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1. Introduction. 

In this paper, which is a sequel to [GLul], we continue our study of when 
Dehn surgery on a hyperbolic knot K in Ss can yield a manifold that con- 
tains an incompressible torus. 

Let E(K) denote the exterior of K, and let K(>y) = E(K) U Vy be the 
closed 3-manifold obtained by 7-Dehn surgery on K; thus V^ is a solid torus 
whose meridian is identified with the slope 7 on dE(K). Suppose that if (7) 
contains an incompressible torus T. We assume that Klr the core of V1, 
intersects T transversely and that T is chosen (among all incompressible 
tori in ^(7)) to minimize t = \T D Ky\. 

Let /i be the meridian of K. 
In [GLul] we showed that A(7, //), the minimal geometric intersection 

number of 7 and fi on dE(K), is at most 2, and that if A(7,//) = 2, then 
t — 2 or 4. In the present paper we eliminate the case t = 4. This completes 
the proof of [GLul,Theorem 1.2], which we restate here for the reader's 
convenience. (T denotes the punctured torus T fl E{K)). 

Theorem. Suppose that ^(7) contains an incompressible torus, where 
A(7, JJ) = 2. Then t = 2, and T separates E(K) into two genus 2 han- 
dlebodies. In particular, K is strongly invertible. Furthermore, the tunnel 
number of K is at most 2. 

As mentioned in [GLul], infinitely many examples of such knots have 
been described by Eudave-Muiioz [EM2]. 

We assume familiarity with [GLul]. In particular, recall the graphs GQ, 

GT in Q and T, where Q is a suitable level 2-sphere in i?3, defined by the 
arcs of intersection of Q = Q D E{K) and T. By [GLul,Corollary 2.7], GQ 
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contains a great web A (see [GLul,Section 2] for definitions). We assume 
that A(7, fi) = 2 and t = 4, and eventually obtain a contradiction. Roughly- 
speaking, this is achieved by showing that, on the one hand, using Euler 
characteristic arguments, A must contain certain configurations of faces of 
length < 4, while on the other hand these configurations are impossible for 
various topological reasons. We remark that one of the lines of argument we 
use is to show that certain configurations of faces imply that K is strongly 
invertible, in which case t = 2 by a result of Eudave-Mufioz [EMI]. 

Here is a more detailed description of the argument and the organization 
of the paper. 

Recall from [GLul] that for each label x of GQ (here x e {1,2,3,4}), Ax 

is the subgraph of A whose vertices are the vertices of A and whose edges 
are the z-edges in A. Since all the vertices of A have the same sign, each 
edge of Ax has exactly one end with label #, by the parity rule. 

For clarity of exposition, the proof is given in the early Sections 2, 3 
and 4, while the technical results on which the arguments of these sections 
depend are postponed until Sections 5, 6 and 7. Sections 5 and 6 are devoted 
to ruling out various configurations in GQ, with Section 6 being reserved 
for those arguments that involve strong invertibility. Section 7 uses Euler 
characteristic arguments on the graphs A^ and A to show that (for each 
label x) Ax must contain certain faces of lengths 2, 3 and 4, and also that 
A must contain a "special" vertex to which certain faces of lengths 2, 3 and 
4 are incident. 

In Section 2 we show, by analyzing the faces of A^ of lengths 2 and 
3, that GQ must contain certain Scharlemann cycles (see e.g., [GLul] for 
definition) of lengths 2 and 3. This is done by showing that, firstly, by an 
easy Euler characteristic argument, each A^ must contain a face of length 2 
or 3, and secondly, by results from Sections 5 and 6, any such face must be a 
Scharlemann cycle. In Section 3 we extend the result of Section 2 to conclude 
that GQ actually contains a Scharlemann cycle of length 2, 3 or 4 on each of 
the four label-pairs of GQ. The proof here follows the same philosophy as in 
Section 2, but is considerably more difficult. Again an Euler characteristic 
argument (Section 7) gives a lower bound on the number of faces of A^ of 
lengths 2, 3 and 4, and again most such faces are eliminated by results from 
Sections 5 and 6. For the remainder, we show that the possibilities for two 
such faces to share a vertex are sufficiently restricted that, unless the desired 
Scharlemann cycles exist, the lower bound mentioned above simply gives rise 
to too many vertices in A. The whole argument is completed in Section 4, 
which shows that each of the three possibilities for the Scharlemann cycles, 
listed in Theorem 3.1, leads to a contradiction.   This is done by showing 



Dehn surgeries on knots creating essential tori, II 673 

that the special vertex of A mentioned above yields faces of GQ which are 
incompatible (again by the results of Section 5 and 6) with the Scharlemann 
cycles in question. 

We conclude this introduction by describing some terminology that will 
be used throughout the paper. 

We will denote the four labels of GQ (vertices of GT) by a, 6, c, d. Thus 
(a, 6, c, d) stands for any of the ordered 4-tuples (1,2,3,4), (2,3,4,1), (3,4,1,2), 
(4,1,2,3). 

A face of GQ either has ab- and cd-corners, or be- and da-corners. A face 
of GQ whose vertices all have the same sign (as will be the case for faces of 
A), and which has at least one ab-corner and at least one cd-corner will be 
called an (ab,cd)-face. In particular, we shall refer to (ab1cd)-bigons and 
(ab,cd)-3-gons. 

By an ab-edge we will mean either an edge of GT joining vertices a and 
6, or the corresponding edge of GQ with labels a and b at its endpoints. 

The edge class of an edge of GT is its isotopy class in T rel{vertices of 
GT}. 

We are grateful to Masakazu Teragaito for pointing out an error in the 
original manuscript. 

2. The 3-gons of A^. 

The goal of this section is to prove Corollary 2.4, which asserts that GQ 

must contain certain Scharlemann cycles of lengths 2 and 3. 

Theorem 2.1. For every label x, kx contains a face of length 2 or 3. 

