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We study hyperkahler manifolds that can be obtained as hy- 
perkahler quotients of flat quaternionic space by tori, and in partic- 
ular, their relation to toric varieties and Delzant polytopes. When 
smooth, these hyperkahler quotients are complete. We also show- 
that for smooth projective toric varieties X the cotangent bun- 
dle of X carries a hyperkahler metric, which is complete only if 
X is a product of projective spaces. Our hyperkahler manifolds 
have the homotopy type of a union of compact toric varieties in- 
tersecting along toric subvarieties. We give explicit formulas for 
the hyperkahler metric and its Kahler potential. 

1. Introduction. 

A 4n-dimensional manifold is hyperkahler if it possesses a Riemannian met- 
ric g which is Kahler with respect to three complex structures Ji, J2, Js 
satisfying the quaternionic relations Ji J2 = — J2J1 = J3 etc. To date the 
most powerful technique for constructing such manifolds is the hyperkahler 
quotient method of Hitchin, Karlhede, Lindstrom and Rocek [HKLR]. The 
power of this method lies in the fact that a flat hyperkahler space may have 
highly nontrivial quotients. 

In this paper we shall make a detailed study of a class of hyperkahler 
quotients of flat quaternionic space W1 by subtori of Td. The geometry 
of these spaces turns out to be closely connected with the theory of toric 
varieties, that is, varieties of complex dimension n admitting an action of 
(C*)n with an open dense orbit. The toric varieties we shall be concerned 
with have a Kahler metric preserved by the action of Tn < (C*)n. 

If 4n is the dimension of our hyperkahler quotient there is an isometric 
action of Tn which is holomorphic with respect to all the complex structures. 
We shall refer to our manifolds as toric hyperkahler manifolds (cf. [Go]). 
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We shall study various topological and metric properties of toric hy- 
perkahler manifolds. First we give necessary and sufficient conditions for 
a hyperkahler quotient M of quaternionic space by our torus actions to be 
smooth (Theorem 3.2) or an orbifold (Theorem 3.3). When smooth, M is 
complete as a Riemannian manifold. We show that the hyperkahler moment 
map <l> for the induced torus action on M is a surjection onto E3ri with con- 
nected fibers. This can be viewed as an analogue of the convexity theorem 
for compact toric varieties. We also explain how to read off the singular 
orbits and fixed points of the Tn action (Theorem 3.1). 

Our discussion is influenced by the work of Delzant [De] and Guillemin 
[Gul],[Gu2], who have shown that a large class of toric varieties can be 
obtained as Kahler quotients of Cd by subtori of Td. A guiding principle of 
our work is that, while a compact Kahler toric variety is determined by a 
convex polytope, a complete toric hyperkahler orbifold is determined by an 
arrangement of affine sub&paces. 

In section 4 we discuss how the existence of a large family of compact 
3-Sasakian manifolds found by Boyer, Galicki and Mann [BGM 1],[BGMR] 
can be read off from our results. 

In section 5 we show that the generic complex structure of a toric hy- 
perkahler orbifold is that of an affine variety (Theorem 5.1). In section 6 
we discuss the topology of toric hyperkahler orbifolds M, and show that 
it depends only the torus used to obtain M and not on the moment map 
(Theorem 6.1). We identify the homotopy type of our orbifolds as that of 
a union of finitely many toric varieties intersecting along toric subvarieties 
(Theorem 6.5). We also give a combinatorial formula for the Betti numbers 
of toric hyperkahler orbifolds (Theorem 6.7). 

If X is a toric variety arising from Delzant's construction, we show in sec- 
tion 7 that the cotangent bundle T*X carries a natural hyperkahler metric 
whose restriction to the zero section is the Kahler metric on X. This hy- 
perkahler metric is complete only when X is a product of projective spaces. 
We also discuss when the metric on T*X can be smoothly completed. 

The last two sections deal with the Kahler geometry of our manifolds. 
We give an explicit formula for the Kahler form (Theorem 8.3), generalizing 
the formula of Guillemin [Gul] for compact toric varieties. We also give an 
explicit description of the Riemannian metric (Theorem 9.1), which corre- 
sponds to finding a solution of generalized Bogomolny equations of Pedersen 
andPoon [PP]. 

We refer the reader to [HKLR] for a thorough discussion of Kahler and 
hyperkahler quotients. Let us remark here that a particular class of our 
manifolds was studied by Goto [Go] (see Remark 3.6). Even for this class 
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our point of view is different from Goto's as we particularly stress the relation 
with algebraic toric varieties. There is also some relation with the work of 
Nakajima [Na]. 

2. Toric varieties. 

In this section we shall give a quick overview of Kahler quotients of Cd by 
tori and in particular of Delzant's construction of certain toric varieties from 
polytopes [De]. We follow the exposition of Guillemin [Gul],[Gu2]. 

The real torus Td = {(ti,... , td) e Cd : |ti| = 1} acts diagonally on C* 
preserving the flat Kahler metric whose Kahler form is 

(2.1) ^—-J2dzkAd^ 

The moment map for this action is 

1   d 

(2.2) M*) = 9£W2c* + c' 

where the ei are the standard basis vectors of Rd and c is an arbitrary con- 
stant in Rd. If AT is a subtorus of Td whose Lie algebra n C M^ is generated 
by rational vectors, then we can perform the Kahler quotient construction 
with respect to AT. Such a subtorus is determined by a collection of nonzero 
integer vectors {ui,... ^Ud} (which we shall always take to be primitive) 
generating En. For then we obtain exact sequences of vector spaces 

(2.3) o  > n —1—> Rd —?—> W1  ► 0, 

(2.4) o  > W1 —£-> Rd -^—> n*  > 0, 

where the map (3 sends ei to Ui. There is a corresponding exact sequence of 
groups 

(2.5) 1 -► N ~> Td -> Tn -> 1. 

In order to obtain a smooth Kahler quotient one has to make certain as- 
sumptions on N. We will not discuss these in full generality (but see below 
for the case when the ui come from a polytope). In the next section we shall 
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give necessary and sufficient conditions for the corresponding hyperkahler 
quotient to be smooth. 

The torus N acts on Cd preserving the Kahler form (2.1), and the mo- 
ment map for N is, from (2.2), 

1   d 

(2.6) fi(z) = -Y^\zk\2ak + c, 

where ak = £*(efc). The constant c is of the form 

d 

(2.7) c=J2Xkak, 
fc=i 

for some scalars Ai,... , A^ G M. If 0 is a regular value of the moment 
map (2.6), we obtain a smooth Kahler quotient X = /ub~1(0)/N which is a 
toric variety. The torus Tn = Td/N of (2.5) acts on X and gives rise to 
a moment map </> : X —» Mn. If X is compact, the image of this map is a 
convex polytope A called the Delzant polytope of X. (Note that its vertices 
are not required to lie on an integer lattice and in this respect the Delzant 
polytope differs from the Newton polytope of algebraic toric varieties). 

Conversely, any smooth compact toric variety X of complex dimension 
n, with a Kahler metric invariant under Tn < (C*)n, comes from Delzant's 
construction. For the Tn action induces a moment map as above, whose 
image is a convex polytope A in R71. The smoothness of X corresponds to 
the properties that precisely n edges meet at each vertex of A (that is, A is 
simple), and that the directions of these n edges are given by a Z-basis of 
Zn. The polytope A is defined by a system of inequalities of the form 

(2.8) <a,Ui)>Ai,      (z = l,...,d), 

where ui is the inward-pointing normal vector to the i-th (n—l)-dimensional 
face of A. Now X is produced by the Kahler quotient construction described 
above, where the vectors ui and the scalars A; are those in (2.8). 

The Kahler quotient X = p~1(0)/N can be identified as follows with the 
quotient of an open subset of Cd by the complexified torus Nc. Every orbit 
in Cd of (Td)€ is of the form 

(2.9) Cf = {(zi,...,^) :* = 0 iff ig/} 

for some multi-index / = (ii,... ,ir), 1 < ii < ... < ir ^ ^ (we allow 
r = 0). If JP is a face of A of codimension r, then F is defined by replacing 
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the inequalities of (2.8) by equalities for i belonging to the complement of 
some multi-index / of length d — r. If we let Cp = Cj then the set 

(2.10) Cd
A = \JCd

F 

F 

is open, and X is biholomorphic to C^/iV^1. (Note that to be consistent 
with the notation later in this paper our definition of Cj is dual to that of 
Guillemin). 

Example 2.1. Consider the following n + 1 vectors in R71: Ui = e;, 1 < i < 
n, and un+i = — (ei + ... + €„). For any negative scalars Ai,... , An+i, the 
polytope A defined by (2.8) is similar to the standard simplex in Mn (see 
Fig.l for n = 2). Here C^ = Cn+1 - {0} and iVc is the diagonal C*, so X 
is CPn. 

