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1. Introduction. 

This paper deals with the expansion of an immersed convex (by convex, 
we mean strictly locally convex) plane curve by a nonhomogeneous function 
of curvature. We investigate its blowup and convergence behavior. It is a 
sequel to our previous one [CT], where we considered the outward expansion 
of an embedded convex plane curve with speed an arbitrary positive function 
of curvature. 

Although nonhomogeneity allows us to treat the expansion of more gen- 
eral types of plane curves and is more natural in some situations (see [CLT] 
and [T]), it has its limitations. One major difficulty is that we can not apply 
the maximum principle and other related arguments in full generality. 

The main problem here is that we take a look at the way in which a 
smooth immersed convex closed plane curve 70 evolves according to the 
equation 

(i.i) 
{X(a,0)=Xo(a),      a e S\ 

where XQ : 51 —► M2 is a smooth initial parametrization of 70, A;(a, t) is the 
curvature of the curve given by X(-, t) at the point a, G : R+ = (0,00) —► R+ 

is an positive smooth function with Gf > 0 everywhere, and iV(-,t) is the 
outward unit normal vector field to X(-,t). Additional assumptions on G 
will be given in different places. 

In the embedded case, where we have the uniform bounds of the first 
and second derivatives of the support function by a constant independent 
of time for arbitrary speed G, the blowup and convergence behavior of 7* 
is tractable. However, in the immersed case, we lack such nice estimates 
and need to put additional assumptions on G. Roughly speaking, to ensure 
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convergence to round circles we need to assume G is concave and to discuss 
the finite-time blowup behavior we need to assume G is convex. 

The contents of this paper are divided into four sections. Section one is 
an introduction leading to the partial differential equation of the expansion. 
Section two is for arbitrary speed G (except in Section 2.3.1 where we assume 
G is convex) and Section three is for concave speed. 

The recent paper [AN] by B. Andrews contains a lot of beautiful results 
for convex plane curves evolving by various kinds of curvature functions. 

Some elementary formulas. For the reader's convenience, we first pro- 
vide some elementary evolution formulas which can be derived in ways simi- 
lar to [H]. Without loss of generality, we may assume our initial parametriza- 
tion XQ is such that the orientation of {N,T} is the same as the usual 
orientation of M2. 

Since equation (1.1) is strictly parabolic, it is well known that for any 
C00 immersed convex curve XQ : Sl —► R2 there exists a smooth solution 
X = (x(a,£),2/(a,£)) : S1 x [0-,Te) -* R2 to it for some short time T£ > 0, 
where each X(^t) represents an immersed convex plane curve 7t. We let 
v = |^| 7^ 0. The arc-length parameter s is only well-defined up to a 
constant. Nevertheless, the partial differential operator ^ = ^^ is clearly 
well-defined. The unit tangent vector is given by T = ^ and the curvature 
k is defined as 

,     Ar 9T      d2X 

for equivalently k = (^jr, Nin\), where Nin = — N is the unit inward nor- 

mal vector to the curve. After the definition of the curvature, we obtain the 
Prenet equations 

M       £~«. £-«■• £-«■■ 
Next, we compute 

We shall show later on that the convexity of 7* := X(-, t) is preserved under 
the flow and therefore equation (1.4) says that 7* is immersed as long as 
solution is smooth, i.e., v. > 0 as long as solution is smooth.  We then use 
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(1.4) to obtain the commutative relation 

Ci<\ dddd_    ,„{1\ d 
{   j dtds    dsdi~~hG\kJd~s- 

Using equation (1.5), the evolution of the arc-length is given by 

**>        ft=i,ka(%)ds>o- 
where l(t) is the arc-length of the curve at time £, i.e., l(t) = J  ds. There- 
fore for immersed convex plane curves expansion, the are-length is always 
increasing as one's intuition believes. 

Another useful formulas are 

(17) *r_dG(l)      dN_ .dG(i) 
[   ' dt ~   ds     '   dt~     ds 

Prom (1.7), we can compute the evolution of the curvature 

Finally we see that the rotation index (number of times its tangent winds 
around as one goes along the curve) 

I(lt) = ^J k(s,t)-ds 

is preserved under the flow on [0, T£) since I(jt) is a continuous function of 
t with integer values. 

Let m denote the rotation index of the immersed initial convex curve 70. 
Similar to the method in Urbas [U], we can reduce equation (1.1) to an initial 
value problem for the support function u. The support function u(pt) at the 
point pt e it is defined as u(pt) = (X(a, £), iV(a, £)), where X(a, t), a e S1, 
is the position vector of pt in R2 and N is the unit outward normal at the 
point pt. We can see that u = u(a,t) is a well-defined smooth function on 
the parametrization domain S1 x [0,Te). If we use the variable x to denote 
the angle of the unit outward normal N with respect to a fixed direction. 
Although x is, similar to 5, only well-defined up to an integral multiple of 
27r .The partial differential operator J| and the formula N = (cos x, sin x) 
both make sense and we have 

dN _ dxdN_ _ dN_ _ dxcW _    dG({) 
ds ~ ds dx ~      '       dt       dt dx ~        !h~ 
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The three partial differential operators ^, ^ and ^ are related by 

ao)       ^-k    ±-±±-k-?-    dx-  aG(^ 
^     ; ds        '      ds ~ v da "   ^'       ^ "        cte    * 

To make our notations simpler, without loss of generality, we may assume 
that the support function u is expressible as a 2ra7r-periodic function ^(x, t) 
on x € [0,2m7r] = R/2m7rZ, where m is the rotation index of the initial 
immersed convex curve 70. The reason is that in the a priori estimates of 
u that we shall investigate hereafter, the pointwise value of x will not come 
into play at all. 

One nice thing about the support function u{x, t) is that we can use it 
to express the curvature k. It is given by 

1 

(1.10) uxx{x, t) + u(x, t) = 
k(x, t) 

Let ^o(^) denote the initial support function. It is periodic with period 2rmr 
satisfying (uo)xx(x) + uo(x) > 0 for all x e S^ = R/2m7rZ. Equation (1.1) 
is now equivalent to (see Urbas [U]) 

- = 0(ii» + u)> 

together with the condition 

(1.11) uxx(x,t) + u(x,t) = ——r > 0 
/c(a:, t) 

whenever the solution exists. The extra condition (1.11) does no harm to 
our study of equation (*) since it will be preserved as long as the initial 
condition UQ(X) satisfies it. 

The case m = 1 for arbitrary speed G has been studied in [CT] and the 
case when G(z) = za, a G (0,1]; i.e., G is homogeneous of degree a 6 (0,1], 
has been considered in Urbas [U] for any m > 1. Here we investigate the 
case m > 1 for nonhomogeneous speed. 

One should be aware that the time parameter t in equation (*) is chosen 
to be independent of the angle rr, i.e., J^J| = JIJ^. Therefore the partial 
differential operator J^ in equation (*) is not the same as the operator J^ in 
the original equation (1.1). 