Proof. This follows from an Euler characteristic argument and is done in 
Theorem 5.5 of [GLul]. In fact, the argument is easier here since by Theo- 
rem 5.6 of [GLul], ax < 2. □ 

Figure 2.1 lists all possible faces of A^ of length at most 3, when x = 4. 
(By abuse of terminology, when we talk about a face f oi kx, we shall 
frequently mean the subgraph of A consisting of all the edges of A contained 
in/.) 

Theorem 2.2. For every label x, A contains a Scharlemann cycle of length 
at most 3 with x as a label. 
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Figure 2.1. 
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Figure 2.2. 

Proof. Without loss of generality assume x = 4. Then A4 has a face / of 
length at most 3. Figure 2.1 shows all possibilities for /. But Theorems 5.1 
and 6.3 rule out all configurations except the Scharlemann cycles. □ 

Theorem 2.3. A contains a Scharlemann cycle of length 2. 

Proof If not then Theorem 2.2 guarantees that there are two Scharlemann 
cycles of length 3 on disjoint label-pairs ab and cd. By Corollary 7.3 there 
is a vertex v of A to which three bigons of A are incident. Theorem 5.12 
along with the assumption that there are no Scharlemann cycles of length 2 
imply that each of these three bigons is a (6c, c?a)-bigon. Hence there are 
two such bigons incident to v at the same label-pair; see Figure 2.2. But 
this contradicts Corollary 5.4. □ 

Corollary 2.4. After possibly relabelling, GQ contains a Yl-Scharlemann 
cycle of length 2, and either 

(A) a 34-Scharlemann cycle of length 3; or 

(B) a 23-Scharlemann cycle of length 3 and a 41 -Scharlemann cycle of 
length 3. 

Proof By Theorem 2.3 we may relabel so that there is a 12-Scharlemann 
cycle of length 2. Applying Theorem 2.2 with x = 3 and 4 implies that 
there is either a 23-Scharlemann cycle of length 2 or 3 or a 34-Scharlemann 
cycle of length 2 or 3, and either a 41-Scharlemann cycle of length 2 or 3 
or a 34-Scharlemann cycle of length 2 or 3. By Theorem 5.10, there can be 
no 34-Scharlemann cycle of length 2. Hence if Case A does not occur then 
there are 23- and 41-Scharlemann cycles of length at most 3. Therefore, 
again using Theorem 5.10, either Case B occurs or by relabelling we are in 
Case A. □ 
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3. The 4-gons of Aa.. 

The goal of the present section is to prove 

Theorem 3.1. For each label x, GQ contains an x, x+1-Scharlemann cycle, 
<7X, of length at most 4. In particular, if mx denotes the length of ax then 
we may assume that (rai,ra2,7713,7714) is one of the following: (2,2,3,3), 
(2,3,3,3), (2,3,3,4). 

After Corollary 2.4, we assume throughout this section that GQ contains 
a 12-Scharlemann cycle of length 2. 

We analyze the faces of A4 of length 4 and show that only a small number 
of types of such faces can exist. This argument splits into Cases A and B of 
Corollary 2.4. An Euler characteristic argument then shows that in Case A 
there must be a 41-Scharlemann cycle of length at most 4, while in Case B 
there must be a 34-Scharlemann cycle of length 3. In Case A, we apply the 
same argument to A3 to show that there must also be a 23-Scharlemann 
cycle of length at most 4. The proof of Theorem 3.1 appears at the end of 
the section. 

The possible faces of A4 of length 4 are listed in Figure 3.1. 

Theorem 3.2. Only configurations 7, 8, 14 and 20 of Figure 3.1 may ap- 
pear in GQ . 

Proof Theorem 6.3 rules out configurations 4, 10, 15, 16, 21, 22, 23 and 24. 
Theorem 5.1 rules out configurations 6 and 12. 
Theorem 5.10 rules out configuration 1. 
Theorem 5.18 rules out configuration 2. 
Theorem 5.16 rules out configurations 5 and 11. 
The argument now splits into Cases A arid B of Corollary 2.4. 

Case A. GQ contains a SA-Scharlemann cycle of length 3. 

Theorem 5.14 now rules out configurations 3, 13, 17 and 18. 
Theorem 5.21 rules out configurations 9 and 25. 
Theorem 6.14 rules out configuration 19. 
Theorem 6.9 rules out configuration 26. In this case we take a, 6, c, d 

to be 2,1,4,3 (and apply an orientation-reversing homeomorphism to Q, to 
conform to our convention that the labels appear in anticlockwise order). 
The hypothesis of Theorem 6.9 that there are bc-edges which are not parallel 
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Faces of A4 of length 4 
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Figure 3.1. 
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Figure 3.1. 
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15 16 

17 18 

Figure 3.1. 
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23 

Figure 3.1. 
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25 26 

Figure 3.1. 

is not clear in this context. However, we can supplant this hypothesis with 
the fact that the cfa-Scharlemann cycle shares an edge with the (ab,cd)- 
bigon. In particular, we use this fact to guarantee, just after the proof of 
Claim 6.10, that edges of faces in GQ under consideration appear in G? as 
in Figure 6.12. 

This completes the proof of Theorem 3.2 in Case A. 

Case B. GQ contains 23- and Al-Scharlemann cycles of length 3. 

Theorem 5.12 rules out configurations 9, 13, 17, 18, 19, 25 and 26. 
Theorem 5.7 rules out configuration 3. 
This completes the proof of Theorem 3.2 in Case B. □ 

Theorem 3.3. In Case B of Corollary 2.4 GQ contains a M-Scharlemann 
cycle of length 3. 

Proof Assume not for contradiction. 
By Theorem 5.10, GQ contains no 34-Scharlemann cycle of length 2 (or 

4). By Theorem 5.7, GQ contains no 41-Scharlemann cycle of length 2 or 4. 
As argued in the proof of Theorem 2.2, any face of A4 of length at most 3 
is a Scharlemann cycle (with 4 as a label). Hence any face of A4 of length 
at most 3 is a 41-Scharlemann cycle of length 3. 
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Figure 3.2. 

Now consider the faces of A4 of length 4 listed in Theorem 3.2. As noted 
above, configuration 7 does not occur. Furthermore, Theorem 5.18 rules out 
configurations 8 and 14. We conclude that the only faces of A4 of length at 
most 4 are the two pictured in Figure 3.2. 

