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1. Introduction.

This paper deals with the expansion of an immersed convex (by convex,
we mean strictly locally convex) plane curve by a nonhomogeneous function
of curvature. We investigate its blowup and convergence behavior. It is a
sequel to our previous one [CT], where we considered the outward expansion
of an embedded convex plane curve with speed an arbitrary positive function
of curvature.

Although nonhomogeneity allows us to treat the expansion of more gen-
eral types of plane curves and is more natural in some situations (see [CLT]
and [T]), it has its limitations. One major difficulty is that we can not apply
the maximum principle and other related arguments in full generality.

The main problem here is that we take a look at the way in which a
smooth immersed convex closed plane curve 7o evolves according to the
equation

X 1
(1.1) ot = ¢ (E) N,
X(e,0) = Xo(a), a€S,

where X : S — R? is a smooth initial parametrization of ~p, k(a,t) is the
curvature of the curve given by X (-, t) at the point ¢, G : Rt = (0,00) — Rt
is an positive smooth function with G’ > 0 everywhere, and N(-,t) is the
outward unit normal vector field to X(-,¢). Additional assumptions on G
will be given in different places.

In the embedded case, where we have the uniform bounds of the first
and second derivatives of the support function by a constant independent
of time for arbitrary speed G, the blowup and convergence behavior of ;
is tractable. However, in the immersed case, we lack such nice estimates
and need to put additional assumptiens on G. Roughly speaking, to ensure
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convergence to round circles we need to assume G is concave and to discuss
the finite-time blowup behavior we need to assume G is convez.

The contents of this paper are divided into four sections. Section one is
an introduction leading to the partial differential equation of the expansion.
Section two is for arbitrary speed G (except in Section 2.3.1 where we assume
G is convex) and Section three is for concave speed.

The recent paper [AN] by B. Andrews contains a lot of beautiful results
for convex plane curves evolving by various kinds of curvature functions.

Some elementary formulas. For the reader’s convenience, we first pro-
vide some elementary evolution formulas which can be derived in ways simi-
lar to [H]. Without loss of generality, we may assume our initial parametriza-
tion Xo is such that the orientation of {IN,T} is the same as the usual
orientation of R2.

Since equation (1.1) is strictly parabolic, it is well known that for any
C* immersed convex curve Xp : S1 — R2 there exists a smooth solution
X = (z(a,t),y(a,t)) : S* x [0,T:) — R? to it for some short time T, > 0,
where each X (-,t) represents an immersed convex plane curve y;. We let
v = |‘—Z%| # 0. The arc-length parameter s is only well-defined up to a
constant. Nevertheless, the partial differential operator 3@5 = %5% is clearly
well-defined. The unit tangent vector is given by T' = %% and the curvature

k is defined as

oT 02X
(1.2) k- N;p, = D5 = B2
or equivalently k = %?2(-, Ni, ) ), where N;;, = —N is the unit inward nor-

mal vector to the curve. After the definition of the curvature, we obtain the
Frenet equations
or ON o0X

s oT.

Next, we compute

(1.4) % — vkG (%) .

We shall show later on that the convexity of ; := X (-, t) is preserved under
the flow and therefore equation (1.4) says that - is immersed as long as
solution is smooth, i.e., v > 0 as long as solution is smooth. We then use
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(1.4) to obtain the commutative relation

090 0 0 1\ &
(1.5) 8tds 0Osot —kG (k) Os’

Using equation (1.5), the evolution of the arc-length is given by

dl 1
(1.6) 2. [/ kG (E) ds > 0,

where [(t) is the arc-length of the curve at time ¢, i.e., I(t) = f ds. There-
fore for immersed convex plane curves expansion, the are—length is always
increasing as one’s intuition believes.
Another useful formulas are
T 0G(3).. ON  0G(3)

(1.7) R T R

From (1.7), we can compute the evolution of the curvature

W E(od),we(l)

Finally we see that the rotation index (number of times its tangent winds
around as one goes along the curve)

1
I(’Yt) = -2—7;/ k(S,t) -ds
Yt

is preserved under the flow on [0, T;) since I(7;) is a continuous function of
t with integer values.

Let m denote the rotation index of the immersed initial convex curve .
Similar to the method in Urbas [U], we can reduce equation (1.1) to an initial
value problem for the support function «. The support function u(p;) at the
point p; € 7y is defined as u(p;) = (X (o, t), N(a, t)), where X (o, t), o € S1,
is the position vector of p; in R? and N is the unit outward normal at the
point p;. We can see that u = u(a,t) is a well-defined smooth function on
the parametrization domain S* x [0, T;). If we use the variable  to denote
the angle of the unit outward normal N with respect to a fixed direction.
Although z is, similar to s, only well- deﬁned up to an integral multiple of
27 The partlal differential operator 5z and the formula N = (cosz, sin z)
both make sense and we have

ON _09zdN _ .. ON _0z0N _ oG (%)

9s  Os Oz ' 9t Ot or  Os T.
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The three partial differential operators %, % and 3% are related by

(19) bw_, 0_10 _,0 d_ 0G(3)
Os ds vl Ox ot Os

To make our notations simpler, without loss of generality, we may assume
that the support function u is expressible as a 2mm-periodic function u(z, t)
on z € [0,2mn] = R/2mnZ, where m is the rotation index of the initial
immersed convex curve -g. The reason is that in the a priori estimates of
u that we shall investigate hereafter, the pointwise value of z will not come
into play at all.

One nice thing about the support function u(z,t) is that we can use it
to express the curvature k. It is given by

1

(1.10) Uzz(Z,t) + u(z,t) = e

Let uo(z) denote the initial support function. It is periodic with period 2mm
satisfying (u0)zz(z) + uo(z) > 0 for all z € S., = R/2mnZ. Equation (1.1)
is now equivalent to (see Urbas [U])

(%) ot
u(z,0) = uo(z), =z €Sk,

together with the condition

(1.11) Ugg (2, t) + u(z, t) 0

T k@)
whenever the solution exists. The extra condition (1.11) does no harm to
our study of equation (*) since it will be preserved as long as the initial
condition ug(z) satisfies it.

The case m = 1 for arbitrary speed G has been studied in [CT] and the
case when G(2) = 2%, a € (0,1]; i.e., G is homogeneous of degree a € (0, 1],
has been considered in Urbas [U] for any m > 1. Here we investigate the
case m > 1 for nonhomogeneous speed.

One should be aware that the time parameter ¢ in equation (*) is chosen
to be independent of the angle z, i.e., %% = %%. Therefore the partial
differential operator 2 in equation (*) is not the same as the operator % in
the original equation (1.1).