We would like to point out that, in contrast to the contraction of im- 
mersed convex plane curves (see Angenent [A]), where singularities may 
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develop, we shall see that smooth solution to (*) exists as long as the sup- 
port function u is finite (or as long as the curvature remains positive). From 
now on we shall focus on equation (*) which describes the expansion of the 
immersed convex plane curve 7*. 

For convenience, we shall use the notation (ODE) to denote the following 
ordinary differential equation 

(ODE) ^ = G(R) 

and we will specify its initial value R(0) > 0 whenever necessary. 

2. Estimates with arbitrary speed G. 

In this section, we only assume that G : M+ = (0,00) —► M"1" is an arbitrary 
positive smooth function satisfying G/ > 0 everywhere. The analysis in 
this section is fairly standard. It differs in some respects from that used 
previously in the embedded case, but does not require any difficult ideas. 

From now on we also assume lim^-.oo G(z) = 00, otherwise by Lemma 
2.6 and Lemma 2.8 we will have the first and second derivatives of u bounded 
by a constant independent of time, which is essentially what we want. 

2.1. Gradient and second derivatives estimates; 
long time existence. 

Recall that in the embedded case (see [CG] and [CT]), the following esti- 
mates on Si = S1 were established as long as Gf > 0 is satisfied: 

Proposition 2.1. Let u(x,t) be a smooth solution to equation (*) (with 
m = 1) on S1 x [0, T), there exists a constant C > 0 depending only on the 
initial function UQ, independent of time, such that 

(2.1) MM)I < C     and       M(M)I < C 

for all xu X2 € S1 = R/27rZ and t e [0, T). 

In the immersed setting (m > 2), both estimates in (2.1) fail. As a 
simple example, the function 

u{x, t) = ci • cos x + C2 • sin x + C3 • e3*/4 cos -x 
(2.2) 1 2 

+ C4 • e3*/4 sin -x + c5 • e*, 
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where Cf, 1 < i < 5 are constants, is clearly a solution to the linear equation 
fl = Uxx + u on (a:, t) G S^ x [0, oo) = [0,47r] x [0, oo). (This linear equation 
can be converted into the standard heat equation ^ = vxx on 8% x [0, oo) 
if we let v = e^u.) However it does not satisfy (2.1). Similar example can 
be constructed on 8^ x [0, oo). 

We can use either the Fourier series theory or the following simple geo- 
metric motivation to explain the breakdown of (2.1). Imagine a big closed 
cardioidlike curve with one tiny loop L2 and call the rest Li. We may also 
position the origin O of our coordinate system so that the support function 
uo(x) is everywhere positive and has larger values on the big loop Li, smaller 
values on the little loop L2. Also, for any point p on loop Li, which has 
small curvature, the expansion speed of p is much faster than the expan- 
sion speed of any point q on the little loop 1/2? which has large curvature. 
The difference ^max(^) — ^min(^) will not be bounded above by any positive 
constant C independent of time. 

In the computation hereafter we shall use these two general identities 

(23)/.Afe-ft.A/=A^+2V(log/),v^t    />0 

(2.4) f-Ah + h-Af = A (fh) - 2V (log/) • V (fh) + 2 (fh) ■ |V (log/)]2 

to convert an evolution equation into the form we want. Here A and V are 
the Laplacian and gradient operators on a compact Riemannian manifold 
(M,<7); / > 0 and h are any two smooth functions on M. 

The parabolic maximum principle is the main tool used throughout this 
paper. Let f(t) be a Lipschitz function on some interval [a, 6), the meaning 

of the differential inequalities ^f < C, ^f > C, ^f < C, ^f > C can 
be found in Hamilton [H]. 

We say / is an increasing (strictly increasing) function if whenever x < y, 
we have f(x) < f(y) (f(x) < f(y)). Similarly for decreasing. Our first 
lemma is a slight variation of Lemma 3.1. in [H], p.158. 

Lemma 2,2. Let f(t) be a Lipschitz function on [a, b] and let g(t) be a 
increasing function on [a, b].  We have: 

d+f 
If f{o) < g{a) and —r~ ^ 0 whenever f > g on [a, 6),  then f(b) < g(b). 

at 

Assume [0,T) is the time interval of a unique smooth solution u to 
equation (*) on 8^. We shall compute several evolution equations related 
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to the support function and the curvature and then apply the maximum 
principle to obtain estimates. For convenience, let 

(2.5) H(x, t) = uxx + u = 
k(x, t) 

We have 

(2.6) dtH = G'(H)HXX + G"{H)Hl + G{H), 

which is equivalent to the curvature equation 

S-^K*)).-*'®- 
The lemma below estimates the rate of the radius of curvature from 

below, which is geometrically obvious. 

Lemma 2.3. Let u{x, t) be solution to (*) with {UQ)XX + UQ > 5 > 0 for all 
x G S^, then 

(2.8) H(x, t) = uxx(x, t) + u{x, t) > <p(t) 

for all (x,t) G S^ x [0,T); where <p(t) is the solution to (ODE) with (p(Q) = 
Hm[n(0) = 5. Moreover, we have 

(2.9) fcmax(£) is strictly decreasing on [0, T). 

where kmax(t) = max^^i fc(a:, t). 

Proof (2.8) is by the maximum principle with a comparison to the cor- 
responding ode. For (2.9), we apply Hamilton's maximum principle for 
Lipschitz functions to (2.6) to get 

(2.io)     £:/w<) = £ (j^) > G(Haut)) > oW > o. 

Hence Hmin(t) is strictly increasing on [0,T). □ 

Remark 2.4. We will see later on that kmin(t) is eventually strictly de- 
creasing. Intuitively one can see that it will not be strictly decreasing at 
first. 
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Lower bound of the radius of curvature implies the gradient estimate. 
More precisely, we have 

Lemma 2.5. Let u(x,t) be a smooth solution to equation (*), then 

(2.11) \ux{x,t)\ < tfcmax(£) := maxtt(:r,£) 

onS^x^T). 

Proof. Let A = u^. + u2.   Assume A(a(t),t) = mdiXxeSitA(xit) for some 
a(t) e S^. Since we have uxx + u > 0 on S^ x [0, T), we see that 

dA 
(2.12) 0 = ^(a(t), t) = [2ux (uxx + u)] (a(t)91), 

which implies ux(a(t), t) = 0 and hence 

max^(x, t) < max^4(x,t) = u2{a(t)A) < maxiA2(a;,t). 