Let I and II be the 41-edge classes given by Theorem 5.8. By Theo- 
rem 5.9, the 41-edge in the 3-gon face of configuration 20 is in class II. 
To each 41-Scharlemann cycle of length 3 in A4 assign its two 41-edges in 
class II, and to each face of A4 as in configuration 20 assign the 41-edge in 
class II just described. Note that under this rule the same edge is never 
assigned twice. Hence if nj. is the number of faces of A4 of length fc, the 
number of 41-edges of A4 in class II is at least 2n^ + 714. Since n^ = 0, and 
since Sn^ + 271% + n\ > V by Theorem 7.1, where V is the number of vertices 
of A4, we conclude that the number of 41-edges of A4 in class II is greater 
than V. Hence there is a vertex of A4 at which two 41-edges in class II are 
incident with label 4. But this contradicts Theorem 5.2. 

This contradiction shows that there must be a 34-Scharlemann cycle of 
length 3, proving the theorem. □ 

Theorem 3.4. In Case A of Corollary 2.4 GQ contains a Al-Scharlemann 
cycle of length at most 4. 

Proof Assume not for contradiction. Then, as argued in Theorem 2.2, any 
face of A4 of length at most 3 is a 34-Scharlemann cycle. Note also that 
by Theorem 5.10 (or Theorem 5.7) there can be no 34-Scharlemann cycle of 
length 2. Combining this with Theorem 3.2, we have that the only possible 
faces of A4 of length at most 4 are 34-Scharlemann cycles of length 3 together 
with configurations 8, 14 and 20 of Figure 3.1. By Theorem 6.11, no two of 
the configurations 8, 14 and 20 may appear together. Thus there are three 
possibilities for the faces of A4 of length at most 4: 

(1) 34-Scharlemann cycle, 8 
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(i) (ii) 

Figure 3.3. 

(2) 34-Scharlemann cycle, 14 

(3) 34-Scharlemann cycle, 20 

As in the proof of Theorem 3.3, Theorem 7.1 implies that 

(3.1) 2nj + ni>V 

In each of the three cases above we will use this to arrive at a contradiction. 

Case (1). Let I and II be the 34-edge classes given by Theorem 5.8. Note 
that the 12-Scharlemann cycle forces any 34-edge to be in class I or II. Hence 
by Theorem 5.17, in any occurrence of configuration 8, one of the 34-edges 
is in class I and the other is in class II. To each 34-Scharlemann cycle in A4, 
assign the two vertices shown in Figure 3.3(i), and to each face of A4 as in 
configuration 8, assign the vertex shown in Figure 3.3(ii). 

By the inequality (3.1), some vertex is assigned twice, i.e., there must be 
some vertex at which two distinct corners in faces of A4 as in Figure 3.3 are 
incident. But this would produce two 34-edges in the same class incident to 
this vertex with label 3, contradicting Theorem 5.2. 

Case (2). To the faces of A4 of length at most 4 we assign the vertices shown 
in Figure 3.4 (again Theorem 5.17 guarantees that in configuration 14 one 
34-edge is in class I and the other is in class II). 

By (3.1) there is a vertex of A4 at which two distinct corners in faces as 
in Figure 3.4 are incident. But this would produce two 34-edges in class II 
incident to this vertex with label 4, again contradicting Theorem 5.2. 

Case (3).   Here we assign the vertices shown in Figure 3.5. 
By (3.1) there is a vertex v of A4 at which two corners of these faces 

are incident. By Theorem 5.2, the only possibility is that both faces are 
configuration 20. See Figure 3.6. 
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Figure 3.4. 

Figure 3.5. 

Figure 3.6. 
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Let /i, /2, / be the faces indicated in Figure 3.6. Theorem 5.2 guarantees 
that the 12-edges of /i and fi are not parallel on G? and that the 23-edges of 
/i and /2 are not parallel. An argument similar to the proof of Theorem 5.17 
shows that the 34-edges of /i and /2 are not parallel on G^. The argument 
of Theorem 6.11 now gives a contradiction. 

In all cases we have arrived at a contradiction with our assumption that 
there is no 41-Scharlemann cycle of length at most 4. This completes the 
proof of Theorem 3.4. □ 

Theorem 3.5. In Case A of Corollary 2.4 GQ contains a 23-Scharlemann 
cycle of length at most 4. 

Proof. This follows by applying Theorem 3.4 to the graph GQ obtained from 
GQ by interchanging labels 1 and 2 and labels 3 and 4. □ 

Proof of Theorem 3.1. This follows from Corollary 2.4, Theorems 3.3, 3.4 
and 3.5, and Theorem 5.10. □ 

4. The Final Argument. 

By Theorem 3.1, we have the following three possibilities for 
(mi, 7722,7713,7724): (2,2,3,3), (2,3,3,3) and (2,3,3,4). In this section we 
will show that each case leads to a contradiction. This completes the proof 
that our assumption that t = 4 was impossible. 

(2,2,3,3). Here A contains no (12,34)- or (23,41)-bigon (by Theorem 6.9 
and Lemma 5.5), and no 34- or 41-Scharlemann cycle of order 2 (by Theo- 
rem 5.7). Thus any bigon in A is a 12- or 23-Scharlemann cycle of order 2. 
Hence we cannot have 3 bigons of A incident at a vertex, contradicting 
Corollary 7.3. 

(2,3,3,3). As in the previous case, A contains no (12,34)-bigon and no 
34-Scharlemann cycle of order 2. Also, A contains no (23,41)-bigon (by 
Theorem 5.12), and no 23- or 41-Scharlemann cycle of order 2 (by Theo- 
rem 5.7). Thus the only bigons in A are 12-Scharlemann cycles of order 2. 
Again this contradicts Corollary 7.3. 

(2,3,3,4)^   Here the only possible bigons in A are 12-Scharlemann cycles of 
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order 2 and (23,41)-bigons. (Note that if we had a 41-Scharlemann cycle of 
order 2 then we would be in the first case above.) Hence, by Corollary 7.3, 
A contains a (23,41)-bigon. By Theorem 6.3, the following lemma completes 
the proof. 