We would like to point out that, in contrast to the contraction of im-
mersed convex plane curves (see Angenent [A]), where singularities may
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develop, we shall see that smooth solution to (*) exists as long as the sup-
port function u is finite (or as long as the curvature remains positive). From
now on we shall focus on equation (*) which describes the expansion of the
immersed convex plane curve «;.
For convenience, we shall use the notation (ODE) to denote the following
ordinary differential equation
dR

(ODE) = =G(R)

and we will specify its initial value R(0) > 0 whenever necessary.
2. Estimates with arbitrary speed G.

In this section, we only assume that G : RT = (0,00) — R* is an arbitrary
positive smooth function satisfying G’ > 0 everywhere. The analysis in
this section is fairly standard. It differs in some respects from that used
previously in the embedded case, but does not require any difficult ideas.

From now on we also assume lim,_,o G(z) = oo, otherwise by Lemma
2.6 and Lemma 2.8 we will have the first and second derivatives of u bounded
by a constant independent of time, which is essentially what we want.

2.1. Gradient and second derivatives estimates;
long time existence.

Recall that in the embedded case (see [CG] and [CT]), the following esti-
mates on S} = S! were established as long as G’ > 0 is satisfied:

Proposition 2.1. Let u(z,t) be a smooth solution to equation (*) (with
m=1) on S! x [0,T), there exists a constant C > 0 depending only on the
initial function uo, independent of time, such that

(2.1) lug(z,t)| < C  and  |uge(z,t)| < C
for all z1, 9 € S' =R/27Z and t € [0,T).

In the immersed setting (m > 2), both estimates in (2.1) fail. As a
simple example, the function

1
u(z,t) =c1 -cosz+co-sinz + c3 - 3t/4 cos 3%
(2.2) 1
3/4gin 2z + c5 - €,

+cq4-€ D)
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where ¢;, 1 <14 <5 are constants, is clearly a solution to the linear equation
% = Uz +uon (z,t) € S3 x [0,00) = [0, 47] x [0, 00). (This linear equation
can be converted into the standard heat equation 2 = v,, on S} x [0, c0)
if we let v = e~*u.) However it does not satisfy (2.1). Similar example can
be constructed on S}, x [0,00).

We can use either the Fourier series theory or the following simple geo-
metric motivation to explain the breakdown of (2.1). Imagine a big closed
cardioidlike curve with one tiny loop Lo and call the rest L;. We may also
position the origin O of our coordinate system so that the support function
uo(z) is everywhere positive and has larger values on the big loop L, smaller
values on the little loop Ly. Also, for any point p on loop L;, which has
small curvature, the expansion speed of p is much faster than the expan-
sion speed of any point ¢ on the little loop L2, which has large curvature.
The difference umax(t) — umin(t) will not be bounded above by any positive
constant C independent of time.

In the computation hereafter we shall use these two general identities

f-AR—h-Af _ (h o[k
(2.3) 72 —A(f>+2V(logf) V(f)’ f>0
(24) f-Ah+h-Af = A(fh) =2V (log f) - V (fh) + 2 (fh) - |V (log f)?

to convert an evolution equation into the form we want. Here A and V are
the Laplacian and gradient operators on a compact Riemannian manifold
(M, g); f >0 and h are any two smooth functions on M.

The parabolic maximum principle is the main tool used throughout this
paper. Let f(t) be a Lipschitz function on some interval [a,b), the meaning
of the differential inequalities d:l'—tf <C, idtt’i >C, d—;tt <C, % > C can
be found in Hamilton [H].

We say f is an increasing (strictly increasing) function if whenever z < y,
we have f(z) < f(y) (f(z) < f(y)). Similarly for decreasing. Our first
lemma is a slight variation of Lemma 3.1. in [H], p.158.

Lemma 2.2. Let f(t) be a Lipschitz function on [a,b] and let g(t) be a
increasing function on [a,b]. We have:

If f(a) < g(a) and %{ < 0 whenever f > g on [a,b), then f(b) < g(b).

Assume [0,T') is the time interval of a unique smooth solution u to
equation (*¥) on SL. We shall compute several evolution equations related
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to the support function and the curvature and then apply the maximum
principle to obtain estimates. For convenience, let

We have
(2.6) 0.H = G'(H)H,, + G"(H)H? + G(H),

which is equivalent to the curvature equation

(2.7) % = —k? (G (%))m - kG (%) .

The lemma below estimates the rate of the radius of curvature from
below, which is geometrically obvious.

Lemma 2.3. Let u(z,t) be solution to (*) with (w0)zz + uo > > 0 for all
z € S}, then

(2.8) H(z,1) = ugs(z, 1) + u(z,t) 2 ¢(t)

for all (z,t) € S}, x [0,T), where ¢(t) is the solution to (ODE) with ¢(0) =
Hpin(0) = 6. Moreover, we have

(2.9) kmax(t) is strictly decreasing on [0,T).
where kmax(t) = maxes1 k(z, ).
Proof. (2.8) is by the maximum principle with a comparison to the cor-

responding ode. For (2.9), we apply Hamilton’s maximum principle for
Lipschitz functions to (2.6) to get

(2.10) ﬂH-(t)——ﬁ _t > G(Hmin(t)) > G(6) >0
' dt Y T dt \ kmax(t) ) T i = ’
Hence Hpin(t) is strictly increasing on [0, T). O

Remark 2.4. We will see later on that kmin(t) is eventually strictly de-
creasing. Intuitively one can see that it will not be strictly decreasing at
first.
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Lower bound of the radius of curvature implies the gradient estimate.
More precisely, we have

Lemma 2.5. Let u(z,t) be a smooth solution to equation (*), then

(2.11) |uz(z,t)| < Umax(t) := max u(z, t)
TES,,
on Sk x [0,T).

Proof. Let A = u2 + u2. Assume A(a(t),t) = maxesy A(z,t) for some
a(t) € SL,. Since we have uz; +u > 0 on SL, x [0,T), we see that

(2.12) 0= 22@(t) 1) = 2tz (s + )] (a(t) 1),

which implies u,(a(t),t) = 0 and hence

2 — 22 2
max Uug(z,t) < max A(z,t) = u*(a(t),t) < max u (z,1).

This is equivalent to

(2.13) Imax |us(z,1)| < max |u(z, )| .

