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1. Introduction. 

Let (M,g) be an n dimensional compact, smooth, Riemannian manifold 
without boundary. For n = 2, the Uniformization Theorem of Poincare says 
that there exist metrics on M which are pointwise conformal to g and have 
constant Gauss curvature. For n > 3, the well known Yamabe conjecture 
states that there exist metrics on M which are pointwise conformal to g and 
have constant scalar curvature. The Yamabe conjecture has been proved 
through the work of Yamabe [Y], Trudinger [T], Aubin [A], and Schoen 
[SI]. See Lee and Parker [LP] for a survey. See also Bahri and Brezis [BB], 
Bahri [B], and Schoen [S2-3] for works on the problem and related ones. 

Analogues of the Yamabe problem for compact Riemannian manifolds 
with boundary have been studied by Cherrier, Escobar, and others. In 
particular, Escobar proved in [E2] that a large class of compact Riemannian 
manifolds with boundary are conformally equivalent to one with constant 
scalar curvature and zero mean curvature on the boundary. See also [E3]- 
[E5] for related results. 

From now on in the paper, (M, g) denotes some smooth compact n di- 
mensional Riemannian manifold with boundary, unless we specify otherwise. 
We use M0 to denote the interior of M, and dM the boundary of M. We use 

n — 2 d    n — 2 
La to denote An—c(n)Ra, where c(n) is — —, BQ to denote ——I—-—hQ, y y * 4(n -1)     y du       2      y 

where u is the outward unit normal on dM with respect to 5, and hg to de- 
note the mean curvature of dM with respect to the inner normal (balls in 
Rn have positive mean curvatures). 

Martially supported by NSF grant DMS-9704488, a Rutgers University Research 
Council Grant and a Rutgers University Minority Faculty Development Grant. 

2Partially supported by the Alfred P. Sloan Foundation Research Fellowship and 
NSF grant DMS-9706887. 

809 



810 Zheng-Chao Han and YanYan Li 

Let u > 0 be some positive function on M, and consider the metric 
g = u4/(n~~2)g. The scalar curvature Rg can be calculated as 

„ 4(71 - 1)     _n±2 

and the mean curvature hg can be calculated as 

2 n 
/lo =  -tfc   n-2B0u. 9     n-2 9 

Thus the boundary value problem 

\ BgU '     "        cW(n-2), ondM, 

for some constants ^ and c, is equivalent to saying that (M, p) has constant 
scalar curvature in M0 and constant mean curvature on dM. We remark 
that R can be taken to be 0, or ±1 after scaling. 

Consider the following eigenvalue problem on (M, g): 

{— Lgip = Ay?,        in M0, 

Bgip = 0, on dM. 

Let Ai(M) denote the first eigenvalue. It is well know that 

XiiM)=    mto    ^(Iv.lHcMW^/^ 
■ <p€HHM)\{0} JMip2 

We say that a manifold M is of positive (negative, zero) type if Ai(M) > 0 
(< 0, = 0). This notion is conformally invariant. The R will be scaled to 1, 
—1, or 0, according to whether M is of positive, negative, or zero type. We 
will use Mc to denote the set of solutions of (1.1) in C2(M). 

Consider 
„,* _ /M(iv^i2 + CH^2) 

(/MM-
2
) 

n 

for y? 6 iJ1(M)\{0}. It is clear that, up to some harmless positive constant, 
<p G Mo for any positive critical point of the functional Q. 

The Sobolev quotient of (M, g) is given by 

Q(M,g) = mf{Q(<p)\<peH1(M)\{0}}. 
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It is clear that Q(M,g) is positive if the first eigenvalue of —Lg is positive, 
is negative if the first eigenvalue of — Lg is negative, and is zero if the first 
eigenvalue of — Lg is zero. 

Cherrier proved in [C] that, similar to the Yamabe problem, Q(M,g) is 
achieved if 

(1-2) Q(M,g)<Q(Sl,g0), 

where (S™, go) denotes the standard half sphere. In the same paper he also 
showed the regularity of solutions to such problems. For a large class of 
manifolds, Escobar established (1.2) in [E2], thus showed Mo ^ <f>. In [E3], 
Escobar obtained existence of solutions of (1.1) for the case of JR = 0 and 
c an arbitrary constant. More recently, Escobar showed in [E4] that, under 
the same hypotheses as in [E2], there exist c+ > 0 and c~ < 0 such that 
Mc+ 7^ </> and Mc- ^ <f). Naturally one wonders whether JMC ^ (/> for all 
c e Rn. We proposed in [HL1] two conjectures concerning this. Before 
stating the conjectures and the main result there, we first give the following 
natural subcritical approximation of (1.1), introduced in [HL1], 

{- LgU = n(n - 2)up,        u>0, in M0, 

Bgu = cu^l\ on dM, 

here c € R and 1 < p < (n + 2)/(n —2). Let Mp^ denote the set of solutions 
of (*)p,c in C2(M). Here, we have set R = 1 to restrict ourselves to the case 
for manifolds of positive type. As is well known, the existence problems are 
more difficult for this case. 

Conjecture 1. Let {M^g) be a smooth compact n dimensional Riemannian 
manifold with boundary of positive type. Then for all c G R, Mc ^ (/>- 

Conjecture 2. Let (M, g) be a smooth compact n dimensional Riemannian 
manifold with boundary of positive type which is not conformally equivalent 
to the standard half sphere. Then for all c > 0; there exist positive constants 
#0 = ^o(M,flf,c) and C = C(M,g,c) > 0 such that 

1/C < u(x) < C,        V x e M; |Mlc2(M) < C 

for all ue( U(Tl+2)/(n-2)-(5o<p<(n+2)/(n-2) U|c|<c^p,c) • 

We have established in [HL1] both Conjecture 1 and Conjecture 2 when 
(M,g) is a smooth compact n (n > 3) dimensional locally conformally 
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flat Riemannian manifold of positive type with umbilic boundary, and have 
shown in [HL1] that Conjecture 1 can be deduced from Conjecture 2. We re- 
call that M has umbilic boundary if every boundary point is umbilic, i.e., the 
second fundamental form at the point is a constant multiple of the metric. 
In this paper, we establish Comjecture 1 when (M, g) is a smooth compact 
n (n > 5) dimensional Riemannian manifold of positve type with at least 
one non-umbilic point on dM. More precisely, we have 

Theorem 1.1. For n > 5; let (M,g) be a smooth compact n dimensional 
Riemannian manifold of positve type with at least one non-umbilic point on 
dM. ThenMc^fiforallceTL. 

Remark 1.1. Further existence results will be given in a forthcoming paper 
[HL3]. 

In the remaining of this section, we describe our approach to the proof 
of Theorem 1.1 and the issues involved. 

We establish Theorem 1.1 by variational methods. It is easy to verify 
that a nontrivial critical point of the functional 

09 u 

^        JM An"- i)     JdM 

is a solution of (1.1). It is known that / G C^Jff^Af^R). 
We find a nontrivial critical point of I(u) using the following Mountain 

Pass Lemma of Amborsetti and Rabinowitz [AR]. 

Mountain Pass Lemma (MPL). Let X be a Banach space and I e 
C1(X, R). Suppose that 1(0) = 0 and that there exists 0 7^ UQ G X such that 
I(uo) < 0. Let F denote the set of continuous paths in X connecting 0 and 
UQ and define Imp = inf7GrsupwG7/(u). Suppose that Imp > 0 and that I 
satisfies the (PS) condition at level Imp- Then Imp is a critical value of I. 

The nonlinearities in our functional / are of critical growth. It is known 
that, in general, the (PS) condition is not satisfied in the presence of such 
nonlinearities. However, it will be verified in Appendix A (see Lemma 1.2 
below) that / satisfies the (PS) condition below certain threshold level 5C. 
Recovery of compactness of (PS) sequences below certain threshold level 
was used by Brezis and Nirenberg in [BN], and has since been used in many 
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contexts. Our contribution lies in reducing the verification of /mp5s staying 
below the threshold to an extremal problem on spherical caps with the 
standard metric. See the end of this section and the beginning of section 3 
for details. 

Let us first introduce some quantities and define Sc. Let 

(1-3) Ul{z) = (i + M*+V-re|*) ' ' 
where Tc = —^2- Then ui solves 

' -Am = n(n - 2)t4n+2)/(ri-2),    in R», 

9^ n/(n-2) n __ = -cu1
/v     \ onzn = 0. 

dzn 

We also define 

=        |Vt/i|2;    bo=        u?-2;    and do = c I 

If we multiply the equation of ui by ui and integrate by parts, we obtain 
the relation 

(1.4) ao = n(n - 2) &o + do- 

Now we set 
ap (n-2)2bo 

c     2(n - 1)       2(n - 1) ' 

This is the threshold level mentioned earlier. 
As stated earlier, / satisfies (PS) at levels below Sc. For simplicity, we do 

not prove this here, instead we establish the following weaker result which 
is, as well known, enough in establishing the existence result via (MPL). 

Lemma 1.2. Suppose Ai(M) > 0.   Let {ui} C JH"1(M) be a sequence of 
functions satisfying, 

(1.5) /(ui) -> b < Sei 

and 

(1.6) max ,,  .,     -♦ 0. 
veHHM)\{0}     \\v\\ 

Then after passing to a subsequence, either {ui} weakly converges in Hl(M) 
to some solution of (1.1) or converges strongly to 0 in H 1(M). 
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The proof will be deferred to Appendix A. Since we are assuming 
Ai(M) > 0, it is easy to see that for some VQ > 0 and eo > 0, we have 
I(u) > eojVu with \\u\\ = VQ. For any nonzero u in JH'1(M), due to the 
exlicit form of I, I(tu) < 0 for large t. Therefore, for any nonzero u, we can 
take UQ = tu for sufficiently large t and define Imp as in the statement of 
MPL. All we are left to prove is that 

(1.7) max I(tu) < Sc v      / 0<t<oo 

for appropriate choice of u. 
In the cases to be treated in this paper, i.e., when dM is assumed to 

have a non-umbilic point, we are going to choose a localized test function 
to achieve (1.7) as follows. In local coordinates near a non-umbilic point of 
9M, we choose u in the form of 

(1.8) u(x) = e'^^x) {ui{x/e) + ^(z/e)], 

for some appropriate choice of </>, where e and 5 are small parameters, if) is 
a cut-off function to be specified later. For any u given in (1.8), if we take 
^ to be smooth with compact support, then we will show that, for e, 5 > 0 
small, we have 

(1.9) max I(tu) = Sc + Qie5 + Qid2 + Qse2 + o(e2 + 52), 
0<t<oo 

where Qi is a linear functional in cf) given in (2.4), Q2 is a quadratic func- 
tional in (j) given in (??), and Qs is a number expressed in terms of n,c, 
and geometric data of dM at the point, as given in (2.9). We remark that 
Q2 ^ 0, for any choice of (/>, as will be shown in section 3. It is clear from 
(1.9) that a sufficient condition to achieve (1.7) is to find a </> such that 

(1.10) g?(0)-4Q2(0)Q3>O. 

When c < 0, Q3 < 0 from the explicit expressions of Q3, and there is an 
easy choice of </> to achieve (1.10). For c> 0, Q3 > 0, and there is no obvious 
choice of (j) to achieve (1.10). 