Lemma 4.1. A contains a (23,41)-3-<7on. 

Proof. By Theorem 5.1, A cannot contain three parallel bigons. Also, by 
Corollary 5.4, there cannot be two (23,41)-bigons incident to the same vertex 
at the same label-pair. It follows that if there are three bigons incident at a 
vertex then they are as illustrated in Figure 4.1, (i), (ii), (hi), (iv) or (v). 

By Theorem 7.2, A contains a special vertex v, that is, one of type [5], 
[4,2], [4,1,2, ] or [3,4] (see Section 7). We discuss each of these in turn. 

[3,4]. As noted above, the possibilities for the bigons at v are illustrated in 
Figure 4.1. 

In cases (i) and (ii) at least one (in fact, at least two) of the 3-gons 
incident to v must be (23,41)-3-gons. 

In cases (hi) and (iv), note that the face Fi cannot be a 3-gon, as it 
would either have two 12-corners (contradicting Theorem 5.14), or three 
12-corners (contradicting Theorem 5.7). Hence F2 is a 3-gon, and we are 
done. 

Finally, in case (v), at least one of the faces Fi and F2 is a 3-gon. 

[4)1)2].   The four bigons incident at v must be as shown in Figure 4.2. 
Let Fi, F2, F3, F4 be the faces indicated. 
If either F2 or F4 is a 3-gon then we are done. Hence at least one of JF2, F4 

is a 4-gon. By Theorem 5.14, this 4-gon cannot have three 23-corners, nor 
two 41-corners. Hence we get a configuration of the form shown in Figure 4.3. 

But this is impossible by Theorem 5.21. 

[4)2].   Again v is as shown in Figure 4.2. 
If one of the two 3-gons incident to v is F2 or F4 then we are done. 

So we may suppose that Fi and F3 are 3-gons. In particular, Fi is a 34- 
Scharlemann cycle. 

Let the two edge classes of 34-edges on GT be I and II (the 12- 
Scharlemann cycle guarantees there are at most 2 classes of 34-edges). By 
Theorem 5.3, the edges ei and 62 are in the same class, say II. If Fs were a 
34-Scharlemann cycle, then the edges es and 64 would be 34-edges in class I, 
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(i) (ii) 

(iii) (iv) 
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Figure 4.2. 

Figure 4.3. 

by Theorem 5.2. But then i^i and Fs would contradict Theorem 5.8. Hence 
Fs is a (12,34)-3-gon, and therefore, by Theorem 5.14, has two 34-corners 
and one 12-corner. Hence either 63 or 64 is a 34-edge, and is in class I by 
Theorem 5.2. But this contradicts Theorem 5.9. 

[5]. Since the only bigons in A are 12-Scharlemann cycles and (23,41)-bigons 
this case cannot occur. □ 

5. Ruling out configurations in GQ. 

In this section we use a variety of topological and combinatorial arguments 
to show that certain configurations in GQ cannot occur. 

Recall the following definition from [GLul]. Let a be a Scharlemann 
cycle of GQ. Suppose that a is immediately surrounded by a cycle K in 
GQ, that is, each edge of K is immediately parallel to an edge of cr. See 
Figure 5.1. Then K is called an extended Scharlemann cycle. 

Theorem 5.1. GQ does not contain an extended Scharlemann cycle. 
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Figure 5.1. 

Figure 5.2. 

Proof. This is Theorem 3.2 of [GLul]. □ 

Theorem 5.2. Let 61,62 be edges ofGq with the same pair of labels, which 
are incident to the same vertex v with the same label. See Figure 5.2. Then 
ei and e<i are not parallel on GT- 

Proof. If ei and 62 are parallel on GT then they cobound q +1 parallel edges 
on GJY where q is the number of boundary components of Q. The argument 
of [GLi,p.l30,Case (2)] now constructs a cable space in E(K), contradicting 
our assumptions on K. D 

We introduce some notation which will be used in the remainder of this 
section and in Section 6. 

Note that a fat vertex of GT is a component of T D Vy. Then Hob 
will denote the 1-handle consisting of that part of Vy between consecutive 
components a and b of T fl Vy. 

X and X' will denote the closures of the components of E(K) — T. In 
particular, dX and dXf are surfaces of genus 3. Note that X and Xr are 
irreducible and (by our hypothesis on K) atoroidal. Similarly, X and Xf 

will denote the closures of the corresponding components of K(j) — T. 
Finally, nhd(...) or N(...) will denote a regular neighborhood of (...), 

with nhd5(...) indicating that the regular neighborhood is to be taken in 
S. 
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^\ Yc 
a/- \d 

Figure 5.3. 

Theorem 5.3. Suppose that GQ contains a bc-Scharlemann cycle. Then in 
any two occurrences in A of an (a&, cd)-bigon (Figure 5.3), the corresponding 
edges are parallel on G?. 

Proof. Assume for contradiction that there are faces /i and fo in A as in 
Figure 5.3 for which either the fee-edges are not parallel or the da-edges are 
not parallel on GT- Then in fact neither the fee-edges nor the da-edges can 
be parallel on G^. For, suppose the fee-edges (say) are parallel on GT, while 
the da-edges are not. Then, banding the disks /i and /2 together along the 
co-core of the parallelism on T between the fee-edges, we get a disk whose 
boundary can be isotoped off the 1-handles Hob and Hd to form an essential 
curve on T. This contradicts the incompressibility of T. 

Let A be the annulus obtained by taking /i U /2 U Hob U Hcd and radially 
shrinking ira&, Hcd to their cores. Since if (7) contains no embedded Klein 
bottle (this follows for homological reasons from the fact that A(7,11) = 2, 
see Lemma 6.2 of [GLul]), we see that surgering T along A produces two tori 
which miss K7. The minimality of T then implies that these two tori bound 
disjoint solid tori Vi and V2 in X. Thus X = Vi LU V2 is a Seifert fiber space 
over the disk with two exceptional fibers. Furthermore, the Seifert fiber is 
isotopic to a component of dA. 