This is equivalent to 

(2.13) max |wa:(^*)l ^ max I^^JOI • 

Finally we see that 

(2.14) max \u(x, t)\ = max u(x, t) = wmax(*) 

by drawing the smallest circle centered at the origin which encloses 7*.    □ 

The gradient estimate (2.11) can also be established using an alternative 
integral method. Compute 

= - f   [G(H) ■ {uxx + «)] dx < -G(S)6 ■ 2rmr < 0 
JsL 

and 

jt {^Jsl [{uxx)2 -{ux)^ dxj=~L G'{H)'(Hx)2dx -o' 
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We get 

(2.16) MM)I < ^max(*), 

where C is a constant depending only on m and txo(^) by the following: 

Sobolev inequality: If there exists a constant M such that ||/||2 < M and 
\\f'\\2 < M, then WfW^ < C - M, where ||-||2 is the L2 norm and W'W^ 
is the sup norm for functions on S^, and C is a constant depending 
only on m. 

Several observations are in order. When ra = 1, the geometrical meaning of 
the integral in (2.15) is 

(2.17) - /     [u2 — {ux)2} dx = area enclosed by 7*. 
2 Jsi 

Also the Wirtinger inequality implies 

(2.18) /    (ux)
2dx <m2 [   (uxx)2dx. 

Finally, Lemma 2.5 does not imply the relation |^x(^j*)l ^ W^J*)! 
and 

from the integral proof we also see that 

(2.19) Kiax(t) " UminWI < C NI2 + C 

on [0,r). That is, the oscillation of u is bounded by its L2 norm on 5^. 
Now we come to an estimate on the second derivative of u. Roughly 

speaking, it says that ux and uxx have the same upper bound due to the 
special form of equation (*). 

Lemma 2.6. If \ux(x, t)\ < M(t) on S^ x [0, T) for some positive increasing 
function M(t), then 

(2.20) \uxx(x,t)\<CM(t) 

on S^ x [0, T); where C is a constant depending only on m and uo(x). In 
particular we have 

(2.21) \uxx(x,t)\<Cumax(t), 

<mS^x[0,T). 
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The proof of Lemma 2.6 goes exactly the same as the embedding case 
in [CT] except that now we apply Lemma 2.2 to the Lipschitz function 
Wmax(£) instead of Lemma 3.1. in [H] to show that wmaiiX(i) < C • M(t)2. 
Here w(x,t) = \ \{ux)2 + (^xx)2] and its evolution equation is given by 

-£ = G\H)wxx + G"{H)Hxwx + G'(H)Hx(u - uxx)x. 

Curvature estimate now comes immediately. 

Corollary 2.7 (preserving the convexity). // \u(x, t)\ < M on S^ x 
[0,T), then 

(2.22) o<^-<k(x,t)<    1 

CM -   v w - (p(t) 

for all (x,t) G S^ x [0, T), where C is a constant depending only on m and 
uo(x), and (p(t) is the solution to (ODE) on [0,T) with (p(0) = Hmin(0) = 
5>0. 

Another useful estimate is the uniform bound of the ratio of the space 
derivative to the time derivative, which in the starshaped plane curve ex- 
pansion (see Tsai [T]) leads to a uniform gradient estimate independent of 
time. 

Lemma 2.8.   We have 

(2.23) 
Ur 

G(H) 
<C 

on S^ X [0, T), where C is a constant depending only on the initial condition 
uo(x). 

Proof. Let w =      x   . We compute 

dtw = G'(H) - wxx + 2G,(i?)^^ • wx. 

Since the lower order term is a gradient term, the maximum principle implies 
the assertion. □ 

As a consequence of Lemma 2.8, we have the following relation between 
the oscillation of u and the curvature k. 
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Corollary 2.9.   The oscillation of u and the curvature k are related by 

1 
(2.24)        \umax(t) - umin(t)| < C ■ |K)m£Uc(*)| < C ■ G 

on [0, T), where C is a constant depending only on m and uo(x). 

As we shall see that fcmin(^) is eventually strictly decreasing in Lemma 
2.17, hence by Lemma 2.6 we also have 

(2.25)      \(ux)max(t) - {ux)mhi(t)\ < C • \(uxx)max(t)\ <CG' 
^min [t) 

on [0, T), where C is a constant depending additionally on some positive time 
Tdec after which fcmin(£) starts to become strictly decreasing. Geometrically, 
ux is the tangential component of the position vector X in equation (1.1). 

With the first and second derivatives estimates at hand and the help of 
the standard parabolic theory, we finally conclude 

Proposition 2.10. // \u(x, t)\ < M on S^ x [0, T) for some positive con- 
stant M, then 

(2.26) 
& dk   ,   , 

<C   on   S^x [0,T) 

where C is a constant depending only on M, m, G, -UQ, T, fc, £. 

In summary, we have established the following result: 

Theorem 2.11 (long time existence). Let G : M+ —> M"1" be an arbi- 
trary positive smooth function with Gf > 0 everywhere. There exists a 
unique solution u{x,t) € C00(S^n x [0,Tmax)) to equation (*) satisfying 
uxx{x^t) + u(x,t) > 0, where 0 < Tmax < oo is the time interval such 
that lim^Tmax umax(t) = oo. 

The geometric meaning of Theorem 2.11 is that there exists a unique 
one parameter family of smooth convex immersed plane curves satisfying 
equation (1.1) which expand to infinity for arbitrary speed G. The solution 
exists until ^max(^) blows up. 
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2.2. Eventual monotonicity of the curvature. 

Recall that fcmax(t) is strictly decreasing on [0,Tmax) during the expansion. 
We will show that the curvature k is actually strictly decreasing everywhere 
on S^ once it has become uniformly small. That is, there exists a constant 
C depending only on the initial condition such that if we have A;max(to) < C 
at some moment to, then k(x,t) is strictly decreasing on the time interval 
[to,Tmax) for any x e S^. To see this, a straightforward generalization of 
Lemma 4.1 of Angenent [A] implies the following 

Lemma 2.12. Let v(0,t) : R/2m7rZ x [OjTmax)-*^"4", rn 6 N, be a positive 
smooth solution to 

Ov 
(2.27) -^ = F(9, t, v, ve) • {yee + v), 

where F(0,t,p,q) : R/2m7rZ x [0,^^) x M+ x R -> M+ ts smooth and 
arbitrary.  Then at each point (0o,*o) € R/2m7rZ x [OjTmax); ^e ftave eit/ier 

(2.28) voe + v>0 

or 

(2.29) vl + v2 < C2 

where 

(2.30) C = max     MM)2 + v(M)2) 
m0eR/2rmvZ V 

1/2 

We refer the readers to Angenent [A] for its proof. Lemma 2.12 says that 
as long as v(0, t) becomes greater than C at a point ((9, t), we automatically 
have v^ + v > 0 at that point. Since F > 0, equation (2.27) will force v(0, t) 
to become even larger. 

Under the same assumption as in Lemma 2.12, we have the following 
three corollaries. They are all similar to Angenent's results. In the following 
three corollaries, the constant C is given by (2.30). 