The novelty of our systematic search of the test function u in the form 
(1.8) is to have reduced the search to an extremal problem in the Euclidean 
half space. It comes from extremizing (1.10) in the form of 

iQj inf m) (1.11) 4Q3       inf    *§g£    <1 
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This leads to the analysis of an eigenvalue problem on spherical caps with 
Robin type boundary conditions. This is set up as (3.7) in section 3. (1.11) 
can be expressed in terms of the eigenvalues /x^'s, as given in (3.8). In section 
3, we obtain recursive formulae for computing the eigenvalues /x^ and the 
corresponding eigenfunctions. We also prove that the quadratic form Q2 is 
non-negative definite, and identify its kernel. For the verification of (3.8), 
we need to express the first two terms in (3.8) explicitly in terms of the 
eigenfunctions associated with ^2 and ^3. We also need some estimate on 
/X2 and /is. These are done in section 4. At the end of section 4, we complete 
our proof of Theorem 1.1. 

2. Expressions for Qi, Q2, Qs and the case of c < 0. 

In this section, we derive the expressions for Qi, Q27 and Qs. As a prelim- 
inary step, we will choose a test function u and compute maxo<t<oo^(^)- 
We will specify u later. For the moment, we have, schematically, for t > 0, 

where 

a = /     IVu\29 + 771—r\R9u2  dv9 + ^"o— /    h9^dvdM, 
JM L 4vn -l) J ^     JdM 

= [ (u+)£ 
JM 

and 

f 2(n-l) 
d = c /     (yT) »-2 dvdM. 

JdM 

Simple calculus shows that 

r/JL N at2 (n-2)2bt^ 
max I(tu) = — — + v   ^/  

J   ^—, 
o<t<oo   v    ;      2(n - 1) 2(n -1)     ' 

where t > 0 solves 
4 2 

a = n(n - 2)btn-2 + dt^-2 5 

b=  /   (uj')n-2dvMi 
IM 

from which we obtain 

f-d+ y/d2 + 4n(n - 2)ab 
~ j 2n(n - 2)6 i 

n—2 
2 
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We are going to choose u in the form of e 2~x()(x) [ui(x/e) + 6<f>(x/e)] in 
local coordinates near a non-umbilic point, where e and 6 are small param- 
eters, ip is a cut-off function, = 1 near the point, and <£ G C^0(Rn). We will 
show in the following that, for n > 5, 

a = ao + Ao6 + A1eS + A2S2 + Ase2 + o(e2 + S2), 

b = bo + Bo6 + Bie6 + B252 + B3 e2 + o(e2 + 62), 

d = do + DoS + Dted + D2 52 + Dze
2 + o(e2 + «52), 

where the Ai, Bi, and Dj are explicitly given in terms of <j>, but independent 
of e, S. Prom the equation satisfied by t, we find the relation 

where 

To = 

t = 1 + To 6 + Ti e5 + T2 62 + Tae2 + o(e2 + (J2), 

^0 - "(^ - 2)5o - Do 

4n&o + ^=2^0 
Aj - n(n - 2)Bi - Pi 

4n6o + ^2^0 

T2 = 

>l2-n(n-2)g2-J>2- (4n5o+^Do) Tp- (M^bo+^dp) Tp2 

4n6p + ^dp 

and 

T3 = 
A3 - n(n - 2)B3 - Ds 

4n6p + ^dp 

Putting these into the expansion for maxp<t<0OI(fcu), we obtain 

(2.1)     max I(tu) v      y     0<t<oo   v    / 

62 

+ y 
e2 r 

+ 2 

^o-(n-2)25o-^-4£>o 
n — 1 

e5 
+ -2 

A1-(n-2)2B1-^—^D1 

v ' n -1 2 ap + n(n - 2)6o 

A3-(n-2)2J53-^-4r>3 n — 1 
+ o(e2 + *2). 



The existence of conformal metrics with constant scalar curvature    817 

To evaluate the Ai^B^ and Di in terms of ^, we first set up convenient 
coordinate systems. As in [El], we can assume that g has the property 
h(0) = 0, and Rij{0) = 0. Let (xi, • • • ,a?n) be normal coordinates around 
0 E 9M, such that the second fundamental form of dM at 0 has a diagonal 
form. Then dM can be expressed near 0 by 

n— 1 .j 

Xn = /(si, • • • , Sn-i) = 5^ o A^ +       X^      ctijkXiXjXk + 0(|rz:,|4)- 2 
i=l l<i,i,fc<n--l 

^n-l So XliLi ^» := 0- Recall that in a normal coordinate, #*J has the following 
expansion 

g* = 8iS-±Rikljxkxl + 0(\x\3), 

where Rijki denote the coeflBcients of the Riemann curvature tensor at 0; 
and -y/g = ^det(gij) has the expansion 

(2.2) y/9 = l- QRIJ^XJ + 0{\x\3). 

Let po be a positive number and consider the cylinder 

CP0 = Cpo(0) = {(^l* ' • ' > Xn)\Xl + • • ' + Sn-l < Ph -PO <Xn< Po} 

and 
C

PO = CS(0) = {(^ii • • • > O 6 Cpo\xn > 0}. 

Let -0 be a smooth cut-off function such that tp = 1 on C^, is supported in 
02^0, and IV^I < C/po, IV2^) < C/Po for some constant C. In the following, 
we will assume n > 4 and will choose -u = tffjc) e 2~ [?i1(a:/€) + 50(x/e)] 
and evaluate the A^, Bi, Di, i = 0,1,2,3, €, (5 > 0 will be chosen small, ^ is 
a cut-off function, and (j> is assumed to have compact support and will be 
chosen later. 

/  \Vv\ldvg= f \Vu\2gdv9+ f        \Vu\29dv9. 
JM JcP0nM JM\cP0 

We calculate the two integrals above separately. First 

/        |V«|>, = O(p2
0-

nen-2) 
JM\CPO 
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by a simple computation. Next 

JCPQnM 

=  / \Vu\2dxn dxl - - yj Rijki I UiUiXjXk dxndx' 
JcP0nM 6'—' JcPQnM 

+ 0{[ M3|Vu|2 dxn dxf). 
JcP0nM 

The first integral gives 

/ IVupcfo™ da/ = /     |Vufdxn dx1 - /        /        |Vu\2dxn dx', 
JcpnnM Jc+ JB^Jo ■spo1 llvl UK^P0 ^PO 

with 

/     \Vu\2dxn dx' 

= [      IVutfdzndz? + S2 f      \V(t)\2dzndzf + 25 f      Vui • V0 
Jc+, JC+ , Jc+ , 

PO/€ Po/e PO/6 

= ao + 52 f    (V^l2 + 25 f   V«i • V^ + O(p2
0-

nen-2) + o(62 + e2), 

and 

/        /        \Vu\2dxndx'= / / {\Vu1\
2+26VuvV4>+52\V<f)\2}. 

JB?-
1
 JO JBn-} Jo 

We evaluate them separately. 
rf(ez')/e 

/    1 / IVuil- 

= 6^      f       (n-2n\zr + Tl (n - 2)2(\z'\2 + T2) 

PO/€ 

(n - 2)2e
2Tc   /■       (n - 1)(|^|2 + rc

2) - 1 "^ /        (n-l)(l,r + ^)-l^      22 

pn/e 1=1 
4 

PO/6 

(n - 2)2e2Tc  /■       (n - l)(|zf + Tc
2) - 1 n-1 

yR^ (i+M2
+T2)n+i(^Ai^)+ E(€)' 
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due to ^r=i1 ^i — Q and symmetry, here and in the following E(e) denotes 
a quantity with the following estimate 

E(e) = I 

0(e3) when n > 6, 

0(e3log^)       whenn = 5, 

O(e2po) when n = 4. 

The other two terms are estimated as 

r/(«,)A 
/ / |V0|2 = 0(6), 

JB"-,
1
 JO 

PO/e 

and 

rf(ez')/e 71-1 

/■   ,  /   "   Vtii-V^I^A*/      Vui(2/,0)^^,0)^ + 0(6). 
JB;-\JO 2^    JKn-i 

A simple estimate gives 

/ |Vii|2|a;|3 dxn dx' = £(e), 

and 

JCnr^nM 

-j^te 
JXi<j 

ZiZjZkZl 

PO/<L   K i,l<n 
^k\l + \z^ + \Zn-T^Y 

'   7 J -^jkn' 
ZiZjZ^yZn      lc) 

+ 7 .Rnjkl- 
{Zn - Tc)zjZkZl 

i<n " (1 + k'l2 + W - Tel2)"       ^     nJKt (1 + k'|2 + W - Tc|2)n 

Using the symmetry of the Riemann curvature tensor and i?nn(0) = 0, the 
first 4 terms of the right hand side above can be combined to become 

L {£ R, ijkl 
ZiZjZfcZl 

(l + W + lZn-TcPy 

,V^R {T£-2Tczn)zjzk        „s^r> TcZjZjZk \ +1t^Jkn(l + \zf + \zn-Tc\^   Zlt
K^{1 + lz,l2 + lzn_Tcl2)nj. 
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They all vanish because of the symmetry of the Riemann curvature tensor 
and Rnn(Q) = 0. Therefore 

^2 Rijki / UiUiXjXk dxndx' = E(e) + o(e2 + 62). 
^ JcP0nM 

The other two terms in the expression for a can be estimated simply as 

f Rgu
2 = o( [ \x\u2) +o( f pou2) 

JM \JMncP0        J \J(C2PQ\cP0)nM        J 

= O (e3 I'0 \l + rf-ndr J + O Ie2po f ** \l + r)3-ndr j 

using Rg(0) = 0. Using the fact that g is geodesic normal coordinate near 0 
and that hg(0) = 0, we have 

/    hgu
2= f      hgix'Jix'^uix'Jix'tfdx' 

JdM JB?-
1 

+ O I I      hg{x\ f(x'))u(xf, /(x'tflxf dx') 
IB. n—l 

2P0 

+ E(e) + o(e2 + 52) 
n-l 

=   / Yl aixiu(x'\ f(x'))2 
J
^2po    i=l 

+ o(j n_i u(x\ f(a/))2\a/\2dJ\ + E(e) + o(e2 + 62), 

where in the last estimate we used the Taylor expansion for hg{x\f{x')) 
near x' = 0. Now 

JB2po JB2P0 '      ' 
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and 

P n—l 

/        'S^aiXiuix'Jtx'))2 

I r>n-l ^—' 

= 62 /        £OiZuKezf,/&))*{*!&, f{ez')le)2 

/ r>n—l     (    " 
Jli2pQ/< i=l 

+ 25tti(/, f(ez')/e)<t>{z', f{ez')/e) + 52<j>{z', f{ez')/e)2} 

= e2 !       ^ a^iez', fiez'tfu^z', f{ez')/ef 
I-nn—l     f    " 
Jti2p0/e i=\ 

+ O (e2S f        -—W—dA + O (e252 f        M     J^'       AA 

= e2 /        VOi^V^, fWfutf, f(ez')/e)2 + o(e2 + 52). 

We require that ^{x) = ^(l^l) for the following estimate. Using the theo- 
rem of the mean on ijj(ez\f(ez/))2ui(z\f(ezf)/e)2 with respect to the last 
component, we compute the remaining integral above by 

,. n-l 
^2 /        5]a,^(^,,/(6^,))V(^,/(6^)A) 

P n—l 

= e2 /        V Oi^Ce/, 0)2«i(^, 0)2d2' 
/pn-1    ^—^ 
J±f2po/e i=l 

+ o(e2 [^   \z>\ 
2po/e 

j/(62')AI2 + |rc||/(6^)AI   " 

+ 0   e4/^o 

(l + |,f)n-l 

4,. i^ri/MAi 

^/ 

(l + |zf) v|2\n-2 

= 0+O te4 /        ^     K1!    T^I +0 (e3|Tc| /        ^     ^Jl     , d^] 

E(€) + o{e% 
Ipo/e 

.2\ 



822 Zheng-Chao Han and YanYan Li 

where on the third line of the above computation, we used the symmetry of 
I/JUI and the oddness of Zi. Putting these together, we obtain, for n > 5, 

n—1 « 

M = - E Xi  / VU1(Z'' 0) * ^("^ 0)^. 