Let a be a fec-Scharlemann cycle and /s the face of GQ that it bounds. 
Since A contains non-parallel da-edges, the edges of a lie in an annulus C C 
T where dC is isotopic to dA and which may be taken to be disjoint from the 
da-edges of GT- Let V^ = nhd(CUiI6cU/3). Then laV^n^l = 2, and hence 
V3 is a solid torus, by our minimality assumption on T. Let dV^ = CuC'. 
Then again f' = (f - C) U C" is a torus with if' n K7| = 2. Hence X' may 
be written as V3 Uc ^4, where V4 is also a solid torus. Therefore X7 is also a 
Seifert fiber space over the disk with two exceptional fibers, and the Seifert 
fiber is isotopic to a component of dC. Since dC and dA are isotopic in T, 
if (7) is a Seifert fiber space over the 2-sphere with four exceptional fibers. 

By an isotopy of dA we may assume that dVi contains C. Let M = 
Vi Uc V3. Then dM is essential in if (7) and \dM n if7| = 2, contradicting 
the minimality of T. □ 
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Corollary 5.4. Suppose that GQ contains a bc-Scharlemann cycle. Then 
A cannot contain two (ab,cd)-bigons whose ab-corners occur at the same 
vertex. 

Proof. This follows from Theorems 5.3 and 5.2. □ 

Lemma 5.5.   The edges of a Scharlemann cycle in GQ do not lie in a disk 

in f. 

Proof. This is Lemma 3.1 of [GLul]. □ 

Lemma 5.6.   The edges of a Scharlemann cycle in GQ of length 2 or 3 lie 

in an annulus in T. 

Proof. For a Scharlemann cycle of length 2 this is clear. For length 3 it is 
proved in Lemma 3.7 of [GLul]. □ 

Theorem 5.7. Suppose that GQ contains an ab-Scharlemann cycle. Then 
GQ does not contain cd-Scharlemann cycles of distinct lengths. 

Proof. Let ai and 02 be cd-Scharlemann cycles of distinct lengths. By 
Lemma 5.5, the existence of the a&-Scharlemann cycle forces the edges of ai 
and (72 to lie in a single essential annulus A C T. Consider the torus ob- 
tained by attaching disks to dA and surgering the resulting 2-sphere using 
the 1-handle iJ^. Then the boundaries of the faces of GQ bounded by ai 
and (72 would be disjoint, homologically distinct simple closed curves on this 
torus, a contradiction. □ 

Theorem 5.8. Suppose that GQ contains an ab-Scharlemann cycle, and a 
cd-Scharlemann cycle of length 3. Then there are edge classes I and II in 
GT such that any cd-Scharlemann cycle has exactly one edge in class I and 
two edges in class 11. 

Proof. As in the proof of Theorem 5.7, there is an essential annulus A C 
T such that the edges of any cd-Scharlemann cycle lie in A. Thus there 
are edges classes I and II such that any edge of any cd-Scharlemann cycle 
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Figure 5.4. 

is in class I or II. Suppose without loss of generality that the given cd- 
Scharlemann cycle of length 3, ai say, has one edge in class I and two 
edges in class II. Let <72 be another cd-Scharlemann cycle, necessarily of 
length 3 by Theorem 5.7. Suppose for contradiction that 02 has two edges 
in class I and one edge in class 11. Let /1, /2 be the faces of GQ bounded by 
<7i, 02 respectively. Let N = nhd(^4 U Hcd U fi U /2). An easy computation 
shows that Hi(N) = Z3. Since if (7) — iV contains (an isotopic copy of) the 
incompressible torus T, it follows that dN is a 2-sphere that does not bound 
a 3-ball in if (7). But this contradicts [GLu2]. □ 

We will use the following notation in the proof of Theorem 5.9 below, 
and also in the proofs of Theorems 5.21 and 6.14. Let a be a vertex of 
GT and let a, f3 be labels at a. Then s(a; a, (3) will denote the arc in the 
boundary of vertex a that runs clockwise from a to /?. 

Theorem 5.9. Suppose that GQ contains an ab-Scharlemann cycle, and 
a cd-Scharlemann cycle of length 3. Let I and II be the edge classes in 
Theorem 5.8. Then any (ab,cd)-face of GQ containing a cd-edge contains a 
cd-edge in class 11. 

Proof. We label the vertices of the cd-Scharlemann cycle x, y, z so that in 
GT they appear as in Figure 5.4. 

Let / be an (ab, cd)-face of GQ containing a cd-edge e, which we may 
suppose is in class I. Let ei, 62 be the edges of / adjacent to e. See Figure 5.5. 

Let uc denote the label u at vertex c in GT corresponding to the ap- 
propriate endpoint of e, etc.  Since e is in class I, either uc 6 s(c;7/, z) or 
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/ 

Figure 5.5. 

Vd G s{d;y,x). Thus either Ud G s(d]z,y) or vc G 5(c;x,y), implying that 
either ei or 62 is a cd-edge in class II. □ 

Theorem 5.10. GQ does not contain Scharlemann cycles of even order on 
disjoint label-pairs. 

Proof. Suppose that GQ contains ab- and cd-Scharlemann cycles of orders 2p, 
2q respectively. Let /1, /2 be the faces bounded by these Scharlemann cycles. 
Suppose that /1 and /2 lie in X. Let W = nhd^(f U Hab U Had U fi U /2). 

Then dW = T U Ti, where Ti is a torus. By our hypothesis on E{K), 
Ti bounds a solid torus V in X; let £> be a meridian disk of V. Then 
X = WrUiV(£>)u3-ceU. 

Since A = 2, ^1(^(7); Z2) = 0. Hence 

0 = ^1(^(7), X'- Z2) = J5ri(-Y, f; Z2) (by excision). 