Finally we see that

(2.14) :'I:Ielg')li lu(z, t)| = ;Ielgii u(z,t) = Umax(t)

by drawing the smallest circle centered at the origin which encloses ;. O

The gradient estimate (2.11) can also be established using an alternative
integral method. Compute

(2.15) % (% /31 [(uz)2 _u2] d:l!)
- / (G(H) - (ttgs +w)] dz < ~G(8)6 - 2mm < 0
sh

and

4 (é [, e = ey dw) = [, ¢ - (e <o
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We get
(2.16) luz(z,t)| < Cumax(t),
where C is a constant depending only on m and ug(z) by the following:

Sobolev inequality: If there exists a constant M such that || f||, < M and
171l < M, then ||fll, < C - M, where |||y is the L2 norm and |||
is the sup norm for functions on S}, and C is a constant depending
only on m.

Several observations are in order. When m = 1, the geometrical meaning of
the integral in (2.15) is

(2.17) % /S . [4? - (uz)?] dz = area enclosed by ;.
Also the Wirtinger inequality implies
(2.18) / (ue)?dz < m? / (uge)2da.

s, s,

Finally, Lemma 2.5 does not imply the relation |uz(z,t)| < |u(z,t)| and
from the integral proof we also see that

(2.19) [umax(t) = tmin(t)| < C'llufl, +C

on [0,T). That is, the oscillation of u is bounded by its L? norm on S},.

Now we come to an estimate on the second derivative of u. Roughly
speaking, it says that u, and wu,; have the same upper bound due to the
special form of equation (*).

Lemma 2.6. If |uz(z,t)| < M(t) on SL x[0,T) for some positive increasing
function M(t), then

(2.20) usz(z, t)] < CM(t)

on Sk, x [0,T), where C is a constant depending only on m and ug(z). In
particular we have

(2.21) |uze(z,t)] < Cumax(t),

on SL x [0,T).
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The proof of Lemma 2.6 goes exactly the same as the embedding case
in [CT] except that now we apply Lemma 2.2 to the Lipschitz function
Wmax(t) instead of Lemma 3.1. in [H] to show that wmax(t) < C - M(t)2.
Here w(z,t) = & [(us)? + (uzz)?] and its evolution equation is given by

‘?‘f = G'(H)wgs + G" (H) Hywy + G (H) Hy (4 — Uag)s.

Curvature estimate now comes immediately.

Corollary 2.7 (preserving the convexity). If |u(z,t)| < M on S}, x
[0,T), then

(2.22) 0< <k(z,t) < —

cM (t)

for all (z,t) € SL, x [0, T), where C is a constant depending only on m and
uo(z), and @(t) is the solution to (ODE) on [0,T) with ¢(0) = Hpin(0) =
0 >0.

Another useful estimate is the uniform bound of the ratio of the space
derivative to the time derivative, which in the starshaped plane curve ex-
pansion (see Tsai [T]) leads to a uniform gradient estimate independent of
time.

Lemma 2.8. We have

Uz

(2.23) )

<cC

on Sk x[0,T), where C is a constant depending only on the initial condition
uo(z).

Proof. Let w = We compute

G (H )
G(H
atw = G,(H) N wg:g: + 2GI(H) G((H?)m * wz.
Since the lower order term is a gradient term, the maximum principle implies
the assertion. O

As a consequence of Lemma 2.8, we have the following relation between
the oscillation of u and the curvature k.
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Corollary 2.9. The oscillation of u and the curvature k are related by

(2'24) luma.x(t) — umin(t)l < C- |(U:z)ma.x(t)l < -G (kmi(t))

on [0,T), where C is a constant depending only on m and uo(z).

As we shall see that kmin(t) is eventually strictly decreasing in Lemma
2.17, hence by Lemma 2.6 we also have

(225)  |(%)max(t) — (Uz)min(t)] < C + |(Uoz)max(t)| < C - G (——kmi ( t)>

on [0, T'), where C is a constant depending additionally on some positive time
Thec after which kpin(t) starts to become strictly decreasing. Geometrically,
Uz is the tangential component of the position vector X in equation (1.1).

With the first and second derivatives estimates at hand and the help of
the standard parabolic theory, we finally conclude

Proposition 2.10. If |u(z,t)] < M on S}, x [0,T) for some positive con-
stant M, then

k
ﬁ_‘?)_u(x,t)| <C on S, x[0,T)

(2.26) 5 Bk

where C' is a constant depending only on M, m, G, ug, T, k, £.

In summary, we have established the following result:

Theorem 2.11 (long time existence). Let G : Rt — RT be an arbi-
trary positive smooth function with G' > 0 everywhere. There ezists a
unique solution u(z,t) € C®(S}, x [0,Tmax)) to equation (*¥) satisfying
Uz (z,t) + u(z,t) > 0, where 0 < Tmax < oo is the time interval such
that lim;_, 7, Umax(t) = oco.

The geometric meaning of Theorem 2.11 is that there exists a unique
one parameter family of smooth convex immersed plane curves satisfying
equation (1.1) which expand to infinity for arbitrary speed G. The solution
exists until umax(t) blows up.



772 Dong-Ho Tsai

2.2. Eventual monotonicity of the curvature.

Recall that kmax(t) is strictly decreasing on [0, Tryax) during the expansion.
We will show that the curvature k is actually strictly decreasing everywhere
on S}, once it has become uniformly small. That is, there exists a constant
C depending only on the initial condition such that if we have kmax (to) < C
at some moment %o, then k(z,t) is strictly decreasing on the time interval
[to, Tmax) for any z € S%,. To see this, a straightforward generalization of
Lemma 4.1 of Angenent [A] implies the following

Lemma 2.12. Let v(6,t) : R/2m7Z x [0, Tmax)—RT, m € N, be a positive
smooth solution to

(2.27) %% = F(0,t,v,vg) - (veg + v),
where F(0,t,p,q) : R/2m7Z x [0, Tax) X RT x R — R* is smooth and

arbitrary. Then at each point (8o, t0) € R/2mnZ x [0, Tmax), we have esther

(2.28) vgg +v>0
or
(2.29) vg 402 < C?
where
1/2
(2.30) C= [oexﬁr}gfmz (ve(6,0)* + v(9,0)2)] .

We refer the readers to Angenent [A] for its proof. Lemma 2.12 says that
as long as v(f,t) becomes greater than C at a point (6,t), we automatically
have vgg+v > 0 at that point. Since F > 0, equation (2.27) will force v(6,1)
to become even larger.

Under the same assumption as in Lemma 2.12, we have the following
three corollaries. They are all similar to Angenent’s results. In the following
three corollaries, the constant C is given by (2.30).

