below the threshold to an extremal problem on spherical caps with the
standard metric. See the end of this section and the beginning of section 3
for details.

Let us first introduce some quantities and define S,.. Let

n—2

1 2
(13) ul(z) - (1 + |z,|2 + |zn — Tclz) )

where T, = ——%5. Then u; solves

—Au; =n(n - 2)u§n+2)/ (n_2), in RY,

Ouy — _cu;z/(n—2) ’

—_— on z, = 0.
Oz, "
We also define
2_n 2!”—1!
ao =/ [Vur|%; bo = / ur™?; and dp = c/ u; " .
R? R 8R7

If we multiply the equation of u; by w; and integrate by parts, we obtain
the relation

(1.4) ag = n(n -_ 2) bo + dp.
Now we set ( 2%
ag n-— 0
Se = .
= 2mn-1 " 2n-1)
This is the threshold level mentioned earlier.
As stated earlier, I satisfies (PS) at levels below S.. For simplicity, we do

not prove this here, instead we establish the following weaker result which
is, as well known, enough in establishing the existence result via (MPL).

Lemma 1.2. Suppose A\1(M) > 0. Let {u;} C HY(M) be a sequence of
functions satisfying,

(1.5) I(u;)) = b< S,
and
(1.6) |Il(ui)v|

veH (M\{0} ||v]|

Then after passing to a subsequence, either {u;} weakly converges in H'(M)
to some solution of (1.1) or converges strongly to 0 in H'(M).
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The proof will be deferred to Appendix A. Since we are assuming
A1(M) > 0, it is easy to see that for some o > 0 and ¢y > 0, we have
I(u) > €p,Vu with ||u|| = ro. For any nonzero u in H(M), due to the
exlicit form of I, I(tu) < 0 for large t. Therefore, for any nonzero u, we can
take ug = tu for sufficiently large ¢ and define I, as in the statement of
MPL. All we are left to prove is that

(1.7) (X I(tu) < S
for appropriate choice of u.

In the cases to be treated in this paper, i.e., when OM is assumed to
have a non-umbilic point, we are going to choose a localized test function
to achieve (1.7) as follows. In local coordinates near a non-umbilic point of
OM , we choose u in the form of

(18) (@) = €T P(2) [ui(z/€) + 6(z/e)],

for some appropriate choice of ¢, where € and ¢ are small parameters, 1 is
a cut-off function to be specified later. For any u given in (1.8), if we take
¢ to be smooth with compact support, then we will show that, for €,d > 0
small, we have

(1.9) max I(tu) = S. + Q166 + Q20 + Q3€® + o(€% + 42),
0<t<oo

where Q; is a linear functional in ¢ given in (2.4), Q2 is a quadratic func-
tional in ¢ given in (?7?), and Q3 is a number expressed in terms of n,c,
and geometric data of &M at the point, as given in (2.9). We remark that
Q2 > 0, for any choice of ¢, as will be shown in section 3. It is clear from
(1.9) that a sufficient condition to achieve (1.7) is to find a ¢ such that

(1.10) QF(4) —4Q2(¢)Qs > 0.

When ¢ < 0, Q3 < 0 from the explicit expressions of @3, and there is an
easy choice of ¢ to achieve (1.10). For ¢ > 0, Q3 > 0, and there is no obvious
choice of ¢ to achieve (1.10).

The novelty of our systematic search of the test function u in the form
(1.8) is to have reduced the search to an extremal problem in the Euclidean
half space. It comes from extremizing (1.10) in the form of

: Q2(¢)>
(L.11) 10 (Qll(?s)faéo &) = .
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This leads to the analysis of an eigenvalue problem on spherical caps with
Robin type boundary conditions. This is set up as (3.7) in section 3. (1.11)
can be expressed in terms of the eigenvalues p’s, as given in (3.8). In section
3, we obtain recursive formulae for computing the eigenvalues pj and the
corresponding eigenfunctions. We also prove that the quadratic form Qs is
non-negative definite, and identify its kernel. For the verification of (3.8),
we need to express the first two terms in (3.8) explicitly in terms of the
eigenfunctions associated with pe and p3. We also need some estimate on
p2 and p3. These are done in section 4. At the end of section 4, we complete
our proof of Theorem 1.1.

2. Expressions for )1, @2, @3 and the case of ¢ < 0.
In this section, we derive the expressions for Q1, @2, and Q3. As a prelim-

inary step, we will choose a test function u and compute maxo<t<oco I (tu).
We will specify u later. For the moment, we have, schematically, for ¢ > 0,

I(tu) = 5¢* - @btfi“z - 2)((”n—__zl))ah:gff——'zll,
where
a= / [Ivulﬁ + #‘Rguz] dvg + n_—2/ hy u*dvayy,
M (n-1) 2 Jou
b= [ (wH)Prdun,
M
and
d=c | (@) dupw

oM

Simple calculus shows that

at?  (n—2)%btn-z

max I(tu) = + -1

0<t<oco 2(n—1)

where t > 0 solves . )
a=n(n—2)btr—2 +dt=-2,

from which we obtain

n—2

. —d+ /@ +4an(n—2)ab| *
g 2n(n —2)b '
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We are going to choose u in the form of e‘nT_zw(:c) [ui(z/€) + d0¢(z/€)] in
local coordinates near a non-umbilic point, where € and § are small param-
eters, 1 is a cut-off function, = 1 near the point, and ¢ € C°(R"). We will
show in the following that, for n > 5,

a=ao+A05+A165+A252+A362+o(e2+62),
b=bo+ B+ By ed + By 62 + By + o(e? + 6%),
d=do+ Do 6 + D16 + Dy 6% + D3e? + o(€? + 62),

where the A;, B;, and D; are explicitly given in terms of ¢, but independent
of €,0. From the equation satisfied by ¢, we find the relation

t=1+Tod+Tye6 +Tp %+ Tae? + o(e? + 62),

where
T A() - n(n 2)Bo - Do
0= 4dnbg + 5755 do ’
T Ay —n(n— 2)Bl
1= dnbo + ;=5 d() ’
Ty =
Ao —’n(’n—2)Bg —Dg— (4’nBo+ —2—D0) To— (2n(6_n) bo+ (n 2)2 do) T
- 4nbg +5:5 do ’
and
T = Az —n(n — 2)B3 - D3

4nbg + d()

Putting these into the expansion for maxo<t<oo I (tv), we obtain

(21)  mex I(tu)

6 n—2 € n—2
= Sc+ [A() (n— 2)2Bo—n lDo] + 0} [Al—(n - 2)2Bl—n — lDl]
62 0 M—2 (n —2) [Ao — n(n — 2)Bo — Do}?
+7 [A2_(n—2) B2_n—1D2+ 2 ap + n(n — 2)bo

n —

+Ez A —(n—2)2Bv—
2 [® , 37 h

— ?Dg] + o(€® + 62).
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To evaluate the A;, B;, and D; in terms of ¢, we first set up convenient
coordinate systems. As in [E1l], we can assume that g has the property
h(0) = 0, and R;j(0) = 0. Let (z1,---,Zn) be normal coordinates around
0 € M, such that the second fundamental form of M at 0 has a diagonal
form. Then OM can be expressed near 0 by

n—1
1
Tn = f(T1, 0, Tn-1) = E 5/\#? + E aijrzizizr + O(|2'|*).
i=1 1<i,j,k<n—1

So 3.7} \; = 0. Recall that in a normal coordinate, g* has the following

i=1
expansion

L
gv =6v — gRiktjzeTl + O(|z|?),

where R;ji; denote the coefficients of the Riemann curvature tensor at 0;

and ,/g = +/det(gi;) has the expansion

(2.2) \/5 =1- %Rijz,-a:j + O(|(B|3)

Let po be a positive number and consider the cylinder
Coo = Cpo(0) = {(z1," - 133")"”% +- x?z—l < Pga —po < Tp < po}

and
C;,'; = CF(0) = {(z1, - ,Zn) € Cpolzn > 0}.

Let 9 be a smooth cut-off function such that % = 1 on C,,, is supported in
Capg» and [Vp| < C/po, | V2P| < C/pk for some constant C. In the following,
we will assume n > 4 and will choose u = ¥(x) e [u1(z/€) + dp(z/€)]
and evaluate the A;, B;, D;,7 = 0,1,2,3, ¢,0 > 0 will be chosen small, 1 is
a cut-off function, and ¢ is assumed to have compact support and will be
chosen later.

/ |Vu|§dvg= /
M CponM

0

!Vu|§dvg + / |Vu|gd'vg.
M\C

PO

We calculate the two integrals above separately. First

[ vultds, = 0(g e
M\Cpq
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by a simple computation. Next

/ |Vu|§d’ug
CopNM

P
1
= / |Vu|?dz,, dz’ — 3 ZR,-jkl/ uw Ty dr,ds’
CopNM CponM

PO
+0( / PP Vul? d,, do').
CooNM

The first integral gives

f="
/ |Vu|?de, do' = / |Vu|?dz, do' —/ / |Vu|?dz, dz',
CpoNM (op Byt Jo

PO

with

/+ |Vu|?dz,, dz’

PO

= / |Vuy|2dzpdz’ + 62 / IVo|2dzndz’ + 25 / Vu - Vo
+ + ct

po/e C'/Jo/e po/e

= ag + 62 / V| + 26 / Vuy - Vo + O(p2 ™™ 2) + o(62 + €2),
R% R7
and

f(=") f(ez')/e
/ / |Vu|?dz, de’ = / / {|Vu1|?+26Vu; - Vo+82|Vg|%}.
po " J0 Boe 0

We evaluate them separately.

f(ez')/e
o
n—1 0

po/€

n—1
_€ (n—22(ZP+T2) ,
o §ZAi/n—1 Z
Po/e

A+ P+

(=P T
T+ 1P+ T2

i=1

+ const.€? /
Bn—-l
Po/e

’ _q nl
RS O N NI RN S
B i=1

2iZj 2

1 T+ P+ T2

n—1
po/e

n—1
_ (n=2T / (n=D(ZP+T) ~1 <, a9
B 4 rr-1 (14|22 + T2)n+! (; Aiz)” + E(e),
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due to Y 1] ! \; = 0 and symmetry, here and in the following E(e) denotes
a quantity Wlth the following estimate

O(e®) when n > 6,
E(e) = O(®log £2) when n =5,
O(€%po) when n = 4.