Example 2.2. In this example the vectors Ui are not determined by a poly- 
tope. We take ui = —e\, U2 = us = e\ in R and Ai = —1, A2 = \ and A3 = 0. 
This time n is spanned by (1,1,0) and (1,0,1) and the zero set of the moment 
map (2.6) is described by the equations: \zi\2 + \z2\2 = 1, —1^2|2 + \zz\2 = 1- 
In this case (Cd)min = (C2 - {0}) x C* and X is CP1. 

If we fix ui,... , Ud, the resulting variety still depends on the choice of 
the moment map, that is, on the scalars A;. In particular the topology 
may change when we pass through a critical value of c = J2^kak- This 
change corresponds to a proper birational morphism of the toric varieties 
([Od,Gu2]). 

Example 2.3. Consider the vectors ui = ei, U2 = £2, ^3 = ~~e:b u4 = 

—aei — 62 in R2, where a is a positive integer. Figure 2 shows the case a = 1. 
For large A3 the polytope A is a trapezoid and the corresponding surface 
X is the Hirzebruch surface P(0 © 0(a)). Moving the line orthogonal to 1^3 
beyond the intersection point of lines orthogonal to U2 and U4 corresponds 
to blowing down the divisor D with D • D = —a. The blown-down surface 
is the weighted projective space CP2(1,1, a), which is nonsingular only for 
a=l. 

A toric variety is also determined by a fan T, that is, a collection of 
rational strongly convex polyhedral cones in Rn such that each face of a 
cone in T is also a cone in T and the intersection of two cones in T is a 
face of each [Fu]. A convex polytope A described by (2.8) determines a fan 
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T as follows: the cone {X)iel Uui : ti > 0} belongs to J7 if and only if the 
(n — l)-dimensional faces of A corresponding to i^, i e /, meet in A. The 
passage from a polytope to the fan is equivalent to forgetting the Kahler 
metric of X. 

3. Toric hyperkahler manifolds. 

We shall now discuss hyperkahler quotients of IF* by subtori of Td. The 
quaternionic vector space W* is a flat hyperkahler manifold with complex 
structures Ji, J2, J3 given by right multiplication by i, j} k. The real torus 
Td acts on EId by left diagonal multiplication, preserving the hyperkahler 
structure. If we choose one complex structure, say J2, and identify BId with 
Cd x Cd, then the action can be written as 

(3.1) t-(z,w) = (t-z,r1 -w). 

On the other hand, taking the complex structure Ji identifies HP* with T*Cd, 
with the natural torus action induced from that on Cd. 

The three moment maps /xi,/i2,/i3 corresponding to the complex struc- 
tures can be written as 

1   d 

(3.2a) fii(z, w) = - ][] (\zk\2 - \wk\2) ek + cu 

(3.26) (/X2 + yZ-Lfjis)^, w) = Y^(zkwk)ek + C2 + V^cs, 
k=i 

where ci,C2,C3 are arbitrary constant vectors in Rd. Notice, that unlike in 
the Kahler case, the hyperkahler moment map (/ii,/i2>M3) is surjective for 
any choice of ci, C2, C3, and in fact gives a homeomorphism Md/Td —> R3d. 

Now, let ^(2 = 1,..., d), define a subtorus N of T^ by (2.3) and (2.5). 
As before we assume that the vectors Ui are integer, primitive and generate 
Rn. The moment maps for the action of N are (cf. (2.6)) 

1   d 

(3.3a) /ii(2, w) = o E O^l2 ~ l^l2) ak + Ch 
Z
k=i 

(3.36) (H2 + y/11!^)^, w) = Y^(zkwk)ak + C2 + V^Tcs . 
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The constants Cj are of the form 

d 

(3.3c) 97 = £*{«*,        0' = 1,2,3). 
k=i 

where A^, G M. We shall adopt the notation 

Xk = (\l\lxl),    (k = l,...,d). 

We shall denote the hyperkahler quotient fi~1(Q)/N corresponding to u = 
(ui,... , Ud) and A = (Ai,... , A^) by M(w, A), or sometimes just M. 

It will be important to consider the hyperplanes in Rn 

(3.4) Hi = {yeWl:(y,uk) = Xi
k},    (j = 1,2,3,  k = l,...,d) 

and the codimension 3 flats (affine subspaces) in R3n 

(3.5) Hk = Hi x Hi x Hi 

It is these flats, rather than the intersection of half-spaces as for toric vari- 
eties, that determine the structure of toric hyperkahler manifolds. 

The action of Tn = Td/N on M(u, A) preserves the hyperkahler structure 
and gives rise to a hyperkahler moment map </> = (<^i, <^2> ^s)- The following 
result describes its essential properties. 

Theorem 3.1. Let ui,... ,Ud G Zn be primitive and span Rn and let 
Ai,... ,ArfGR3.  Then: 

(i)  The hyperkahler moment map (j) : M —► R3n for the action of Tn 

defines a homeomorphism M/Tn —> R3ri. Therefore M is connected. 

(ii) If x G R3?\ then the Tn-stabiliser of a point in </>-1(:r) is the torus 
whose Lie algebra is spanned by the vectors Uk for which x G Hk - 

Proof. We claim that {z,w) is in the zero set of (3.3) if and only if there 
exist a G Rn, b G Cn such that 

(3.6) zkwk + \l + ^\l = (6,1**),     -(|^|2 - |^|2) + Ajt = (a, ^) 

for fc = 1,... , d. (The first inner product is complex). Indeed the complex 
equation (3.3b) means that the real and imaginary parts of ^2k=i(zkwk + 
Aj^ + y/^lXfyek are in Kerz*, which from (2.4) equals Im/3*. Now 

d 

(3.7) /?*(*) = J>,^H, 
fc=i 
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yielding the first equation of (3.6). The same argument works for pi. 
As remarked after equation (3.2), the moment map for the action of Td 

on Hrf defines a homeomorphism from tf/T^ onto R3d. Since the vectors 
Uk generate E71, (3.6) shows that the map (2, w) i-*- (a, b) gives a homeomor- 
phism of the quotient by Td of the zero-set of (3.3) onto R3TI

. We therefore 
obtain a homeomorphism of M/Tn onto R3n. We see from (2.4) that (a, b) 
is the value of (j) at the point in M with representative (z,w), so we have 
proved (i). 

The Tn-stabiliser of the point in M represented by (z, w) is just the 
quotient of the T^-stabiliser of (z,w) by the iV-stabiliser of (z^w). Now 
Zk = Wk = 0 if and only if both (a, uk) = A^ and (6, uk) = A| + y/^lX^ 
that is, if and only if (a, b) € Hk- Therefore the T^-stabilizer of [z, w) is the 
subtorus of Td whose Lie algebra is generated by the vectors e*. for which 
(a, b) 6 Hk- Part (ii) of the theorem now follows from (2.3). □ 

This result shows at once that, even if Uk^Xl define a polytope A by 
(2.8) corresponding to a toric variety X, our manifold M(^, A) need not be 
Tn-equivariantly diffeomorphic to T*X. We can see this by considering the 
fixed points of Tn on T*X. For the fixed points of Tn on X correspond to 
the vertices of A and are therefore isolated. It follows that these are the only 
fixed points of Tn on T*X. If, however, some n faces of A corresponding to 
linearly independent ui meet outside A, then we get additional fixed points 
ofTnonM(^,A). 

We shall see in section 6 that M(u, A) is typically not homeomorphic 
to T*X, even non-equivariantly. This is essentially due to the fact that 
the hyperkahler moment map </> : M —> R3n is surjective, unlike in the 
Kahler case treated in §2, where the image of the Kahler moment map (f> 
is a polytope in Rn. This difference between the Kahler and hyperkahler 
picture will be important at several points in the paper. 

We shall now give necessary and sufficient conditions for fi~1(0)/N to 
be smooth or an orbifold. We shall assume that the flats are distinct. 

Theorem 3.2. Suppose we are given primitive vectors ui,... , Ud G I/1 gen- 
erating Rn and elements Ai,... ,Ad of R3 such that the flats Hk are dis- 
tinct. Then the hyperkahler quotient M(u,X) is smooth if and only if every 
n+1 flats among the Hk have empty intersection and whenever some n flats 
H^j... jHkn have nonempty intersection, then the set {i^,... ^fcn} ^s a 

Z-basisforl/1. 

Theorem 3.3.  With the assumptions of Theorem 3.2 M(iz,A) is an orb- 
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ifoldj with at worst abelian quotient singularities, if and only if every n + 1 
flats among the Hk have empty intersection. 

Proof, (a). We begin by noting that if J is a maximal set of indices satisfying 
V\kejHk ¥" 0> ^en the set {uk : k e J} spans Rn. For if t £ J, then by 
maximality f)keju{t} Hk ^s emPty> so ut is in the span of {u^ : k 6 J}. As 
we always suppose that the set of all Uk spans Rn, the claim follows. 