But JH
ri(X,r;Z2) is generated by the elements ai,a2 represented by the 

cores of the 1-handles Hah and Hcd, with relations given by <9/i,d/2 and 
dD. Since [5/i] = 2pai and [9/2] = 2qa2 are zero mod 2, we have that 
Hi(X, f; Z2) = Z2 0 Iv/{[dD]) has dimension > 1, a contradiction. □ 

Let /1, /2, /s be faces of GQ that lie on the same side of T, so are con- 
tained in (say) X. We shall say that /1, /2, /s are independent if <9/i, 5/2, dfe 
are homologically independent curves on dX. 

Lemma 5.11. Let /i,/2 be faces of GQ bounded by Scharlemann cycles of 
lengths p and q on label-pairs ab, cd respectively. Let f be an (ab,cd)- face 
of GQ with m ab-comers and n cd-corners (m,n 7^ 0). Then /i,/2,/ are 
independent unless m=p, n = q. 

Proof. Cutting dX along dfi and 9/2 gives a 4-punctured torus TQ.   If 
/ij /2? / are not independent then df bounds a disk D on the corresponding 
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/ 
'd    c> 

Figure 5.6. 

(unpunctured) torus TQ. Then DDTQ gives a relation in Hi(dX) of the form 

(5.1) [df]=61[df1]+62[df2] 

where £; E {—1,0,1}, i = 1,2. 
The composition 

dX^fuHabUHcd-* (TuHab U Hcd)/f , 

where the first map is inclusion and the second is the quotient map, induces 
on homology an epimorphism Hi{dX) -* Z © Z, under which 

m 
mi 

and    [df] 

(P.0) 

(0,9) 
(m, n) . 

For the latter, recall that an (a6, cd)-face of GQ by definition abuts vertices 
of GQ all of which have the same sign. Then (5.1) implies m = sip, n = ^(Z- 
Since ra, n ^ 0, we must have m = p, n = q. □ 

Theorem 5.12. GQ does not contain an ab-Scharlemann cycle of length 3, 
a cd-Scharlemann cycle of length 3, and an (ab, cd)-bigon. 

Proof Suppose, for contradiction, that GQ contains faces /i, /2, / as shown 
in Figure 5.6. By Lemma 5.11, /i, /2, / are independent. Hence, if X is the 
complementary component of T in K^y) containing Hab and Hcd, we have 
X = nhdj^f U iJa6 U ffcd U /i U f2 U /) U 3-cell. 

Now Hi(X,T) is generated by ai,a2, the elements represented by the 
cores of the 1-handles Hab, Hcd, and 9/i, 9/2,9/ give the relations 3ai = 0, 
3^2 = 0, ai + ^ = 0. Hence H^X.f) S Z3. 

Let /s = [jRr7] G Hi(K{^)). Let 5 be a simple closed curve on dE{K) 
such that A (7,5) = 1. Then 5 represents ft G jffi(if (7)). Hence 

H^KfrMK) - Hi(J5(10)/([7], M) = 0 • 
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But the map 

HxiKii)) -* HiiK^X') <* i?i(X, f)   (excision) 

takes K to ai + a2' Since Hi(X,T)/(ai + #2) = Z3, this is a contradiction. 
□ 

Lemma 5.13. Let /i,/2,/ 6e independent {ab)cd)-faces of GQ, where f is 
the face bounded by an ab-Scharlemann cycle. Suppose that fi has rii cd- 
corners, i = 1,2.  Then (ni, 712) = 1. 

Proof. Since /1, /2, / are independent, X = nhd^(T U fl"^ U iJc^ U /1 U /2 U 

/) U B3. Let W = nhd^(f U Hab U /). Then dW = f U fi, where fi is a 

torus such that \Ti DK^l = 2. By our minimality assumption on T, and the 
irreducibility of if (7) [GLu2], Ti bounds a solid torus V in X. 

Now consider the handle decomposition of X dual to the one described 
above; in particular, let Dcd be the co-core of the 1-handle iJcc/, and let 
HfaHfr be the 1-handles dual to the 2-handles iV(/i), N^). Then 

V = B3uHfluHf2UN{Dcd) . 

Since dDcd'dfi = nj, i = 1,2, we get Hi(V) = Z©Z(ni>n2). Hence (ni, 7^2) = 
1. ' D 

Theorem 5.14. Assume that GQ contains Scharlemann cycles of lengths p 
and q on label-pairs ab, cd respectively. Let f be an (a&, cd)-face of GQ with 
m ab-comers and n cd-comers (m, n ^ 0). Then either (m,p) = 1 = (n, q), 
or m = p, n = q. 

Proof. Suppose the ordered pairs (m, n) and (p, q) are unequal. Then by 
Lemma 5.11 /i,/2,/ are independent. Applying Lemma 5.13 twice gives 
(m,p) = l = (n,g). □ 

The following lemma will be used in the proof of Theorem 5.16 below. 
It will also be used in the proofs of Lemma 5.19 and Theorem 5.20. 

Lemma 5.15. Let W be a compact 3-dimensional submanifold of K(7). 
Then Hi(W) contains no 2-torsion. 
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A 

Figure 5.7. 

Proof. Assume that W is connected. Let W = if (7) — W. Since A(7, /J,) = 
2, ill (if (7)) — ^mj m odd. The Mayer-Vietoris theorem gives an exact 
sequence 

0 -* HxidW) -+ HxiW) 0 H^W) -+ ^1(^(7)) ^ 0 . 

Since Hi(dW) is free abelian, the torsion subgroup of Hi(W) maps injec- 
tively into .ff^if (7)). The result follows. □ 

Theorem 5.16. GQ does not contain a configuration as in Figure 5.7. 

Proof. Let /1, /2, fs be the faces indicated. 
By Theorem 5.3, the existence of the fec-Scharlemann cycle implies that 

the corresponding edges of /1 and /2 are parallel on GT- In particular, 
the 6c-edges of fi and /2 are parallel on GT- It follows that the 6c-edges 
of /j are also parallel on GT, since otherwise, as in the first paragraph of 
the proof of Theorem 5.3, the disks bounded by the two 6c-Scharlemann 
cycles in Figure 5.7 could be banded together and isotoped off Hfc to give 
a compressing disk for T. 

We claim that the da-edges of fs are not parallel on GT- For otherwise, 
the edges of fs would lie in a disk D C T (containing the fat vertices of GT). 