Corollary 2.13. For each t e (0,Tmax), define the following family of sets 

n(t) = {9 e R/2m7rZ : v(0, t) > C} . 

Then 
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i)  The family of sets fi(t) is increasing with respect to time. 

ii) For any to G (0,Tmax) and any 60 G £l(to), the function t —> v{6o,t) is 
strictly increasing on the interval [£o,Tmax). 

The eventual monotonicity of the solution allows us to estimate the 
derivative v9 in terms of *;max(*) = max^ER/2m7rZ v(0, t). 

Corollary 2.14. For any (0,t) G R/2m7rZ x [0,rmax); we have M0,t)| < 
C + 2m7r-t;max(t). 

For any given t G (0,Tmax), we can choose a Q(t) for which v(0(t),t) = 
^max(^)- The following corollary permits us to compare the solution to a 
cosine function in some interval near the maximum point 8(t). 

Corollary 2.15. Ifvmax(t) > C, then 

v(e,t)>vmax(t).caa(e-e(t)) 

for all 0 with 

0 < |0 - 0(t)| < arccos (      C/ . ) , 
V^maxW/ 

where 0 < arccos ( —^-rr? ) < 5. 
\VmaiX\t) J * 

Remark 2.16. Corollary 2.15 can be applied to any local maximum as long 
as it has value greater than C. 

Now let us come back to the expansion. We can apply the above lemma 
and corollaries to the equation 

(2.31) dtw = F(w)-(wxx + w), 

where w(x,t) = G(H(x,t)) = G (±) > 0 and F(w) = G'iG'^w)) > 0 and 
obtain the following lemmas and corollaries. We already know that fcmax(£) 
is strictly decreasing on [0,Tmax), which implies wmin{t) = G(Hmin(t)) is 
strictly increasing on [OjTmax). If there exists a finite time Tdec G (0,Tmax) 
such that 

1/2 
(2.32) wmin(Tdec) > 

then we automatically have 

dtw = F(w) • (wxx + w) > 0 
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on R/2ra7rZx(Tdec,Tmax). Thus w(x,t) is strictly increasing on [Tdec,Tmax) 
for any x G R/2m7rZ. We summarize this as 

Lemma 2.17. (i) // there exists a finite time T^ec E (0, Tmax) such that 
(2.32) holds for the solution to equation (2.31), then the curvature 
k(x,t) is strictly decreasing on [Tdec,Tmax) for all x € S^. 

(ii) IfTmox < oo for the solution to equation (2.31); then since 

lim   Hmax(t) = oo 
«'    f J-max 

(^see Lemma 2.21), we know that Hmax(t) = k  
1 ^ is eventually strictly 

increasing. 

(iii) // rmax = oo for the solution to equation (2.31), then there exists 
a finite time T^ec € (0, oo) such that the curvature k(x11) is strictly 
decreasing on [Tdec, oo) for all x G S^. 

Proof If Tmax < oo, considering the equation dfW = F(w) • (wxx + w) 
evaluated at the point where HmaiX(t) is attained, we must have dtw = 
dtG(H) > 0 eventually. Hence Hmax(t) is eventually strictly increasing. If 
Imax = oo, using the equation 

^-w = ^ (*=w) - G("™ta(t)) - Gis) > 0' 
we see that lim^oo G(Hmin(t)) = oo. The corollary follows. 

Again let C = [max^^^mTrZ (^x^jO)2 + w(x, 0)2)]      in the following 
two corollaries, we have 

Corollary 2.18. For any (x,t) G S^xp^Tmax), t^e Ziave 

dG(H(x,t)) 
dx 

<C + 2mK'G(Hm^(t)). 

Corollary 2.19. //G(iJmax(t)) = G(H{e{t),t)) > C for some t G (0,Tmax) 
and some 9{t) G iS^, then 

G(H(x, t)) > G(Hmax(t)) • cos(rr - 9(t)) 



Blowup and convergence of expanding immersed convex plane curves 775 

for all x with 
/ (j 

0 < \x-6(t)\ < arccos 

where 0 < arccos (G{H^(t))) < f • 

Although we can not apply Lemma 2.12 to u (u is not necessarily posi- 
tive), we also have the following result for u similar to Corollary 2.19. 

Corollary 2.20. If umax(t) = u{e{t),t) for somee(t) G S^,- then 

(2.33) u(x, t) > (p(t) + [umax(t) - (p(t)] - cos(x - 0(t)) 

for all 

ze(0(')-f, ^) + f),i€(o,rmax). 

Here (p(t) is the solution to (ODE) with ip(0) = ilmin(O) = S. 

Proof For any point p E S^ with ^(p, t) = 0 we have 

u(x, t) = u(p, t) • COS(:E — p) 

(2.34) rx 

+  /   sin(a; — r) • {wTr(r, t) + ?/(T, t)} dr. 
Jp 

In particular, we have 

u{x, t) = umax(t) - cos(x - 6(t)) + /     sin(a; - r) • {uTT(r, t) + U(T, t)} dr. 
J0(t) 

lixe (0(t), 6>(t) + f), then 

/     sin (re — r) • {^rr(r, t) + ?i(r, t)} dr 
Je(t) 

rx-9(t) 
= / smy'{uTT{T,t)+u{T,t)}dy 

Jo 
rx-0(t) 

> ip(t) • / sin ydy = (p(t) • [1 - cos(x - 6(t))]. 
Jo 

The proof is similar if x e (6(t) - f, 0(£)). D 

Roughly speaking, if ^max(^) is large, then tt(-,*) is uniformly large 
around the point 9(t). 
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2.3. Blowup behavior1. 

We are mainly interested in the case of finite-time blowup, i.e., Tmax < oo. 
We only touch some very basic relevant situations here. Results in this 
section are far from being complete. Of particular interest is when G is 
convex, which will be discussed in the next section. 

The phenomena in the finite time blowup are not well understood even 
in the homogeneous cases. What happens to Mmin(£) or tim?x;$ as t —> 
Tmax in the general case is still unknown. Some complicated behavior may 
happen. For example, one finds that an m-fold expanding circle is linearly 
unstable under the expansion with speed G(z) = za when a > ^pzi (which 
decreases towards 1 as m —► oo). This suggests that for sufficiently large a 
(perhaps, more generally, sufficiently high rate of growth of the speed) the 
limiting behavior should not be given by an expanding m-fold circle, but by 
something else. 

Lemma 2.21. The blowup time for umax(t) is the same as the blowup time 

forHmdX(t) = ——. 