A2= I    |V0|2, 

.Jn^f       (V.W'tg?-1/^^8. 
^=1 

Next we compute the expansion for 6. Since (/> is assumed to have compact 
support, we have ^+ = u as long as we choose S small. Then 

f 2n f 2n 
■=  / un-2dvg+ / un-2dvg 

Jcp0nM JM\CPO 

= u:^dvg + 0(e3). 
JConnM 

In view of jRy (0) = 0 and (2.2), it follows that 

f _2n_ f 2n_   , f    , f fHX >      _2n ,    , 
/ un-2dvg= /     un-2dxndx - / / un-2dxndx 

JcP0nM Jc}0 JB?-
1
 JO 

+ ol [ \x\3u^dvg) +0(e3) 
\ycP0nM / 

f 2n f ff^      _2n_ . o 
=  /     u^dxndx'- / / u*-2dxndx' + 0(e6). 

Jet JBZ-'JO ^P0 ^PO 
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The first integral can be computed as 

f 2n 

Jet 
2n 

[Ul + 8(j)) »-2 

PO/
€ 

and the second integral can be computed as 

f ff      J*^ f /•/("') A on. 

JB?-
1
 JO JB;-^ JO 

n - 2 ^     7Rn-i 

+ -T- 7^ o^WTT^dz + E(e) + o(e + ^ 
Consequently, for n > 5, 

Or?      /*       ii±^ 

n-ZJni 
n-l 

Bi = -^r—o E ^ /    ur2 (^. o)^, o)z?, n - 2 ££     ./Rn-i 

n(n + 2)   /•      -ij   2 

(n - 2)2 yRn 

4   yRn-i(H-|^f + TcT
+1 

To compute d, we note, using the expansion of g and of dM around 0, that 
the volume form of dM has the following expansion on dM fl C2p0, 

1 + 6 E (^^ -Rij)xixJ + 2 X)A?^ + 0(l:r/|2)    d:r/- 
2,i7 = l 2=1 / 
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Recall again that Rij(0) = 0, so we have 

f 2(n-l) 
d = c /     u n-2 d voldM 

JdM 
2(n-l) f 

u n-2 d volaM + c / 
!dMncP0 Jd dM\CP0 

IX   n-2    d VOl^M 

-2 

PO/€ 

i+f E i^^i+Y E ^ I ^+o(e2+52) 

= C  / I«! 
PO/£ 

afefl , 2(n-l)„^fjL ,  (n-l)n.^ + n-2 -<   ^+(n-2)2 
up^V2} 

Hs^(^)Hl 
on-l 

-7" E RninjZiZj +  o" E A^^     dZ' 
i=l 

2(n- 

( 
PO/€ 

We calculate the right hand side of the above term by term, 

+ o(e2 + 8') 

2(n-l) 
Ul(z,Zn)    n-2 

f(ez') 

i a2 r ,,   .212=21 

^=0 

/(^) l^ 
2n=0 

= C 

/. f     2(n-l) ^ 

P0/e    V 

2(n-l) 
Ul{z ,Zn)    "--2 

+ o(e2 + 52) 

(|E^l 
2n=0 \^ i=1 
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,1 a2   I    , ,     .212=11 n-1 

5E^ iZT 
Zn = 

d2    r ...... /n-1 

V dz' + o(e2 + 52) 

'/BPO/«      n L 

=do+xyRn-1^ri(z'z")n"2 

^W     dz' + o(62 + d2) 

\ 2 <n-l 

Zn=0   Vi=l / 

where we have used the fact that YA=I ^* =:: 0? an<i ^e radial symmetry 
of ui to conclude that one of the integrals is zero. The second term in the 
expansion for d is easy: 

I j ^ ^ (*'' ^T1) J £ B***** + £ ^ dz' 
rf2     r 2(n-l) /-j   n-1 n-1 \ 

= T y «-iWi n"2 (z/'0) U.? ^"^^+^A^ ^+o(e2+^ 
re2    f 2(n-i) /•,   n-1 n-1 \ 

= T J „-: "1 "^  ^ 0)     I .? ^"^^ + ^ ^     ^ + ^^ + ^^ 
\    *ii=l *=! / 

rJ2     /» 2(n-l) /-i ^-1 n-1 \ 
= T"yRn-1

Min"2 (2,'0) (|Ei?-^+EA^)^/+o(e2+52) 

= T L-x "^(2''0) (^"^+^A?)Zl2)dz'+<e2+52>> 
ce2 f1^ E^ Ui"-2 (z/,0)z1

2^' + o(e2 + 52). 

In the above we have used the symmetry of ui and Rnn = 0.   Next we 
calculate the third term in the expansion for d. 

2(n-l)c 
(n 

-1)C5   f „**(S   ^'^rht,' ^dz> 
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+ dr [tii(*'>z")n~2<^/>*n) 
zn=0 

W + o(e2 + <52) 

- 2(n    l]CS f      «r2 (^ 0)^, 0)dz> 
-2)   yR«-i (n 

(n-l)c- 
n—1    n o 

y    — 
2=1 

(n-2) 

+ o(62 + 52). 

The last term in the expansion for d is 

ui(z',zn)"n-i<t>{z',zn) M) 
zn=Q 

(n-l)nc 2 

(^-2)2<) 

PO/^ 

A^/feay^,^"-' ^ «r (*'> ^^) ^2 (*'> ^^^»^ 
(n-l)nc 2 f      .1&,, 
(n - 2)2 

Putting these together, we have 

.2    /• 52 

52 /       u{-2 (z',0)cj>2(z',O^z' + o(e2 + S2). 

d = do + 
2(n-l) 

2n=0  Vi=l / 8  yRn-i dz% 

„J2,      r 2(n-l) /n-i \ 

{n - 2)     ./Rn-i 

(n _ 2) ^ JRn-l ^n   L J 

■  (n-1)nc
(52 /      uf-2(z>,0)cj>2(z',0)dz' + O(e2 + 62). 

-9\2 (n-2) 

Thus 

Do = 2,(n    ^)C /      uf2 (z>, 0)<p(z', 0)dz', 
(n-2)   yRn-i 

Di 

D2 = 

(n - l)c 
(n-2) 

(n — l)nc 
(n-2)2 yRl 

Wl^'^n)"-2^',^) 

1=1 

I        nzidz? \zn=0  l 
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1 i^i   JR"-
1 

♦SJLSBH'-'**.J£« )**■ 
n-1 

Recall that 

(2.3) 

where 

omMCo J(«u) = 5C + Qo-J + Qie6 + Q252 + Qse2 + o(e2 + 52), 

Qo = I (Ao - (n - 2)25o - £-!Do) , 

^ \ n — 1 

<52 = i {^2 - (n - 2)252 - ^—!D2 n-1 
n-2 

2ao + 2n(n 
__^0 _ n(n _ 2)B0 - D0}2\ , 

Qz = \ Us - (n - 2)253 - ^-|Z)3 

We evaluate the Q-s in terms of ^, using the above calculations. 

Qo=/    Vu1V(j>-n{n-2) f    uf^<f>-c[       uf*<l> = 0, 

and 

^ = ? E A* /      j-V"i(^, 0) • WO*', 0)^+ n(n-2)«r' (z', O)^', O)^2 

_C^ ["l^'^n)^^^',^)]  \zn=0zf\dz' 

= oY,Xi \ - V'ui (2;^ 0) • ^(^ 0) + n(n - 2)«r2 (^, 0)^(z', 0) 

^«/,o)},? n-2   1 
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= IE ^J      {-V't*!^, 0) • Vcf>(zf, 0) 

+n(n - 2)(1 + T^upiz', 0)^', 0)} zf, 

where we have used the boundary condition satisfied by ui and V/^i(^/,0) 

to denote (-^—(^,0), ••• , — (z',0)).   Integrating by parts in the first 

integral above, we obtain 

(2.4) 

3i = E y J^l (E %«i (^ 0)) ^(2,'0)^ + v'Mi (z/'0) • Vzi *&>0) 

+ n(n - 2)(1 + TiVfV, O)^^, 0)^| 

= E Y J   {-(n - ^w1+Tc) - a+i^'i2+^^r1 (^0) 

-2(n-2)(l + |/|2 + rc
2)«rl(^0) 

+n(n - 2)(1 + TiVr1 (^, 0) | <j>(z', 0)zf 

= -ET /      (n-2)(l + \zf + T!)uf1\z',0)<f>(z',0)zf 

= _yiAi   A (n-2)^(^,0)^^ 

S 2 yR-i (1 + \z'\2 + T?)"/2 

Next 

Q2 = ^<l     |V^-n(n + 2) /    «r2 </.2 + nTc [      uf2 (zf, 0)0V, 0) 
./R£ JR™-1 

(2.5)      + 
n-2 

JR" 
2 /    V«i • V<f> - 2n 

2ao + 2n(n - 2)6o JR" 
0 

n ■ 

/R^ 
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71-2 
-An /    u"" 

2ao + 2n(n - 2)&o 

+2TC f      tip (2/, 0)^,0) 

Finally 

<23=2< 
(n-2)2rc 

/ 

+ 
4 yRn-i(l + M2 + 2?)"+i 

(n-l)([zf+TC
2)-1 ^n-l 

E^2 
vi=l 

2(n-l) 
2 (z',0)z?dz' 

c(n-2)^   2 /• 2 

8(n - 1) 7R«-I 5Z2 [ 

^n-l 

^n=0   Vi=l / 

(n-2)2rc 
/ 

n(l + 2?-|^|2) ^n-1 

E^ (l + |^|2 + Tc2)«+l^ 

c(n-2)^   2   /• 2^1 

(n-2)2Tc 

+ (n-2)2r( 

4(n 

2)JTC   r 

- 1)    ^"-1 

E£i\W 
(l + |^|2 + Tc

2)«-i- 

Writing the integrals in polar coordinates, and using the following elemen- 
tary relations(the proof of which will be sketched in Appendix C) 

(2.6) f 
Jo 

00 rn+2 n 3     noo      rn+2 

(1 + r2)^1 I dr = :—;— /     — 7Tr-dr, for n > 4, 
2n   ./n     (1 + r2)"    ' "   ' 

poo n _ 1     poo n+2 

7o    (l + r2)™-1 n+iy0    (l + r2)n 

(2.8)      /   rfde = 3/   tf&^-iL/   e?de = ^., 
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where <Jn-2 denotes the area of the standard sphere Sn"~2, Qs can be sim- 
plified as 

(2.9) 

n(n-2)2TC/,        ~.o- 
Q3=  K   s

) c(i + rc
2)- 

+ (n - 2)2rc ^^{r^F^){Lt^ 4(n - 1) 

n-l 

= ~qnTc(l + T^Y/Xl 
1=1 

\2 
here, qn denotes an

8(^_i)2 ( JQ
0
 (i+^n-idr). In the above, we have also 

used Y17=i ^i = 0 to obtain the relation 

/   (zW) ^ = 2]r\2/   ^de. 

We note that Qs is a constant depending only on n,Tc, and ^27=1 tf- ^n 

particular, it is independent of <£. 
We would like to choose (/> and e > 0, 5 > 0 small such that 

(2.10) max I(tu) < SCJ 

which would lead to Imp < Sc. It is clear from (2.3) that, in order for (2.10) 
to hold, it suffices to find a <f) such that 

(2.11) Qi - 4Q2Q3 > 0. 