Corollary 2.13. For each t € (0, Tmax), define the following family of sets
Q(t) = {0 € R/2m7Z : v(8,t) > C}.

Then
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i) The family of sets Q(t) is increasing with respect to time.

ii) For any to € (0, Tmax) and any Oy € Q(to), the function t — v(fp,t) is
strictly increasing on the interval [to, Tmax)-

The eventual monotonicity of the solution allows us to estimate the
derivative vy in terms of vmax(t) = maxger /2mnz v(, t).
Corollary 2.14. For any (6,t) € R/2mnZ x [0, Tmax), we have |vg(6,t)| <
C +2mm - vpmax(t).

For any given t € (0, Tax), we can choose a 6(t) for which v(0(t),t) =
Umax(t). The following corollary permits us to compare the solution to a
cosine function in some interval near the maximum point 8(¢).

Corollary 2.15. If vpax(t) > C, then
v(0,t) > vmax(t) - cos(6 — 6(t))
for all 6 with

C
0<(|0—-06(t)] < s{ —— ],
| (t)| < arcco (vmax (t))

where 0 < arccos (ch'(t)) < 3.
Remark 2.16. Corollary 2.15 can be applied to any local maximum as long
as it has value greater than C.

Now let us come back to the expansion. We can apply the above lemma,
and corollaries to the equation

(2.31) Bw = F(w) - (wes + w),

where w(z,t) = G(H(z,t)) = G (1) > 0 and F(w) = G'(G~'(w)) > 0 and
obtain the following lemmas and corollaries. We already know that kpax(t)
is strictly decreasing on [0, Tryax), which implies wmin(t) = G(Hmin(t)) is
strictly increasing on [0, Trax). If there exists a finite time Tyec € (0, Timax)
such that

1/2
(2.32) Win (Tdec) > l:xellrll}gr}rcmz (wg(z, 0)2 + w(z, 0)2)] ,

then we automatically have

0w = F(w) - (wgz +w) >0
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on R/2mnZx (Tyec, Tmax)- Thus w(z, t) is strictly increasing on [Tyec, Tmax)
for any z € R/2mnZ. We summarize this as

Lemma 2.17. (i) If there exists a finite time Tye, € (0, Tmax) Such that
(2.32) holds for the solution to equation (2.31), then the curvature
k(z,t) is strictly decreasing on [Tyec, Tmax) for all z € SL,.

(ii) If Tmax < oo for the solution to equation (2.31), then since

lim Hpax(t) = 00

t—Tmax

see Lemma 2.21), we know that Hy.x(t) = —j—;.l is eventually strictly
kmm t
increasing.

(iii) If Tmax = oo for the solution to equation (2.31), then there exists
a finite time Ty, € (0,00) such that the curvature k(z,t) is strictly
decreasing on [Tgec,00) for all z € SL,.

Proof. If Tnax < 00, considering the equation dw = F(w) « (wgy + w)
evaluated at the point where Hp,.x(t) is attained, we must have w =
0:G(H) > 0 eventually. Hence Hp,ax(t) is eventually strictly increasing. If
Tmax = 00, using the equation

@ =5 (L) > G(Hum @) > G6) > 0
dt min - d t kmax ( t) = min = )
we see that lims_,oo G(Hmpin(t)) = 0o. The corollary follows. a

Again let C' = [max,cg Jomaz, (Wa (2, 0)2 + w(z,0)?)] Y2 in the following
two corollaries, we have

Corollary 2.18. For any (z,t) € S}, %[0, Tmax), we have

‘Qg%x_,t_)z' < C +2m7 - G(Hpmax(t)).

Corollary 2.19. If G(Hmax(t)) = G(H(0(t),t)) > C for some t € (0, Tmax)
and some 0(t) € S}, then

C(H(z,t)) > C(Hmax(?)) - cos(z — 8(%))
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for all x with

o<m—ﬂ@N<M““(5Giiﬁﬁ)’

where 0 < arccos (m) <73

Although we can not apply Lemma 2.12 to u (u is not necessarily posi-
tive), we also have the following result for u similar to Corollary 2.19.

Corollary 2.20. If umax(t) = u(6(t),t) for somed(t) € Sk, then
(2.33) w(z,t) 2 ¢(t) + [umax(t) — p(2)] - cos(z — 6())
for all
ze (6(t)— 20 0(t) + g) , t € (0, Tinax)-
Here ¢(t) is the solution to (ODE) with ¢(0) = Hpyin(0) = 4.

Proof. For any point p € S}, with u(p,t) = 0 we have
u(z,t) = u(p,t) - cos(z — p)

(2.34) + /p " sin(@ — 1) - {upe(r, 1) + u(r, )} dr.

In particular, we have
u(z,t) = Umax(t) - cos(z — 6(t)) +/ sin(z — 7) - {urr(7,t) + u(r,t)} d7.
o(t)

If z € (6(t), 6(t) + %), then

/w sin(z — 7) - {turr(7,t) + u(r,t) } dr
o(2)

z—0(t)
= / siny - {urr(7,t) + u(r,t)} dy
0
z—0(t)
>p(0): [ sinydy = p(0) - [1 - cos(z — 0t)].
0
The proof is similar if z € (6(t) — , 6(t)). O

Roughly speaking, if umax(t) is large, then u(-,t) is uniformly large
around the point 6(t).
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2.3. Blowup behaviorl.

We are mainly interested in the case of finite-time blowup, i.e., Tax < 00.
We only touch some very basic relevant situations here. Results in this
section are far from being complete. Of particular interest is when G is
convex, which will be discussed in the next section.

The phenomena in the finite time blowup are not well understood even
in the homogeneous cases. What happens t0 umin(t) or ';::(tt) as t —
Tmax in the general case is still unknown. Some complicated behavior may
happen. For example, one finds that an m-fold expanding circle is linearly
unstable under the expansion with speed G(z) = 2® when a > E";‘i—l (which
decreases towards 1 as m — o). This suggests that for sufficiently large o
(perhaps, more generally, sufficiently high rate of growth of the speed) the
limiting behavior should not be given by an expanding m-fold circle, but by
something else.