Now we consider the following statements: 

1) for all x E M3n, the set {uk : x E Hk} is contained in a Z-basis for Zn, 

2) for all x G R3n, the set {uk : x G Hk} is linearly independent. 

We claim that 1) is equivalent to the condition of Theorem 3.2 and 2) to that 
of Theorem 3.3. It is obvious that 1) and 2) imply the respective conditions. 
Conversely, let x G M3n and let / be the set of indices k such that x G Hk- 
Let J be a maximal element of the set of indices containing / and satisfying 
f]ke j Hk 7^ 0. By the observation made at the beginning of the proof, the 
set {uk : k G J} spans E71 and in particular # J > n. The claim now easily 
follows. 

(b). Next, we shall show that 1), 2) are equivalent to the action of N 
on the zero level set of /i being free or locally free respectively. 

Let (z,w) G ^(O) and let (a,6) G Mn x Cn be ^fotu), as in (3.6). We 
also regard (a, 6) as a point x G M3™ in the obvious way. We observe from 
3.1(i) that any (a, b) G Mn x Cn, and hence any x G M3n, can occur in (3.6). 

If I = {k : x G Hk}, we let Rj denote the span of {e^ : k G /}, and Tj 
be the associated subtorus of Td. The proof of Theorem 3.1(ii) shows that 
Tj is the stabilizer of (z, w) for the Td action. 

The work of Delzant and Guillemin now shows that 1), 2) are equivalent 
to N fl Tj always being trivial or finite respectively. For example, notice 
that n fl Rj is zero if and only if the kernel of /? on Wj is zero, that is, if and 
only if the set {uk : k G /} = {uk : x G Hk} is linearly independent. 

(c). Standard results of symplectic geometry show that freeness or local 
freeness of the action of N on M-1^) imply that the quotient is smooth or 
an orbifold respectively. In both cases, ^~1(0) is smooth. 

We shall now show the necessity of the condition of Theorem 3.3. Sup- 
pose that M(^, A) is an orbifold and let J be a maximal set of indices 
satisfying f]kejHk ^ 0. Therefore {uk : k G J} spans En and f]kejHk is 
a point, say x. 

It follows from Theorem 3.1 that m = ^~1(rr) is fixed by Tn. Since M 
is an orbifold, it has a well defined tangent space at m of the form R4n/r 
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for some finite linear group F, and pulling back to R4n we obtain a linear 
representation of Tn with a finite kernel. (The dimension of M must be 4n 
because of 3.1(i).) As the Tn action preserves the hyperkahler structure, we 
see that we have the standard representation of Tn as the maximal torus in 
Sp(n). 

Moreover some Tn-invariant neighbourhood of m is Tn-equivariantly 
homeomorphic to a neighbourhood of zero in R4n/r. Theorem 3.1(ii) now 
shows that # J < n, establishing the necessity of the condition of Theorem 
3.3. 

In particular, if M is a manifold then the condition of 3.3 holds and 
hence the action of N on M~1(0) is locally free, so, as mentioned above, the 
zero set of /J, is smooth. As the (quaternionic) action of N is generically free, 
smoothness of M now implies that the action of JV on /i~1(0) is free. Prom 
above, we have now shown the necessity of the condition of Theorem 3.2. □ 

Remark 3.4. It follows that for any fixed set of vectors Uk, the hyperkahler 
quotient M(tt, A) is an orbifold for a generic choice of vectors Afc. On the 
other hand, this quotient is a manifold for a generic choice of vectors A^ if 
and only if any set of n independent vectors among the ui is a Z-basis for 
Zn. Furthermore, if the latter condition is satisfied, then the set of Afc for 
which M(^, A) is singular has codimension 3 in R3d and hence the set of 
Afc for which M(u, A) is smooth is path-connected. Therefore we expect the 
topology of smooth M(u, A) to be independent of the vectors A*.. We shall 
show in section 6 that this is indeed the case. 

Theorems 3.1 and 3.3 imply 

Corollary 3.5. Suppose that M(n, A) is an orbifold (with all Hk distinct). 
Then: 

(i) the set of fixed points for the action ofTn is finite and in one-to-one 
correspondence with the set of intersection points ofn among the flats. 

(ii) if x G. M3n lies in exactly r flats, then the Tn-stabiliser of a point in 
</)_1(x) is an r-dimensional torus. □ 

If the condition of Theorem 3.2 or Theorem 3.3 is satisfied, we shall 
refer to M{u, A) as a toric hyperkahler manifold or toric hyperkahler orbifold 
respectively. In the former case it is a complete 4n-dimensional Riemannian 
manifold with a hyperkahler action of Tn. Not all hyperkahler manifolds 
with such an action can be obtained as a hyperkahler quotient of H   by a 



The geometry and topology of toric hyperkahler manifolds 737 

torus. Examples are provided by the Taub-NUT metric and various higher- 
dimensional analogues (see [HKLR] for the Rocek metrics, and [GR] for 
some more recent constructions). This is a consequence of the fact that Tn 

is not the only maximal abelian group preserving the hyperkahler structure 
of HP1. 

Remark 3.6. Goto [Go] considers a special class of hyperkahler quotients 
of W* by tori. In his case n = mi+m2 + .. .+mfc, d = n+k and the Ui are the 
vectors e* of the standard basis of Mn together with the k vectors — YHLI 

eu 
Sj = mi + 1712 + ... + rrij, j = 1,... , k. For this class of toric hyperkahler 
manifolds Goto obtains statements essentially equivalent to Corollary 3.5 
and Theorems 3.2 and 6.5. On the other hand, Nakajima [Na] studies very 
general properties of a class of quotients of flat quaternionic spaces by uni- 
tary groups. In the abelian case, his class of subtori of Td, while larger than 
that of Goto, is still quite special - when n = 2, for instance, it does not 
include tori from Example 2.3 for a ^ 0,1. 

As examples of toric hyperkahler manifolds, consider the hyperkahler 
quotients corresponding to examples 2.1 and 2.2. In the first case we ob- 
tain the Calabi metric [Ca] on T*CPn, while the second case yields the 
Gibbons-Hawking metric on the resolution of the Kleinian singularity C2/Zs 
[GH,Hi,Kr]. 

The following example illustrates the dependence of M(w, A) on the ar- 
rangement of flats (3.5) and not on the intersection of half-spaces (2.8) 

Example 3.7. Let n = 2 and ui = ei, U2 = 62, us = —ei + 62. For 
negative scalars Ai, A2, A3 with A2 > Ai + A3 the intersection of half-spaces 
(2.8) is illustrated in Figure 3. The corresponding toric variety is the line 
bundle O(l) over CP1. Now consider the hyperkahler orbifold M(;u, A) with 
the same u^ and A^ = A^, A^ = A| = 0. Figure 4 shows the hyperplanes 
Hi (k = 1,2,3). This is the same hyperplane arrangement as for the 
projective space CP2 (see Fig. 1). In fact M(u, A) is T*CP2 because the 
hyperkahler quotient of H3 by N = {(£, — t, t) : t e S1} is the same as that 
by{(t,M) : teS1}. 

4. Compact 3-Sasakian manifolds. 

We shall briefly discuss how the ideas of the previous sections can be used 
to produce a large family of compact 3-Sasakian manifolds considered in 
[BGM1,2] and [BGMR]. We recall here that 3-Sasakian manifolds are a 
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special class of Einstein manifolds with positive scalar curvature. Also, a 3- 
Sasakian manifold admits a locally free action of /Spfl), and the quotient is a 
quaternionic Kahler orbifold. A Riemannian manifold (5, g) is 3-Sasakian if 
and only if the Riemannian cone C(S) = (R+ x «S, dr2 + r2g) is hyperkahler. 

Theorem 4.1. Let u = (zzi,... ^Ud) be a collection of mutually nonpar- 
allel primitive vectors in Zn generating Rn. Then the hyperkahler quo- 
tient M(tfc,0) is the Riemannian cone over a compact 3-Sasakian manifold 
S = S(u) if and only if the following two conditions hold: 

(i) every subset of u with n elements is linearly independent, 

(ii) every subset of u with less than n elements is a part of a Z-basis of 

Proof Let us first show that these conditions are necessary and sufficient for 
M(u, 0) to have only one singularity, the point corresponding to z = w = 0. 
Prom the proof of Theorems 3.1 and 3.2 it follows that (z, w) e Hd will yield 
a singular point of M(w,0) precisely when there exists (a, b) G Mn x Cn, 
such that ZkWk = (b^Uk), \zk\2 — \wk\2 = 2(a,Uk) for k = 1,... ,d, and the 
set {uk : (&, Uk) = (a, Uk) = 0} is not a part of a Z-basis of Zn. Assumption 
(ii) means that this can only happen if this set has at least n elements, 
but assumption (i) implies that in this case a = b = 0 and so z = w = 0. 
Necessity of (i),(ii) follows easily from Theorem 3.2. 