Proof. Clearly, by (2.22) we only have to assert that if   lim   umax(t) = oo 
^—yTmax 

then 
lim   fcmin(^) = 0 

t—►•fmax 

also. Here 0 < Tmax < oo. For the case when Tmax < oo, assume that we 
have 

and 

lim   umax(t) = oo 
t—►-?max 

lim   Hmax(t) < oo 

(#max(£) will be shown to be eventually increasing). By the relation 

(2.35) flminC*) < Wmax(*),        Umin(£) < Hmax(t), 

we would have   lim   umin(t) < oo also. But then from (2.24), we must have 
*—*-tmax 

lim   kmin(t) = 0 
t—►-fmax 

^^We would like to thank the referee for making several valuable suggestions. 
They have been incorporated into this section as well. 
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since we assume lim^oo G(z) = oo. This is a contradiction. □ 

In the next lemma, we will give an estimate of the blowup time Tmax in 
case it is finite. 

Lemma 2.22. Let Tmax be the maximal time interval for the solution u(x, t) 
to equation (*).  We have 

(2.36) Tmax < oo       if and only if        I        f .dz < oo 
Ji    G(z) 

In particular, if G : K* = (0, oo) —> R+ is concave, then Tmax = oo. More- 
over, if Tmax < oo; we have the estimate 

noo j roo 1 

(2.37) 0 < / -— dz < rmax < / —rdz. 

Proof Consider the solution R(t) : [0,Tode) -* K4" to (ODE) with initial 
condition R(0) = A > 0. The solution is defined by the relation 

pR(t)      i rt POO     i 

L W)dz=ldt- T*-k W)iz 

where T0de is the maximal time interval for the solution R{t). Clearly, we 
can see that T0de < oo if and only if J^00 ohjdz < oo. We note that if there 
exists one positive solution to (ODE) with finite time blowup, then all other 
positive solutions have finite time blowup also. 

Suppose now we have two solutions to (ODE) with corresponding initial 
conditions 0 < Ai < A2 and blowup times Ti > T2. We have 

(2'38, £ w)dz=n-n' 
which describes the relation between the initial conditions and the blowup 
times. 

Assume Tmax < 00. Then, instead of working on umax(t), we consider 
Hmax(t)i which is easier to handle at this moment. Recall the equation 

dtH = G'{H)HXX + G"{H)H2
X + G(H), 



778 Dong-Ho Tsai 

which describes the evolution of the curvature k = jj. Let '<pi(t) and ^(t) 
both be solutions to (ODE) with ^i(O) = Hm[n(0) > 0, ^(O) = flniax(O) > 
0. By the comparison principle, we know 

(2.39) <Pitt)<H(x,t)<<p2(t) 

for all x e Sjj, whenever all three quantities are finite. Since the blowup 
time for iJmax is also Tmaxj the blowup time for ^i(t) is greater than or 
equal to Tmax and the blowup time for (p2(t) is less than or equal to Tmax- 
Continuous dependence of solutions to (ODE) guarantees the existence of a 
unique solution R(t) with blowup time exactly equal to Tmax, i.e., we have 

(2-40) 22(0) = Ro € [JWO), Hmaxm > 0, 

R(Tmax) = oo. 

Here RQ depends on the number Tmax- Finally we see that 

/ dt= ^rr^dz 
Jo Jlk 

and (2.37) is proved. Q 

The next corollary indicates a lower bound of Hmax(t) when it blows up. 

Corollary 2.23. In case we have finite time blowup, then 0 < R(t) < 
Hmsx(t) and 0 < R(t) < umax(t) for all t G [0,Tmax); where R(t) is the 
unique solution to (2.40). 

Proof. First we show 0 < R(t) < Hmax(t) on [0,Tmax). Assume there is a 
time to 6 [0,Tmax) such that i2(to) > Hmax(to). Let i2i(t) and 222(<) be the 
solutions to (ODE) with jRi(to) = Rfa) and i^fa)) = Hmax(to). Since we 
have ^Hmax(t)< G(Hmax(t)) and i2i(to) > ifcCto) = Hmax(to), we must 
have 

^max(t) < R2(t) < Rl(t), Rl(t) = R(t) 

for all t € [to,Tmax). This would force Ri(t) and ^(t) to have the same 
blowup time Tmax. Since we have Ri(to) ^ Rzfo), we get a contradiction 
due to (2.38). 
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The proof of the second part is exactly the same. □ 

By Corollaries 2.19 and 2.20, we also obtain the following 1^ norm esti- 
mates from below. 

Corollary 2.24. Let p > 0 be any fixed number. There is a constant A > 0 
such that 

(2.41) 

and 

(2.42) 

^   \\u\\p ^    to?1   X • umax(t) = oo 
*   *!■ max i-T, 

lim   ||G(fr)||p>   lim   \.G(H)max(t) = oo. 
—*• J- max t—y i max 

Proo/. By (2.33) we know that u(x,t) > umaiX(t) • cos(a; - 0(t)) for all x with 
0 < \x - 6(t)\ < f and all t. Hence 

lim f   HP 
JsL 

dx 

l/p 

>    lim 
*   ^-tmax 

>    lim 
£   ^max 

/ («„„«(*) •cos(a;-e(t)))p da: 
J\x-0{t)\<l 

Umzx(t)P- j  JcOsOPdZ 

=    lim    A • Umaxfa) = oo, 

l/p r   ZL 
where A =   /A(cosOP^ 

The proof of the second estimate is similar. □ 

We shall estimate ^maxW and HmaiX(t) from above under the assumption 
that G is a convex function in the next section. 

2.3.1. The case when G is convex.   In this section we shall assume G 
is convex; i.e. G" > 0 on (0, oo) such that 

i; i 
G(z) 

dz < oo. 

Hence G can not be asymptotically linear and we have finite time blowup. 
We shall estimate umax(t) and Hmax(t) from above in this section. 
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Remember that if Tmax < oo is the finite blowup time for Hmax (or umax), 
then we have 

(2.43) rmax = /      -— dz, 
JR(O) M^J 

where R(0) = Ro E [Hm[n(Q),Hmax(0)] > 0 is some number depending on 

-^max- 
Two basic questions concerning blowup are: how to estimate Tmax and 

how to estimate the blowup rate of Hmax(t) as t —> Tmax? We already have 
a rough estimate (2.43) on TmatX for arbitrary speed G which produces finite 
time blowup. With the additional convexity assumption on G here, we can 
get a better estimate both on Tmax and on Hmax(t) as t —> Tmax. 

Let 

(2.44) s(t) = -?— /   H(x,t)dx = ^— [   u(x,t)dx,      t e [0,Tmax) 

which is the average of H (or u) over the interval [0,2m7r]. We know geo- 
metrically that 

(2.45) s(t) = ^-,      L(t) = length of 7*. 