From the expression of Qs, it is clear that if c < 0, then Qs <0 and (2.11) 
can be satisfied easily. This proves the existence of a solution of (1.1) in the 
case c < 0. So we are only left to deal with the case of c > 0. Since Qs 
is independent of </>, Qi is a linear functional of 0, and Q2 is a quadratic 
functional of 0, the verification of (2.11) in this case leads to an eigenvalue 
problem on R™, which may have independent interest. We will formulate 
and study this eigenvalue problem in the next section. Before we leave this 
section, we summarize our results of this section as 
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Proposition 2.1. For c<0, there exists a solution of (1.1). For c > 0; if 

(2.12) ±QJ    inf    ^W, 
VQI(^OQI(^)

2
; 

then (1.1) has a solution. 

Remark 2.1. We remark that, although we required <f> to have compact 
support in evaluating the Q;'s, there is no need to restrict (/) to have compact 
support in the extremal problem in Proposition 2.1. For, if (2.12) holds, a 
density argument can easily produce a <f) with compact support satisfying 
(2.11). The precise space for <f> is spelled out in the next section. 

3. A related eigenvalue problem on spherical caps. 

Because of the geometric invariance properties of the conformal Laplace op- 
erator, it is more transparent to translate the expressions for Qi,Q2 onto 
the round sphere. This is done as follows. Let 11 be the stereographic pro- 
jection from the unit sphere in Rn+1 centered at (0, • • • , 0, Tc, 0) onto the 
hyperplane £n+i = 0. More specifically, let (£i, • • • , £n+i) be the coordinates 
of R72"1"1 taking (0, • • • ,0, Tc, 0) as its origin and (^i, • • • , zn) be the coordi- 
nates of R™, which is identified with the hyperplane £n+i = 0. We take the 
unit sphere to be 

sn = {(ei1---,en+i)€R"+1u? + ---+^+^+i<i}. 

Then, under the transformation 11 :  (£i, • • • , £n-t-i) —> (^i? • • • , 2n), we have 

6    =i+\z>\2+1\Zn-Tcr 1^^n-1' 

(3.1) 
_ 2(zn - Te) 

Sn — 

^n+1      = 

l + W + lZn-TJ*' 
\zf + \zn-Tc\

2-l 

Let S = 11 ^R^). It is a spherical cap on Sn. For a function (f)(z) defined 
on R™, we define a function $(£) on E by 

<Kz) = HO i + lzf + K-r^ 
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Note that the standard metric on S is given by 

M '^-(i + w+V.-r.l')'1*1'- 
The conformal Laplace operators (Lg,Bg) enjoy the following conformal 
invariance property: 

L   4    (u-V) = u-^Lgty), 
(3.3) u^9 

B   4    (u~V) = vT^BgW). 

Using (3.3), we can compute the mean curvature of c?S to be 

 2_ / 2 \~5 

n-2 Vl + kP + K-TclV 

and 

f m^-f w+f  ^ 
= - J n <t>L\dz\2(<f>) + J ^ <t>B\dzy{<t>) 

Using (3.1), it is elementary to conclude that the linear functional Qi of 0 
given in (2.4) satisfies 

^    2 2      Jas 

= / /(0*(0i 

where /(^) = -Yll^i ^n'^+2izi- ^ t^ie following, we may abuse notation 

to write Qi($) for Qi to indicate its linear dependence on $. Using (3.1) 
again, we find, for ui as given in (1.3), 
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JdB" * JdE 
f 2±Z 1 f 

Putting these together, we find that the quadratic form Q2 of (j) given in 
(??) satisfies 

Q2=l{i(|v*12" n*2)+Tc L$2} 
n-2 

+ 
&o] 1 cJdj: JY,   ) 2n [ao + n{n - 2)6o 

Again, we will write (^(^ $) for Q2 above to indicate its quadratic depen- 
dence on $. We also use Q2($, *) to denote the bilinear form obtained from 
symmetrization from the quadratic form Q2($,$), i.e., 

Q2(*, *) = j [Q2(* + *,* + *)- Q2(* -*,*-*)]. 

Let |E|, |5E| denote the volumes of E and 5E, respectively, with respect to 
the standard metric on Sn. Prom the metric relation (3.2), it is elementary 
to check that 

|E|-i (i + WH-V-r.r)' = ^/a-"^ -^ 
C f 9 \ n-l « 2(n-l) 

C|aS|=C/ (l4-M24,|y TI2 =2-1c/        ^^    =2-^0. 

Using c = -(n - 2)TC and (1.4), we easily obtain 

ao + n(n — 2) 

Define a linear operator M. by 

ao + n(n - 2)bo = ^(n|E| - rc|aS|). 

1  ; Tc|aS| - n|E|   " 

Note that M(l) = -1. Define $ = $ + M($). Then M($) = 0, and it is 
routine to check that 

<&,(*,*) = 11jT (|v$|2 - n$2) + rc J $2} + n|2|~2
rc|as|7W($)2 
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=Hi>*'2-"*2)+r«I*2} 
Because of ^27=1 ^ = ^ an<^ ^^ coordinate symmetry, it is also easy to see 
that 

Qi(*) = Qi($). 

Therefore we may work on the space X = {<& € ■ff1(S) : A^($) = 0} and 
drop the "on $. Define, for Ai, • • • , An_i € R, with YA^I ^i = 0) 

Q(n,c,A1,...,An_1)= inf %S^ 

=        inf        ^^'^ 

We first state 

Proposition 3.1. Q(n, c, Ai, • • • , An_i)  > 0.    Furthermore,  a minimizer 
$ G X of (3.4) exists, and $ satisfies 

(3.5) {A$ + n$      =0' 

with some Lagrange multiplier fi ^ 0.   .ffere z/ denotes the unit outward 
normal of d£. 

We will provide an elementary proof of Proposition 3.1 later. For now 
we remark that, if $ is as in Proposition 3.1, then $//i € X is also a 
minimizer of Q(n, c, Ai ■• • • , An_i). It satisfies (3.5) with / replacing {if. For 
convenience, we will use this normalization fi = 1 in (3.5). 

The homogenous version of (3.5) is of relevance: 

(3.6) {A$ + n$      =0' 

Integrating both sides of the first equation of (3.6) over S and using the 
boundary condition in the second equation, we find that any solution of 
(3.6) is in X. We observe that the kernel of the quadratic form Q2 in iJ1(S) 
consists of linear combinations of constants and solutions of (3.6). This can 
be easily seen by writing 

Q2($, *) = 5 { / [-A* - n($ + M(Q))] * 
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+ f   [ft,$ + Tc($ + A4(*))]ttl, 
Jdz ) 

and noting that if $ is in the kernel of (^2? then $ + M(§) is a solution of 
(3.6), thus $, module a constant A/f($), is a solution of (3.6). Conversely, 
by noting that any solution of (3.6) is in X and that 1 + M{V) — 0, it is 
obvious that the sum of any solution of (3.6) and any constant is in the 
kernel of Q^ It will be shown below that, if we choose the center of E as the 
north pole and choose corresponding Euclidean coordinates (£i, • • • ,Cn+i), 
then the restrictions of {(j, • • • , Cn} to E form a basis of the space of solu- 
tions of (3.6). Consequently, Ker Q2 := {$ G H1^)] Q2($,*) = 0,V * € 
iJ1(E)} = span{l, £1, ^2) •' * ) Cn}- More generally, we will consider the eigen- 
value problem 

fA$ + n$      =0, 
\dvQ + Tcfr   =/i$. 

We summarize the relevant results concerning (3.7) in 

Proposition 3.2. In the case of Tc < 0; the eigenvalues of (3.7) have 
the distribution {JLLQ < 0 = m < ^2 * • •}; with /io = Tc + ^t-, and 
limi^oo/J'i   =   00.      We  can  choose  a  complete  set  of eigenfunctions, 

*?V-- >*o^>»*i1>>-'->*ifcl)>*21))--'; 50 tta' t/ieir restrictions to dE 
/orrn an orthonormal basis o/L2(5E). iTere fci denotes the multiplicity of 
the eigenvalue fii. Furthermore, ko = 1, and the eigenspace associated with 
fiQ is spanned by the restriction of Cn+l to E; fci = n, and the eigenspace 
associated with m is spanned by the restrictions 0/C1, • • • ,Cn to E. 

Remark 3.1. In the case of Tc > 0, the statements in Proposition 3.2, 
module obvious modifications, continue to hold. In particular, in the case 
of Tc = 0, a modification is that the restrictions of the eigenfunctions to <9E 
span the L2 orthogonal complement of constants in L2(<9E). The proof is 
also essentially the same as the proof of Proposition 3.2, which we will give 
after we first use the set up here to simplify the condition in Proposition 2.1. 
In section 4 we will also give explicit forms of eigenfunctions associated with 
1^2 and /i3, which are needed for explicit verification of the condition in 
Proposition 2.1. 

For now we remark that, due to Proposition 3.2, we could choose $Q 

to be a constant multiple of Cn+i- Expand / = I^>o,i<j<k fj^^- Then 

fj    = fdzf^i   -   Since the restriction of Cn+i to <9E is a constant and 
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JdE f ^ 0 due to SSTi1 Ai = 0 and the symmetry of <9E, so f^ = 0. Let 
$ be a solution of (3.5) with // = 1. Then, multiplying the first equation of 
(3.5) by $ and integrating by parts, we obtain 

Q2(*,*) = iQi(*). 

Thus 

Q(n,c,Xi,--- ,An_i) = 
2Qi($r 

Multiplying $^ to the first equation in (3.5) and integrating by parts, we 
obtain 

Thus 
Jdz JdT, 

I f* =   E   if / ^ 

i/fi2 

=   E 
/it>o,i<i<fci    ^ 

Therefore, the condition in Proposition 2.1 is equivalent to 

(3.8) £       JijJ- > 2Q3. 
Mi>o,i<i<fci 

We now give the proof of Proposition 3.2. 

Proof of Proposition 3.2. We first derive the formulas for the eigenvalues 
of (3.7). Let (r, 6) be the geodesic polar coordinates on S centered at the 
center of E, where r is the geodesic distance on E from the center. We 
remark that cosr = —Tc/^l + T^ on 9E. We can write 

Sphere = dr2 + sin2 rdO2,        Oe S71"1. 

Thus 

Asphere* = *rr + (n - 1) COtr $r + -r-j-Afl*. 
sm^ r 

Using the method of separation of variables, we write $(r, 6) = E(r)1if(6). 
Then, from the first equation of (3.7), we obtain 

f    Err + (n - 1) cot r Er + nE + ^ E = 0, 
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Erom the second equation above, it is standard that A = A^ = — k(n + k — 2), 
for fc = 0,1,2, • • •. The second equation of (3.7) becomes 

M = Te+*M 
E(r) as 

We make a change of variable £ = cosr and set F(Q = E(r). We remark 
that, since we are considering only the case of Tc < 0, the relevant range for 
C in Proposition 3.2 is 0 < £ < 1. However, most of what follows holds for 
-1 < C < 1. Using 

Er = -sinrJF/«), 

Err = - cos r F'(0 + sin2 r F"(0, 

the equation for E transforms into 

(3.9) (1 - C2)F"(0 - nCF'(0 + nF(0 - ^^ 2) Fft) = 0. 

C = ±1 are the singular points of (3.9). The indicies of (3.9) at £ = ±1 
can be easily found to be a = &/2, or a = — (n + k — 2)/2. Since we 
look for F which is regular near £ = 1, the latter index is discarded. Set 
F(C) = (1 - C2)fc/2G?(C). From (3.9), we obtain 

(EVk) (1 - C2)G"(C) - (2k + n)CG'(C) + (1 - *)(* + *)G(C) = 0. 