Let W = nhd(D U Hbc U Hda U f3). Then Hi(W) = Z 0 Z2, contradicting 
Lemma 5.15. 

Without loss of generality the 6c-edges of fi and fs appear on GT as in 
Figure 5.8. 

The ordering of the labels w, x, y around vertex b determines the (reverse) 
ordering of these labels around vertex a. Then the da-edges of fi and fs 
determine the ordering of the labels w, x, z around vertex d as shown in 
Figure 5.8. But this is inconsistent with the ordering of these labels around 
vertex c. D 
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Figure 5.8. 

Figure 5.9. 

Theorem 5.17. Suppose that GQ contains a configuration as in Figure 5.9. 
Then no two corresponding edges (e.g., the ab-edges) are parallel on GT> 

Proof. The afe-edges cannot be parallel on GT by Lemma 5.5. 
Assume for contradiction that the fcc-edges are parallel on Gj1. Up to 

homeomorphism (and changing of labels) of GT the edges of the configu- 
ration appear as in Figure 5.10(i) (where the cd-edges may or may not be 
parallel). 

Let /i,/2,/3 be the faces indicated in Figure 5.9. Let / be the disk 
obtained by band summing /i and /2 along the co-core of the parallelism 
between the fee-edges (see Figure 5.10(ii)). Slide / over and off Hhc as in 
Figure 5.10(iii). We see that df now divides dHda — T into two disks. If C 
is one of these disks then A = / U C is an annulus. One component of dA 
is formed by the afe-edges of the configuration and hence is essential on T. 
Since T is essential the other component of dA must be essential on T. Thus 
T = Bi UdA B2 where Bi and B2 are annuli. Furthermore, by picking C 
correctly we have that \Bi nif7| = \B2f\K1\ = 2 (there are no Klein bottles 
in K{n) by Lemma 6.2 of [GLul]). Let fi = A U Si, f2 = A U B2. Since 
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Figure 5.10. 
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Ti and T2 each intersect K^ fewer times than T, they must bound solid tori 
Vi and V2. Thus the side of T containing A can be written Vi UA V2 and 
must be Seifert fibered over the disk with two exceptional fibers. Expand 
Vi to include Hda. Let N = nhd(Vi U Hab U fs). By Lemma 3.7 of [GLul] 
and the above, we see that AT is a Seifert fiber space over the disk with 
two exceptional fibers. In particular, dN is essential in if (7) (ON cannot 
compress in if (7) — JV; to see this consider the intersection of a compressing 
disk with B2). But \dN fl if7| < \T fl .Kyi, contradicting the minimality of 

f. 
The argument for the case when the cd-edges are parallel is similar and 

is pictured in Figure 5.11. □ 

Theorem 5.18. Suppose  that GQ   contains  a da-Scharlemann cycle  of 
length 2 or 3.  Then GQ does not contain a configuration as in Figure 5.9. 

Proof. Suppose that GQ contains a configuration as in Figure 5.9. 
By Theorem 5.17, corresponding edges are not parallel on GT- This 

implies that up to homeomorphism of GT-, and possibly interchanging the 
labels /? and 5, the edges appear on GT as in Figure 5.12(i) or (ii). Note that 
once the labelling around vertex b of GT is chosen, the arcs of (dfiUdf2)r)Hbc 

determine the labelling on vertex c. 
Assume for contradiction that GQ also contains a da-Scharlemann cycle 

a of length p, where p = 2 or 3. Let / be the face of GQ bounded by a. 
We claim that /i,/2, / are independent. To see this, let ai,a2 be the 

simple closed curves on dX that are the boundaries of the co-cores of the 
1-handles Hda^Hho respectively. Let #3 be the simple closed curve on T 
indicated in Figure 5.12. Then one easily computes that the intersection 
numbers of dfi etc. with ai, c*2 and as are as follows: 

ca^e(i) 0/i: (1,2,1) 

9/2: (1,2,-1) 

0/:(p,O,O) 

case(ii) dh : (1,2,2) 

5/2: (1,2,-1) 

df : (P> 0, q)   for some q . 

In both cases the corresponding determinants are non-zero, proving the 
claim. 
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0/0 

Since each of /i, /2 has two fcc-corners, this contradicts Lemma 5.13. □ 

Lemma 5.19. Suppose   that  GQ   contains   a   configuration   as   in   Fig- 
ure 5.13(i) or (ii).  Then the cd-edges are parallel on GQ. 

Proof. Suppose that GQ contains a configuration ft as in Figure 5.13(i). 
(The case of Figure 5.13(ii) is the same. Note that 5.13(ii) becomes (i) 
by interchanging labels a, b and c, d and applying an orientation-reversing 
homeomorphism to Q.) 

Assume for contradiction that the cd-eges of Cl are not parallel on GT- 

Then (by considering the arcs of (dfi U 3/3) n Hbc) one checks that up to 
homeomorphism the edges of ft appear on GT as shown in Figure 5.14. 

Let A C T be an annulus containing the edges of fi. Note that Hi(A U 
Hda U Hbc) has basis x, y, z, represented by the cores of A, Hda and Hbc 
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Figure 5.13. 

Figure 5.14. 
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Figure 5.15. 

respectively (where the cores of the 1-handles are completed to 1-cycles 
within the disk indicated in Figure 5.14). Let N = iihd(A U Hda U Hfo U 
fi U /s). Since [dfi] = —x + y + z, and [dfs] = x + y + 3z, we see that 
Hi(N) = Z 0 Z2. But this contradicts Lemma 5.15. D 

Theorem 5.20. Suppose that GQ contains a configuration as in Figure 
5.13(i) (resp. (ii)). Then the bc-edges (resp. da-edges) are not parallel 
on GT- 

Proof. Suppose that GQ contains a configuration fi as in Figure 5.13(i). 
(Figure 5.13(ii) becomes 5.13(i) after relabelling.) 

Assume for contradiction that the fee-edges of Q, are parallel on GT- 

Then, by Lemma 5.19 and considering the arcs of (dfi U dfe) n -ff^c, the 
edges of £1 appear on GT as in Figure 5.15. 