Lemma 2.21. The blowup time for umax(t) is the same as the blowup time

1
fO’l" Hma.x(t) = mt—)'

Proof. Clearly, by (2.22) we only have to assert that if , li%n Umax(t) = 00

then -

t—Tmax
also. Here 0 < Tiax < oo. For the case when Tax < 00, assume that we

have
lim wumax(t) = 00

t—Tmax
and

t—l}.lr“,rnlax Hpax(t) < 00
(Hmax(t) will be shown to be eventually increasing). By the relation
(2.35) Hmin(t) < Umax(2), 'Umin(t) < Hpax(t),

we would have . li'Ir‘n Umin(t) < oo also. But then from (2.24), we must have

lim Emin(t) = 0

—*1Imax

1We would like to thank the referee for making several valuable suggestions.
. They have been incorporated into this section as well.
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since we assume lim,_,, G(2) = oco. This is a contradiction. O

In the next lemma, we will give an estimate of the blowup time Ti,ax in
case it is finite.

Lemma 2.22. Let T« be the mazimal time interval for the solution u(z,t)
to equation (*). We have

o0}
. ) 1
(2.36) Tmax < 00 if and only if /1 E(Z—)-dz < o0

In particular, if G : RY = (0,00) — Rt is concave, then Tiyax = 00. More-
over, if Thax < 00, we have the estimate

o0 1 o0 1
2.37 0< / ———dz < Tyax < / —dz.
(2.37) Humax(0) G(2) = M) G(2)

Proof. Consider the solution R(t) : [0,To4e) — R* to (ODE) with initial
condition R(0) = A > 0. The solution is defined by the relation

o 1 d / t dat, T, / ~ 1 d
z = ) = Z
» GET = GG

where T,4. is the maximal time interval for the solution R(t). Clearly, we
can see that T4, < oo if and only if f1°° mlzjdz < 0o. We note that if there
exists one positive solution to (ODE) with finite time blowup, then all other
positive solutions have finite time blowup also.

Suppose now we have two solutions to (ODE) with corresponding initial
conditions 0 < A; < A2 and blowup times 77 > T>. We have

A2

(2.38) 2=Ty—Tb,

. C@)°

which describes the relation between the initial conditions and the blowup
times.

Assume Tipax < 0o. Then, instead of working on umax(t), we consider
Hpax(t), which is easier to handle at this moment. Recall the equation

8,H = G'(H)H,, + G"(H)H? + G(H),
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which describes the evolution of the curvature k = . Let ¢;(t) and (%)
both be solutions to (ODE) with ¢1(0) = Hpin(0) > 0, ©2(0) = Hmax(0) >
0. By the comparison principle, we know

(2.39) p1(t) < H(z,t) < pa(t)

for all z € S}, whenever all three quantities are finite. Since the blowup
time for Hpyax is also Tiax, the blowup time for ¢j(t) is greater than or
equal to Tmax and the blowup time for ¢o(t) is less than or equal to Tmax.
Continuous dependence of solutions to (ODE) guarantees the existence of a
unique solution R(t) with blowup time exactly equal to Tmax, i-e., we have

& _am),
(2'40) R(O) =Ry € [Hmin(o)a Hma.x(o)] > 0,
R(Tmax) = 0o.

Here Ry depends on the number Tmax. Finally we see that

Tmax (o8] 1
Tmax=/ dt=/ ——dz
0 Ro G(2)

and (2.37) is proved. O
The next corollary indicates a lower bound of Hpyax(t) when it blows up.

Corollary 2.23. In case we have finite time blowup, then 0 < R(t) <
Humax(t) and 0 < R(t) < umax(t) for all t € [0,Tmax), where R(t) is the
unique solution to (2.40).

Proof. First we show 0 < R(t) < Hmax(t) on [0,Tax). Assume there is a
time to € [0, Tmax) such that R(to) > Hmax(to). Let Ri(t) and Ra(%) be the
solutions to (ODE) with Rj(to) = R(to) and Ra(to) = Hmax(t0). Since we
have % Hax(t) < G(Hmax(t)) and Ri(to) > Ra(to) = Hmax(to), We must
have

Hmax(t) < Ro(t) < Ri(t),  Ri(t) = R(t)

for all t € [to, Tmax). This would force R;(t) and Ry(t) to have the same
blowup time Tmax. Since we have Ri(to) # Ry(to), we get a contradiction
due to (2.38).
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The proof of the second part is exactly the same. O

By Corollaries 2.19 and 2.20, we also obtain the following LP norm esti-
mates from below.

Corollary 2.24. Let p > 0 be any fized number. There is a constant A > 0
such that

(2.41) t—l>i71"11nlax flull, > t_l)iq{f:ﬂA - Umax (t) = 00
and
(2.42) t—l>i’.lr‘£ax ”G(H)”p > t—l}lI“Eax A G(H)max(t) = oo.

Proof. By (2.33) we know that u(z,t) > umax(t) - cos(z — 6(t)) for all = with
0<|z—0(t)] <5 and all t. Hence

1/p - 1/p
lim / wPdz| > lim / (tmax(2) - cos(x — O(t)))P da
t—Tmax Srln t—Tmax | |:E—0(t) ] < 12".

i z 1/p
> lim  |upax(t)? - / (cos&)P d&]

- t—];:'l-zl-‘gax A umaX(t) =%
T 1/p
where \ = [ f_212r_ (cos &P d&] :
The proof of the second estimate is similar. a

We shall estimate umax(t) and Hmax(t) from above under the assumption
that G is a convex function in the next section.

2.3.1. The case when G is convex. In this section we shall assume G
is convex; i.e. G” > 0 on (0, 00) such that
* 1

dz < oo.
1 G(2)

Hence G can not be asymptotically linear and we have finite time blowup.
We shall estimate umax(t) and Hmax(t) from above in this section.
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Remember that if Tinax < oo is the finite blowup time for Hpax (0T Umax),
then we have

1
9.43 Toax = / gz,
(243) = Jro) G(2) *

where R(0) = Ry € [Hmpin(0), Hmax(0)] > 0 is some number depending on
Tmax-

Two basic questions concerning blowup are: how to estimate Tiyax and
how to estimate the blowup rate of Hpax(t) as t — Tiyax? We already have
a rough estimate (2.43) on Thax for arbitrary speed G which produces finite
time blowup. With the additional convexity assumption on G here, we can
get a better estimate both on Tiax and on Hpyax(t) as t — Tmax-

Let

1 !
(244 s(t)= 5~ /S | Hw e =5 /S , ez, L€ [0 T

which is the average of H (or u) over the interval [0, 2mm]. We know geo-
metrically that

t
(2.45) s(t) = L( ) py— L(t) = length of .
We also know that hmt_,Tmax s(t) = oo. In fact by (2.33) and since u is
everywhere strictly increasing, we have