Denote a solution of (EVk) by Gfc. Differentiating both sides of (EVk), 
we find that G'k(C) satisfies (EVk+i). We will use this relation to find the 
solutions of (EVk). (EVi) is the easiest to solve. Setting fc = 1 in (EVk), we 

obtain 
(l-C2)Gi'(C)-(2 + n)CG'1(C) = 0, 

from which we easily obtain 

Gi(c) = A(i-c2r^, 
for some constant A. Thus 

G1(0 = A[ (l-rfr^dq + B, 
Jo 

for some constant B. Since we need a regular Fi, we set A = 0 and B = 1 
to obtain 

i^a-c2)^- 



838 Zheng-Chao Han and YanYan Li 

G'i is a singular solution of (EV2).  However, using standard ODE theory, 
we find the general solution of (EV2) to be 

for some constants A and B. The obvious choice is to set 

G2(C) = (l-C2)-^/1(l-r72r/2^. 

Thus 

^2(0 = (1 - C2)-n/2 J\l - V^drj. 

Now it is obvious that we should set, for k > 2, 

GUO = 
dk-2G2(0 

dCk-2    ' 

Therefore, 

We remark that the G^ defined above will not be identically zero and thus 
we have obtained nontrivial solutions for (EVk) which is smooth near £ = 1 
for any k > 2. This is because G2(C) is smooth in — 1 < £ < 1 and is not a 
polynomial in £, which can be seen either from the explicit expression of G2 
or from the following argument: if G2 were a polynomial of order Z, then, 
Crj+2 is a nonzero constant which should be a solution of (EVi+2)- That is 
impossible by direct inspection. 

We will also need the following properties of G^: 

(3.10) forfc>2,    GkiO^O,    and   G'^O/G^C) < 0, 

in the range — 1 < £ < 1. We now establish these properties. Suppose the 
contrary, i.e., Gfc(Co) = 0, or Gfc(Co)/G/e(Co) > 0 at some —1 < Co < 1. In the 
first situation, we may assume that G^(Co) > ^' an(^ ^n ^^ second situation, 
we may assume that (3*(Co) > 0- We note from (EVk) that G^iC) > 0 
whenever G^C) — 0 and Gfc(C) is positive. Using this observation, it is easy 
to prove that Gk(() can not have a positive local maxima in Co < C < 1 
and therefore G'fc(C) and Gfc(C) will be positive for Co < C ^ 1- Since Gk is 
smooth near C = IJ sending C to 1 in (EVk) would lead to a contradiction. 
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Next we derive the formula for GQ. Since GQ is a solution of (JSVi), it is 
easy to figure out the choice for Go should be Go(C) = C? which implies that 

*b(C) = c- 
At this point we introduce fik to denote the eigenvalue of (3.7) associated 

with A*.. Using the fact that £ = —Tcj-^/Y+T^; on <9£, we have the formula 

V'11' ==T_    dFk(0/d{ 
c   ^TTT!Fk(0 

with C evaluated at -Tc/y/l + Tc
2. Therefore, 

HO^TC + Y , 

and 
Hi=Te-Te = 0. 

Prom (3.11), we also deduce 

G'k(0 
(3.12) Mfc = (1 - k)Tc - VT+TiGkity 

with C evaluated at -Te/y/l + Tc
2. 

We next prove that /j/b < (n for 1 < k < I. Since we have proved 
that Fk,Fi ^ 0 in the range — 1 < £ < 1, we may assume Fk,Fi > 0 for 
—1 < C < 1. Prom (3.9), we deduce easily 

[(i^-Ffc^Xl-C2)*]' 
+ [l(n + l-2)-k(n + k-2)](l- C2)^2^ = 0, 

which gives, for k < I, 

[(FiFt - FkFl)(l - C2)^ < 0,     for     - 1< C < 1, 

from which we obtain i^(C)M(C) > ^/(O/^KC). With (3.11), we conclude 
that fik < m. 

We now observe that, since L2(9E) has a complete basis in terms of 

the eigenfunctions ^)J of the Laplace operator ASn-i, the corresponding 

<&fc (r, 9) = l?fc(r)$£/(0), when restricted to 9E, naturally form a basis of 
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L2(d£)(recall that Fk(C) ^ 0 for all k > 0 in the range 0 < C < !)• In 
particular, the corresponding eigenfunctions associated with //Q are spanned 
by 

$o  (r)0) = cosr, 

and those associated with /ii are spanned by 

$W(r, 0) = sinr #SO(0)> l = 1,' • • ,**, 

where {^\0)^f\0), - • • ,*^n)(0)} can be taken as the coordinate func- 
tions of S71-1 and forms a basis of the space of eigenfunctions of Agn-i asso- 

ciated with Ai = 1 - n. We remark that ^(r, 0), ^(r, »),.•-, $Sn)(r, 0) 
are precisely the coordinate functions Ci>C2, • • • >Cn, and $o is Cn+i? when 
we rotate the Euclidean coordate £i, • • • ,£n+i so that the £n+i-axis passes 
through the center of E. We also denote by {$k } a basis of eigenfunctions 
associated with /z*; obtained as above through separation of variables, and 
remark that, for notational simplicity, we do not normalize the $k s to have 
unit L2(c?£) norm at this moment. 

To complete the proof of Proposition 3.2, we only need to show that the 
eigenvalues {/x^} we have found above are the only eigenvalues of (3.7), and 
that the eigenfunctions obtained for each fik using seperation of variables 
span the eigenspace associated with /ifc. Let $ be an eigenfunction of (3.7) 

associated with some fj,. Multiplying the first equation of (3.7) by $^ and 
integrating by parts over S, we obtain 

(M - wO / 
Jd 

*$^ = 0. 

Writing $ = J2k I ai*i on ^ ^ fol^ws that /x = /^ for some i, and al
k = 0 

for any k^i and arbitrary I. Then $ - J2i ai*i satisfies the first equation 
in (3.7) and vanishes on dE together with its normal derivative on c?E. This 

implies that $ — X)j ai^ = 0 in E. Proposition 3.2 is thus established. 
Before we proceed further, we also deduce a recursion formula for /ifc, 

which may be of independent interest. 

Lemma 3.3. 

«i<n f    , ,,(1 + Tc
2)(fc-1) + Te^fc 

(3.13) ^ = (n + fc)       rc(fc_1) + Atfe       .        k *2- 
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Furthermore, when Tc < 0; we have the estimates 

(3.14) -Tc(k -!)</*< (-Tc - i-) (k - 1),        k > 2. 

Proof of Lemma 3.3. For k > 2, we divide both sides of (25T4) by G'k to 
obtain 

(1 - C2)^|| - (2* + n)C + (1 - *)(* + n)^|| = 0. 

Expressing Gk/G'k in terms of Hk, and G'k/G'k ^n terins of ^fc+i, and also 

noting C =   r+r" 1 _ ^ = rA?' we have 

-^-WH.1+ r. (. + *)&-*)— 

from which we deduce (3.13). The first inequality of (3.14) follows from 
(3.12) and (3.10). This inequality implies, in particular, that //& > 0, for 
k > 2. Using this in (3.13), we obtain the second inequality of (3.14). 

Before providing the proof of Proposition 3.1, we first state another 
useful 

Proposition 3.4. For all $ 6 H1^), 

Q2($,$)>o. 

Furthermore, Q2($i $) = 0 iff $ is a linear combination of 1, d, £25 • • * > Cn; 
and for some A > O,^*,*) > ^||*|||fi(2)jV$ E (Ker Q2)1', where 

(Ker Q2)"1' is the orthogonal complement of Ker Q2 in -Hrl(S) under H1 

inner product 

Proof of Proposition 3.4.    We will provide a proof using the knowledge of 
the eigenvalues of (3.7). We first make the 

Claim: min I Q2($, $) * G tf1^)* /    $2 = 11 is achieved. 

Assuming the Claim for the moment, and letting $ be a minimizer, then 

{ 
A$ + n ($ + A4 (*))      = 0, 
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where the Lagrange multipler /i is min{<32($,$)|$ G flrl(E), JaE$
2 = 1}. 

Integrating both sides of the first equation over E and using the boundary 
condition in the second equation, we see easily that /x /as $ = 0. If $ is a 
non-zero constant on c?E, then /x has to be zero and we are done. If $ is not 
a constant, then $ = $ + A/f($) is a nontrivial solution of 

jA* + rt$      =0, 

If Tc 7^ 0, we multiply the first equation above by $o and integrate by parts 
over E to obtain /io Jd^ $o^ = 0- Here we have used the observation that 
$o is a non-zero constant on 9E. Using this observation again, we conclude 
that fdjy <& = 0. If Tc = 0, then $o = 0 on c?E, and c^o is a constant on 
c?E. Multiplying the first equation above by $o and integrating by parts 
over E, we obtain again Jd^ & = 0. Going back to the equation satisfied 
by $ and recalling that <£ is nontrivial in this situation, we conclude from 
Proposition 3.2 that /i = ^, and fii > 0 because the only possible nega- 
tive eigenvalue is JUQ when Tc < 0 and non-trivial eigenfunctions associated 
with jUo take non-zero constant values on 9E, but we have just proved that 
JdE ^ — 0- So we have proved that min r ^2==1 Q2($> $) = /z > 0. In fact, 
it is equal to 0 because of the presence of the kernel of (52- This provides a 
proof for the first part of Proposition 3.4. The second part of Proposition 3.4 
follows from our knowledge of solutions of (3.6). 

Proof of the Claim. Let $i be a minimizing sequence for min{Q2($> <&)|$ € 
£r1(E),/^s$

2 = 1}. It will subconverge to a minimizer, provided that 
Js $? stays bounded. Suppose, on the contrary, that /s $? —> oo. Define 

$; = $»/||$t||L2(E)- Then, after passing to a subsequence, $; —^ $00 weakly 

in -H'1(E), and l>; —* $00 in I/2(E), where $00 satisfies 

'Q2($oo,$oo)     <0, 

(3.15) J II*OOJ|L2(E)       =1, 

*c = 0. 

This implies, from the last boundary condition above and the expression of 
Q2, that 

(3.16) jf|V».|.-B»». + -^_^(/a*.)'<a 
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In the case Tc < 0, (3.16) implies that the first eigenvalue, Ai(S), of As^ 
on E with the zero Dirichlet boundary condition is less than or equal to 
n. On the other hand, the first eigenvalue, A^S^), of As** on the half- 
sphere S™ with the zero Dirichlet boundary condition is equal to n, and 
from the variational characterization for such eigenvalues, Ai(E) > Ai(S!|:), 
since E C S™. This is a contradiction. 

In the case Tc > 0, (3.16), together with the obvious fact 

(3.17) 0 < n|E| - Tc|dE| < nanj 

implies that 

/   IWoof-n/   ($00-- /   £ 
JSn JSn  \ (Jn Jsn 

= /!V*oo|2-n^0 + f (/#. 

2 

oo 

2 

oo 

= 0 from (3.15). 
91! 

<0, 

here we have extended $00 to be 0 on Sn \ E noting 3^ 

However, the first eigenvalue estimate on Sn says 

/   |V/|2-n/   (f-±[   /)2>0, 

with equality iff / is a first degree spherical harmonic. The extended $00, 
being equal to 0 on an open set, obviously can't be a first degree spherical 
harmonic. Thus we have reached a contradiction. The Claim thus holds in 
all cases. 

Remark 3.2. (3.17) actually holds without the restriction of Tc > 0, so the 
proof of the Claim in that paragraph works for all cases. Separate proofs 
were given above to avoid a necessary (though simple) calculation to verify 
(3.17). 