The other two terms are estimated as

L] O e = 0(e),

po/e

flez')/e et
/ / Vu; -V = ZAi / Vuy(2,0) - Vé(2',0)22 + ofe).
n—1 2 =1 Rn—1

po/e

A simple estimate gives
/ Vul?|zf® dz, da’ = E(e),
CponM

and

(n— 2)_2 ZRijkl/ uw ;T drndz’

POn

_ 2 B 2iZjZK2]
€ /c {ZR”’“’<1+|z'|2+|zn—Tc|2>n

po/e il<n

) 22 21 (2n — T )zJZk,Zl
2 B Ty & By ZR’“’“’ a+ |z'|2 + len = ToP)”

i<n |Zn

(2n = Te)zj2 2 2
Using the symmetry of the Riemann curvature tensor and R,,(0) = 0, the
first 4 terms of the right hand side above can be combined to become

2 2izjzkzl
R.:
/c {Z AR+ 20 — TD)"

Po/€ i)j)k)l
(Tg - 2Tczn)ijk TcZiijk

JZI;R””“"Q 7P+ [zn — L) % T AH P + fen — Tclz)"}
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They all vanish because of the symmetry of the Riemann curvature tensor
and R,,(0) = 0. Therefore

> Riju / wwz;Tk dTada’ = E(e) + o(e? + 6%).
CooNM

The other two terms in the expression for a can be estimated simply as

/ Ru?=0 / |zju? | + O / pou?
M MNCpqy (C2po\Cpo)NM
po/e 2po/e
=0 63/ (14+r)*™dr | +0 e2po/ (1+7)3"dr
0 Pole

= E(e),

using R,4(0) = 0. Using the fact that g is geodesic normal coordinate near 0
and that hy(0) = 0, we have

| ohat= [ (@, Sl 1)’
oM B

2p0

+0 ( [ hole', e f(x'))2|w'|2dx'>
+ E(€) + o(€® + 6%)

1
= aiziu(z’, f (z'))?
n—1
Baso i=1

i=

ro [,

2p0

(@, f(x'))2|x'|2dx'> + E(e) + o(€ + 6%),

where in the last estimate we used the Taylor expansion for hg(z’, f(z'))
near '’ = 0. Now

€ n—
off _ ue,1@)efae) = o[ _ ()™ e fd)
B2po szo

= E(e),
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and
n—1
/ > amu(e, f(2))
Byt

=2/ zjl (e, F(e2)){ur (2, F(e2')[e)?
€ . a;zip(ez', f(ez ui(2', f(ez')/e

Bypo/e i=1

+ 28u(, F(2) /B, F(e)€) + (<, F(e) o)}
n—1
= 62/ . Zaizi'l,b(ez’, f(e2")?uy (2, f(e2')/€)?

By~

2pg/e i=1
+0 (62‘5 —Iz—ll—dz'> +0 <e252 / __IZ_'L__dz')
n— /12\n—2 . LAY
szol/e (1 + lZ I ) B2p01/e (1 + IZ I )
n—1
= [ S amp(ed, S, ()] + ol + ).
Byore i=1

We require that ¢ (z) = ¢(|z|) for the following estimate. Using the theo-
rem of the mean on (e2’, f(e2'))?u1 (7', f(€z')/€)? with respect to the last
component, we compute the remaining integral above by

n—1
[ S ambed, fe) s, f(e) 0
B;p_ol/e i=1
n—1
= 62 . Z aiziw(ezla 0)2’11,1 (zla O)del

Byoore i=1

2 I (€)/el® + |Tel| f(e2) /el
+0 (e /B T e dz)

2po/€

I (e)/
+o (64/ Pt |z'|2>"-2)

=040 64/ ——IZ,LS—dz' +0 (€T —Ldz'
gy, (L4127 ppy, (14|22

2pg/e 2p0/€

+O 65/ / _|ZI|4___dZ/
0 Joyo, W P2

2p0/¢€

= B(e) + (&),
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where on the third line of the above computation, we used the symmetry of
1u; and the oddness of z;. Putting these together, we obtain, for n > 5,

Ao =2 Vul . V¢,
R}

n—1
— Z )\i/ Vuy (2, 0) - Vo(7, O)z?,
=1 JR*!
A= [ V4P,
R}

2
. (n—2)T, (n—=1)(?+T2% -1
As = ‘—T/n_l 1+ [2']2 + T2)n+ (ZA’Z ) '

Next we compute the expansion for b. Since ¢ is assumed to have compact
support, we have ut = u as long as we choose § small. Then

2n_ 2n_
b= ur-2dvg + ur—2dv,
C,,OnM M\Cpo

= / u%dvg +0(é%).
CpoNM

In view of R;;(0) = 0 and (2.2), it follows that

on f(z') 2n
/ un—2dvy = / un-2d:1: dx’' ——/ / un—2dz,dx’
CpoNM Ch Fo !
2
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The first integral can be computed as

2n
un—2
ct

PO

=/c+ (ur + 5) 72

po/e

2n 2n n(n + 2)
—_ n—2 —2 2 n—2 2 2
_/C+ {ul 40Tl 4 P S }—!—o(e +62)
po/e
2n_ 2 nt2 2
=-/n {uf—z +6;_1_f_2uf—2¢+627(7'(n'l‘2)2) n—2¢2}+0(6 +62)
+

and the second integral can be computed as

f(ez')/e 2n
o= [

Po/e

nt2
— ne§ Z A / ]1_1_2 (zl, O)¢(Zl, 0)z3

2
n—1 2
enTe ( =1 /\izi) ' 2 52
H! /R"-l AR 2 TEBE ol +5).

Consequently, for n > 5,

2 nt2
BO = - / Uf—z ¢7

n—2
nt2
Z i / u~?(2,0)¢(2,0)22,

1—1
By="——7%3 | uf 24’ )
(n—2)2 Jpy

2
-1
B nTc/ ( i1 ’\izz‘z) &
=—— 2.

T e P+ T

To compute d, we note, using the expansion of g and of M around 0, that
the volume form of M has the following expansion on M N Cy,,,

1 n—1 1 n—1
d voloy = (1 t3 > (Ruinj — Rij)ziz; + 3 Z Na? + o(|2'?) | da’.
i=1

i,j=1
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Recall again that R;;j(0) = 0, so we have

2(n—-1)
d=c/ u »=2 d volgpm
oM
2(n—

2(n—-1) ( 1)
=c |/ u 2 dvolgy + ¢ u »—2 d volgpy
8MNC,, 8M\Cpy

=c/é {(u +5¢)( (e"/))}i_ll

o/
2 n—1 62 n—1
ZR,W,Jz,zJ —2—ZAfzf dz' + o(e? + §2)
i,j=1 i=1
-l 2n—1) 25 (n l)n 2
— n—2 n—2 n 2 ¢2 12
_c/n_l{ul + 20 5¢+( gy
po/e
9 n—1
(z, (éz)) 1+< ZRmmzng+ ZA2 2| &2 + o( +6°)
€ 1,7=1 =1
n—l
Cof (1) (1 23 B+ S50 2) »
:0/5 zJ—l i=1

A (1))

Po/e

+ (?n—_12))n;52 /;:&15 uf-z ( f(le)) ¢2( f(fz)) 47 +o(e + 62).

We calculate the right hand side of the above term by term,

Y ER CAPE

po/e
2(n—1) n— !
{u "2 (2, 0)+—aa [ul(z zn)%J fleZ)

€

=c
o

po/e zn=0

2 (n=1) NE
+1 o uy (), )zﬂ—21 ] [_f_@] dz' + o(e? + §2)
23 2n=0 €
2(n—1) 2( )
=c u ™2 (2, 0)+i[u1(z Zn) n-zl] ( Z)\z)
B:o_/le Ozn zn=0 i=1
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n—1 2

1 0? 2An-1) € 2 ' 2 52

26 [ul(z Zp) 2 ] . (2;)\1%) dz' + o(e® + 6%)
ce? 02 , \2n=1) / 2, 2
—d0+'§- Bn‘_la—z%l:UKZ,zn) ""2] o ZAZ d2:+0(6 + 6%)

po/e "

ce? 2 2(n-1) P2 s2
~dot 5 [z [ | (Z“> e

where we have used the fact that E;:ll A; = 0, and the radial symmetry
of u; to conclude that one of the integrals is zero. The second term in the
expansion for d is easy:

c 2(n—1) ez/ 2 n—1
§/n-—1 uln—z (2 (e )) Z inj2i%; + 262/\2 2 4
ro/< Jj=1 i=1
ce2 2(n-1) 1 n—1 n—1
=5 | w" @03 > Ruinjzizi+ Y A222 | d2 + o(e? + 62)
Frore ij=1 i=1 |
2 2(n—1) 1 n-—1 n—1
= S;— Uy n—2 (z', 0) (§ Rninjzizj + ZA?zf dz + 0(62 + 52)
Rn- ‘
1,j=1 i=1
ce2 2(n—1) 1 n—1
= —2— 'u,ln—Z (z/’O) § ann’l.z + ZA2 2 dz + 0(6 +62)
Rn-
=1 =1
ce2 2 n—2 1 . n—1 o ) ) \
= _/ "_ (Z 0) Rnnzl + (Z Ai )Zl dz' + o(e + & )
2 i 3 i=1

2(n—-1

u "2 (2,0)23d2 + o(€? + 62).

In the above we have used the symmetry of u; and R,, = 0. Next we
calculate the third term in the expansion for d.

B gi(;::_zl))c‘s /B,,_l {"{‘—2—2 (2,0)4(2',0)

po/e
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2n=0 [f_(ZZ_IZ] }dz' + o(€? + 6%)

+ i [ul(z', zn)ﬁﬂz', zn)]

0z,
2(n -1 n
- Hé /Rn_1 up~* (2',0)$(2, 0)d7’
—1)e
(:: 2 6 Z‘/n_l azn ul z Zn) n_2¢(z Zn)] z.n:O(AiZ?)
+o(e? + 6°).

The last term in the expansion for d is

o (150) (1)

— 2
= %%%62/ ul~2(2',0)¢%(2',0)dz’ + o(e? + 62).
- Rn—1

Putting these together, we have

2 2 n— n—1 2
Rn—1 n P s
2 2(n—1) n—1
+ % u, "2 (<,0) (Z ,\gzg) da!
Rn—1 P
2§TL 1)06/ n1:2 (ZI,0)¢(Z,, O)dZ,
n —
(n—1)c )
(n 2) 6 Z Rr-1 5 ul(Z Zn)" 2¢(Z Zn)] |zn=0(AiZi)
-1
+£(T;—__2))%52 /R" 1u1 72 (2,0)¢?(2,0)dz’ + o(€? + 6%).
Thus
o= ?Ez—_%/ W, 000(2, 0007,
n - 1)c 29,0
o= (n—2) < Z n1 a “1(2 Zn) "2 (2, Zn)] |, —ozidz
(n— 1)nc 2, - ,
Dy = _(11_——2)7 Rn_lu1 (#',0)¢%(¢,0)dz
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n—1
c 2111—1!
=3 Z)\?/ 1 uy "2 (z',O)zizdz'
=1

n—

+ c/ 2 ( )J"__zll
8 Rn—l a 2 UI z zn

Recall that

» (Z/\ 2 )2 dz'.