We also know that limt_>Tmax s(t) = 00.   In fact by (2.33) and since u is 
everywhere strictly increasing, we have 

s(t) =  /    u(x, t)dx K )     2m<K JSL   V     J 

+ C1 (2.46) >    1 

2m7r 
Umaxit)   / COs(x - 0(t))dx 

J\x-0(t)\<z 

mTT 

where Ci < 0 is a constant independent of time.   For example, one can 
choose 

Ci =  / u(x, 0)dx. 
2m7r JixeS^iuix^KO} 

Compute 

(2.47) 

^ = J—f   G(H(x,t))dx 
dt       27X171 J si 

— I   H{x,t)dx\ =G(s(t)), 
nvn JSL J 

>G , n \ 2rmT 
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where we have used the Jensen's inequality, in which the convexity of G is 
used. Therefore we have 

(2.48) d+H™{t) < G(Hmaxm      f = G(Rm      | > G(S(t)), 

where HmQX(t)1 R(t) and s(t) all have the same blowup time Tmax < oo. 
Comparison yields 

(2.49) Hmin(t) < s^t) < R(t) < Hmax(t) 

for all t G (0,Tmax). Similarly, we have 

(2.50) umin(t) < s(t) < R(t) < umax(t) 

In particular, we have 

(2.51) #min(0) < 8(0) < R(0) < Hmax(0), 

which is a better estimate than i?(0) = RQ G [-Hmin(0),iirmax(0)]. (In case 
when irmin(O) is far away from Hmax(0) but s(0) is close to iymax(O), (2.51) 
provides an improvement of estimating Tmax.) 

Absorbing the negative constant Ci into Um^    eventually if necessary, 
we may assume that Ci = 0 in (2.46). Since we know 

Hma,x(t) < (uxx)max(t) + umax(t) < Cumax(t), 

we get 

^Hmax(t) < ^Q. < 3(t) < R{t) < Hmax(t) 

and therefore 

where C > 1 is some constant. We summarize our result as 

Proposition 2.25. Let G : M+ = (0, oo) -> M+, G' > 0 everywhere, be any 
smooth convex function which is not asymptotically linear and let tfc(a;, t) be 
the solution to (*) on S^ x [0,Tmax) where limt_>Tmax ^max(^) = 00- Then 
there exists a constant C > 1 depending only on m and uo(x) such that 

(2.52) i<H5^)<c       and      1 < %# < C 
R(t) R\t) 
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for all t G   [0, Tmax).    Here R(t) is the unique solution to (ODE) with 
limt_vrmax -R(*) — 00' Moreover, we have 

=/ 
JR 

oo 1 

dz 
IR(O) 

G
(
Z

) 

and 

(2.53) ifmill(0) < 8(0) < R(0) < Fmax(0). 

Remark 2.26. The significance of Proposition 2.25 is that it implies 
bounded geometry (in a suitable sense) for the evolving curves after they 
are rescaled by the factor R(t) coming from the ODE, and that this suggests 
that such a rescaling should produce a meaningful limiting shape at the final 
time rmax7 perhaps a homothetically expanding curve. But it is not clear 
whether we should expect a homothetically expanding curve with the same 
winding number, or whether only one loop will expand, and all the others 
get scaled down to the origin. This would take a lot more to understand. 

2.3.2. The homogeneous case G(z) = z0*, a > 1. As pointed out in the 
introduction in Section 2.3, some complicated behavior may happen even in 
this simple situation. The general blowup behavior is still unknown. Let 
G(z) = za, where a > 1. Forgetting the initial data, equation (*) becomes 

(2.54) ^ = (uxx + u)a,      (x, t)eS^x [0, Tmax). 

Take an m-fold circle 70 with radius R(0) as the initial data of (2.54) such 
that limt-^Tmax -^(*) = 00- We get an m-fold expanding circle 7* with radius 
R(t), where ^ = i?a. 

2 
Lemma 2.27. If a > ry^_1? then the m-fold expanding circle solution 7^ is 

linearly unstable*. 

Proof Let v(x,t) = u^w, where u satisfies (2.54). It satisfies 

(2.55) dtv = Rit)"-1 {(vxx + v)a - v} . 

2We thank the referee for supplying this observation. 
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Since u = R(t) is a solution of (2.54), v = 1 is an equilibrium solution of 
(2.55). Linearize (2.55) at the equilibrium solution to get 

dtw = it^)"-1 {a (vxx + v)a - (wxx + w) — w} 

= i^t)0*-1 {a (wxx + w) — w} since v = 1 

(2.56) = Rit)"-1 {awxx + (a-l)w}. 

Take a special solution w to (2.56) of the form 

x x 
w(x, t) = A(t) cos |--B(t)sin—, 

m m 

where A(0) > 0 and B(0) > 0 are both small. Then if A(t)and B(t) satisfy 

(2.57) 
dt        K ' 

a   1- 
m' 

-1 

dB 
~dt = R(t) a-1 all K 

m' 

■A, 

B, 

w(x,t) would satisfy (2.56) on 5^ x ItyTmax). One sees that if 

then ]imsapt_^Tmaxw(xi t) = oo no matter how small A(0) and 5(0) are. 
The lemma is proved. □ 

Let us come back to equation (2.54) with the original initial data 
u(x, 0) = UQ(x). The solution R(t) to (ODE) with blowup time Tmax is 
given by 

-t= r ^ 
hence 

and therefore 

(2.58) 

R(t) G{z) 

(Tmax-t)R(t)P = -J   p = a-l>0, 
P 

m = "i    i 
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It describes the blowup behavior of umax(t) and -ffmax(£) for the solution u 
to partial differential equation (2.54). 

Several observations are in order. Prom (2.53) we find 

1 1 
(2-59) PHmax(0)P - Tmax - rtpp 

Therefore we conclude: 

(i) If the initial condition satisfies s(0) > 1, then for large p we have small 
Tmax] but the blowup rate near Tmax becomes slower. 

(ii) If the initial condition satisfies #max(0) < 1, then for large p we have 
large Tmax; but the blowup rate near Tmax becomes slower. 

(iii) Regardless of the initial condition, if p is very close to 0, which is 
equivalent to a being very close to 1, then we have large Tmax and the 
blowup rate near Tmax becomes very fast. 

(iv) Ifpe (0,1), then 

lim  (Tmax - t) • Hmax(t) =   lim  (Tmax - t) • umax(t) = oo 
t—►Tmax t—-►Tmax 

and if p € (1, oo), then 

lim   (Tmax - *) • flmax(*) =     Km   (Tmax - t) • tw(t) = 0. 

Finally if p = 1, then (Tmax -1) - Hmax(t)aiiid (Tmax -1) • tzmax(*) stay 

bounded as t —> Tmax- 

3. The case when G is concave; convergence.. 

In this section we shall assume G is concave; i.e. G" < 0 on (0, oo). The 
concavity condition will make it easier and more straightforward to apply 
the maximum principle. Also the concavity will allow us to have infinite 
time to smooth out the solution. 

Since G is concave, from Lemma 2.22, we know [0, Tmax) = [0, oo). This 
can also be seen from the inequalities 

(3.1) ££« = limsUp "»■,(* +fc)-»w(t) < GiUm3xit)) 
dt ^0 h 
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Therefore umax(t) will grow at most exponentially and hence can not blow 
up in any finite time. 