1

(2.46) cos(z — 0(t))dz| + C1

> 2_"‘ |:umax(t)
|z—6(t)|<%

5 Umax(t) (®)

+Cla

where C; < 0 is a constant independent of time. For example, one can
choose

_ 1 / u(z, 0)dz.
2mm {zeS}, :u(=,0)<0}
Compute
dt 2m7r/ CH(=,0))dz
(2.47)

( o / H(z, t)dw) G(s(t)),
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where we have used the Jensen’s inequality, in which the convexity of G is
used. Therefore we have

d* Hpax(t) dR ds
Comdl) < G(Hmael®), S =GRO),
where Hmax(t), R(t) and s(t) all have the same blowup time Tiax < 00.
Comparison yields

(2.48) > G(s(t)),

(2.49) Hpin(t) < s(t) < R(t) < Hpax(t)
for all t € (0, Tmax). Similarly, we have

(2.50) Umin(t) < $(t) < R(t) < umax(t)
In particular, we have

(2.51) Hiin(0) < 5(0) < R(0) < Hinax(0),

which is a better estimate than R(0) = Ry € [Hpin(0), Hmax(0)]. (In case
when Hp,in (0) is far away from Hmax(0) but s(0) is close to Hmax(0), (2.51)
provides an improvement of estimating Tiax.)

Absorbing the negative constant C; into ’““T";r(tl eventually if necessary,
we may assume that C; = 0 in (2.46). Since we know

Hmax(t) < (ua:z)max(t) + uma.x(t) < Cuma.x(t)y

we get
1 Umax ()
C max(t) < Iy— < 5(t) < R(t) < Huax(t)
and therefore
< <
1< R(t) ~ c,

where C > 1 is some constant. We summarize our result as

Proposition 2.25. Let G : Rt = (0,00) — R*, G’ > 0 everywhere, be any
smooth convez function which is not asymptotically linear and let u(z,t) be
the solution to (*) on S}, X [0, Tiax) where limy_, T, _, Umax(t) = co. Then
there exists a constant C > 1 depending only on m and ug(z) such that

Umax (£) Hpax(t)
(2.52) 1< R) <C and 1< 20 <cC
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for all t € [0,Tax). Here R(t) is the unique solution to (ODE) with
lim; 7., R(t) = co. Moreover, we have

T, _/oo ! dz
" Jro) G(2)

and
(2.53) Hinin (0) < 5(0) < R(0) < Hinax(0)-

Remark 2.26. The significance of Proposition 2.25 is that it implies
bounded geometry (in a suitable sense) for the evolving curves after they
are rescaled by the factor R(t) coming from the ODE, and that this suggests
that such a rescaling should produce a meaningful limiting shape at the final
time Thax, perhaps a homothetically expanding curve. But it is not clear
whether we should expect a homothetically expanding curve with the same
winding number, or whether only one loop will expand, and all the others
get scaled down to the origin. This would take a lot more to understand.

2.3.2. The homogeneous case G(z) = z%, a > 1. As pointed out in the
introduction in Section 2.3, some complicated behavior may happen even in
this simple situation. The general blowup behavior is still unknown. Let
G(z) = 2%, where o > 1. Forgetting the initial data, equation (*) becomes

8
(2.54) -6—;‘ = (ugs +1)%,  (z,t) € SL x [0, Tonax)-

Take an m-fold circle v with radius R(0) as the initial data of (2.54) such
that lims 7, . R(t) = co. We get an m-fold expanding circle ; with radius

R(t), where 4% = R*.

Lemma 2.27. If o > R?i_l’ then the m-fold expanding circle solution ~y; is
linearly unstable?.

Proof. Let v(z,t) = ”7}(2”%?, where u satisfies (2.54). It satisfies

(2.55) B = R(t)* ™ {(vaz +v)* — v} .

2We thank the referee for supplying this observation.
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Since u = R(t) is a solution of (2.54), v = 1 is an equilibrium solution of
(2.55). Linearize (2.55) at the equilibrium solution to get

dw = R(t)* ! {a (vaz + v)"" - (Wgz + w) — w}
= R(t)* ™ {a (wgz +w) — w} since v =1
(2.56) = R(t)* ! {owgs + (@ — 1) w}.

Take a special solution w to (2.56) of the form
T . T
w(z,t) = A(t) cos p + B(t) sin —

where A(0) > 0 and B(0) > 0 are both small. Then if A(t)and B(t) satisfy
dA 1 1

dB . o 1

w(z,t) would satisfy (2.56) on S}, X [0, Tinax). One sees that if

a(l——1—2)—1>0,
m

then limsup, ,1. . w(z,t) = co no matter how small A(0) and B(0) are.
The lemma is proved. a

(2.57)

Let us come back to equation (2.54) with the original initial data
u(z,0) = uo(z). The solution R(t) to (ODE) with blowup time Tpax is
given by

*© 1
Tnax — t = / g
. r(t) G(2)

hence
1
(Tmax — t)R(t)P = 1—0, p=a—-—1>0,

and therefore

(2.58) R(t) = E - Tm:( - t]i .
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It describes the blowup behavior of umax(t) and Hpax(t) for the solution u
to partial differential equation (2.54).
Several observations are in order. From (2.53) we find

LI

(2.59) PHo (O o <

1
ps(0)P’
Therefore we conclude:

(i) If the initial condition satisfies s(0) > 1, then for large p we have small
Tmax; but the blowup rate near Ti.x becomes slower.

(ii) If the initial condition satisfies Hmax(0) < 1, then for large p we have
large Tax; but the blowup rate near Ti,x becomes slower.

(iii) Regardless of the initial condition, if p is very close to 0, which is
equivalent to o being very close to 1, then we have large Tp,.x and the
blowup rate near Ty, becomes very fast.

(iv) If p € (0,1), then

lim (Tmax — ) Hmax(®) = Hm (Tiax — t) - tmax(t) = o0

t—Tmax
and if p € (1,00), then

(I, (T =0 )=, 1. (o =) =0
Finally if p = 1, then (Tmax — t) - Hmax(t)and (Tmax —t) - Umax(t) stay
bounded as t — Tiax.

3. The case when G is concave; convergence..

In this section we shall assume G is concave; i.e. G” < 0 on (0,00). The
concavity condition will make it easier and more straightforward to apply
the maximum principle. Also the concavity will allow us to have infinite
time to smooth out the solution.

Since G is concave, from Lemma 2.22, we know [0, Tnax) = [0, 00). This
can also be seen from the inequalities
dt Umax — limsup Umax (t + h) — Umax(t)

<G t

(3.1)
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Therefore umax(t) will grow at most exponentially and hence can not blow
up in any finite time.