(2.3) max I(tu) = Se + Qod + Q166 + Q262 + Q3€” + o(€? + 67),

o<t<
where
Q=g (4~ (r-27m0 - 2500),
= )
% Ag — (n—2)2B, — Z:?pg
+2ao + 72?'71_(77,2— 2)bo [Ao —n(n —2)Bo — DO]2} ’
Qs = ; (A3 —(n—2)B; — 2= ?Dg)

We evaluate the Qs in terms of ¢, using the above calculations.

Qo—/ Vi Ve — n(n — 2)/ 2¢—c/n_luf%2¢=0,

and

n—1

%i)\,/l{n 1{—Vul(z 0) - Vo(2,0)22+ n(n— 2)u (z 0)¢(2',0)22

=1

—c% [ul(z’,zn)nL—z‘qs(z',zn)] Izn=ozi2} dz'

1 n—1 ) —2
=§;)‘i/Rn-1{ u1(2,0) - V'¢(2',0) + n(n — 2)u;%(2',0)é(z', 0)

el g0 |2

n
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_ _"i / n_l{—V'm(Z', 0)- V'g(/,0)

=1
n+2
+n(n —2)(1 + THui2 (¢, 0)4(<, 0)} 27,

where we have used the boundary condition satisfied by u; and V'u;(2’,0)
o o

to denote (a—zll(z’,O),~ " “

integral above, we obtain

(24)
Q= i / {(Zaﬂul(z O)) (<, O)z + V'uy(#,0) - AP (<, 0)

+n(n—-2)(1+ Tz)u = (2',0)p(2',0)z; }

(z 0)). Integrating by parts in the first

n—1 . n+42
- Zﬁ/nn_l {_(n—2)[n(1+T3) -1+ Iz'|2+T3)]ulﬁ"‘7(z',0)

nt+2
—2(n—2)(1+ |* + T2)ui ™ (<,0)

nt2
(= 2)(1+ T2ul 3 (2, o>} o(,0)2?

n—1 s nt2
=23 [ =+ P+ T (006, 00

= (n-2)26(2,0)
Z /n_1 1+ |72 + T2)"2 dz'.

=
Next
Q=3 { J w6 =ntnd) [ ftent, [ of 080
(25)  +go anf— e [2 o V1 V- 2n? . w2
_?%E /R (000, 0)] 2}
= % { / V|2 = n(n +2) / -2¢2 +nTe / - ul%z (#,0)¢*(<,0)
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" n—2
2a0 + 2n(n - 2)bo

" 2
+2T, /Rn_l uf_'z'(z’,0)¢(z',0)] }
Finally
1 (n —2)2T, (n—=D(ZP+T2) -1
=3 {_ 4 /n-l 1+ 22+ T2+ (Z e )

n(n—2)°T, [ LY,
4 ro-1 (14 |z'|2 + T2)ntl

n42
—4n uy ?¢
n
RY

+

C(?L—2)n 2/ 2n_-21 ! 23,0
- E ; " 0)z;7d
A . (#/,0)z;dz

2(n—-1) P
2
c(n—2) 02 n=1) ,
8D Jrns 522 [ul(z Zp) ] o (Z)\ z; ) dz }

n—1 2
_ (n—2)’T, / n(1+T2 —|22) S A2
8 re-1 (14|22 + T2)m+ \
2(n—1

n—1 ( )
c(n—2) § : 2/ =) 2
—_ )\i n, 2.0 zZ; dZ
4(7’L — ].) im1 Rnr— ( )

2 2 2 n—1
_(n—-2 Tc/ n(1+TF — |2 Z)‘z
8 ro-1 (14|22 + T2)"'*'1
(n—2)°T. St A
4in—1) Jpo-1 A+ 22+ T2~ 1

Writing the integrals in polar coordinates, and using the following elemen-
tary relations(the proof of which will be sketched in Appendix C)

06 oo ,,.n+2 p n—23 [ r"+2 . 4
. = >
( ) /O (1 + 7'2)"+1 r n /0 (1 + ,,-2)77, r, lorn = 4,

o0 r™ n—1 [ pnt2
2.7 dr =2 dr, f >
@7 /0 A+ 17 = ¥ (1+r2)" n forn 24,

ey [ ete=s [ dge- o[ qae=2
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where 0,_o denotes the area of the standard sphere 8”2, Q3 can be sim-
plified as

(2.9)

Qg_ﬁ’%)_T(HTZ)—(O %;7?5’;—2 )(/n_ (Z&&) )
L2 2):;"(1+T2)——(/ (1+r2)n- )(/n_ ZA?&?dé‘)

an—z((n 12)1 T. (1 +T2) (Z )\2) (/ a +,,.2)n 1 )

n—1
= —q.T.(1+TH)F* Y N,

i=1

here, g,, denotes "n—(z(nl—)g)2 ( f0°° 1 +,,2)n_1d7') In the above, we have also

used 77} \; = 0 to obtain the relation

L. (zw) & =252 | e

=1

We note that Q3 is a constant depending only on n,T¢, and Y . -t A2, In
particular, it is independent of ¢.

We would like to choose ¢ and € > 0, § > 0 small such that
(2.10) (max. I(tu) < Sg,
which would lead to Inp < Sc. It is clear from (2.3) that, in order for (2.10)
to hold, it suffices to find a ¢ such that

(2.11) Q% — 4Q2Qs3 > 0.

From the expression of Qs, it is clear that if ¢ < 0, then @3 < 0 and (2.11)
can be satisfied easily. This proves the existence of a solution of (1.1) in the
case ¢ < 0. So we are only left to deal with the case of ¢ > 0. Since @3
is independent of ¢, @ is a linear functional of ¢, and Q2 is a quadratic
functional of ¢, the verification of (2.11) in this case leads to an eigenvalue
problem on R”, which may have independent interest. We will formulate
and study this eigenvalue problem in the next section. Before we leave this
section, we summarize our results of this section as



The existence of conformal metrics with constant scalar curvature 831

Proposition 2.1. For c < 0, there exists a solution of (1.1). For ¢ >0, if

. Qa(9) )
@12 Qs e, 2 <1,

then (1.1) has a solution.

Remark 2.1. We remark that, although we required ¢ to have compact
support in evaluating the @Q;’s, there is no need to restrict ¢ to have compact
support in the extremal problem in Proposition 2.1. For, if (2.12) holds, a
density argument can easily produce a ¢ with compact support satisfying
(2.11). The precise space for ¢ is spelled out in the next section.

3. A related eigenvalue problem on spherical caps.

Because of the geometric invariance properties of the conformal Laplace op-
erator, it is more transparent to translate the expressions for )1, Q2 onto
the round sphere. This is done as follows. Let II be the stereographic pro-
jection from the unit sphere in R™*! centered at (0,---,0,7T:,0) onto the
hyperplane £,+1 = 0. More specifically, let (&1, - ,&n+1) be the coordinates
of R™*! taking (0,--- ,0,T,,0) as its origin and (21, - -, 2z,) be the coordi-
nates of R™, which is identified with the hyperplane &,+1 = 0. We take the
unit sphere to be

S*={(¢, - bnp1) ER™ G+ + 2+ 82, <1}

Then, under the transformation IT : (&1,--- ,&n41) — (21, , 2n), We have
( 221'
; = 1<i<n-—
& e e
2(zn — T,
(3.1) {& (zn — T2)

T 1A e — L
P+l T -1
T+ 22+ |z — T2

€n+1
\

Let ¥ = II"1(R%). It is a spherical cap on S™. For a function ¢(z) defined
on R}, we define a function ®(¢) on ¥ by

n—2

9 2
#(z) = ®(¢) (1 + 2|2 + |2n — Tc|2> '
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Note that the standard metric on ¥ is given by

2 2
3.2 2,
( ) dSsphere (1 T lzll2 + |zn _ Tc|2) Idzl

The conformal Laplace operators (Lg, By) enjoy the following conformal
invariance property:

um (u™ 1¢)—u ""2L9(¢)’

(3.3)
'u,'n%:?g(u l¢)=u n—2 9(¢)

Using (3.3), we can compute the mean curvature of 8% to be

N[

2 2 -
n—2\1+ |22+ |zn, — Tc|?

n—2
7} 2 2 —_T,
2p=0 T+ |22 + |2 — Tef?

o
/Iiilv¢|2=_/R’;¢A¢+./<9R1¢§_’qj

= [ @+ [ #Ban(®

= / [|Vq>|2 + Mqﬂ] _n- 2Tc 2.
) 4 2 a8

and

Using (3.1), it is elementary to conclude that the linear functional @, of ¢
given in (2.4) satisfies

n—1

a=- o0 [ s

i=1

- / £(©)3(0),

where f(¢) = — .7 ﬁ"—:;_r)z)i 22. In the following, we may abuse notation

to write Q1(®) for Q; to indicate its linear dependence on ®. Using (3.1)
again, we find, for u; as given in (1.3),

/ n-z 2 = / 2,
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nL—Z 2_1 2
oR™ o
a2 1
Rnu'l ¢=E ‘I”

= ®.
/an" = 2"/ 2 Jox

Putting these together, we find that the quadratic form Qs of ¢ given in
(?77) satisfies

Q2= ; {/ (IV3]2 — nd?) + T. q,z}

+ 27 [ao +nn_(n2—‘2)bo] { /3)3(I> n/ }

Again, we will write Qo(®, ®) for Q2 above to indicate its quadratic depen-
dence on ®. We also use Q2(®, ¥) to denote the bilinear form obtained from
symmetrization from the quadratic form Q2(®, ®), i.e

Qo(@,) = § [Qa(® +¥,8+ 1) - Qo(® — 1,5 - T)].