Proof of Proposition 3.1. Observe that, from the coordinate symmetry 
and the assumption Ei"1^ = 0> we find Gi(* - *') = 0, if * - *' € 
KerQ2. Thus, for a minimizing sequence {<!>;} for (3.4), we may assume that 
$; G (KerQ2)1'- We may also assume that Qi($i) = 1 by scaling. Prom 
Proposition 3.4, C&C*,-*) > A

II
$

IIHI(S) 
for any * G (Ke^)1. It follows 
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easily from this that a subsequence of {$i} weakly converges in flrl(S) to 
a minimizer $. It is routine to check that $ satisfies the Euler-Lagrange 
equation (3.5). The fi in (3.5) can't be zero, otherwise, $ is in the kernel of 
Q2) which implies Qi($) = 0 in view of the observation above. This violates 
the constraint Qi($) = 1. The positivity of Q(n, c, Ai, • • • , An_i) is obvious 
now. 

4. The case of c > 0.. 

We will proceed to estimate Q(n, c, Ai, • • • , Xn-i)- We first write down the 
precise transformation from £ to £: 

C*        =&>    i = I,--- ,n-1, 
Tc€n + £n+l 

Cn 

Cn+1 

Therefore, on 5S, we have 

c2_    ^    _   (i+^)2cf    1<i<n 1 

^-(i-^+1)2-(1 + yrT7fCn)2' - - 

We will make use of the eigenvalues /i2 and ^3. For this purpose, we first 
remark that a basis for the space of eigenfunctions of Asn-i associated 
with A2 = —2n can be taken as the restrictions to dT, of {£? — ^^rj^y? j = 

1, • • • ,n — l; CiCj? 1 < i < j < n}- The CtCi's are mutually orthogonal to each 
other, and are orthogonal to the £| - ^n+r2)'8' ^n ^2(^)- However, the 

£% — nd+jV)?s are not orthogonal to each other. Note, however, that in (3.8) 

all we need to compute is the square of the L2(dE) norm of the component 

/(2) of / in span{<? - ^mfj^ = V" >n - l;C*Cj,l < * < 3 < n}' 
For obvious symmetry reasons, the integrals on dT, of zl with CiCj is zeroj 

for i ^ j. So if we set ^2 := C| — n(i+T2)> J = 1? • •' »n> we can write 

/(2) = Y%ll fj2^?- A direct calculation, using (2.8), shows that 

L l^)|2 = L {$ " ^(T+If) + n2(l + I?)2j 

1      r   {gi^ + il 
■(l+I?)a*a-/sn-i\ J       n       n2J 
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e     \ 
letting £ = 

i {3crn-i    _ 2crn_i      <Jn-l\ 
n(n + 2)        n2    +   n2   J 

2(n - l)c7n-l 

n2(n + 2)(l + Tc
2)21*2' 

which is independent of j and will be denoted as I2. A similar computation 
gives, for i ^ j, 

Vra   2    2      yra\
CtCj    n(l + r2) + n2(l + r2)2/ 

letting C = 

(1 + T2)r" 

_ 1 f    g'w-l 2crn_1      (7n-i1 

"(l + T2)2^ ln(n + 2)        n2 n2   J 

2<T„_ n-l 

n2(n + 2)(l + r2) 2 

which is also independent of i,j, and is actually equal to — ^p Now 

n-l 

/ l/(2)i2 = £i/fi2/ wW+Y.&sff ^ 

= _ni2_ [ V^lf^l2 I        J2    IV^f(2) 

The /> ^'s are determined by 

i=1       Jdi: Jdn 
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The coefficient matrix of this linear system of algebraic equations is 

T J2- 

h T  £_ 
"n-1 i2 n-1 

L    n-1 
h 

'n-1 

n-1 

n-1 

h 

whose inverse is given as (it will be verified that I2 ^ 0) 

(n - 1) 
n/2 

'2   1   • • •    1 
1   2   •••    1 

1   1 

Therefore 

f-^lLrt+tL* 2 

■>n-l .-lyO')     _ ■» Observe that E"=i *2    = -*2   •   Using S^i Ai = 0 and coordinate 
symmetry, we find that 

n-1 

0. f4j) 

Thus 

and 

§L- 
(2)      (n-1) 

Ji nh JdY, 

n-1 

i=l 

We now obtain a simplified expression for 

(4.1) 
Lw-Bifo?? 

n-1 

—El/ f*¥ 

We next carry out a similar computation using the third eigenvalue of ASn-i. 

Let *« = (C? - •J        (n+2)(H-2?) )Cn» 1 < j < rc. Then ^3   are eigenfunctions of 
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ASn-i corresponding to A3 = —3(n+l). Similar to the computation done for 

tf^ 's, we denote by /(3) the component of / in spanf*^, ^2), • • • , ^n-1)}, 

and write /(3) = Y%=t /f^?- We first compute, for 1 < j < n, 

2 1 V,2 
raV^     (n + 2)(l + 2?)< JdX Jd 

(letting 9 = VT+Tlc) 

_ 1 f 3crn_i cr,!,!     1 
_ (1 + T^)11^ 1 (n + 4)(n + 2)n     (n + 2)2n J 

2(n + l)(7n_i 

(n + 4)(n + 2)2n(l + rc
2) 2 

which is independent of j and will be denoted as 73. In the above, we have 
used, 

JSn-i  J n(n + 2j 

and 

(4.3) /      8iAdO = 1 ^r1 nx for   j < n. 
Jan-i  3 (n + 4)(n + 2)n J 

We will also need, for i ^ j < n, 

(4-4) /    efoMde = -—^n-1 nN . v     J Jsn-i      3 (n + 4)(n + 2)n 

(4.2) is just a version of (2.8). The derivation of (4.3) and (4.4) is similar to 
that of (2.8), and will be sketched in Appendix C. Using (4.4), for i ^ j < n, 

f *<ihP= f /<?<:? ^ + Cj?      1 1 }(2 
JdZ   3     3       JasX^3      (n + 2)(1+ Tc2) + (n +2)2(1+ T2)2j^ 

(l + W^J^X* ' ■   (n + 2) + (n + 2)2/^ 

( letting £ = 
Vr+37, 
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_ 1 f ^n-l 2gn-i ^n-l      1 
(1 + T2)*? I"(» + 2)(n + 4)     n(n + 2)2 + n(n + 2)2 J 

2(Tn_ 

n(n + 2)2(n + 4)(l + !Z?)2fa 

which is also independent of i, j, and is actually equal to —-^hy. Now 

71-1 

/ I/
(3)

I
2
 = EI/J

3)
I
2
/ i^+E/fVf/ 

J9Z j_1 JdH i^j Jd 

'n-1 
h 

9S 

(3) .(3) 

Vfvf 

^^fgufi'j-^igV n + 

f(3)'o The fl ' 's are determined by 

n-l 
0) 

The coefficient matrix of this linear system of algebraic equations is 

h 
n+l 

_J3_ 
n+1 

rr-U ^O Tl+1 

/3 
n+l 

"n+l 

L    n+l 
i3 T 

        -TTfl       ^   J 

whose inverse is given as (it will be verified that Is ^ 0) 

(n + l) 
3(n + 2)l3 

'4   1 
1   4 

1   1 

Therefore 

(3)        (n+l)     . 
74        3(n + 2)/3W z*^ 
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Observe that £!£ *?> = ((n+2)
3

(l+T^ - OCn-  Using Ep1 Ay = 0 and 
coordinate symmetry, we find that 

n-l 

/as 
J—± 

Thus 

n—1    « 

Z*^* = o. 

(n + 2)i3 J^ 

and 

We now obtain a simplified expression for 

(4-5) 
n—1 

We now proceed to evaluate the terms in the right hand sides of (4.1) and 
(4.5). We first compute, for i ^ j < n, 

f *?*« 
=: /■ (1 + TC

2)2C?       /a 1       \ 

^(1 + VrT2fCn)2^"n(1+r^ 

(lettir    ' letting C = 
V Vl + TiJ 

(1 + T^)2^ 7-1 yi3^ M+-+e>n-1=i-e> (1 + ^n)2 V J     «>/ 

(l + ^n)2 
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n-l     / 
"2~   J-l 

1 (\-9l)—{\ + nel)den 

Similarly, 

I- z]^ 

(i+T?m 

+tf 
i      f1   d6n    r oj    u   n 

(i + r^)^ 7-1 x/T^I U1+...+02_1=1-ei (i + 0n)2 V J   "7 

1 f1  H       lPY^\(\       .2x3^-2 ^n-2 
(l + 0n)2 

O'n-2 

n(n2-l)(l + I?) 
n-l     / 
~2~  J-l (l + ^n)2 

With these computations, we have 

= - E^ O'n-2    /" 

1) (1+^)^7-1 
(1 - ^^(l + n^)^ 

^   " / n(n2 - 1) (1 + Tc
2)^ ^-1 C1 + ^)2 

+ A O'n-2 i"1 (l-gg)asL'(2n-l-3ng2)dgw          ^ z1  
J n(n2 - 1) (1 + Tc

2) V 7-1 (1 + ^n)2 

2^-2 A,- /"M1-^2*1 

«    n-l     / 
(n2 - 1) (1 + T2) (l + ^n)2 -ddn-i 
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where we used Y^i=i ^i = 0 in the third line above. Thus 

/     |f(2)|2 = ^Vil 
+2 

2(7n-2A 

(n2-l)(l + r|) 
2h f 

n    n-l     I 
Ml"' 

n+l 
I    2 

dB„ 
(l + 0„)2      n 

n(n + 2)(l + rc
2)-^ 

2crn_i 

/^   2\     n(n-2)2(n + 2K_2 

1^  M 2-+i(n-l)2(n + l)2an_1 
(l + T2) 

«        n—5 
2\ 2" 

i: Mi-**) 
n-fl 

2 

-^n >    . 
(l+^n)2 

To simplify this expression, we first observe 

T1-U1 

/l ^(i+l)2 den=S\{1+^)2^(1" 9n)**Ld6 
pi _3 

= 2n /   t 2 (1 - i) Vdi        (letting 1 - 0„ = 2t) 

= 2nB 
n + 3 n-l 

2    '    2 

where B(p, 5) = JQ
1
 tp 1(1 - t^^dt is the Beta function. Observe also that 

/•1 n_3 
o-n-i = o-n_2 /   (1 - Ol) 2 ddn 

= c7n_22"-2/1t£fS(l-t)T --3 , 
"(ft 

= 2ri-2an_2J5 
n — 1  n — 1 

2    '    2 

Using these relations, we obtain 

''n-l 
/   IW- iy\\al        ^-2)2(n + 2)a2_2(l + rc

2)-— 
yas'      '        ^  3) 2"+i(n-l)2(n + l)22"-2an_2B(^,^i) 
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Using B (2f2, 2yl) = r&B (2fi, 2fi), we find 

{B(^,^)}2
/B(V,^) = (^B(-^) 

Putting; these together, we have 

/  |,^|2      (^,2\2
2M»-2)2(n + l)2(n + 2K-2(l+Te

2)     » 
ias       '        \,tt  W 22"+3n2(n-l)2(n+l)2 

/n-1  n-l\ 

V^~'   2   ; 
^x2

>\(n-2)2(n + 2)(l + T2)-^_ /n-ln-l\ 
= I 1, Ai I  23n(n-l)2 ^-^ ^T-' ~2~) 