Also we know G(H) > G(6) > 0 on S}, x [0,00). Hence u will become
positive after a finite time. Since our main interest is the long time behavior
of the solution, without loss of generality, we may assume u > ¢ >0att =0
for some positive constant € > 0 and note that lim; ,co Umin = 00. Similarly,
we may assume that the curvature k(z, t) is strictly decreasing on [0, o) for
all z € S}, by Lemma 2.17.

3.1. Some basic estimates.

Let C denote any constant which depends only on ug. The concavity implies
the following

Lemma 3.1. We have

(3.2) (%). f <C, (). —:—2 <C,
on SL x [0,00).
Proof. The proof is simple and we omit it. 0

The concavity implies the decreasing of the following quantities:

Lemma 3.2. The mazimum of the following quantities are all decreasing
ont € [0,00):

@ 122 6. |28 ). %‘
G
Proof. Write the equation d,u = G(ugy + u) as
(3.3) 8w = G'ugy + G'u+ (G — HG').

Let w = ﬂuﬂl > 0. We have

Ow = G'(H) - wap +26'(H) - (=) - wp + @ - (H - G'(H) — G(H)).
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Since G is concave, we know H - G'(H) — G(H) £ —G(0) < 0 and hence

(1) is done.
For (ii), since we have tG > 0, it suffices to show the maximum of atG
is decreasing. Let w = G(H ) We already know

where F(w) = G'(G™}(w)) > 0. Also let ¢ = ?ﬂ We find 0:q = Do _ .
w w
Substitute

32
wi = Sz = F(w) - (Bw)as + [F(w) + F'(w) - (wse + w)] - Ow
and
Gon = w(Ow) 2z —2(3tw)wu B 2&%
w w

into 8;q = — ¢? to deduce

_ Wy F'w)w ,
(3.5) dq = F(w)que + 2F(w) — + Fw) q-.

Since G is concave, we know
F'(w) =G" (G~ 1(w)) G-l(w) <0.

Applying the maximum principle to (3.5) at the maximum point of g, (ii) is
proved.
To verify (iii), we first compute

Bu(12) = F(w)(we)as + F'(w)wa(wa)a + [Fw) + F'w)wlws
and conclude
0.(22) = Fw) (22)_+2F(w) (%2) (%), + F@)bwer +01 (37)
Finally we obtain
o0 = Fw) [0 -2 (%)) T+ re’z + P o
+ 2F (w)w®(1 + @).
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Wy \ 2
Here & = (;) and we have used the relation

b= (%) % ()

w w w

to convert the equation into a nice form. Again the maximum principle
works. d

3.2. Rescaling and convergence.

Before we do the rescaling of the solution, we first establish an interesting
result which allows us to compare two different solutions to (ODE) when G
is a concave function.

Since we always assume that lim,_,o, G(z) = oo, if we have two different
solutions R;(t) and Ry(t) to (ODE) on [0,00) with 0 < R;(0) < Ry(0),
Zve have lim;_,o, [Ra(t) — R1(t)] = co. We want to know the ratio gi (:) as

— 00.

Lemma 3.3. Let Ri(t) and Ra(t) be two arbitrary solutions to (ODE) with
initial conditions 0 < R1(0) < R2(0). If G(z) is a concave function on
(0,00), then
Ra(t) G(Ra(t))

g =20
B@ " CERO)
are decreasing on (0,00). If in addition, we have lim,_,o, G'(z) = 0, then

. Ro(t) . G(Ra(t)) _
3.7 ML B0 T AR G Eme)

(3.6)

1.

Proof. The proof of (3.6) is trivial. To show (3.7), assume that
. / _
25,0 =0
and

Ro(t) _

lim A>1.

t=oo Ry(t)
We have the following relation

/Rl(t) 1 g . /Rz(t) 1 J
—dz=t= —dz
ri0) G(2) Re0) G(2)

/R1(O) 1 p R1(t) 1 4 AR;1(t) 1 J
= = z+/ R=Tony z+/ S dz
Ra(0) G(2) rRi0) G(2) Rty G(?)
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and hence

(3.8) / 01, / O L feral
. ——dz > ——dz, forallt>0.
R0 G(2) R G(2)

Using the fact that %fl is decreasing to zero on (0, c0), we obtain

AR1(t) q AR1(t) 1 1
/ —dz = / — . Zdz
Rip) G(2) Ra(t) (%—)-) z
1 /*Rﬂt) 1 In\

mo 7 (SEEY T

as t — oo, which is a contradiction to (3.8). Hence lim;_, %% =1.

To show lim;_,eo —%(%(%% = 1, we assume again that lim; e & gf(:)) =

A > 1 and therefore G(Ry(t)) > AG(Ry(t)) for all ¢t > 0. The concavity
implies

G(Rs(t)) > A\G(R1(t)) > G(ARy(t)) forallt >0,
which means Ry(t) > AR;(¢) and is again a contradiction. a

The result (3.7) does not hold if we do not assume lim,_,o, G'(2) = 0.
For example, take G(z) = z.
Recall in Section 2.3.1, where G is convex, we have the inequalities
© > a0,
(3.9) Hoin(t) < s(t) < R(t) < Hunax(t),
Umin(t) < 5(t) < R(t) < umax(1),

where R(t) is the unique solution to (ODE) with the same finite blowup
time Tmaxas Hmax(t). In the case when G is concave, the inequality for ‘;ii%
becomes

ds
. — <
(3.10) < G(s)
for all ¢ € (0,00) and the roles of s(t) and R(t) can be switched. More

precisely, we have
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Lemma 3.4. There ezist a solution R(t) to (ODE) such that

(3‘11) Hmin(t) < R(t) < s(t) < Hma.x(t)
and
(3.12) Umin(t) < R(t) < 8(t) < umax(?)

for all t € [0, 00).

Proof. The proof goes exactly the same as the one given in Lemma 9 [CT].
Here we use the conditions

ds
<
= < Gs(1),
d™ Hpin(t
(3.13) ‘—'T()- > G(Hmin(t)),
Z_min\Y) .
dt 2 G(umin(t))
as barriers to bound a solution R(t) to (ODE) which satisfies (3.11 ) and
(3.12). O

Due to the concavity of G, we have

Proposition 3.5. In the concave case, the solution is improving in the fol-
lowing sense:

(3.14)
: Umax(t) kma.x(t) _ Hmax(t) )
(i) m— and Fon(D <— ji (t)) are decreasing on [0, 00),

(i)  Umax(t) - kmax(t) > 1 is decreasing on [0, c0),

(iif) Umin(t) - kmin(t) < 1 is increasing on [0, 00).