Let |X|, |0%| denote the volumes of ¥ and 8%, respectively, with respect to
the standard metric on S™. From the metric relation (3.2), it is elementary
to check that

2 n 2n
2:/ ( ) =2"/ ""2—2"1),
P1= Jee TF 7B+ T . 0

2 n—1 1 2(n—1) 1
082=c/ ( ) =2"" c/ u, "2 = 2" 14,.
9% ory \1+ 121> +|zn — T2 Ry

Using ¢ = —(n — 2)T, and (1.4), we easily obtain

ap + n(n —2)by = T (n|2] T.|0%)).

2"—
Define a linear operator M by

_ Tfps®-n[3®
M(@) =~ T|0%| — n[Z|

Note that M(1) = —1. Define & = & + M(®). Then M(®) = 0, and it is

routine to check that

Qu(@,8) = 3 { [ (vap-ne?)+ 1. [ a2} MBIy g
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1 / £12 £ 2 "2}
== Vo|* —nd*) + T, (0]

2 { ) (I | ) ox
= Q2(2, ?).

Because of Z;:ll A; = 0 and the coordinate symmetry, it is also easy to see
that

Q1(®) = Q1(®).
Therefore we may work on the space X = {® € H'(Z) : M(®) = 0} and
drop the"on ®. Define, for Aj,- -+, Ap—1 € R, with 377 \; =0,

inf QZ(q)a (I))
2eHI(Z),Qu(@)#0 Q(P)
— i QQ(q)a ‘I))

2eX, Qu@)#0 Q3(®) -

Q(na c, )\1) tee a)‘n—l) =
(3.4)

We first state

Proposition 3.1. Q(n,c, A1, -+, Ap—1) > 0. Furthermore, a minimizer
® € X of (3.4) exists, and ® satisfies
A > =
(3.5) ®+n 0,
0,2+T.2 =pf,
with some Lagrange multiplier p # 0. Here v denotes the unit outward
normal of 0X%.

We will provide an elementary proof of Proposition 3.1 later. For now
we remark that, if ® is as in Proposition 3.1, then ®/p € X is also a
minimizer of Q(n,c, A1+ -+, An—1). It satisfies (3.5) with f replacing pf. For
convenience, we will use this normalization p = 1 in (3.5).

The homogenous version of (3.5) is of relevance:

{A<I>+n<1> =0,

(3.6)
8,8 +T.0 =0.

Integrating both sides of the first equation of (3.6) over ¥ and using the
boundary condition in the second equation, we find that any solution of
(3.6) is in X. We observe that the kernel of the quadratic form Qs in H(X)
consists of linear combinations of constants and solutions of (3.6). This can

be easily seen by writing

02(3,T) = % { /2 [—A® — n(® + M(®))] T
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+Ag@¢+n@+A«®HW}

and noting that if ® is in the kernel of Q9, then ® + M(®) is a solution of
(3.6), thus ®, module a constant M(®), is a solution of (3.6). Conversely,
by noting that any solution of (3.6) is in X and that 1+ M(1) = 0, it is
obvious that the sum of any solution of (3.6) and any constant is in the
kernel of Q9. It will be shown below that, if we choose the center of ¥ as the
north pole and choose corresponding Euclidean coordinates ({1, - ,{nt1),
then the restrictions of {(1,---,({n} to ¥ form a basis of the space of solu-
tions of (3.6). Consequently, Ker Q2 := {® € H(Z)| Q2(®,¥) =0,V ¥ €
HY(Z)} = span{1,(1,(2,- - - ,{n}. More generally, we will consider the eigen-
value problem

)] =
57) {A¢+n 0,

0,2 +T.2 =pd.
We summarize the relevant results concerning (3.7) in

Proposition 3.2. In the case of T, < 0, the eigenvalues of (3.7) have
the distribution {po < 0 = w1 < po---}, with po = T, + %c, and
lim; ,oopti = o0. We can choose a complete set of eigenfunctions,
<I>(()1),--- ,@éko),égl),-n ,@gkl),{)gl),---, so that their restrictions to 8%
form an orthonormal basis of L?(0%). Here k; denotes the multiplicity of
the eigenvalue p;. Furthermore, ko = 1, and the eigenspace associated with
to 1s spanned by the restriction of (,+1 to X; k1 = n, and the eigenspace
associated with py is spanned by the restrictions of (1, ,(n to Z.

Remark 3.1. In the case of T, > 0, the statements in Proposition 3.2,
module obvious modifications, continue to hold. In particular, in the case
of T, = 0, a modification is that the restrictions of the eigenfunctions to 9%
span the L? orthogonal complement of constants in L?(8%). The proof is
also essentially the same as the proof of Proposition 3.2, which we will give
after we first use the set up here to simplify the condition in Proposition 2.1.
In section 4 we will also give explicit forms of eigenfunctions associated with
p2 and p3, which are needed for explicit verification of the condition in
Proposition 2.1.

For now we remark that, due to Proposition 3.2, we could choose <I>(()1)
to be a constant multiple of {,4+1. Expand f = ZiZO,ISjski f}l) ‘I’EJ). Then
f;i) = faE f‘I’Ej). Since the restriction of {,41 to &% is a constant and
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faz: f =0 due to Z;‘__fll Ai = 0 and the symmetry of 0%, so f1(0) = 0. Let
® be a solution of (3.5) with u = 1. Then, multiplying the first equation of
(3.5) by @ and integrating by parts, we obtain

Q2(2,®) = %Ql(q))'

Thus
1

Q(n,c, A1, , An1) = 201(3)"

Multiplying <I>§j ) to the first equation in (3.5) and integrating by parts, we

obtain
/ 789 = p; / 2328
% 1>
Thus
fe= > 10 asf
/"’2 SR L
.y 1570
>0, 1<j<ks M

Therefore, the condition in Proposition 2.1 is equivalent to

Fidi
(3'8) Z B > 2Q3.

pi>0,1<j<k;

We now give the proof of Proposition 3.2.

Proof of Proposition 3.2. We first derive the formulas for the eigenvalues
of (3.7). Let (r,0) be the geodesic polar coordinates on X centered at the
center of ¥, where r is the geodesic distance on ¥ from the center. We
remark that cosr = —T;/1/1+ T2 on 8X. We can write

dsZpere = dr? +sin’rdf?, e S,
Thus
Asphere‘I) = o, + (n - 1) cotr @, 4+ — 3 ADp®.
sm-r

Using the method of separation of variables, we write ®(r,0) = E(r)¥(6).
Then, from the first equation of (3.7), we obtain

E.,+(n—-1)cotr E.+nE + Eé\z—;E= 0,

Ag¥ =\,
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From the second equation above, it is standard that A = Ay, = —k(n+k—2),
for k=0,1,2,---. The second equation of (3.7) becomes

E.(r) .
E(r) |os

We make a change of variable ( = cosr and set F'({) = E(r). We remark
that, since we are considering only the case of T, < 0, the relevant range for
¢ in Proposition 3.2 is 0 < ¢ < 1. However, most of what follows holds for
—1 < ¢ < 1. Using

p="T.+

ET = — SinTFI(C),
E,.. = —cosr FI(C) + sin’ ’f'F”(C),

the equation for F transforms into

k(n+k—2)
1-¢2

¢ = %1 are the singular points of (3.9). The indicies of (3.9) at ¢ = +1

can be easily found to be a = k/2, or @ = —(n + k — 2)/2. Since we

look for F' which is regular near { = 1, the latter index is discarded. Set
F(¢) = (1= ¢?)*/2G(¢). From (3.9), we obtain

(EVe)  (1-¢HG"(0) — (2k+n)¢G'(Q) + (1 = k)(k +n)G(() = 0.

Denote a solution of (EVk) by Gi. Differentiating both sides of (EVj),
we find that G} () satisfies (EVi41). We will use this relation to find the
solutions of (EV;). (EV}) is the easiest to solve. Setting k£ =1 in (EV}), we
obtain

(39)  (1—CAF"(Q) —nCF'(¢)+nF(Q) — F(¢)=0.

(1-¢3G1(Q) - 2+n)¢Gi(¢) =0,

from which we easily obtain
10 = A1 -¢H)7F,
for some constant A. Thus
Gi(Q) = A/og(l —n?)~*Fdn + B,
for some constant B. Since we need a regular F;, weset A=0and B=1

to obtain .
Fi=(1-¢%)2.
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G is a singular solution of (EV3). However, using standard ODE theory,
we find the general solution of (EV3) to be

2)— 242 ! 2\n/2
(1-¢%) Ac(l—n) dn+ B>,
for some constants A and B. The obvious choice is to set
1
Ga(0) = (1 — )~ /< (1 = n2y"/2dy.

Thus .
Fy(Q) = (1 - ¢?)~/? / (1 — 7)™/ 2dn.
¢

Now it is obvious that we should set, for k > 2,

d*—2G.
aue) = L.

Therefore,

R0 = (1 - ¢yl d§f22(0'

We remark that the Gy defined above will not be identically zero and thus
we have obtained nontrivial solutions for (EV}) which is smooth near { =1
for any k > 2. This is because G2(() is smooth in —1 < ¢( <1 and is not a
polynomial in ¢, which can be seen either from the explicit expression of Ga
or from the following argument: if G2 were a polynomial of order I, then,
Gi4+2 is a nonzero constant which should be a solution of (EVj43). That is
impossible by direct inspection.
We will also need the following properties of Gg:

(3.10) fork>2, Gip(¢)#0, and Gi(¢)/Gk(¢) <0,

in the range —1 < ¢ < 1. We now establish these properties. Suppose the
contrary, i.e., Gx(¢o) = 0, or G,(¢0)/Gk({o) > 0 at some —1 < {p < 1. In the
first situation, we may assume that G}, ({o) > 0, and in the second situation,
we may assume that Gi({o) > 0. We note from (EV;) that G(¢) > 0
whenever G} (¢) = 0 and G(() is positive. Using this observation, it is easy
to prove that Gk(C) can not have a positive local maxima in o < ¢ < 1
and therefore G}, (¢) and Gi(¢) will be positive for (o < ¢ < 1. Since Gy, is
smooth near ¢ =1, sending ¢ to 1 in (EV}) would lead to a contradiction.
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Next we derive the formula for Gy. Since Gj, is a solution of (EV}), it is
easy to figure out the choice for Gy should be Go(¢) = ¢, which implies that

Fo(§) =¢.
At this point we introduce p, to denote the eigenvalue of (3.7) associated
with A\g. Using the fact that ¢ = —T./+/1 + T2 on 9%, we have the formula

dF; d
e =Tt QTR S

__dF(¢)/d¢
© VIHTZE(Q)

with ¢ evaluated at —T,./4/1 + T2. Therefore,

(3.11)

1
Ho = Tc + Tc',
and
IJ’]. = Tc - Tc = 0.
From (3.11), we also deduce
A
(3.12) e = (1= KT, — ——t )

VI+T2G(Q)’

with ¢ evaluated at —T,/+/1 + T2.