Also we know G(H) > G(S) > 0 on S^ x [0, oo). Hence u will become 
positive after a finite time. Since our main interest is the long time behavior 
of the solution, without loss of generality, we may assume u>e>0di>tt = 0 
for some positive constant £ > 0 and note that limt_>oo ^min = co- Similarly, 
we may assume that the curvature fe(x, t) is strictly decreasing on [0, oo) for 
all x e S^ by Lemma 2.17. 

3.1. Some basic estimates. 

Let C denote any constant which depends only on UQ. The concavity implies 
the following 

Lemma 3.1.  We have 

(3.2) (i).   ^  <C, (ii). 

onS^x [0,oo). 

u 
U* 

U 
<c, 

Proof. The proof is simple and we omit it. D 

The concavity implies the decreasing of the following quantities: 

Lemma 3.2.  The maximum of the following quantities are all decreasing 
on t G [0, oo); 

(•)• 
dtu 
u 

(u). 
dtG 

{iii). 

Proof. Write the equation dtu = G(uxx + u) as 

(3.3) dtu = G,uxx + G'u + (G-HG'). 

Let w = Op- > 0. We have 

dtw = G'{H) ■ wxx + 2G'(F) • (^) • wx + ^^ • {H ■ G'(H) - G(H)). 
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Since G is concave, we know H ■ G'(H) - G(H) < -G(0) < 0 and hence 

d+wmax(t) 
dt 

<0. 

(i) is done. 
For (ii), since we have ^ > 0, it suffices to show the maximum of ^ 

is decreasing. Let w = G{H). We already know 

(3.4) dtw = F(w) • (wxx + w), 

dtw 
where F(w) = G'iG-^w)) > 0. Also let q = -^. We find dtq 

wu_q2 
w 

Substitute 

d2 w 
Wu = dt2 

and 

F(w) • (dtw)xx + [F(w) + Ff(w) • (wxx + w)] • dtw 

w(dtw)xx - (dtw)wxx       wx 
Qxx =  o ^ ... 9x w* w 

into dtq = ^ - q2 to deduce 

(3.5) 

Since G is concave, we know 

,   xwT Fr(w)w o 
dtq = F(w)qxx + 2F(w)—qx + -jj^T 

Applying the maximum principle to (3.5) at the maximum point of q, (ii) is 

proved. 
To verify (iii), we first compute 

dt(wx) = F(w)(wx)xx + F,(w)wx(wx)x + [F(w) + F'(w)w}wx 

and conclude 

* (T) - ^ (T).+^ (v) (T).+*-**•+-] (v) ■ 
Finally we obtain 

dt$ = F(w) *3 -(©J] + w 
2F(u;)— + F'C^)^ $, 

+ 2F/H«;$(l + $). 
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— )   and we have used the relation 
w / 

*, = 2 f^ ^ - 2 f^V 
\ w )   w \ w ) 

to convert the equation into a nice form. Again the maximum principle 
works. □ 

3.2. Rescaling and convergence. 

Before we do the rescaling of the solution, we first establish an interesting 
result which allows us to compare two different solutions to (ODE) when G 
is a concave function. 

Since we always assume that lim^oo G{z) = oo, if we have two different 
solutions J2i(t) and ifeft) to (ODE) on [0,oo) with 0 < #i(0) < #2(0), 

we have lim^oo [i^W — -Ri(*)] — 00- We want to know the ratio -^W as 
t —► 00. 

Lemma 3.3. Let Ri(t) and R2(t) be two arbitrary solutions to (ODE) with 
initial conditions 0 < i2i(0) < JR2(0). // G(z) is a concave function on 
(0,00), then 

(3 6) Ml     and    G{R2{t)) 
(3

-6) Ri(t)     ^    GiRtit)) 

are decreasing on (0,00). If in addition, we have lim^^oo G'iz) — 0, then 

(37) lim R2{t)      lim G^^ - 1 

Proof. The proof of (3.6) is trivial. To show (3.7), assume that 

lim G'(z) = 0 
z—■►oo 

and 

hm —±7-4 = A> 1. 
t-+OQRl(t) 

We have the following relation 

rRi(t)    i rtfaW    i 

JR^O)  
G

{
Z

) JR2{0)  
G

(
Z

) 
rR^O)     1 pRi(t)     j rXRi(t)      1 

~ JR2(0)   G(Z)  
Z    JRl(o)  G{Z)  

Z    JRl{t)    G(z) 
dz 
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and hence 

rR2(0)     l rArti(t)     i 
(3-8) /       r77Sdz * /        rM ^   for a111 > a 

Using the fact that -fl is decreasing to zero on (0, oo), we obtain 

r\Rl(t)      i r> 

JRiit)      G(z) JRi 

rXRi(t)     i f\Ri(t)       i i 
-dz 
z 

,^^1               In A 
>   / „,n , vv\    / — «£ = —/—:—^TT > oo 

as t —► oo, which is a contradiction to (3.8). Hence limt_+oo ^® = 1. 

To show limt-.oo GL2)x( = 1, we assume again that limt_>oo Q/^MS = 
A > 1 and therefore G(J22(t)) > \G{R\{€)) for all t > 0. The concavity 
implies 

G(R2(t)) > AG(i?i(t)) > G(XRi(t))     for all t > 0, 

which means i^C*) ^ Ai?i(t) and is again a contradiction. D 

The result (3.7) does not hold if we do not assume lim^-.oo G'(z) = 0. 
For example, take G(z) = z. 

Recall in Section 2.3.1, where G is convex, we have the inequalities 

I > G(8(t))9 
(3-9) ffminW < S(t) < R(t) < ilmax(t), 

Umin(t) <s(t)< R(t) < Wmax(*), 

where R(t) is the unique solution to (ODE) with the same finite blowup 
time Tmaxas Hmax(t). In the case when G is concave, the inequality for ^f 
becomes 

(3.10) ft < G(s(t)) 

for all t G (0, oo) and the roles of s(i) and R(t) can be switched. More 
precisely, we have 
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Lemma 3.4.  There exist a solution R(t) to (ODE) such that 

(3.11) ffminW < R(t) < S(t) < Hmax(t) 

and 

(3.12) umin(t) < R(t) < s(t) < um^(t) 

for all t € [0, oo). 

Proof. The proof goes exactly the same as the one given in Lemma 9 [CT]. 
Here we use the conditions 

(3.13) d~gj(t) > G(^min(t)), 

^j^ > ©(tlndnW) 

as barriers to bound a solution R(t) to (ODE) which satisfies (3.11 ) and 
(3.12). □ 

Due to the concavity of G, we have 

Proposition 3.5. In the concave case, the solution is improving in the fol- 
lowing sense: 

(3.14) 

0)       maX/,x    and i™**,,^ ( =  u*1**/^ )    are decreasing on [0, oo), 
^minW kmm\t)   \      ■timmyt) J 

(ii)    ^max(^) * kmax(t) > 1 is decreasing on [0, oo), 

(hi)    '^min(^) • kmin(t) < 1 is increasing on  [0, oo). 