Proof. Again, the proof is similar to the one given in Lemma 11 [CT]. Choose
one R(t) satisfying (3.11) and (3.12). Since G is concave, we have A\G(z) <
G(Az) for all z € (0,00), 0 < A <1, and hence

(M) <o
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for all t € [0,00). Similarly, we conclude that %’;)(—t) is decreasing on

[0, 0); 3’%‘—(%) and "‘“‘ ) are increasing on [0,00). (i) of ( 3.14) is proved.
To show (ii) and (111), we use

Umax (t) _ umax(t) R(?)
Hmin(t) R(t) Hmin(t),

Umax(t) * kmax(t) =

and

Umin(t) — Umin(t) R(t)
Humax(t)  R(t) Hmax(t)’

Umin (t) : kmin(t) =

and note that we have the inequalities

1

m Hma.x (t) D

— min(t) < Umax(t) and Umln(t) = kmx]r-x(t)

Corollary 3.6. By (3.14), we have the following relation between k and u:

1 1
C umax(t)

for all t € [0,00), where C > 1 is a constant depending only on uo.

(3.15)

< kmin(t) < kmax(t) < C - —m‘l:('a

As special cases, if u < M on S;, 1 x[0,T), we will have 2 ol %
on S} x [0,T). And if u > M on S’1 X [T, 00), we have k(z,t) <
Sl x [T,0). Both results match our geometric intuition.

Due to the ODE result (3.7), we can rescale the solution in many ways
and get the same convergence. The following is the main result of this
section.

Theorem 3.7. Let G : RT — R¥ be an arbitrary positive concave smooth
function with G' > 0 everywhere and lim,—,oo G'(z) = 0 and let 7(t) be any
solution to (ODE) with 7(0) > 0. Define the rescaling as 7, = %. Then the

rescaled curvature k(z,t) = 7(t) - k(z,t) and the rescaled support function
u(a: t)

w(z,t) = of the rescaled curve 7, = L satisfy
(i) lim k(z,t) = 1 uniformly on z € St,
(3.16) tmoo

(i) Jim [a(,2) — gagsy) = O

As for the monotone properties, we have
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(i) = is decreasing on [0, 00),

is decreasing on [0, 00),
(i) max(t) - Emax(t) > 1 is decreasing on [0,00) and fimin(t) - Fmin(t) < 1
is increasing on [0, 00).
- In addition, if T(t) also satisfies (3.11) and (3.12) on [0,00), then
(i) kmax(t) is decreasing on [0, 00),
(i) min(t) is increasing on [0, 0o),
(iii) @max(t) is decreasing on [0, 00),

(iv) @min(t) is increasing on [0,00).

Proof. Tt suffices to show (3.16). To show (i) of (3.16), we see from (2.39)
that
' p1(t) < H(z,t) _ 1 < pa(t)
T © @) k(1) T T(t)

for all z € S}, and all t € (0, 00), where i (t) and @a(t) both are solutions

to (ODE) with ¢1(0) = Hpin(0) > 0, <p2(0) Hyax(0) > 0. Since now we

have lim;_, oo f_—l(gty) =1 and lim;_, o %—ttr =1, (i) is proved.

To show (ii) of (3.16), note that if lim, ,, G’(2) = 0, then
CHEH) _,

t—oo (1)

uniformly in z € S},. Compute

lﬂ(m t) _ 1| — U(CU t) T(t) l Umax(t) - umin(t) . R(t) |R(t) _ T(t)
| T R(?) MG
“x(ff’t)' RO ]R(t) —7(t)
B R(t) T(t) T(t) ’

where R(t) is a solution to (ODE) satisfying (3.11) and (3.12) and ¢; € S...
Using

Ug (ft) t) G(H(é.t, t)) l < ‘ G(H(gt) t)) ‘
GHEt)  R@E) |~ R(t)

uz (§¢, t) ‘
R()
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and lim;_,oo %E? = 1, we conclude lim; , |%(z,t) — 1| = O uniformly in
reSk.
We also know, by Lemma, 2.8, that

luz| < C-G(H) < C - G(Hmax(1))-
Since Hpax(t) is an increasing function on [0, 00), Lemma 2.6 tells us that
|uzz| < C - G(Hmax(t))-
Therefore
C - G(Hmax(t))
T(t)
(ii) of (3.16) is justified. a

|Gz, |lzz] < —0 as t— 0.

The geometric meaning of Theorem 3.7 is that the rescaled curves ¥,
converge to the m-fold unit circle centered at the origin in the C? topology
as t — oo or equivalently, the limiting behavior of +; is given by an expanding
m-fold circle.

Remark 3.8. (i) Similar to [CT], we can get convergence in C*° norm
ie., tlim lla(-,2) = 1l geo(sz,y = O if we put more assumptions on G.
—00 m

Those assumptions are satisfied by the function G(z) = 2%, a € (0,1).

(ii) The assumption lim,_,,, G’(z) = 0 is probably not necessary but we
are not able to get rid of it.

3.3. Rescaled arclength.

In the last section, we want to look at the behavior of the arclength L(t) =
L® of the rescaled curve Y = ;}-‘5 Here 7(t) satisfies (3.11) and (3.12).

3
ﬁ(ez:all we have the formula
L(t)

(317) S(t) = %, L(t) = length of Yt

with d—: < G(s(t)) and 7(t) < s(t) for all t € [0,00). Compute

d
d (s(t))_ 1 dL(t) _ 7()G(s(t)) — s()G(r(t)

dt \7(t)) 2mm dt = T2(t)
_ s(t) [G(s(®) _ G(r(®)
(319 -85S e
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G(2)

since — is decreasing on (0, 00). We conclude the following
Lemma 3.9. If G(2) is a concave function on (0,00), then L(t) > 2mm is
decreasing on [0, 00).

The lemma can also be seen from the following formula

dl 1 dL G(r(t), 1 1 G(7(t))
dat Tt dt | T(2)2 L_T(t) ,,th(‘) ds — ()2 L

_ L G(l)dx Glr() 1;

() Js,  \k T2 s k
3.19) = /S , {Gg{) - GY(S))] k—lex = L t [-G-gi) - @] ds.

(3.19) says that the rescaled arclength decreases over any interval = € [a, }]

where H(z,t) > 7(t) and increases over any interval z € [a,b] where
H(z,t) < 7(t).
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