We next prove that pup < g for 1 < k < I. Since we have proved
that Fy, F; # 0 in the range —1 < ¢ < 1, we may assume Fj, F; > 0 for
—1 < ¢ < 1. From (3.9), we deduce easily

[EA: B ARSI
+l(n+1-2)—k(n+k-2)](1- ¢?)Ei2FF =0,

which gives, for k < [,
n !
[(F,QF, — FF)(1— c2)5] <0, for —-1<(<1,

from which we obtain F,(¢)/Fr(¢) > F](¢)/Fi(¢). With (3.11), we conclude
that pr < y.

We now observe that, since L?(0%) has a complete basis in terms of
the eigenfunctions \Iig) of the Laplace operator Agn-1, the corresponding

<I>§cl) (r,0) = Ek(r)\II,(cl) (9), when restricted to 0%, naturally form a basis of
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L?(9%)(recall that Fy(¢) # 0 for all k > 0 in the range 0 < ¢ < 1). In
particular, the corresponding eigenfunctions associated with uo are spanned
by

<I>(()1) (r,6) = cosr,

and those associated with p; are spanned by
<I>§l)(r, 0) =sinr \Ilgl)(O), l=1,---,n,

where {\Ilgl) 0), \Il§2) ), ,\Ilgn) (6)} can be taken as the coordinate func-
tions of 8”1 and forms a basis of the space of eigenfunctions of Agn-1 asso-
ciated with \; = 1 — n. We remark that @gl) (r, 0),@&2) (r,0),--- ,<I>§") (r, )
are precisely the coordinate functions (1,(2,: -+ ,{n, and ®q is {p+1, When
we rotate the Euclidean coordate &1, - - - ,&,+1 so that the (,1-axis passes
through the center of 3. We also denote by {<I>g)} a basis of eigenfunctions
associated with puj obtained as above through separation of variables, and
remark that, for notational simplicity, we do not normalize the @g) ’s to have
unit L2(8%) norm at this moment. »

To complete the proof of Proposition 3.2, we only need to show that the
eigenvalues {;} we have found above are the only eigenvalues of (3.7), and
that the eigenfunctions obtained for each uj using seperation of variables
span the eigenspace associated with py. Let ® be an eigenfunction of (3.7)
associated with some u. Multiplying the first equation of (3.7) by @g) and
integrating by parts over X, we obtain

(=) [ 280 =0
ox

Writing & =3, ak@ff) on AX. It follows that 1 = p; for some i, and a}, = 0
for any k # i and arbitrary [. Then ® -, aﬁégl) satisfies the first equation
in (3.7) and vanishes on 8% together with its normal derivative on 8%. This
implies that ® — ), a£<I>§l) = 0 in X. Proposition 3.2 is thus established.

Before we proceed further, we also deduce a recursion formula for pup,
which may be of independent interest.

Lemma 3.3.

)(1 +T)(k—1) + T

, k>2.
Tc(k_ 1) + bk

(3.13) tr+1 = (n+k
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Furthermore, when T, < 0, we have the estimates

(3.14)  —T(k—1)<pm< <—Tc - :,l,) (k—1), k>2.

Proof of Lemma 3.3. For k > 2, we divide both sides of (EV;) by G}, to
obtain

(1-¢?) Gfﬁgg — @k +n)C+ (1— k) (k+n) g;':% -

Expressing G /G, in terms of ug, and G}/Gj in terms of yx41, and also
noting ¢ = —\/—;%, 1-¢2= T+LT3’ we have

0.

—kTe — petr T. (n+k)(1—k)
+ (n+2k =%
V1+ T2 ( )\/1+TC2 V1+T2[-Te(k — 1) — pi]

from which we deduce (3.13). The first inequality of (3.14) follows from
(3.12) and (3.10). This inequality implies, in particular, that u, > 0, for
k > 2. Using this in (3.13), we obtain the second inequality of (3.14).

Before providing the proof of Proposition 3.1, we first state another
useful

Proposition 3.4. For all ® € H'(Y),
Q2(¢7 (I)) > 0.

Furthermore, Q2(®,®) = 0 iff ® is a linear combination of 1,(1,(2,"+ ,n,
and for some A > 0,Q2(®,P) > /\H@”%II(E),VQ € (Ker Q2)t, where

(Ker Q9)* is the orthogonal complement of Ker Qo in HY(Z) under H1
inner product.

Proof of Proposition 3.4. We will provide a proof using the knowledge of
the eigenvalues of (3.7). We first make the

Claim: min {Q2(<I>, )

® e Hl(Z),/ % = 1} is achieved.
0%
Assuming the Claim for the moment, and letting & be a minimizer, then

A® +n(®+M(@®) =0,
8,8+ T.(®+ M(®) = ud,
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where the Lagrange multipler p is min{Q2(®, ®)|® € H'(X), [55 ®? = 1}.
Integrating both sides of the first equation over ¥ and using the boundary
condition in the second equation, we see easily that u f @®=0 Ifdisa
non-zero constant on 0%, then p has to be zero and we are done. If ® is not
a constant, then & = & + M(®) is a nontrivial solution of

{Ai>+n<i> =0,
0,0+ T, —,u( pﬁ{faz )

If T, # 0, we multiply the first equation above by ® and integrate by parts
over % to obtain pg f o @oé = 0. Here we have used the observation that
®y is a non-zero constant on 9. Using this observation again, we conclude
that [ & =0. If T, = 0, then ® = 0 on 8%, and 8,®y is a constant on
0Y.. Multiplying the first equation above by ®¢ and integrating by parts
over X, we obtain again faz d=o. Going back to the equation satisfied
by ® and recalling that ® is nontrivial in this situation, we conclude from
Proposition 3.2 that 4 = p;, and p; > 0 because the only possible nega-
tive eigenvalue is pp when T, < 0 and non-trivial eigenfunctions associated
with po take non-zero constant values on 9%, but we have just proved that
faz & = 0. So we have proved that ming  gp2-; Q2(®,®) = p > 0. In fact,
it is equal to 0 because of the presence of9 the kernel of Q2. This provides a
proof for the first part of Proposition 3.4. The second part of Proposition 3.4
follows from our knowledge of solutions of (3.6).

Proof of the Claim. Let ®; be a minimizing sequence for min{Q2(®, ®)|® €
HY(Z), [,z ®* = 1}. It will subconverge to a minimizer, provided that
fE<I> stays bounded. Suppose, on the contrary, that fz @2 — 00. Define
®; = @;/||]| 12(x)- Then, after passing to a subsequence, ®; — &, weakly

in H'(X), and &; — &, in L2(X), where &, satisfies
Q2((§ooy &’oo) S. 0’
(3.15) ”q)oo“LZ(Z) =1,
Poo =0.

ox

This implies, from the last boundary condition above and the expression of
Q2, that ‘

2 2
012 _ .52 n z <
(3.16) A |[V@oo|* — ndZ, + ———nlzl G AED] (/2 Cboo) <0.
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In the case T, < 0, (3.16) implies that the first eigenvalue, A\1(X), of Agn
on X with the zero Dirichlet boundary condition is less than or equal to
n. On the other hand, the first eigenvalue, A1(S7%), of Ag» on the half-
sphere S with the zero Dirichlet boundary condition is equal to n, and
from the variational characterization for such eigenvalues, A\;(Z) > A((S%),
since ¥ C S%. This is a contradiction.

In the case T > 0, (3.16), together with the obvious fact

(3.17) 0 < n|X| — T|0%| < non,

implies that

2
/|V<§O°|2—n/ (ém—i éw)
sn Sn On Jsn
2
=/|vasw|2_n&>go+ﬁ(/ @m)
b On =

<0,

here we have extended ®,, to be 0 on S”\ X noting ®o,| = 0 from (3.15).

ox

However, the first eigenvalue estimate on S™ says

/SanfP—n/sn(f—ain/nf)zzO,

with equality iff f is a first degree spherical harmonic. The extended ®oo,
being equal to 0 on an open set, obviously can’t be a first degree spherical
harmonic. Thus we have reached a contradiction. The Claim thus holds in
all cases.

Remark 3.2. (3.17) actually holds without the restriction of T, > 0, so the
proof of the Claim in that paragraph works for all cases. Separate proofs

were given above to avoid a necessary (though simple) calculation to verify
(3.17).

Proof of Proposition 3.1. Observe that, from the coordinate symmetry
and the assumption Z?"l Ai =0, we find @Q1(®—-®) =0,if® - €
KerQ2. Thus, for a minimizing sequence {®;} for (3.4), we may assume that
o e (K eer)-L. We may also assume that Q1(®;) = 1 by scaling. From
Proposition 3.4, Q2(®, ) > )\||<I>||%{1(2) for any ® € (KerQs)™. It follows
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easily from this that a subsequence of {®;} weakly converges in H(X) to
a minimizer ®. It is routine to check that & satisfies the Euler-Lagrange
equation (3.5). The u in (3.5) can’t be zero, otherwise, ® is in the kernel of
Q2, which implies @Q1(®) = 0 in view of the observation above. This violates
the constraint Q;(®) = 1. The positivity of Q(n,c, A1, -, A\n—1) is obvious
now.

4. The case of ¢ > 0..

We will proceed to estimate Q(n,c, A1, -+, An—1). We first write down the
precise transformation from ¢ to (:

Ci =€ia i=11"'1n—11
Cn — _Tcgn + §n+1
VAT
€n - Tc§n+1

(ol = \/—T?cz—

Therefore, on 0%, we have

2= & __ Q+12)°¢

(1—=6nr1)? 1+ /14+T2)%
We will make use of the eigenvalues pu2 and p3. For this purpose, we first
remark that a basis for the space of eigenfunctions of Agn-1 associated
with A2 = —2n can be taken as the restrictions to 8% of {¢? — HH—LTET’ j=
1,---,n—1;¢¢;,1 <4 < j < n}. The (;¢;'s are mutually orthogonal to each
other, and are orthogonal to the ¢Z — WI%T_ET,S’ in L?(0%). However, the
G- m’s are not orthogonal to each other. Note, however, that in (3.8)
all we need to compute is the square of the L2(8X) norm of the component
@ of f in span{(f—_m_%gj,j =1-,n—-1¢¢G,1 <i<j < n}
For obvious symmetry reasons, the integrals on 9% of z,% with (;¢; is zero,
for i # j. So if we set \Ilg) =¢? - n—(ﬁfq-,-zj,j = 1,---,n, we can write
f@ = Ej.—:ll fJQ)\II;j ). A direct calculation, using (2.8), shows that

/ |\I,(J')|2 =/ ¢4 24.12 + 1
ox 2 oz |7 n(1+T2) n2(1+T2)?