Now we recall that ff* is the Riemannian cone over the standard sphere 
SAd~l and SAd~l is a 3-Sasakian manifold. The 3-Sasakian structure of 
gAd-i js gjven \yy the right diagonal action of Sp{l) on EF*. Since we have 
chosen all A; to be zero, the zero-set of the moment map (3.3) is invariant 
under the action of both R+ and Sp(l). As the action of iV commutes 
with that of R+, and as the only singularity is at the origin, M(^,0) is a 
Riemannian cone over a manifold S. The action of Sp{l) also commutes 
with AT, and induces an action on S defining a 3-Sasakian structure. Finally 
S is compact since M(ix,0) is complete (as a stratified manifold) and the 
cone is complete only if its base is. This implies that S is complete and 
so compact by Myers's theorem. Alternatively we could realize S as the 
3-Sasakian quotient [BGM2] of S4^1. □ 

Remark 4.2. Usually the Sp(l) action on S = S{u) has many different 
orbit types and so the quotient of S by Sp{\) is only a quaternionic-Kahler 
orbifold. It is a manifold only when N is the circle acting diagonally on Hri+1, 
which gives the homogenous quaternionic-Kahler manifold Gr2(Cn+1). 
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Remark 4.3. For n = 1 the conditions of Theorem 4.1 are void. When 
n = 2 the conditions are satisfied if each pair of the vectors Uk is linearly 
independent and each uj^ has relatively prime coordinates. The resulting 
quaternionic-Kahler orbifolds are 4-dimensional and admit an action of T2. 

5. Complex structures. 

We shall now describe the generic complex structure of our toric hyperkahler 
orbifolds. 

Theorem 5.1. Let M = M(u, A) be a toric hyperkahler orbifold and sup- 
pose that every n + 1 flats Hj* x H% have empty intersection in R2n. Then 
M, equipped with the complex structure Ji, is biholomorphic to the affine 
variety SpecA\W\N   where W C Cd x Cd x Cn is defined by the equations 

(5.1) zkwk = (6, uk) - (Xl + V^lXl),        (k = 1,... , <*), 

and Nc acts on CdxCdxCn by t - (z, w, b) = (t • z, t'1 • w, b). 

Proof. By (3.6), the variety W is precisely the zero-set of the complex mo- 
ment map (3.3b). We have to show that the action of iVc on W has at 
most discrete stabilizers and that each iVc-orbit meets the zero-set of the 
moment map fii. This will prove that the variety W is smooth (since W is 
the zero-set of the moment map for the complex-symplectic iVc action) and 
that M, the Kahler quotient of W by AT, can be identified with the complex 
quotient W/Nc. The argument we use is a slight modification of the one 
used for the construction of toric varieties as Kahler quotients (see [Gu2]). 

Let (z,w) e Cd x Cd. Then the image of the iVc-orbit of (*,ti;) under 
the moment map /xi is the set 

(5.2) <      ^     tiOLi -      ^^     Siai + Cl : *»> 5i > 0 > C n*. 

The proof of this is essentially the same as in [Gu2; Appendix 1]. The moment 
map restricted to the orbit is given in our case by the Legendre transform 
of the function F : nc n Rd -+ R defined by 

(5.3) F(y) = i    J2   ^2ai'y + \    E    ^-2^ + c1.2/, 
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where a;, fc; are positive constants. This is a strictly convex function and all 
the arguments of Guillemin go through. 

If (zjw) is a point of W then, from the proof of 3.1, we know that 
ELIO**™* + Xk + V^^lH = P*(b) for some b e Cn. If for all k we 
have (b,Uk) ^ A| + >/--TA|, then ZkWk is nonzero for all k and so the full 
group (Td)c acts freely at (z^w). Prom (5.2), as the vectors ai span n*, the 
restriction of fii to N€(z,w) is surjective. 

On the other hand, if (6, uk) = A| + V^lAl precisely when fee/, where 
/ is some multi-index, then ZkWk = 0 if and only if fc G /. In particular the 
stabiliser group of (z,w) for the action of iVc is a subgroup of Tp. Since 
the flats H% x H%, k e I, now have nonempty intersection, the assumption 
of the theorem and the argument at the beginning of the proof of Theorem 
3.2 imply that the vectors w^, fee/, are independent. Therefore the map 
/? sending e* to Ui must be injective on Rj =Lie(Tj). and, from (2.3),(2.4), 
we see that n fl Mj = 0. The analogous statement for complex vector spaces 
is proved similarly, so the stabiliser for the iVc action is discrete. We also 
see that W1 = (Rj)J- + n1- = (Rjc) + n1, and, since i* is just the orthogonal 
projection onto n = n*, it follows that n* is spanned by the set {a^i 0 
/}. Therefore, from (5.2), /ii is still surjective on ^(z^w). This proves 
Theorem 5.1. □ 

Example 5.2. Consider the hyperkahler quotient corresponding to Exam- 
ple 2.1 with n = 1 (the Eguchi-Hanson space). The variety W is described by 
the two equations ziwi = b—ui and Z2W2 = —b—V2, where Uk = A^+\/—TA|. 
The assumption of Theorem 5.1 is satisfied if ui ^ —1/2. Eliminating 6, we 
can view W as the hypersurface in C4 with equation Z1W1 + Z2W2 = r, where 
r 7^ 0. The ring of invariant polynomials for the action of iVc = C* is gen- 
erated by Z1W21Z2W1, ziwi. We find that (M, Ji) is biholomorphic to the 
variety xy = z(r — z) which can be viewed as a deformation of the Kleinian 
singularity C2/Z2 [Hi]. 

6. Topology of toric hyperkahler orbifolds. 

Our next task is to show how the vectors i/i,... , Ud £ Mn and Ai,... , A^ € 
R3 determine the topology of M(u, A). First of all we have 

Theorem 6.1. IfM(ujX) a'ndM(u\Xf) are toric hyperkahler orbifolds, and 
u = y!, then M(u,X) is homeomorphic to M(uf,X)> 
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In other words the homeomorphism type of M depends only on the torus 
N and not on the moment map (3.3). Before proving this let us establish a 
few related facts. 

Proposition 6.2. Let M(u,\) be a toric hyperkahler orbifold such that ev- 
ery n + 1 hyperplanes Hi have empty intersection. Then M(u, A) is diffeo- 
morphic to M(u,\f), where A^ = (A^,0,0) for each k. 

Proof. Let us write M(Al, A^, Ai) for M(u, A). Applying Theorem 5.1 with 
respect to the complex structure J3 shows that M(Al, A^, A^) is diffeomor- 
phic to M(Al,A^, 0). Applying it again, with respect to J2, shows that 
Af(Ai, A^, 0) is diffeomorphic to M(Ai, 0,0). □ 

If the condition of Theorem 3.2 or Theorem 3.3 is satisfied, then the 
hypothesis of 6.2 holds for a generic direction in R3. More precisely: 

Lemma 6.3. Suppose that we are given vectors ui,... jUj generating R71 

and elements Ai,... , A^ of R3 such that every n + 1 flats Hk defined by 
(3.4)-(3.5) have empty intersection. Then for a generic element (a, 6, c) of 
the 2-sphere in R3

; every n + 1 of the hyperplanes {y € Rn : (y, Uk) = 
aA^ + 6Ajk + cA|} have empty intersection. 

Proof. If not, then there is a particular set of n+1 indices, say 1,... , n + 1, 
such that the set S of (a, 6, c) for which the corresponding n+1 hyperplanes 
intersect spans R3. Now for each (a, 6, c) € S there exists Xafc such that 
(#a&c) Uk) = a^l + bXl + cXl for k = 1,... , n + 1. As S spans R3, by taking 
linear combinations of various xabc we can easily find a common point of the 
flats Hi,... , Hn+i, contradicting the assumption of the lemma. □ 

Lemma 6.4. Let M(u, A) and M(n, A7) be two toric hyperkahler orbifolds 
such that there is an element A of 50(3) with AXk = A^ for k = 1,... , d. 
Then M(u,X) and M(u)X

f) are Tn~equivariantly diffeomorphic. 