Proof. Again, the proof is similar to the one given in Lemma 11 [CT]. Choose 
one R(t) satisfying (3.11) and (3.12). Since G is concave, we have XG(z) < 
G(Xz) for all z € (0, oo), 0 < A < 1, and hence 

d+ fumax(t)\ <o 

dt V R(t) 
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for all t e  [0,oo).   Similarly, we conclude that Hl^l)     is decreasing on 

[0,oo); "ffiffl and ^g^ are increasing on [0,oo). (i) of ( 3.14) is proved. 

To show (ii) and (hi), we use 

(+\    l.       (+\ ^ ^maxfo)  _ Umaxjt)     R(t) 
Umax[t) 'kmax[) " Hm[n(t) -   R(t)   Hm]n(ty 

and 

and note that we have the inequalities 

1 
l 777 = flminC*) < «inax(0       and      «min(t) < T TTT = Hmax(t).     D 

Corollary 3.6. By (3.14), we have the following relation between k and u: 

(3.15) ^ • —^r < fcmin(t) < kmax(t) < C 
C^     ^max(^) TZminW 

/or aZZ t G [0, oo), tyftere C > 1 is a constant depending only on UQ. 

As special cases, if u < M on S^ x [0,T), we will have ^ • ^ < fe(x,t) 
on 54 x [0,T). And if u > M on S^ x [T, 00), we have k(x,t) < C • ^ on 
5^ x [T,oo). Both results match our geometric intuition. 

Due to the ODE result (3.7), we can rescale the solution in many ways 
and get the same convergence. The following is the main result of this 
section. 

Theorem 3.7. Let G : R+ —> R+ be an arbitrary positive concave smooth 
function with G' > 0 everywhere and lim^oo G^z) = 0 and let r(t) be any 
solution to (ODE) with r(0) > 0. Define the rescaling as;yt=

:^. Then the 
rescaled curvature k(x,t) = r(t) • k(x,t) and the reseated support function 

u(x, t) = ^T^- of the rescaled curve 7* = ^ satisfy 

(i)   lim k(x,t) = 1 uniformly on x e S^, 

^Is /or i/ie monotone properties, we have 
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(i)   ~max:— is decreasing on [0, oo); 
^min v v 

(ii)   ^max      is decreasing on [0, oo), 
^min v^) 

(in) umax(t) • fcmax(t) > 1 is decreasing on [0,oo) and fiminC*) * fcmin(^) < 1 
is increasing on [0, oo). 

/n addition, i/r(t) a/so satisfies (3.11) and (3.12) on [0, oo), ifcera 

(i) fcmaxOO ^ decreasing on [0, oo), 

(ii) fcmin(t) is increasing on [0, oo), 

(iii) 'Umax(^) is decreasing on [0, oo), 

(iv) ^min^) is increasing on [0,oo). 

Proof. It suffices to show (3.16). To show (i) of (3.16), we see from (2.39) 
that 

<pi(t) < H(x,t) 1 < <P2(t) 
r(t)   -    r(t)        T(t)k(x,t) -  T(t) 

for all x G 5^ and all t G (0,oo), where <pi(t) and v?2(*) both are solutions 
to (ODE) with 9?i(0) = ilmin(0) > 0, ^2(0) = Fmax(0) > 0. Since now we 
have lim^oo ^gl = l and lim^oo ^ = 1, (i) is proved. 

To show (ii) of (3.16), note that if lim^oo G'(z) = 0, then 

IimGM = 0 t-*oo T(t) 

uniformly in x e S^. Compute 

\u .(x1t)-l\ = 

< 

u(x, t) — r(t) 
r(t) 

UxiZut) 

< 
umax(t)      Uminyt) 

m r(t) 

m 
R(t)-r(t) 

m 
T(t) 

+ m - r(t) 
T(t) 

r(t) 

where R(t) is a solution to (ODE) satisfying (3.11) and (3.12) and & G S^. 
Using 

«*(&>*) m MM      G(H(Zt,t)) 
G(H(tt,t))        R(t) 

<C- 
G(H(tt,t)) 

m 
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and limt-H-oo^^ = 1, we conclude limt_00 \u(x,t) — 1| = 0 uniformly in 

We also know, by Lemma 2.8, that 

\ux\<C-G(H)<C-G(Hmax(t)). 

Since Hmax(t) is an increasing function on [0, oo), Lemma 2.6 tells us that 

\uxx\<C-G(Hmax(t)). 

Therefore 

i~ i   i~   \ ^ C - G(Hmax(t)) 
\ux\, \uxx\ < T-r—— > 0    as    t—KX>. 

Tit) 

(ii) of (3.16) is justified. □ 

The geometric meaning of Theorem 3.7 is that the rescaled curves 7* 
converge to the m-fold unit circle centered at the origin in the C2 topology 
as t —> 00 or equivalently, the limiting behavior of 7* is given by an expanding 
m-fold circle. 

Remark 3.8. (i) Similar to [CT], we can get convergence in C00 norm 
i.e., lim ||ii(-,t) — l||c7<»(5i) = 0 if we put more assumptions on G. 

Those assumptions are satisfied by the function G(z) = za, a G (0,1). 

(ii) The assumption lim^oo Gf(z) = 0 is probably not necessary but we 
are not able to get rid of it. 

3.3. Rescaled arclength. 

In the last section, we want to look at the behavior of the arclength L(i) = 
^4|e of the rescaled curve 7* = 4|y. Here r(t) satisfies (3.11) and (3.12). 
Recall we have the formula 

(3.17) i(t) = ^-,      L(t) = length of 7*, 

ds 
with — < G(s(t)) and r(t) < s(t) for all t e [0,00). Compute 

at 

dt \T(t)J      2m 
dL(t) < T(t)G(S(t)) - s(t)G(r(t)) 

(-) -$ 

2m7r   dt    - r2(t) 

G(s(t))     g(T(0)- <o, 
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since —— is decreasing on (0, oo). We conclude the following 
z 

Lemma 3.9. If G(z) is a concave function on (0, oo); then L(t) > 2mn is 
decreasing on [0, oo). 

The lemma can also be seen from the following formula 

dL_   1   dL     G(T(t)) 1    [ hr(l\,      G(T(t)) 
dt - r(t) dt       r(i)2  L - T(t) Jlt 

fcCj \k) dS       T(t)2 

(3.19) says that the rescaled arclength decreases over any interval x G [a, 6] 
where H(x,t) > r(t) and increases over any interval x G [a, 6] where 
H(x,t)<T(t). 
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