B 

:" I ^^ I 2"+^^-I)2 <7n-1- 

To evaluate the right hand side of (4.5), we first compute, for i ^ j < n, 

f ^w_ /     (i + rc
2)2C?    U__J__\c 

L*    3   " ias (1 + y/T+T?Cn)2 ^      (n + 2)(l + rc2);U 

-LtTSwS*"        (-ting, = VrTifc) 
1 f 0n d6n 

= (TTifF2 i-i T^W+^o2 

1 r1  (l-gg^gnrfgn 
(l+T*)*/*]-! (l + ^n)2 

(letting di = Vl - OUi, 1 < * < n - l) 

_ 1 Z1   (1 - g2)^^ d9n   f      _    2     (Tn-2    _       1       <rn-2 ] 
~ (l + I*)"/*]-!        (l + ^n)2 V        n;n2-l     n + 2n-l/ 

crn-2 f1   (l-O^OndOnl 1 g_l 
"(l + 2?)»/2y_i (l + 0n)2 l(n2-l)(n + 2)     n2-!]' 
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while 

Jan1   3     Jan (1 + VT+IfCn)2 V     (n + ^l + I?)^ 

"(l+r2)n/2</_lv'l_^(1 + ^)2 

1 f1  (1-6%)^%^ 
(1+1*)"/* J-l (l + 0n)2 

{(i-fl£)/    ^-r^a/    «?} (^ 7Sn-2 n + 2 7Sn-2        J 

(letting ^ = y/1 - efo, 1 < i < n - l) 

1 f1  (1 - ^^n «ign  f n       .2X 3^-2 1      ^n-2 ) 
(l + T*)*'2]-! (1 + On)2 V        n;n2-l     n + 2n-l/ 

^n-2 f1   (l-eD^endOn   ( 2n + 5 _ _3^_ 1 
+ T*)nl*J-i        (l + ^n)2 \(n2-l)(n + 2)     n2-l/- (1 

Putting these together, we have 

('n-l 
2 \ ^(i) /   EM2 

/ I s_\ 
\(n2-l)(n + 2)     n2-l/ 

A gn-2 ^   (1 - ffi^fln dgn  f 2n + 5 3^    -| 
+   '(l + T*)"/*].! (1 + ^)2 \(n2-l)(n + 2)      „2 _ 1 / 

_ 2Ai(7w-2 Z-1   (1 - O**1^ (WB _ fL(l-% 
(n2-l)(l + T2)f ;_! (l + ^n)2 

 J   "       „_2    /    t   2   (l-t) — (l-2t)dt 
(n2-i)(i + rc2)Vyo v      ; 
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(letting l-en = 2t) 

2n+1Aicrn-2       / D fn + 3 n-l\ _2Bf
n + 5  n - 1 

(n2-l)(l + T2)f 1    V    2    '    2    J V2'2 
2"+1Aj(Tn-2 

(n2-l)(l + rc
2)f 

(n + 1     fn-1  n-l\     n + 3     /n-1  n-1 

2nXjan-2 ^ fn — 1  n — 1 
-5 

(n-l)n(n + l)(l + Tc
2)f     V   2    '    2 

 4AjO-n_1  
"'   (n-l)n(n+l)(l + Tc

2)§' 

So 

/   I ,(3)12 = (" + 1)(" - 2)2 v^ / 4AJ-an-i 
Vas17    ' 2"+2(n + 2)    ^ V(n - l)n(n + 1)(1 + !Z?)t 

(n + 4)(n + 2)2n(l + r2)^ 
2(n + l)crn_1 

== ^^        (n + 4)(n + 2)(n-2)2(Tn-i 

^   7 2-1(n-l)2n(n + l)2(l + T2)^ 

We also write Qs in a similar form. First, 

/ 1——rdr-= /      sinnecosn-4^^ 

1       /*"'"        -1 n-5 
= - /   tV(1 -tf^dt        (letting t = sin2 9) 

1     fn + l  n — 3 
:=::: X-O 

2     V    2    '    2 

n — 1        fn— In — 1 
2(n - 3) 

Thus 

n-   T n i T2^ fv A2^   <r"-2(n ~ 2)2  B (n ~1 n "1 Q3--Tc(l + Tc) 2   ^AiJ16(n_1)(n_3)^^    2    ,    2 
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A sufficient condition for (3.8) to hold is 

(4.6) Mf^+Mf^l>2Q3. 

Observe now 

/as l/(2)l2 _ (j2x^        (n " 2^n + 2)cr»-1 

^2 \^  3I 2n+1n(n-l)2(l + T^y-^Bi^2 

and 

/asl/(3)l2 = (yX2\        (n + 4)^ + 2)^-2)^-! 

^3 ^   'y 2'l-1(n - l)2n(n + 1)2(1 + T?)2^^' 

Thus (4.6) is equivalent to 

(4.7) n + 2       |     4(n + 2)(n + 4)     ^ -Tt 

n(n - l)ft2     (n - l)n(n + 1)2/Z3      (n - 3)(1 + Tc
2)' 

We can now verify (4.7) to conclude the proof of Theorem 1.1 with the 
following two estimates on /i2 and /is: 

l + T2 

(4.8) M2< " 

(4.9) /is < 2 

ITcl   ' 
l + T2 

which are just (3.14) for k = 2,3. 

Conclusion of Theorem 1.1.   Using (4.8), (4.9), and the observation that 

3(n + l)2 _ 
1 > 7 ^7 ^7 —, when n > 5, 

(n-3)(n + 2)(n + 4)' -   ' 

we have 

n + 2 4(n + 2)(n + 4) 
n (n - l)/i2      (n - l)n(n + l)2/i3 
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^    n + 2      |re| 4(n + 2)(n + 4) 3(n+l)2 |T£ 

n(n-l)l + 2?      (n-l)n(n + l)22(n-3)(n + 2)(n + 4)l + rc
2 

ircl 
- \n(n - 1)      (n - l)n(n - 3) / 1 + 2? C 

^    1      ITcl 
-n-31 + I?' 

Thus the condition in Proposition 2.1 has been verified to hold and Theo- 
rem 1.1 is proved. 

Remark 4.1. We remark that in the verification of (3.8), /X2 alone will not 
be enough. 

Appendix A. 

Suppose Ai(M) > 0. Let us use < u,v >= JM (VuVv + c(n)RgUv) + 
^IT IdM^l9uv to denote the inner product of Hl(M), and ||^|| = v/< u,u> 
to denote the norm. We consider the following functional defined on Hl(M): 

I(u) = \l  (|Vu|2 + c(n)i^2) + ^ /    h^ - ^2 / (u+)^ 
^ JM 4     JdM *        JM 

(n-2)c   f    . +.22=11 

2(1 - 1) JdM 

It is easy to see that / € C2(ff1(M),R) and that u satisfies (1.1) if and 
only if I'{u) = 0, u e ^(M) \ {0}. 

Let 
n-2 

"(z/,Zn)=Vi + M2 + kn-t|2)    ' 
where t = — c/(n — 2). It is well known that u satisfies 

- Att = n(n - 2)u^, Rn, 

We define 

s -- f   iv-i2- (n""2)2 /  ^_ (n"2)c /    ^^ET
1 

2 JRJ 2      ./R^ 2(n -1) Jdni 
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and 
„     1   /    .«  .2     («-2)2   f   _-aa. 

It is not diflScult to see that 

(A.1) 5=i/   |Vu|2. 

Lemma A.l. For all c £ R, 

s-s^-J—f  w + tzStf S*>0. 
2(n-l)yRn!      '       2(n-l)yRn 

Proo/. Multiplying the equation of u by w and integrating by parts respec- 
tively on R^. and R^, we have 

f o /* -2r^ /* 2(n-l) 
(A.2) /     IV^|2 = n(n - 2) /    S»-a + c /      s ^2 , 

and 
f of 2(n-l) /• _2n_ 
/ | VHf + C   / U   n-2      = n(n - 2)   / U«-2 . 

It follows from (A.2) that 

It follows from (A.l) and (A.2) that 

S-Sc = ^       w +ww   iW    w     kn/   IIn"2 
n 7Rn 2n(n - 1) ./Rn 2(n - 1) 7Rn 

1 /■    .VT-,2 "-2      /"   ,^-.2     («-2)2   /"   —S = 2^ri)yRn_w +2^Y)jjVu\ -w=T)L+
un 

2(n-l)t/RJ      '   ^2(n-l)yRn 2(n-l)yR» 
1 f    lrT_.2     (n-2)2   /"    _j = 2(^i)yRJV«l  +2^1)4- 

2n 
-2 

2n 
2 

2n 
-2 

Lemma A.l is established- 
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Lemma A.2. Suppose Ai(M) > 0.   Let {ui} C Hl{M) be a sequence of 
fuctions satisfying, 

I(ui) -* b < 5C, 

and 

max      1—,, „     —> 0. 
veW(M)\{0}     \\v\\ 

Then after passing to a subsequence, either {ui} weakly converges in Hl(M) 
to some solution of {1.1) or converges strongly to 0 inHl{M). 

Proof. Take v = ui in (1.6), we have 

(A.3) IKH2 - n(n - 2) / («+) A - c f   (ut)3^ = o(|M|). 
JM JdM 

Multiplying (1.5) by —2(n — l)/(n — 2) and adding it to the above, we have 

|K||2 + (n-2)2 / K+)^=2(n-l)6 + o(l) + o(|K||). 
JM 

It follo^irs immediately that 

(A.4) INI<C. 

Using the above and (1.6) with v = u~, we have 

(A.5) IKH2 = °(1). 

It follows from (A.4) that after passing to some subsequence, 

(A.6) ui-^u weakly in Jff^M), 

for some u G Hl{M). In view of (A.5), u > 0 a.e. on M. It follows from 
standard arguments that I'fa) = 0, namely, 

fn+2 
-LgU = n{n - 2)un-2, on M, 

n 
BgU = cu™-2, on dM. 

If 7/ is not identically zero, then it follows from the Hopf lemma in its strong 
form (see e.g. lemma 3.4 of [GT]) that u > 0 and therefore a solution of 
(1.1). So we assume in the following that u = 0 and will use (1.5) to show 
by contradiction argument that 

(A.7) lim |M=0. 
i—»>oo 
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Suppose the contrary of (A.7), we have, along a subsequence, that 

(A.8) lim IK|| > 0, 
i—>oo 

and therefore, in view of (A.3), (A.4) and (A.5), 

f     f        -2n_ f 2(n-l) >[ 

lim      /   ur2+        n-2      >0. 
^^ I JM JdM ) 

As in [L], we define for m the following concentration function: 

f     f _2rL_ f 2(n~l) 1 
QUi(r) = mz£{   / |^h-2+/ \ui\n-2   K 

xeM L JBr(x)nM JBr(x)ndM ) 

Let e > 0 be some small number to be determined later, and we define r; by 

(A.9) Qm(r0 = €- 

We first show that 

(A. 10) lim n = 0. 
z—J-OO 

Suppose the contrary of (A. 10), we have ri > r > 0 along a subsequence. 
Let Xi e M be a point satisfying 

/" 2n f 2(n-l) 
(A.ll) Q^^) = / Itiil^ + / |ui|-=r" - 6, 

J Bri (xi)nM JBrt (x^ndM 

and Xi —> x. 