Proof. The right diagonal action on Md of an element of Sp(l) covering A 
induces a Td-equivariant diffeomorphism of the two level sets. □ 

Proof of Theorem 6.1.   Because of Proposition 6.2 and Lemmas 6.3, 6.4 we 
can assume that all Xk and A^. lie on the xi-axis. Let U be the set of vectors 
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A1 = (A},... , A^) G Rd such that M(u, A) is an orbifold. The complement 
of U is the set of A1 for which n + 1 of the hyperplanes 

(6.1) H1
k = {xeMn:(x,uk) = \l} 

have nonempty intersection. We shall first show that the topology of M 
does not change as long as we stay within a connected component of U. If 
A1 and A1' lie in the same component of U, then there is a homeomorphism 
h of W1 onto itself mapping each half-space {x e Rn : (xyUk) < A^} onto 
the corresponding half-space {x G Mn : {x,Uk) < A^7} and similarly for the 
opposite half-spaces. We consider now, as in [Go], the homeomorphism r 
between M>o x R>o and R x R>o given by 

(6.2) r(xJy)= Q(a;2 - y2),xy\ , 

which we extend diagonally to a homeomorphism, also denoted by r, be- 
tween (R>o x R>o)d and (R x R>o)d. Let V(X) be the subset of R^ con- 
sisting of vectors p = (pi,... ,pd) such that there is an a G Rn with 
Pk = (a,Uk) — A£, k = 1,... ,d. Since the vectors Uk generate Rn, 
the map v : V(A) —> Rn sending p to a is a homeomorphism. We de- 
fine V^A') and ?/ similarly . Let us extend h,v,v' to homeomorphisms 
fc : Rn x (R>o)d -> Rn x (R>o)d5 v : V(A) x (R>o)d -> Rn x (R>o)d and 
i/ : ^(A7) x (R>o)d -> Rn x (R>o)d by putting the identity map on the second 
factor. The composition $ = r-1 o (v7)-1 ohovor gives a homeomorphism 
between r"1 (y(A) x (R>o)d) and r"1 (^(A') x (R>o)d). Finally we define 
TT : Cd x Cd -+ (R>o x R>o)d by ^{z.w) = (|^i|, K|,... , |^|, |^|). Let 
us write $ o TT = ($}, $J,... , $J, ^). We can now define a Td-equivariant 
homeomorphism * between the zero level sets for A and A7 by putting 

This map induces a Tn-equivariant homeomorphism between M(;u, A) and 
MfeA7). 

We have shown that as long as A1 does not pass through a critical value, 
i.e. a value for which n + 1 hyperplanes (6.1) have nonempty intersection, 
then the topology of M(u, A) does not change. We shall now show that 
it does not change even when we pass through a critical value. Let A1 = 
(A},... , Aj) be a critical value. We can assume that it is the hyperplanes 
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Hi,... , H^+1 that have a nonempty intersection. We can also assume that 
{Hi,... , H^+i} is a maximal set of hyperplanes with nonempty intersection, 
because the configurations with more than n + 1 hyperplanes intersecting 
form a codimension 2 set in Rd. Moreover, we can take t^,... , un+i to be 
linearly independent, so that small perturbations of Ai will make M(tx, A) 
an orbifold. 

Let U- (resp. U+) denote the component of U to which (X\ — 
5, A2,... , A^) belongs for a small positive (resp. negative) 5. It will be 
enough to show that the topology of M does not change as we pass from 
U- to 17+. Let us consider an orbifold M(w, A) where A is obtained from 
(Ai,... , Ad) by replacing Ai = (A}, 0,0) with (A}, 62, S3) for small #2, #3. Us- 
ing Lemma 6.3 we can obtain a toric hyperkahler orbifold by projecting A 
onto the subspace R(a, 6, c) ® Rd for generic small 6, c and a close to 1. Now 
we can use Lemma 6.4 to obtain an element A(6, c) of Md = M(l, 0,0) ® Md 

such that the corresponding M(^,A) is an orbifold. Moreover Proposition 
6.2 and Lemma 6.4 show that the topology of this orbifold does not depend 
on (6, c). However, by changing the signs of b and c we can guarantee that 
A(6, c) belongs to C/_ for some choices of (6, c), and belongs to [/+ for other 
choices. This proves Theorem 6.1. □ 

We shall now discuss the homotopy type of M(u, A). Because of Theorem 
6.1 we can assume that the vectors A^ are of the form (A|, 0,0). 

In what follows we shall use a similar argument to that of Goto [Go]. We 
shall consider the hyperplanes Hi defined by (6.1). These hyperplanes divide 
Rn into a finite family of closed convex polyhedra, some unbounded. Let A 
be the polyhedral complex consisting of all faces of all dimensions of these 
polyhedra. We recall that a polyhedral complex is a family of polyhedra such 
that every face of a member of A is itself a member of A and the intersection 
of any two members of A is a face of each of them. We define the polyhedral 
(in fact polytopal) complex C to consist of all bounded polyhedra in A. This 
complex is nonempty since, as the vectors Uk generate R71, C must contain 
a vertex corresponding to the intersection of n hyperplanes H^ We index 
the elements of C by some set / and denote the polyhedra in C by As, 5 G /. 
Finally, we denote by \C\ the support \JseI As of the complex. 

Recall that </> = (fa, fa, fa) : M -* Rn x Rn x R71 is the moment map for 
the action of Tn on M. We define subsets Xs of M by 

(6.3) Xa==^""1(Aa;0,0),    seL 

The following result describes the topology of M(;u, A). 
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Theorem 6.5. Let M = M(u,X) be a toric hyperkdhler orbifold, where 
Xk = (A£, 0,0) for each k. Then: 

(i) \JseIXs = ^(ICIJO^O) is aTn-equivariant deformation retract ofM. 

(ii) Each Xs is a Kdhler subvariety of (M, JijWi), isotropic with respect 
to the form u>2 + iwz and invariant under the Tn-action. 

(iii) Each Xs is Tm-equivariantly isometric and biholomorphic to the toric 
variety determined by the polytope As; where Tm is the subtorus ofTn 

acting effectively on Xs. 

Proof Once more we consider the homeomorphism r between R>o x M>o 
and R x R>o defined by (6.2). Let jt be the deformation map of R x R>o 
defined by jt(u, v) = (u, tv). Then the composite map jt = r"1 o jt o r is a 
deformation of R>o x R>o. Let us write jt{x,y) = (3t(x>y)i3t(x,y))- Now 

we define a deformation of C2 by the map h : [0,1] x C2 -^ C2 where 

h{t,z9w) = (^(kUH)]f|ii(W.H)^|) , 

and extend this diagonally to a deformation of C^ x Cd. We observe that h 
is Td-equivariant and the moment map (3.2) satisfies 

(6.4) 
Ml o ht(z, w) = /xi(z, ti;),     ((/X2 + v^Ms) o ht)(z, w) = tfa + V-lM*,w) 

for any t G [0,1] (recall that we are setting C2 = cs = 0). 
Therefore h preserves the zero-set of (3.3). Since h is Td-equivariant, 

we obtain a Tn-equivariant deformation of M. Moreover ho(M) = (fo + 

v/Zi03)-i(o), because of (3.6) and the fact that b = (fa + v^&X*, w)- 
We have now deformed M to (fa + V-Lfa)-1^), which, by (3.6), cor- 

responds to the quotient by N of the set of (s, w, a) e Cd x Cd x Rn such 

that 

(6.5)        zkwk = 0,    ±(\zk\2 - Kl2) + Aj = (a, uk),    (fc = 1,... , d). 

Let us recall once more that a = fafaw). We claim that there is a defor- 
mation map p : [0,1] x Rn -> Rn, such that p(l, a) = a, the map a ^ p(0, a) 
is a retraction onto |C| = \JseI As, and, if a lies on a hyperplane flj, then 
p(t,a) lies on this hyperplane for all t G [0,1]. To see this we observe that 
the complement of \C\ = LUr &* in Rn is a union of convex unbounded 
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polyhedra Ki with non-empty interior such that the intersection of any two 
of them will be a common face (of positive codimension) of each. Moreover 
each Ki is line-free (if Ki contains a line, spanned by a vector v, then v is 
parallel to all hyperplanes Hi hence orthogonal to all Uk, contradicting the 
assumption that the vectors u^ span Rn). Therefore we can think of each Ki 
as a convex polytope P whose unique face at infinity FQ has been removed. 
We can find a deformation retraction of Ki = P — JPQ onto the part of the 
boundary consisting of bounded faces. Moreover we can assume that this 
deformation of P — FQ is an extension of any given deformation of dP — JFQ. 

Therefore, by doing it first on the intersections of K^s and then extending 
to their interiors, we can define the desired deformation map p. 

For k = 1,... ,d, put Pt(a) = 2(p(£,a),izfc) - 2A^.   We now define a 
Td-equivariant deformation ft of the set given by (6.5): 

'(0,0) if   zk = wk = 0, 

ft(zk,Wk) = < 
if   zk^0, 

if   Wk ^ 0, 

and 
ft(a)=p(t,a). 

Observe that (f>i(ft(z,w)) = p(t,a). The deformation /* induces a Tn- 
equivariant deformation of (02 + A/-103)

_1
(O) onto \JseIXs, proving part 

(i). 
For (ii)-(iii) we observe, as in [Go], that each X>s can be obtained as a 

Kahler quotient of a submanifold of Cd x Cd by the construction of section 2 
for the polytope As. These submanifolds are Kahler with respect to UJI and 
isotropic with respect to (JJ2 + \/—1^3, so all statements of (ii)-(iii) follow. □ 

Recall that an arrangement of hyperplanes in Rn is simple if no n + 1 of 
them intersect. 