- 1 94_2;0-72'_*__1_
_(1_|_Tc2)"—;';-Li g-1 |7 m o n?

1<i:<n—-1.
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. 0
(lettlng C = ﬁ)

_ 1 3o'n—l 20p-1 On—1

C+T2)% {n(n+2) e Tw }

_ 2(n - 1)op_1

C n(n+2)(1+T2)%F
which is independent of j and will be denoted as I5. A similar computation
gives, for ¢ # j,

2 2
() g0) _ 202 G t§ 1
/32\1'2 Y2 _/62 {C‘ TR+ T2 P Te)

_ 1 { On-1 20n-1 +an—1}
(1+72)%

T n2n+2)(1+T12)%F

which is also independent of i, 7, and is actually equal to "n_I-2T~ Now

n—1
FOR 25 5@ / T2 4 3 @ / RORNC)
R S8 [P0 [ 0

i
= I @) 4(2)
= | XI5P | - = | 2171
=1 i
nly [0 L [& 0 :
_ @12 _ (
-2 (Suer) - ()

The fi(2) ’s are determined by

n—1
S0 [ e = [ ref.
P o oz
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The coefficient matrix of this linear system of algebraic equations is

I __L R |

2 n—1 n—1

L7 L ... _L
n—1 2 n—1 n—1
. )
I I

a1 2 b

whose inverse is given as (it will be verified that I # 0)

2 1 ... 1
"(n—l) 1 2 ... 1
“nlp |

11 --- 2

Therefore

@_ (-1 ® = )
£ = nls {/azfql2 +J-Z:{/azqu2j }

Observe that Z""l \IJ(J ) = \Ilgn). Using Z;:ll Aj = 0 and coordinate

symmetry, we ﬁnd that
n—1
> [ -0
j=179%

Thus
Fop (n 1) / £,
and
n—1
S P =0
=1

We now obtain a simplified expression for

[ rop = 2 (Zlf‘”l?)

j=1

_n-1 %
T nly ;(/azf\IIz) '

We next carry out a similar computation using the third eigenvalue of Agn-1.

Let \If(’ ) = (- T+‘2‘><1‘1?1?7)<m 1< j <n. Then \Iff(f ) are eigenfunctions of

(4.1)
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Agn-1 corresponding to A3 = —3(n+1). Similar to the computation done for
\I!g] )’s, we denote by f(®) the component of f in span{\I!:(,,l), \I!g2), I \Ilgn_l)},
and write f(® = Z;:ll f}s)\llgj ). We first compute, for 1 < j < n,

/az[qjgj)F - /az (C’2 Tt 2)(11 n Tg))2 &

1 4 2 2 1 2
— _ i _ ; 0=do
(1 +Tc2)ﬁ2-—5' gn—1 {9-7 n+29-7 + (n+2)2} n

(letting 0=+v1+T2% )

1 30n-1 On—1
N (1+ Tg)ﬂzé { (n+4)n+2n (n+ 2)2n}
_ 2(n+1)op_1
C (n+4)(n+2)2n(1 + T2

which is independent of j and will be denoted as I3. In the above, we have
used,

202 _ Op-1
(42) /Sn_l 6;0nd6 = n(n+2)’
and |
30,—
402 19 _ n—1 .
(4.3) /Sn_1 0;6,d0 = CETCE)- for j<mn.

We will also need, for i # j < n,

4 2620246 = — "1 ____
(4.4) /S e = el

(4.2) is just a version of (2.8). The derivation of (4.3) and (4.4) is similar to
that of (2.8), and will be sketched in Appendix C. Using (4.4), for i # j < n,

() gl) _ s GG : .
/62‘113 U3 —/62 {99 (n+2)(1+T3)+(n+2)2(1+T3)2}C"

h N2 Jonr | P (n4+2) 422 "
1472

7}
letting { = ——
( 8¢ \/1+T3)
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_ 1 On—-1 20’,,.. On—-1
T+ T)E {n(n F2)n+4) nm+2? | n(n+ 2)2}
2001
n(n +2)2(n + 4)(1 + T2)"F

which is also independent of 4, j, and is actually equal to —n—{h. Now

/ If(3)|2 Zlf(3)|2/ I\I,(J)|2+zf(3)f(3)/ \I,(')\I,(J)

J=1 i#j

= (Slf,@l"’) I - (Z f(3)f(3))
j=1 i#j

2
2 (5] (57

1

The fi(3) ’s are determined by

-1
Y10 [ wPu - [ .
i oz o

The coefficient matrix of this linear system of algebraic equations is

I, L .. e
n+1 nj_l-l
_.13._ I3 _.ﬁ_ cee
n+1 n+1 n+1
. )
.__‘.[3_ cee ce __,—13_
Al | I3

whose inverse is given as (it will be verified that I3 # 0)

41 - 1
(n+1) |1 4 - 1
3(n+2)I3 : :
11 . 4

Therefore

@ _ _(n+1) M, (%)
Ji 3(n+213{ / 7% +Z/ \IIJ}

j=1
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Observe that Z;:ll \Ilgj ) = ((n_-ﬂ%ﬁ?j — (2)¢n. Using Z}‘_f Aj = 0 and
coordinate symmetry, we find that

5t e

j=1
Thus ( )
@ __\n + (i)
i BCET)IA az:f ,
and
n—1
S P =o.
=1

We now obtain a simplified expression for

NT n—1
/a NP = ——(”n++ i : (Z |f}""|2)

(4.5) =1

n—1

We now proceed to evaluate the terms in the right hand sides of (4.1) and
(4.5). We first compute, for 7 # j < n,

ziz\Il(j)
JEL

/ (1+ T2)%¢? (C?— 1 )
o8 (1+\/m“7§) 7 on(1+T2)

; 02 (02 _1_)
1+T2)"F Jsn1 (14 49n)2 n
(letting (= _9___)
V1+T2
[ A (3-1)
(1 + T2)_ 1- 02 024462 _ =1-62 (1 + Gn)2 7 n

o o do,,
(1-6)" [(1 & n)n2 21 n(n —21)] (1+6,)?

(1 + T2)— /
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_ Ons / (1—62)"T (1+nb2)dd,
n(n?—1)(1+T2)"T J- (1+6n)?
Similarly,
/ z]?\Ilgj)
0%
3 1+ T2)%¢ ( 0 1 )
- 2\5% T 1+ T2)
Jos (1+\/ﬁ_—fgn> n(1+T7)

1 02 < 0 1) 0
= — 6 —= letting ( = —
(1+T2)"F Jenrt 1+6:)2\7 m 8¢ 1+ T2

_ 1 /1 db, / 9]2- (92 B 1)
1+T2) 7 Jo1 V1= 02 Jozsopez_m10g 14 6)2 \7

3an 2 On—2 den
— | (1- 92 1-— -
(1+T2)—/ [( On)r = n(n—l)] (1+6n)?
On—2 / Ea (2n—-1- 3n02)d0
n(n2 -1+ T2) (14 6,)2
With these computations, we have
/ (Z,\ z ) o)
=1
=3\ / 209 4\ / 209
Py ox
- [T On—2 / (1-62)"7 (1+n62)db,
Z ) nm2 -1 1+ 1) <1 + 9n>2
On—2 - 62) = (2n — 1 — 3n62)d6,
A / a
Tnn?—1)(1+T2)*F (1+6n)

_ 20’n 2)\ / 1—-92 do
(n2—1)(1+T2)"T (1+9n)2 "
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where we used Y77 \; = 0 in the third line above. Thus

2
n— 1 2 2
/ P21 = 2’“"2 {( 2 1) (1 +T2) / (1 +0n)2 0"

sy
20n-1

n—1 2 2
_ 2| nn—2)°*(n+2)o,_, 2\ — 252
. (,; Aj) T 170+ Doy 1)

n+l 2
L(1-62)7
/ M————dﬁn .
1 (146,)?
To simplify this expression, we first observe
ntl
1 (1 _ 92) 2 1 3 nt1
T df, = 1+60,) 2 (1-6,) 7 df
| o= [0 o0 a0
1
on / £ (1—t)"°dt  (letting 1 — 6, = 2¢)

np[(N+3 n—1
"‘2B<272>7

where B(p,q) = [ *~1(1 — ¢)9~1dt is the Beta function. Observe also that
Opn—-1= Un—2/ (1 - 02)
-1
-2 1 n=3 n=3
= gp_o2" tz (1—t)z dt
0

_ n—1n-1
=2" 20'n_QB (—-2—, ) )

Using these relations, we obtain

/ SO = ( ) n(n — 22(n +2)02_y (1 +T2) 7"

2ntl(n — 1)2(n + 1)22720,_»B(%51, 25t

npf(n+3 n—1
(o (2}
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Using B (%3, 271) = 2L B (251, 251), we find

n+3 n-—1 n—1n-1 _(n+1)2 n—1n-1
{B('z’z)}/3(2’2>‘ 2 \2 72 )

Putting these together, we have
INCE zv 22%n(n = 2)n + 12(n + o2 (1+72) "
>

22"+3n2(n— 1)2(n+ 1)2
n—1n-1
5(5425)

= (n—-2)2n+2)(1 +T2)—— n—-1n-1
N (Z ’\?) Pn(n—1)? on2B ( 2 2 )

j=1
_ _n=5
) "'Zl)\z (=2’ +2) (14T~ 7 .
= J 2n+1n(n — 1)2 n—

To evaluate the right hand side of (4.5), we first compute, for i # j < n,

/ 209 = / L+ T2)%¢ (cz ! ) ¢n
on - 0 Jax U+ 1+ T2)? (n+2)(1+T2)
0'2(9? n+2)0”
= * d letting 8 = /1 + T2
'/Sn_l A+ T2"2(1 1 0,72 0 (e ing + CC)
1 1 8, db,

T AT 2 )y T 62(1+ 6n)

1
62 02.——> dy---db,_
_/()g+...+og_1=1—9$, ' (’ nt2) 1 -l

B 1 1 (1-62)*76, df,
S A+TH2 )y (1460)?