Let 77 G C00(M) be some cutoff function with diam(supp vj) < r/2 < ri/2 
and take v = 772(^i — ?/j) in (1.6), we have, by using (A.5), (A.6) and the 
Sobolev embedding theorems, that 

o{l) = {I'{ui)-I'{uj)\[V\ui-uj)} 

= /   V(«i - Uj)^ (r?2(«i - Uj)) 
JM 

(A.12) f     f n+2 n+21      0 
- n(n - 2) /    [|«i|"-2 - |«j|»-2J 772(«i - Uj-) 

- c /      [H^ - luj-l^l 7/2(«i - Uj) + o(l). 
JQAf L J 
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Here and in the following o(l) denotes some quantity which tends to zero as 
i and j tend to infinity. It follows, by using the mean value theorem, (A.9), 
(A.6) and diam(supp rj) < r/2 < ri/2, that 

(A.13) 

JM JM
X J 

+ C f    (K|^ + KI^)[r/(^-ui)]2 + o(l) 
JdM v / 

a n-2 

[»/(«i-t*i)]»-2j 

v   n-2 

1       f    f 2(n-l)   1  n-1 
+ Cen-i {  /     [rjim - Uj)} n-2   K        + o(l) 

UdM J 

JM 

Consequently, if we fix e > 0 at the beginning to satisfy Ce™1^ < 1/2, then 

.hm   /  |V(7K^-^))|2 = 0. 

It is easy to see from (A.6) with u = 0 and the above that tii -^ 0 in iJ1(M) 
which contradicts to (A.8). This establishes (A. 10). 

Let y1,--- ,yn denote the geodesic normal coordinates given by some 
exponential map exps., and define Ui(z) = r\n~ ^ ^(r^), for 2: G Mi = 
{z e Rn : expxiiriz) e M, |^| < 5o/n}? where SQ is half of the injectivity 
radius. Let g denote the metric gocpdzOLdz^ with gotp{z) = QcxpiTiz). It is 
easy to see, after passing to some subsequence, that there exists Ri —> 00, 
^ < <W(10ri) such that 

(A.14)     lim \  I (|V^|2 + N^) 
^00 I y{^.<|2|<2i?i}nMi 

v / 

+ 
J{Ri<\z\<2Ri}nd'Mi J 

where d'Mi = {z € Rn   :   |2?| < 5o/n, expsiinz) e dM}.   Define some 
smooth cutoff function 77; by 

/ 1 \z\<Ri, 

^j"i 0 \z\>2Ri, 



The existence of conformal metrics with constant scalar curvature    861 

satisfying 

(A.15) 

Set 

0 < fji(z) < 1,        IVrfcCOl < C/Ri. 

-(I)       ~ ~ -(2)       -        -(1) u\    = r)iUi,        u\ > = ui-u\'. 

We also define on M 

'.-.(i) «,- {^VxAv)) = ri 2 «,• {y/n) = miv/^uiiex^y)), 

and 
(2) (i) 

•y'—Hi — u\'. «i ' = «i - «i 

It is not difficult to see from (A.14) and (A.15) that 

(A.16) 1^) = / (uj15) + / («i2)) + o(l), 

/'(«*) = r («t
a)) + r (uf) + o(l) in ff-^M), 

and 

(A. 17) both w^ and uf* weakly converge to 0 in Hl(M). 

Writing 

&« = lim / foW) , 6(2) = lim / ftt{a>) . 

It follows from (A.16) that 

We will first show that b^ > 0 and then show that b^ > Sc to reach a 
contradiction. 

Using (A.14), (A.15) and (1.6) with v = u\ \u\ ' respectively we have 

o(i) = i'(Ui)uW = r (u^)«[« + o(i) 
P    i 9 P    i i   ^n P       i 

=  /    VuS15    -n(n-2)/   Lf) f-2 - c /      n. 

o(l)=J/(fi£)ul2)=r(ii{2))u?) + o(l) 

(A.18) = /  |v^2)|2-n(n-2)7  U 

(1) 
a^-1) 

+ 0(1), 

,(2) 

/*      I   (2) 
7aM' 

2(n-l) 

+ «»(1), 
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Using (A. 17) and (A. 18), we have 

,(2) |2     (n-2)-   I   L(2) 

2      JM * JM ] ' *        JM IM 

(n-2)c   /     |^(2) 

2n 
n-2 

-2)c /• 

■-l)yai 2(n - L) jdM 

1        n-2 

2(n-l) 
n-2 

+ o(l) 

2     2(n-l)JJM 

n(n-2)2      (n-2)2 

2(n -1) 2 

(2) 

M 
■u. 

(2) 
2n 

+ o(l) 

> o(l). 

Therefore 
&<2)>o. 

Let ii^1) be the weak limit of uj1* in if/oc. It folows from (A.5) that u^ > 0. 

For any test function ip € C7~(Rn), set (p(y) = rf _n)/2^(y/ri). It is clear 
that 

o(l) = 1'^ = I'(uV)v + o(l)|M| 

(A.I9)     - k (^^+^^+^ L ^^ 
-n(n-2)/   (u?)^2 <p - c I      (uff* <p + o{l)M 

Let r = lim^oo distfc, dM)/ri. When T = oo, we have from (A.19) that 

/   V^1) V^ - n(n - 2) /    (u^) ^ <p = 0, 
7R" ^Rn v       / 

namely, 

-Ati(1)=n(n-2)(tiW)^,        R". 

When 0 < T < oo, we have from (A.19) that 

f     Vu^Vv - n(n - 2) f      (vF>) ^ <p - c f        (u^) ^ £ = 0, 
yR«T ^R!iT 

v   y ^9RIT 
v   / 

namely, 

-AiiW = n(n - 2) (vP*)^ ,        z € R", ^n > -T, 

—— = -c  u^1' , zn--l, 
K      azn V      / 
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We see easily from (A.9) and (A.14) that 

Q^DC
1
) = SUP 

zeMi l^Bi(z)nMi 
ti? + 

/. B1(z)nd'Mi 
4(1) 

2(n-l) 

< 6 + 0(1). 

Arguing as in (A. 12) and (A. 13), we know that {u\ ^} strongly converges to 
iS1' in Hl norm on any conpact sets. We aslo know from (A. 11) and (A.14) 
that 

/. BifojnAfi 
u] (1) n-2 + 

JB^ 
«« 

2(n-l) 
n—2 

= € + o(l). 
/Bi(O)n0/Mi 

It follows that -u^1) is not identically zero. We can then apply the Liouville 
type theorems of Caffarelli-Gidas-Spruck [CGS] in R71 and Li-Zhu [LZ] in 

R!j: to obtain the explicit forms of u\ ' as follows. 
When T = oo, we have, for some e > 0, z G Rn, 

u^\z) = 

n-2 
2 

onR" 
? + \z-z\2 

When 0 < T < oo, we have, for some e > 0, z = —ce/(n — 2), 

uW(.z) = on R^T. g2 + |2/_5/|2 + |Zn_in|2^ 

It follows from (A.5) and (A.17) that (uj15)- -+ 0 in tf^M). It follows that 

6(i) 
-5/ 

(Dl2     ("-2)2 

Vu^    - 

(n - 2)c 
2(n - 1) / (-.a)) 

n—2 
+ o(l), 

and 

0(1) = J'^)^ = I'(u^)u^ + 0(1) 

= / v„<»2-„(„-2)/ u»)=*-c   w"r^+o(i). 
JM ' JM V       ' JdM y       ' 

Combining the above two estimates, we have 

fo(i)=('I_    n-2 

2     2(n - 1) M 
v«. (1) 
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2(n - 1) 2 

Sending i to oo, we have 

+ (n(n-^_(n-^\r(n))^ + o^ Uw* 
f_l_/    |v,a)2 + i^:/    (fi(i))=*        tfT^oo, 
2(n-l)yRnr ^2(n-l)iRnV      J 

2(n-l)yR»Tr ^2(n-l)yRnTV      J 

S ifT = oo, 

S'c if 0 < T < oo. 

In any case, we have shown that b > &(1) > Sc which contradicts to the 
hypothesis. 

Appendix B. 

In this Appendix, we provide the algebra which leads to the expansion (2.1). 
In the following, Aa = a - ao, A6 = b - bo, ■ • •, etc. 

max I(tu) 
0<t<oo 

= T^-TT {(ao + Aa)(l + At)2 + (n - 2)2(b0 + A6)(l + At)^} 
2(n — 1) I J 

= ^ru {(ao + Aa) ^ + 2A< + (A*)2) 
+(n - 2)^(60 + Ab) (l + ^At + (^ + o(1))(At)2) } 

=    ,  1    N {ao + (n - 2)2bo + Aa + (2ao + 2n(n - 2)6o)At 
2(n — 1) 
+ (n - 2)2A6 + 2Aa At + 2n(n - 2)A6 At 

+[ao + n(n + 2)&o](At)2 + o((At)2)} 

= sc + n,  
1  ,, {5 Uo + (2ao + 2n(n - 2)6o)To + (n - 2)250] + 

2(n — 1) 
+ e8 [Ax + (n - 2)2J3i + (2ao + 2n(n - 2)6o)Ti] + 

+ S2 [A2 + (n - 2)252 + (2ao + 2n(n - 2)6o)T2 + 2>loTo+ 

+2n(n - 2)Bo7o + (ao + n(n + 2)&o)To2] + 

+e2 [As + (2ao + 2n(n - 2)6o)T3 + (n - 2)2B3]} + o(e2 + S2). 
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Observe that, using (1.4), we obtain 2ao+2n(n-2)&o = (n—2)[^nbo+^z^do]. 
Using this and the expression for To, we simplify the coeflBcient of S by 

A) + (2ao + 2n(n - 2)feo)To + (n - 2)2Bo 

= (n - 1) (Ao - (n - 2)2Bo - ^| A 
\ n — 1 

Similarly we simplify the coefficients of e8 and e2 by 

Ai + (2ao + 2n(n - 2)6o)ri + (n - 2)2B1 

= (n - 1) ^i - (n - 2)aB1 - ^f^l) , 

M + (2ao + 2n(n - 2)6o)T3 + (n - 2)2B3 

= („-!) ^ - (n - 2)253 - ^i's) • 

Finally the coefficient of 52 is simplified as 

A2 + (2ao + 2n(n - 2)&o)T2 + (n - 2)2B2 

+ 2To [Ao + n(n - 2)Bo} + (ao + n(n + 2)&o)T0
2 

= (n - 1) (A2 - (n - 2)2B2 - ^y^a) + To (2Ao - 2n(n - 2)Bo - 2D0) 

+ TiUnbo + :^do\(n-3) 

= {n _ !) L _ (B _ 2)2B2 _ HZ** + [^ - n(n - 2)* - Do]2 \ 
n - 1 4n6n + -4 

= (n - 1) IA2 - (n - 2)252 - ?-4l>2 

4nbo + ^=2^0 

n-2 
-— [ilo - n(n - 2)5o - Do]2} . 2ao + 2n(n 

Appendix C. 

In this Appendix, we sketch the elementary derivations for (2.6)-(2.8), (4.3)- 
(4.4). First, (2.6) and (2.7) follow from direct integration by parts, and the 
last of (2.8) follows trivially from 
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Next, a change of variables shows that 

Jsn-2 Jsn- 2 v    y/2   )   V   y/2 
v2 

4 ysn-2 

z Jsn-z        * Jsn-2 

from which we obtain 

(c.i) /    ^ = 3/    efel 
JSn-2 JSn-2 

On the other hand, 

*n-2=   [ ((?? + ...+ Cl)2 

= (n-l)/      0? + (n-l)(n-2) /      ^2
2, 

t/Sn-2 JSn-2 

which, combining with (C.I), gives (2.8). Similarly, using 

/"        06=   f e1 + e2
x6 

we obtsdn the relation 

/    ^ = 5/    efel 

Togeth(3r with 

n — 1 7Sn-l 

n — 1 Vs71-1 n — 1 Js"-1 

we obtain (4.3). Finally, 
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n - 2 Jsn-i 

n- 2 Jsn-i 
O'n-l 

n(n + 2)(n + 4)' 

using (2.8) and (4.3). 
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