Corollary 6.6. If the arrangment of hyperplanes (6.1) is simple, then the 
homotopy type of the compact variety of Theorem 6.5(i) depends only on the 
vectors u^. 

There is a very simple formula relating the Betti numbers of a compact 
toric orbifold to the combinatorics of the corresponding convex polytope 
[Fu]. It turns out that a similar formula holds for toric hyperkahler orbifolds. 
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Theorem 6.7. Let M = M(w, A) be a toric hyperkdhler orbifold of dimen- 
sion 4n. Then M is simply connected, .ffJ(M, Q) = 0 if j is odd or j > 2n, 
and the Betti numbers in the remaining even dimensions are given by 

(6.6) h^f^i-lf-^^di,        (fc = l,.:.,n) 

where di denotes the number of i-dimensional elements of the complex C. 
The Poincare polynomial of M is therefore 

(6.7) f>(t2-iyv 
fc=0 

In particular the Euler characteristic of M is do, the number of vertices of 
C. 

Remark. For toric hyperkahler manifolds, H*(M,Z) has no torsion, so 
Theorem 6.7 tells us the cohomology over the integers. 

We need first the following result. 

Proposition 6.8. Let C be a polytopal complex determined by a simple ar- 
rangement of hyperplanes (6.1) and suppose that \C\ is not contained in any 
hyperplane. Then every element of C which is maximal with respect to in- 
clusion has dimension n. 

Proof Suppose, for a contradiction, that there is a maximal element F 
of C with dimF = m < n — 1. We can suppose that m > 1. Let us 
choose one of the vertices of F to be the origin, and the edges meeting at 
this vertex to be generated by an orthonormal basis ei,..., en of Rn. In 
other words we put Ui = e* and Xj = 0 for i = 1,... , n. We can further 
suppose that F C f^Li^ € Mn : foe*) > 0} n fllLm+i^ € Mn : (rr,^) = 
0}. The hyperplanes (6.1) divide Rn into finitely many closed convex n- 
dimensional polyhedra and, by assumption, F is a face only of unbounded 
ones. Each of the polyhedra having F for a face is determined by a function 
e : {m + 1,... ,n} —> {—1,+1}. The polyhedron P€ is then defined by 
having nonempty intersection with fj^fx : (x, e^) = 0} fl fllLm+ii^ : 

(x, e^ • e(i) > 0}. Since these are unbounded polyhedra, each of them 
contains a ray. In fact, for each function e there is a y€ with (ye, ei) • e(i) > 0, 
(i > m), and such that the ray R% = {re + ty€ : t > 0} is contained in Pe 

for all x £ F. Note that (y6, e*) > 0 for i < m. 
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Suppose first that for all i < ra, and for all 6, we have (ye^ei) = 0. 
It is straightforward to show that if k > n then Uk £ Span{ei,... ,em} 
(otherwise one of the rays meets H^, giving a contradiction). So \C\ C 
Span{ei,... , em}, which contradicts the assumption of the proposition. 

Let us assume, then, that there exist IQ < m, and e, such that (y€, eiQ) > 
0. If we remove the hyperplanes -H^+1,... , H^ the remaining hyperplanes 
still divide Rn into convex n-dimensional polyhedra Pj. It follows that a 
neighborhood of any interior point of F belongs now to a single Pj0 and, 
consequently, the rays i?£, (x G F), are all contained in PjQ. Since e ranges 
over all sign combinations of the last n — m coordinates, we can find z in the 
interior of the convex hull of the y€ such that (2, e;) = 0 for i > m. Observe 
that (z, ei) is nonnegative for i < m, and is positive for i = io. 

Since Pj0 is convex, we see that for any x in the interior of F, the ray 
R = {x + tz : t > 0} is contained in the interior of PjQ. As (2, ei) = 0 for 
i > m, this ray must meet an (m — l)-dimensional face of F, and so meets a 
hyperplane Hi with k > n, contradicting the fact that R lies in the interior 
ofPjo. □ 

Proof of Theorem 6.7. We observe first that both sides of (6.6) depend only 
on the vectors Uk. Indeed, Theorem 6.1 shows that it is so for the Betti 
numbers. On the other hand, moving one of the hyperplanes (6.1) in the 
direction of its orthogonal does not change the number of fc-dimensional faces 
of |C|, as long as the initial and final hyperplane arrangments are simple. 
Also, Theorem 6.1 shows that the other statements of Theorem 6.7 depend 
only on the Uk. 

We proceed now by induction on n. The result is easily verified if n = 1. 
Suppose that n > 1, and that the theorem holds for k < n. In dimension n 
we proceed by induction on the number d of hyperplanes. Our statements 
hold for n hyperplanes with a nonempty intersection. Suppose that they 
hold for q hyperplanes in Rn whenever n < q < d — 1. Now consider a toric 
hyperkahler orbifold M(u, A) corresponding to hyperplanes Hi,... , H\. Be- 
cause of Proposition 6.8 we can suppose that dim|C| = n. By the remark 
above we can move the hyperplane H\ until all of \C\ lies to one side of H\, 
say \C\ C {x : {x,ud) > A^}. The intersections of #] with the H^ k < d, 
determine a simple arrangement of hyperplanes in if] = M71-1 which gives 
a toric hyperkahler orbifold Y of real dimension 4n - 4. Let us denote its 
polytopal complex by £. On the other hand the hyperplanes H^,... , H^ 
also determine a toric hyperkahler orbifold W with a polytopal complex £/. 
By the inductive hypothesis, the theorem holds for Y and W. We observe 
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that, as every maximal element of C has dimension n, every i-dimensional 
element of £ is a face of an (i + l)-dimensional element of C. This implies 
that, if ekiQk denote the number of fc-dimensional faces of £, G respectively, 
then do = go + eo and dk = g^ + ek + e^-i for k positive. 

Let us now pick a suitably small, positive, 5, and consider the neigbour- 
hoods of \£\ and \g\ in \C\ defined by Ui = \C\ n {x € Rn : (x, ud) < Xl

d + 25} 
and U2 = \C\ fl {x e Rn : (x,Ud) > A^ + 5}. We also consider the defor- 
mation retract X of M given by Theorem 6.5(i). We have X = Vi U V2 
where Vi = ^-^C/^OjO) and V2 = ^(^OjO). Now, by the argument 
used in the proof of 6.5, Vi can be deformed onto the deformation retract 
of Y defined by Theorem 6.5(i) and so Vi is homotopy equivalent to Y. 
Similarly V2 is homotopy equivalent to W. Moreover, we see using 6.8 that 
Vi n V2 is homotopy equivalent to an S^-bundle E over Y. We deduce that 
M is simply-connected. Note that E —» Y is an orientable bundle, as Y is 
simply-connected. 

We now consider the Mayer-Vietoris sequence for Vi, V^ and the Gysin 
sequence for E —> Y. The cohomology here is rational, but it can be taken 
integer if M is a manifold. By the inductive hypothesis, the odd Betti 
numbers of Y and W vanish, so the Mayer-Vietoris and the Gysin sequences 
split off at each even level as 

0 _> H2k-l{E) -> H2k(M) -> H2k(Y) © H2k(W) -+ 

-> H2k(E) -+ H2k+1(M) -+ 0, 

0 _> H2k-l(E) -> H2k-2(Y) -> H2k(Y) -* H2k(E) -► 0. 

The Gysin sequence implies that the map H2k(Y) -* H2k(E) is onto, so the 
odd cohomology of M vanishes. Comparing the two short sequences, we find 
that the even Betti numbers satisfy the relation b2k(M) = b2k(W)+b2k-2(Y) 
for k > 0 and bo(M) = bo(W). 

The result now easily follows from these relations, together with the 
inductive hypothesis, the above formulae relating d^e^gk-, and standard 
identities for binomial coefficients. □ 

Example 6.9. Consider M(w, A) where Uk, Xk are as in Example 2.2. The 
polytopes As of Theorem 6.5 are just two intervals with a common point, 
so the deformation retract of M(tt, A) given by this theorem is the union of 
two copies of CP1 intersecting at a point. This retract is the exceptional 
divisor of the resolution of C2/Z^. 
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Example 6.10. Suppose Uk,Xk are as in Example 2.3, with a = 1. For 
a suitable choice of As, we see that \C\ is the union of a trapezoid and an 
isosceles right triangle intersecting along a line segment (see Fig. 5). The 
deformation retract X of M, given by Theorem 6.5, is the union of CP2 and 
the blowup of CP2, intersecting along the exceptional divisor. We calculate, 
using (6.6), that 62 = &4 = 2. If we decrease A3, then \C\ becomes the union 
of two isosceles right triangles meeting in a point (Fig. 6). The deformation 
retract X' of M is the union of two copies of CP2 intersecting at a point. 
Corollary 6.6 implies that X and Xf are homotopy equivalent. 

Proposition 6.8 implies that the deformation retract of M is always a 
pseudomanifold. 