1
_ g 262 _ 2
{(1 on)Ln_2€z£] n+2Ln_2£z}
(letting 0, =/1—-02¢,1<i<n-— 1)

— / (1 —ogz)n—;—lon dby, (1 62 ) Un— 1 op2 }
T A+T 2 ), (1+6,)2 T n+2n-1

_ ons /1 (1—62)*570, dbd, 1 e }
T A+T? (1+6,)2 n2-1)(n+2) n2-1J"
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while

250 _ A+ T2)°¢ (2_ 1 )
/6221‘1’3 _/az: (+ Vit T2 \&  mr2is1d) %

62(62 — n+2)9 b letting 6 = /T T2
/sn 1 (1 +T2)n/2(1 +6, )2 (ettlng = + cg)
_ 1 ! 0, db,,
AT ) T 031+ 6,02

/ 62 ( 62 — L doy---dbn_;
63 +--+62_,=1-62 n+2
1 /1 (1-62)"576, df,
A+ T2 (1 +0 )2

- 2

{a-e [ a-— [ &)
(lettmg 0;=+1-02¢,1<i<n-— 1)
1 / (1—62)*30, df, 1_g2)3m2 _ 1 ono
(1+T2)"/2 1 (1+0n)2 "n2—-1 n+2n-1

_ Op_2 / (1- 02) 0 dé, 2n+5 B 362
1+ T2 (1+6,)? (n2—-1)(n+2) n2-1J"

Putting these together, we have

n—1
52 (5)
o (£2)
Tns (1-62)"7°0, df,
(Z i ) (1 + Tz)n/z / (1 + gn)Q

{(nz—l)(n+2) n9§1}

4\, Tn=2 /(1—92) T 0, df, 2n+5 _ 362
TA+ T2)n/2 (1+9n)2 (n2-1)(n+2) n2-1

3 2N O / (1—62)"39, do
(n? —1)(1+T2)% (1 + Hn)2
2n+1)\,0.n 2

p— —L —_ _ —
== / 21— )" (1 — 26)dt
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(letting 1 — 6,, = 2t)
n+1y . —_ —
2\ on n{B<n+3,n 1)_2B(n+5,n 1)}
(n?-1)A+T2)2 2 2 2 2
_ 2n+1>‘jan~2
(n?2—1)(1+7T2)2
n+1 n—1n-1 n+3 n—1n-1
{4nB<2’2)—4nB<2’2>}
_ 2"\jon—2 B(n—l n—l)
(n—n(n+1)(1+T2)% 2 72
_ 4Aj0'n—1
(n—Dn(n+1)(1+T2)%
So

n—1

(n+1)(n—2)
2n+2(n +2)

4/\j0'n—1

; ((n —Dn(n+1)(1+ Tcz)%

(n+4)(n + 2)%n(1 + T2)*%"
2(71 + l)an—l

:

[ 1rop=
o

Jj=1

'G5

2

(n+4)(n+2)(n —2)%0,1
9n—1(n — 1)2n(n + 1)2(1 + T2)"T"

We also write Q3 in a similar form. First,

T.n

(1+r2

/oo
0

Thus

n—1
Qs = —T.(1+T2)%" (Z A?)
i=1

/2
= dr = / sin™ 0 cos™ 4 6d6
0

1 ! n—1 n=5 . .9
3 tz (1—t)z dt (letting ¢ = sin® 6)

0

1 n+1 n—3
§B< 2 2)

n—1n-1
B( Y )

n—1

2(n—3)

arn_g(n - 2)2
16(n — 1)(n — 3)

n—1n-1
3(2’2)
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2= a"n,-- n- 2 2
=-T.(1+ T2) (Z )‘2) 2n+2(n1£ 1)(n)— 3)

-1
A sufficient condition for (3.8) to hold is

Jos 1P | Jonl/OP
H2 U3

(4.6) > 2Qs3.

Observe now

faE If( )|2 (7{21 )‘2) (n—2)*(n+2)on_1

7] ontin(n — 121+ T2)"T py

j=1

and

Jos IO _ nz_:l 32 (n+4)(n+2)(n—2)%0n—1
13 ) -ln— 1)2n(n +1)2(1 + T2) " s
Thus (4.6) is equivalent to

n+2 4(n+2)(n+4) ~T.
n(n—Dpz  (n=1n(n+1)%u3 = (n—3)(1+T12)

(4.7)

We can now verify (4.7) to conclude the proof of Theorem 1.1 with the
following two estimates on ps and p3:

1+7T2
(4.8) p2 < T
1+ T2
4.9 3 <2——=
(4.9) Iz T

which are just (3.14) for k& = 2,3.

Conclusion of Theorem 1.1. Using (4.8), (4.9), and the observation that

3(n+1)2
>
1>(n—3)(n+2)(n+4)’ when n > 5,
we have
n+ 2 4(n+2)(n+4)

n(n—1p2  (n—1)n(n+1)2u;3
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nt2 [T 4n+2)(n+d) 3(n +1)2 |Te|
nn—1)14T2 (n—n(n+1)22(n—-3)(n+2)(n+4)1+ T2

v

n+ 2 6 | 7|
{n(n—l) + (n—l)n(n—3)} 1+T2
1|7y
“n-31+T2

\%

Thus the condition in Proposition 2.1 has been verified to hold and Theo-
rem 1.1 is proved.

Remark 4.1. We remark that in the verification of (3.8), p2 alone will not
be enough.

Appendix A.

Suppose Aj(M) > 0. Let us use < u,v >= [;; (VuVov + c(n)Rguv) +
222 [, hguv to denote the inner product of H}(M), and ||ul| = /< u,u >
to denote the norm. We consider the following functional defined on H'(M):

p— — 2 "
Iw) =3 / (IVuf + c(m)Ryu?) + 22 [ hgu? - il / ()
2Jm 4 Jom 2 Ju
_(n=2)c
2(n—1) Jom
It is easy to see that I € C2(H'(M),R) and that u satisfies (1.1) if and
only if I'(w) = 0,u € H(M) \ {0}.
Let

2(n—-1)
(ut) 2.

n—2

E(Z,, zn) — 1 _ -2_,
L+ 212 + |z — 72

where t = —c/(n — 2). It is well known that T satisfies

—AT = n(n — 2)Th3, R",
5—321_:' = —cﬂn—’:i, aRff_.
We define
—9)2 n — n—
R L LY Y
2 Jrz 2 R 2(n—1) Jory
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_1 (2
S—Q/F;nivm

and

It is not difficult to see that

(A.1) S=

Lemma A.l. Forallce R,

S-S, =

1 / 12
—— [ |var+
2(n—1) R’ll |

857

_(.".}_%ﬁ / un2:2

1 [ va

n

(n—2)

2n
2n=1) Rﬁun 2> 0.

Proof. Multiplying the equation of = by % and integrating by parts respec-

tively on R?} and R”,

we have

(A.2) ./ Wm2=mn—m/'a%%+{/ =
R? R? oR™
and ”n
(n—1) 2n
/ |Vﬂ|2+c/ u 2 =n(n-—2) un-2,
n OR™ R™
It follows from (A.2) that
1 (n—2)? 2n_
Sp=— va? + =
2D Sy 2 Jey
It follows from (A.1) and (A.2) that
1 _ n—2 (n —2)? 2n_
s-&;:- 2, _— 2 al? - T
T2 4+ —r 2 e (n— 2)2 =2
= A= 1)/IVI 1)/IVI 2m—1) Juy
1 9 m—m2/ _2n (n—2) _2n_
=D Jae VT oy e 2n—1 Juy
_ 1 —2 (n - 2)2 _.QT‘"'
=D Jan VO T omoD)

Lemma A.1 is established.
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Lemma A.2. Suppose \j(M) > 0. Let {u;} C H(M) be a sequence of
fuctions satisfying,
I(u;)) = b< S,
and
I ()]

max — 0.
veHI(M\{0} |||

Then after passing to a subsequence, either {u;} weakly converges in H*(M)
to some solution of (1.1) or converges strongly to 0 in H'(M).

Proof. Take v = u; in (1.6), we have
2n_ 2(n-1

(A3l -nn=2) [ @)% - [ @) = o).

M aM
Multiplying (1.5) by —2(n —1)/(n — 2) and adding it to the above, we have

Jusl?+ (2= 27 [ ()P = 2(n~ D+ o() + (sl
M

It follows immediately that
(A4) hifl < C.
Using the above and (1.6) with v = u ", we have
(A.5) llug |1 = o(1).
It follows from (A.4) that after passing to some subsequence,
(A.6) u; = u weakly in H'(M),

for some u € H'(M). In view of (A.5), u > 0 a.e. on M. It follows from
standard arguments that I’(u) = 0, namely,

n

—Lgu=n(n— 2)u:_ﬂ, on M,
Byu = cu=-2, on OM.

If u is not identically zero, then it follows from the Hopf lemma in its strong
form (see e.g. lemma 3.4 of [GT]) that v > 0 and therefore a solution of
(1.1). So we assume in the following that « = 0 and will use (1.5) to show
by contradiction argument that

(A7) lim [|wl| = 0.
1—00
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Suppose the contrary of (A.7), we have, along a subsequence, that
(A.8) lim |lu;]| > 0,
1—00

and therefore, in view of (A.3), (A.4) and (A.5),

2n_ 2(n—1
lim {/ ul"? +/ u; " }> 0.
7—00 M aM

As in [L], we define for u; the following concentration function:

Qu;(r) = maﬁ{/ fuzlnz_fz +/ |'u‘i|2'::_21 }
reEM B (z)NM B (z)NnOM

Let € > 0 be some small number to be determined later, and we define r; by
(A.9) Qu;(r) =€
We first show that

(A.10) lim r; = 0.

1—00

Suppose the contrary of (A.10), we have r; > 7 > 0 along a subsequence.
Let Z; € M be a point satisfying

2(n—1

(A.11) Qu; (T3) =/ IuiI:_f_?—i-/ lu;| "2 =,
B"i (z:)NM B, (Z;)NOM

7

and T; — T.

Let n € C*°(M) be some cutoff function with diam(suppn) <7/2 < r;/2
and take v = n?(u; — u;) in (1.6), we have, by using (A.5), (A.6) and the
Sobolev embedding theorems, that

o(1) = [I'(ws) — I'(uy)][n*(wi — u;)]
=/ V(ui — )V (0 (ui — ;)
M

nt2 nt2
~n(n=2) [ [l = s 2] s - )
M

—o [ [l = ] P = )+ o(0).