7. Toric hyperkahler manifolds from poly topes. 

In this section we shall discuss the toric hyperkahler manifolds corresponding 
to a convex polytope A in Rn. That is, we shall consider M(tx, A) where 
u = (ui,... , Ud), A = (Ai,... , Ad), Afc = (A^, 0,0) and A is the intersection 
of half-spaces 

(7.1) (x,uk)>Xl        (k = l,...,d), 

as in §2. We shall always assume that A is simple, that is, there are precisely 
n edges meeting at each vertex of A. In this situation we shall write MA for 
M(u, A). It is useful to observe that with this choice of A^, a collection of 
flats Hk intersect if and only if the corresponding collection of hyperplanes 
Hi intersect. 

We shall be particularly interested in the relation between MA and the 
Kahler toric variety XA obtained by the construction of section 2. First 
of all we shall show that the cotangent bundle of a toric manifold always 
carries a hyperkahler metric (usually incomplete). 

Theorem 7.1. Let X& be a smooth compact toric variety corresponding 
to a Delzant polytope A. Then T*XA with its natural complex-symplectic 
structure is Tn~equivariantly isomorphic to an open subset U^ of the (usu- 
ally singular) space (MA, Ji,a>2 + V—1^3)• If we identify C/A with T*XA, 

the hyperkahler metric of MA restricted to the zero section of T*XA is the 
Kahler metric on X^ determined by A. 

Proof Consider the open subset Y = C^ x Cd of EId ~ Cd x Gd, where C^ is 
given by (2.10). Now Y is a hyperkahler Td-invariant submanifold of IF* so 
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in particular is AT-invariant, where N denotes the torus of (2.5). Moreover 
the action of N on Y is free, because it is free on C^. Therefore we can 
perform the hyperkahler quotient construction on Y and obtain a smooth 
manifold UA which is an open subset of MA- Note that Uj\ is preserved by 
the Tn action on MA. 

We want to identify (7A, the hyperkahler quotient of Y by iV, with the 
complex-symplectic quotient of Y by Nc (with respect to the complex struc- 
ture Ji). For this we have to show that every iVc orbit in the intersection of 
Y with the zero-set of (3.3b) (where C2 = C3 = 0) meets the zero-set of (3.3a). 
Let (2, w) be in the zero-set of (3.3b), where z 6 C^. Prom the proof of The- 
orem 5.1 we know that the image of the iVc-orbit of (z^w) under (3.3a) is 
s = {S{i;z^o}**ai - E{z;^o} siai + ci : **> ^ > 0 j. We also know [Gu2] 

that the image under (2.6) is the set < ^{ij^o} Uai + ci : U > 0 > and that 

for z € C^ this set is open. However, since z G C^, this last set contains 0, 
so S contains 0. 

We have shown that (C/A, Ji) is the complex-symplectic quotient of Y 
by iVc, and so is {(z,w) € C2d : Y,Li(zk™k)<Xk = 0, z G Cd

A}/N
c. The 

equation in z^w simply says that the vector w G T*C^ annihilates the 
vertical tangent vectors of the projection C^ —> C^/iVc = X&. This shows 
that (C/AJ JI) is biholomorphic to T*X&. It is also clear that the symplectic 
forms are the same, since the form U2 + yf^luz on T*C^ is just ^ dzk A dwk. 
The statement about the metrics follows as in (iii) of Theorem 6.5. □ 

The metric on T*XA is complete precisely when (7A = MA- However our 
next result shows that this occurs only when XA is the product of projective 
spaces. 

Theorem 7.2. Let XA be a smooth compact toric variety as in Theorem 
7.1. Then the following conditions are equivalent: 

(i) UA = MA = T*XA, 

(ii) if some collection of hyperplanes containing (n— 1)-dimensional faces 
of A do not meet in A, then they do not meet outside A, 

(iii) XA is the product of projective spaces. 

Proof Observe that (ii) is equivalent to requiring that all vertices (intersec- 
tions of n hyperplanes) lie in A. It is also clear from Theorem 6.5 or the 
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remark after Theorem 3.1 that (ii) is necessary for (i). Let us show that it 
is sufficient. 

Without loss of generality we can assume that A contains 0 in its interior, 
so all the A^ must be negative. Now, /^(O) can be written as the set of 
(z, w) satisfying 

if ki2^ = EQKi2-^)^ 
It follows that if (z,w) G /^H0)? then z lies in (/^i)-1^) where ^ is the 
moment map (2.6) with a different choice of c. Hence z belongs to C^, 
where A7 is the intersection of half-spaces (7.1) with Ajj. of possibly larger 
absolute value (note that (ii) implies that A7 is Delzant). Condition (ii) also 
shows that in fact z e C^. Hence the hyperkahler quotient of HF* by iV is 
the same as the hyperkahler quotient of Y = C^ x C* by N. The proof of 
Theorem 7.1 now shows that Uj\ = MA. 

The implication (iii) =^ (ii) is obvious. Let us now show the converse. 
As usual, we denote by u^ the vectors defining A. We consider the fan 
J7 corresponding to the poly tope A and defined at the end of section 2. 
Condition (ii) implies that for any independent set of vectors {u^,... , Uka} 
the cone {X)^fci : *» > 0} belongs to J7. Indeed, since the vectors are 
independent, the hyperplanes orthogonal to them must intersect, so by (ii) 
they intersect in A. 

From this two facts follow: 1) any vector in Rn can be written uniquely 
as Z) **wfci with *« > 0 and u^,... , Uks linearly independent; 2) if A' is 
another Delzant polytope, then there are no nontrivial equivariant birational 
morphisms X^ —> X^r. For 1) notice that if a vector could be written thus 
in two ways, then then the cones spanned by the two sets of u^ would 
intersect in their interior, contradicting the definition of the fan. For 2) we 
first recall [Od] that such a morphism corresponds to removing a number of 
(n - l)-dimensional walls in cones of the fan J7 of XA to obtain the fan J7' of 
XA'. Consider an n-dimensional cone a in J7' that is not in J7. If a is a cone 
over a simplex, then the vectors generating a are linearly independent and 
we get a contradiction as a 0 J7. If a has more than n generating vectors, 
then taking two independent n-element sets such that the cones spanned 
by them have n-dimensional intersection we obtain a contradiction with the 
fact that the intersection of two cones in J7 is a face of each of them. 

We appeal now to Reid's version [Re] of Mori's theory for projective toric 
varieties (see also the exposition in [Od]). We can conclude from fact 2) 
above, and Corollary 2.28(1) and Theorem 2.27(2) in [Od], that Mn = £ Vi 
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where each Vi is a vector space of positive dimension and each 1-dimensional 
cone of J7 lies in some Vi. Moreover, each Vi is spanned by the cones it 
contains. (In Oda's terminology, the Vi are the spaces 7r+(jR) where R ranges 
over the extremal rays of NE(XA))- We denote by ^ the restriction of f 
to V^, that is, the cones of ft are precisely the cones of F contained in Vi. 
Now Corollary 2.6 of [Re] shows that each ft is a fan of a projective space of 
an appropriate dimension. It remains to show that the sum ^^ is direct. 
Suppose that the sum Vi + ... + Vs is direct and that Vs+i intersects 0^ Vi 
nontrivially. If v lies in the intersection, then, because of the definition of 
the spaces T^, it can be written as J2^iuki with ti > 0, u^ G ©^ Vi and also 
as J^SjUij with Sj > 0, ui. € Vs+i, where the u^ and the uj. are linearly 
independent. By fact 1) the two sets {u^} and {u^} are equal and the 
vectors u^ must belong to both ©^ Vi and to V8+i. The vector —u^ also 
belongs to both ®^ Vi and to Vg+i. Moreover, since the fan ft+i is the fan 
of a projective space, — u^ belongs to the open cone in ft+i generated by 
all 1-dimensional cones of ft+i except u^ and so it can be written as their 
combination with all coefficients positive. Repeating the previous argument 
with v = — u^ shows that all 1-dimensional cones of ft+i belong to ©^ Vi 
and so Vs+i C ©^ Vi. In fact we have shown that any 1-dimensional cone of 
.Fs+i is a 1-dimensional cone of some ft, i < s. However, each of these fans 
is the fan of a projective space, and the only way that all generators of a 
fan of a projective space can lie among generators of fans of other projective 
spaces lying in a direct sum of the relevant vector spaces is when ft+i is 
equal to ft, for some i < s. Such a repetition does not alter the conclusion 
that F is the fan of a product of projective spaces. □ 

We can also ask when MA is smooth. This is equivalent to asking 
whether the hyperkahler metric on T*XA can be smoothly completed. 
Delzant's work shows that the toric variety X/^ obtained by the construction 
of section 2 is smooth if and only if whenever n of the defining hyperplanes 
meet at a vertex of the simple polytope A, the corresponding vectors Ui 
form a Z-basis of Zn. This condition is not, however, sufficient for MA to 
be smooth. Indeed, Theorem 3.2 requires that the Delzant condition holds 
at any intersection of n hyperplanes even if the intersection is outside A. In 
particular each of the varieties Xs of Theorem 6.5 must be smooth. 

Proposition 7.3. Let X be a smooth projective toric variety of complex 
dimension n. Then the following statements are equivalent: 

(i) X carries a Tn-invariant Kdhler metric such that, if A denotes the 
corresponding Delzant polytope, then MA is smooth, 
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(ii) every set of n independent generators Ui of the fan of X is a Z-basis 
ofZn. 

Proof The above discussion shows that (i) implies (ii). As X is projeetive 
and toric it can be embedded equivariantly in projeetive space so admits a 
T'Mnvariant Kahler metric, so can be obtained from the Delzant construc- 
tion. As in Remark 3.4, by adjusting Xi we can choose an invariant Kahler 
metric on X so that no n + 1 flats intersect. Condition (ii), together with 
the argument at the beginning of 3.2, now shows that the condition of 3.2 
holds, so MA is smooth. □ 

Remark 7.4. The argument of 3.4 shows that every smooth projeetive toric 
variety carries a Tn-invariant Kahler metric such that MA is a hyperkahler 
completion of T*XA with at worst abelian quotient singularities. 

Condition (ii) of Proposition 7.3 is rather restrictive. Let us choose an 
n-dimensional cone of J7, which we can take to be generated by vectors ej, 
(i = 1,... ,n). Then any other generator Ui of J7 must have coordinates in 
{—1,0,1}. In particular the number of 1-dimensional cones of F is bounded 
by 3™ — 2 (we exclude the zero vector and ei + ... + en) and so there only 
finitely many such varieties in each dimension. Proposition 7.3 can be used 
to show the following results. 

Proposition 7.5. Let X be a smooth compact toric variety of complex di- 
mension 2 satisfying assumption (ii) of Proposition 7.5. Then X is either 
CP1 x CP1 or the equivariant blow-up ofCP2 at k points, where 0 < k < 3. 
□ 
Proposition 7.6. Let X& = H-^ where each Xi is the equivariant blow- 
up ofCPni at ki points, and 0 < ki < ni + 1.  Then MA is smooth. 

8. Kahler potentials. 

Guillemin has derived a formula for the Kahler form of a toric variety in 
terms of the associated polytope [Gul]. We shall now find an expression 
in terms of u, A for the Kahler form, say u;i, on the hyperkahler manifold 
M(M,A). 

The Kahler form u; (and so the metric) of a Kahler manifold X is locally 
determined by a Kahler potential, a real-valued function K locally defined 
on X such that 2y/^lddK = u>. In general, finding the Kahler potential 
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of a hyperkahler manifold is a complicated problem. It is much simpler, 
however, when the 4n-dimensional hyperkahler manifold M admits a free 
Hamiltonian action of an n-dimensional abelian group G preserving the hy- 
perkahler structure. Then M described as a principal G-bundle over an 
open subset of W1 ® R3 where is the projection is just the moment map 
(f) = (^1,^2,^3) • M —> W1 ® M3. Since the group action preserves the hy- 
perkahler structure, the Kahler potential with respect to any complex struc- 
ture does not depend on the fiber coordinate. It is convenient to introduce 
the map TT.= (2^, ^2 + v^T^a) : M -> Rn x Cn. 

Theorem 8.1 [HKLR]. In the above situation the Kahler potential for the 
form ui on M is 

(8.1) K.^^pg), 
where F = F(si^VijVi) is a real-valued function on W1 x Cn satisfying the 
linear equations FSiSj + F^ =0,   (1 < i, j < n). D 

Our manifolds fall into this class of examples with G = Tn, provided we 
restrict to an open dense subset. 

Example 8.2. Consider the open subset of W* on which the diagonal action 
of the torus Td is free. We have [HKLR] 

1   d 

(8.2) .F(5,t;>f;) = -^(ri-^ln(^+r0), 
2=1 

where rf = sf + kviVi. Here v^si are related to our standard coordinates 
z^Wi by vi = ZiWi and si = \zi\2 — \wi\2. The Kahler potential is given by 

We now want to calculate the Kahler potential for the form ui on our 
hyperkahler quotient M = M(iz, A) (or more precisely on the open dense 
subset where Tn acts freely). Our metric was given as the hyperkahler 
quotient of the metric of Example 8.2 by some subtorus of Td. In the 
coordinates Si, v*, the equations definining the zero-set of the moment map 
(3.3) become linear: 

d 

(8.3a) 52(sk + 2\l)ak = 0, 
fc=i 
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d 

(8.36) ^(^ + A2 + V=4A|)a, = 0. 
k=i 

The function JP given by (8.2) restricts to the flats defined by(8.3), and gives 
the Kahler potential on M via formula (8.1) [HKLR, section 2(C)]. Therefore 
all that remains to be done is to express this restricted function in terms of 
the coordinates (a, b) = (</>i(m), (</>2 + -vZ—T^s)^))? where (0i, fa, fa) is the 
hyperkahler moment map for the action of Tn on M. 

Let m 6 M, and suppose that the image of m in Rd x Cd is a point (5, v) 
satisfying (8.3). Using (3.6) we obtain: 

(8.4) sk = 2(a, tifc> - 2Xl  vk = (6, uk) - Ag - v^A^ 

and so we have the function JP for (M, a;i). We calculate the Kahler potential 
according to (8.1) and obtain 

„   A   OF     „   ^A   dFdsk     „   rtA^   aF,   N 

= F - £>* + 2Ai)— = - ^ (rfc + 2Ai ln(^ + rk)), 
fc=i ^ ib=i 

where at the last step we use the equation 

This gives the next theorem, in which TT : M —» En x Cn is the projection de- 
fined above, and (?i is the Dolbeault operator corresponding to the complex 
structure Ji. 

Theorem 8.3. On the open dense subset where the action ofTn is free, the 
Kahler form cui on the toric hyperkahler manifold M — M(w, A) is given by: 

(8.5) wi = ^didw* \Y/(rk + 2X1 ln(sk + rk)) J , 

where sk and vk are given by (8.4) and r| = 5^ + Avkvk. D 

In the situation of Theorem 7.1, restricting (8.5) to C/A and then to X^, 
that is, the subset of U^ where vi = ... = vj = 0, gives the formula of 
Guillemin [Gul] for the Kahler form of the toric variety X^. 
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9. The metric and generalized monopoles. 

Pedersen and Poon [PP] have given an explicit formula for the metric of 
a hyperkahler 4n-manifold M with a free action of Tn preserving the hy- 
perkahler structure. Using the coordinate system aj,&i, they find that if F 
is the function of Theorem 8.1 for M, then by putting 

(9.1) ($ij,Aj)=(2Faiaj,Y,^(FaAdbl-Fa.j)ldbl)j 

we obtain a solution to the generalized Bogomolny equations with gauge 
group Tn. We call such a solution a monopole. More precisely, we can define 
a pair (A, $) by putting A = (Ai,... , An) and $ = ($i,... , $n) where 
$; = (<!>;!,... , $in). Then A is a 1-form on R3 ® Rn with values in Rn and 
$i are Higgs fields R3®Rn -> Rn. If we put w] = a,, w? = Re bj,w$ = Im bj, 
then (A, $) satisfy the linear system of PDEs 

(9.2) '   J       ~f 

i 

where e is the alternating symbol, V = d + A is a connection on the trivial 
Rn bundle over R3 ® Rn and R is its curvature. 

The hyperkahler metric g on M is given by 

(9.3) 9 = -^2 [*y(doicfay + cMfy) + ^(dyi + Ai)(dyi + Aj)] , 
*j 

where di/i = \/::T(5iFai — 5ijPai) are the fiber coordinates given by Killing 
vector fields corresponding to the action of Tn. 

We shall now find the monopole corresponding to the metric on the toric 
hyperkahler manifold M = M(tz, A). We have to calculate partial derivatives 
Faia^Faib^F^ where F is given by (8.2) and (8.4). We have 

s-i***'        2k-i 

and then 

(»■»)   ^-E^^M—t^^ t=ist+r* c;   r' 
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(9-6) Faibj = -- g ^p^K). - " g (sfc + r.fc)rfc . 

and 

/Q 7N p      _ _ v-^ vk(uk)j(uk)i 
[     ' aihi~    fri (sk + rk)rk • 

This gives us the monopole and therefore the following explicit formula for 
the metric on M in terms of the moment map. 

Theorem 9.1.  On the open dense subset where the action ofTn is free, the 
hyperkahler metric g on M is given by (9.3); where 

and •J^— are infinitesimal isometrics given by 

■x/^T -     d 

dVi = -ir-(di - di)^2\n(sk + rk){uk)i. D 

Once more, in the situation of Theorem 7.1 restricting to Vk = 0 gives a 
formula for the Kahler metric on the toric variety XA- 
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