(A.12)
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Here and in the following o(1) denotes some quantity which tends to zero as
¢ and j tend to infinity. It follows, by using the mean value theorem, (A.9),
(A.6) and diam(supp 1) < T7/2 < 13/2, that

(A.13)
J vt —u)P<C [ (14 b7 s - )

40 [ (1l 4 17 s = )" + o)

n—2

2 2n_| "
<cet{ [ ntus— )P
M
n—2
_1 2(n—-1 n—1
roe { [ - w5 o)
oM
1
<Cemt [V (nfus = ws)) P +o(2).
M
Consequently, if we fix € > 0 at the beginning to satisfy Cen+1 < 1/2, then
tim [ 9w - ) =0.
i,j—00 J pr
It is easy to see from (A.6) with = 0 and the above that u; — 0 in H}(M)
which contradicts to (A.8). This establishes (A.10).

Let y!,---,y™ denote the geodesic normal coordinates given by some
exponential map ezpz;, and define u;i(z) = rgn_z)/ 2ui(r,-z), for z € M; =
{z € R™ : expz,(riz) € M,|z| < do/r;}, where &p is half of the injectivity
radius. Let § denote the metric §opdz*dz? with Jog(2) = gap(riz). It is
easy to see, after passing to some subsequence, that there exists R; — oo,
R; < 60/(10r;) such that

- . 2n
(A.14) lim {/ _ (|V§u71|2+ I’I-ti|n—2)
1—00 {R:<|2|<2R;}nNM;

2(n—1
+/ _ |’l],| n—2 =0’
{R:<|z|<2R;}N&' M;

where & M; = {z € R* : |z| < do/ri, expz;(riz) € OM}. Define some
smooth cutoff function 7; by

~‘(z) _ 1 |z| < R;,
TE=Y 0 2| > 2R;,
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satisfying
(A15) 0<iiz) <1, Vi) < O/ R
Set

~51) ﬁiﬂiy 7152) = Uu; — ﬁ'fl)

We also define on M

u ez, ) =7 T 0 (y/ri) = i y/ro)us(eapz v),

and

u§2) =u; — ugl).

It is not difficult to see from (A.14) and (A.15) that
(A16)  I(u)=1I (ugl)) +1 (u§2’) +o(1),

() =1 (u®) + 7 (uf?) +o(1) in H~}(M),
and
(A.17) both ugl) and ul@) weakly converge to 0 in H(M).
Writing

0= tim1(w?), 8= Jimr ()

It follows from (A.16) that
b=b1 + 532,

We will first show that 8@ > 0 and then show that 1) > S, to reach a
contradiction.
Using (A.14), (A.15) and (1.6) with v = ugl),u@) respectively, we have

o(l) = I’(ui)usl) =TI (ugl)) ugl) + o(1)

2 2n_
=/ IVugl) —n(n— 2)/ lugl) n —c/
M M oM

o) = I'(wiul® = I' (uf) uf? + o(1)

2 . o

(A.18) = / Vel = n(n-2) / ul|™?
M M

- c/ lu@) =l
om! "

2(n—1
(1)| " n=2 -l—o(]_),

" +o(1),
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Using (A.17) and (A.18), we have

(@ — 1/ |Vu(2) 2 (n—2)2/ Nol=
2/l 2 Iul?
_ 2(n—1)
_(n=2)c @7 o)
2(n—1) Jom !
_(l__n=2 @ |
- <2 2(n — 1)> /M|v“i
n(n—2° (n—2)° / =
(Gt - ) T e
> o(1).
Therefore
b® > 0.
Let @(1) be the weak limit of &") in H}. . It folows from (A.5) that @1 > 0.
(2—n)/2

For any test function ¢ € C°(R™), set p(y) =T @(y/ri). It is clear

that

o(1) = I'(wi)p = I'(u)p + o() e
- M. A (1)
(A.19) = /1\71, (Vgui V3¢ + c(n) R, <p) + 3 /an,- hgt; ' @
n+t2 _n_
—nn=2) [ (@) T g—e [ (50)7 6+ el
Mi 8IMi
Let T == lim;_,oo dist(Z;, OM)/r;. When T = oo, we have from (A.19) that

nt+2
VaOVg — n(n —2) / (aﬂ)) "2 5,
Rn

Rn
namely,
nt2
—AGW =n(n—2) (aﬂ)) "~ R
When 0 < T < oo, we have from (A.19) that
nt2 n_
VaVE —n(n —2) (a<1)> "Po—c / (aﬂ)) "o =0,
R" R oR™ 1.
namely,

—AiM) =n(n—2) (a(l))%g

9 e (a)™, on =T,
n
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We see easily from (A.9) and (A.14) that

on
Qo=swpd [ 0T [
zeM; |/ Bi(z)NM; Bi1(2)Nd' M;

Arguing as in (A.12) and (A.13), we know that {u( )} strongly converges to
4™ in H' norm on any conpact sets. We aslo know from (A.11) and (A.14)
2
2

that
BT+ o
B1(0)NI; B1(0)nd’ M;

It follows that %)) is not identically zero. We can then apply the Liouville
type theorems of Caffarelli-Gidas-Spruck [CGS] in R™ and Li-Zhu [LZ] in
R to obtain the explicit forms of ﬂgl) as follows.

When T = oo, we have, for some € > 0, Z € R",

2(n—1)
e } <e+o(1).

n—1
n—2

=e+o(1).

. n=2
Oy = (—€¢ ) °* n
v (2) <g2+|2—5|2) on R".

When 0 < T < oo, we have, for some € > 0, Z = —cé/(n — 2),

n—2

S,y — € ? n
6 - (rrp—zrrmar) o e
It follows from (A.5) and (A.17) that (u{”)~ — 0 in H'(M). It follows that

T At s AU

B é?n_—zi(): oM (ufl)) il +o(D),

and

o(1) = I'(w)u” = I'(w{M)u + o(1)
2(n—1)

= /M ’Vui (ufl))%i _C/BM (ugl)) "TP o).

Combining the above two estimates, we have

1 n—2
m_(z2__"*—=2 Vu!
b (2 2(n——1)> /M| %
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(565 ) L )T e

Sending i to oo, we have

S
—_— \Y%

a<l>|2+M (€)™ itT=c0,

1 )2 (n—2)? )\ .

) @) 0<
tQ(n—l) - v |+2(n—1) R,:T(“ ) 0T <oo
BE if T = oo,

\Sc f0<T < o0.

In any case, we have shown that b > b(1) > S, which contradicts to the
hypothesis.

Appendix B.

In this Appendix, we provide the algebra which leads to the expansion (2.1).
In the following, Aa = a — ag, Ab=0b— by, - -, etc.

2T
= 2(71_) {(ao + Aa)(1 + At)2 + (n—2)2(bo + Ab)(1 + At)%-’%}
5 (nl_ 5 {(ao + Aa) (14248 + (A8)?)
+(n 2)2(bo + Ab) (1 42 o At+ (’(7’(" +2)23 0(1))(At)2> }
= 2(7-1—) {ao+ (n— 2)%bo + Aa + (2a0 + 2n(n — 2)bo) At

+ (n—2)2Ab + 2Aa At + 2n(n — 2)Ab At
+ao + n(n + 2)bo](At)? + o((At)*) }

=S, + %—1——15 {5 [Ao + (2a0 + 2n(n — 2)bo)To + (n — 2)*Bo] +

+ €8 [A1 + (n — 2)2By + (2a0 + 2n(n — 2)bo) T1] +

+ 6% [A2 + (n — 2)°Bs + (200 + 2n(n — 2)bo) T + 2A0To+
+2n(n — 2)BoTp + (a0 + n(n + 2)bo) T3] +

+€? [A3 + (2a0 + 2n(n — 2)bo) T3 + (n — 2)?Bs]} + o(e% + 62).
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Observe that, using (1.4), we obtain 2ao+2n(n—2)by = (n—2)[4nbo+ =25 dy).
Using this and the expression for Ty, we simplify the coefficient of § by

Ag + (2a9 + 2n(n — 2)bo)To + (n — 2)?By

=(n-1) (Ao—(n 2)230—" 2D0>

Similarly we simplify the coefficients of €5 and €2 by
A+ (2a0 =+ 2n(n — 2)b0)T1 + (n - 2)231

=(n-1) (Al_(n_2)2Bl_Z:fDl)7

Az + (2a0 + 2n(n — 2)b0)T3 +(n— 2)233

—(n—1) (Ag—(n-2)2Bg—Z:fD3).

Finally the coefficient of §2 is simplified as
Az + (2a0 + 2n(n — 2)bo)Ta + (n — 2)2B2
+ 2Ty [AO + n(n — 2)30] + (ao + n(n + 2)b0)T02

=(n-1) (Az—(n—2)2Bg—Z:

sz) + To (2A0 - 2n(n — 2)B0 - 2D0)

2
2 -
+T; (4nb0 + — 2d0> (n=3)

=(n-1) {A2 —(n—2)%By — [0 — n(n — 2)30 _ DO]Q}

n—2
n—1 4nbg -I- do
n—2

=(n—1){A2—(n—2)2Bg—n:

102

n—2 ,
+2ao + 2n(n — 2)bg [Ao — n(n — 2)Bo — D] } )

Appendix C.

In this Appendix, we sketch the elementary derivations for (2.6)-(2.8), (4.3)-
(4.4). First, (2.6) and (2.7) follow from direct integration by parts, and the
last of (2.8) follows trivially from

1 Op—
/n—20%= (0 +“.+02—1)=n—i.

n—1 Sn—2
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Next, a change of variables shows that

/ 9292=/ (91+92>2 (91—92)2
sz 2 Jen2 \ V2 V2
1 2
- Z ‘/Sn—2 (9% - 0%)

1 1
- 94 _ - 9202
2 Sn—2 1 2 Ln—2 172

from which we obtain
(C.1) / 01 =3 / 6262
Sn—2 Sn—2

On the other hand,

Op—9 = / (9% + o 9%_1)2

Sn—2
—(n-1) [ o+-Dm-2 [ 6
Sn—2 sn—2

which, combining with (C.1), gives (2.8). Similarly, using

foo = Lo ()
Sn-ll Sn—1 \/§ ’

we obtain the relation

Together with

1
/Sn_ﬁi“’%=n_l/sn_ﬁ‘f<9%+~'+"i>

== [ _eta-e)
Sn—l

n—1

1 1
= 94 _ 96
n-an—l 1 n-an—l b

1
| oos=— [ o3 (s+-+03)

n—2 gn—1

we obtain (4.3). Finally,
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1
=773 Jons 6165 (1— 67 — 63)
1
=722 Jons (6363 — 26163)
_ On—1
n(n+2)(n+4)’

using (2.8) and (4.3).
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