Let A C T be an annulus containing the edges of £2. Then Hi(A U 
Hda U i?6c U Hah) has basis x,y,z,w represented by the cores of A, Hda, 
Hfo and Hat, respectively (and with the same convention as in the proof of 
Lemma 5.19 above). Let N = nhd(AUHca UHbcUHab U fi U f3 U .fe). Since 
[dfi] = y + z, [dfs] = x + y + Sz, and [9/2] = — x + 2w, we compute that 
iZi(iV) = Z 0 Z2, contradicting Lemma 5.15. D 

Theorem 5.21. Suppose that GQ contains a cd-Scharlemann cycle. Then 
GQ does not contain a configuration as in Figure 5.13(i) or (ii). 

Proof. We show that Figure 5.13(i) is impossible; the proof for Figure 5.13(ii) 
is similar. 

So suppose for contradiction that GQ contains a configuration J7 as in 
Figure 5.13(i), as well as a cd-Scharlemann cycle a. 



Dehn surgeries on knots creating essential tori, II 703 

Figure 5.16. 

Figure 5.17. 

By considering the arcs of (dfi U dfs) D Hbc we see that, up to homeo- 
morphism, the edges of Q must appear on GT as in Figure 5.16(i) or (ii). 

Since the edges of a do not lie in a disk by Lemma 5.5, Figure 5.16(i) is 
impossible. 

So assume the picture is as in Figure 5.16(ii). At vertex d there are edges 
incident with labels a and (3 that are not pictured in the figure. We denote 
these incidences by a7 and /?'. Because of the sequential ordering of labels 
around a vertex and the fact that each label appears exactly twice, a7 and /J7 

are either both in s(d\a,(3) or both in s(d]/31a). But a7 E s(d;/3,a) would 
violate Theorem 5.2. Thus a7,/?7 6 s(d;a,/3). See Figure 5.17. 

Similarly , we denote by a7 and /3/ the occurrences of the labels a and 
(3 at vertex c that are not shown in Figure 5.16(ii). The arcs of dQ D HC(i 
then dictate that a7, /37 G s(c; /?, a), as in Figure 5.17. 

Recall that a is a cd-Scharlemann cycle, bounding a face /, say. Because 
the afr-edges of Q are not parallel on Gy, there are only two possible edge 
classes, I and II, say, of cd-edges on GT- We assume that I is the class 
containing the cd-edges of fi. Since the edges of a cannot lie in a disk in T 
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Figure 5.18. 

Figure 5.19. 

by Lemma 5.5, there must be a corner of / at a vertex v of GQ where an 
edge ei of a in class I is incident to v with label d and an edge e2 of a in 
class II is incident to v with label c. See Figure 5.18. 

Thus the label v at vertex c of GT corresponding to e2 must lie in 
s(c; a, /?). Then the arcs of dQ n Hcd force the label v at vertex d cor- 
responding to ei to lie in s{d]f5,

1a'). See Figure 5.19. 
But then the labels a, a' at vertex d violate Theorem 5.2. □ 

6. Strong invertibility. 

Recall that a knot K is strongly invertible if there exists an orientation- 
preserving involution r : S3 —* 53 such that r(i;f) = K and T|1(T is orienta- 
tion reversing. It follows that the fixed point set of r is a circle (which must 
be unknotted by [Wa]) meeting K in two points. 

Eudave-Mufioz has shown [EMI] that if K is a strongly invertible hyper- 
bolic knot such that ^(7) contains an incompressible torus for some 7 with 
A(7, /i) = 2, and if T C ^(7) is such a torus which minimizes t= \T n jKyj, 
then £ = 2. In the present section we show that the existence of certain 
configurations in GQ implies that K is strongly invertible. Since we are as- 
suming throughout that t = 4, we conclude that these configurations cannot 
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Figure 6.1. 

- —-Tn 

Figure 6.2. 

occur. 

Lemma 6.1. Let V be a solid torus and let r : dV —> dV be an involution 
with exactly four fixed points. Then r extends to an involution ofV. 

Proof. An Euler characteristic calculation shows that the quotient dV/r is 
a 2-sphere. Then uniqueness of coverings shows that r is conjugate to the 
involution shown in Figure 6.1. 

Parametrizing dV as S1 x S1, this is the map — Id.   Hence r extends 
over V. □ 

Lemma 6.2. Let W be a handlebody of genus 2 and let r : dW —» dW be 
an involution with exactly six fixed points. Then r extends to an involution 
ofW. 

Proof Let WQ be a "standard" handlebody of genus 2; see Figure 6.2. Ar- 
guing as in the proof of Lemma 6.1, we see that there is a homeomorphism 
h : dW —» OWQ such that r = h~lToh, where ro : <9Wb —* dWo is the 
involution shown in Figure 6.2. 

Let fo : WQ —> WQ be the obvious extension of TQ. Let g : W —► WQ be a 
homeomorphism, and let g : dW —> dWb be <7|<9W. By [V], hg~l is isotopic 
to a homeomorphism that commutes with TQ. Hence we may suppose that 
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Figure 6.3. 

g is chosen so that hg~1 commutes with TQ. NOW define f = g^Tog. Then 
f is an involution of W such that f\dW = g~1Tog = h~lToh = r. □ 

Theorem 6.3. Suppose  that  GQ   contains   a  da-Scharlemann  cycle   of 
length 2 or 3. Then the faces in Figure 6.3 do not both occur in GQ. 

To prove Theorem 6.3 we will need Lemmas 6.4 and 6.5 below. 

Lemma 6.4.  Corresponding edges of fi and f2 (i.e., the da-edges or the 
bc-edges) are not parallel on GT- 

Proof. Suppose without loss of generality that the da-edges are parallel. 
Then band summing f\ and /2 via an arc in T and sliding the resulting 
disk over Hah and Hcd gives rise to a boundary compressing disk for T. See 
Figure 6.4. D 

Thus, up to homeomorphism, the edges of fi and /2 appear on GT as 
shown in Figure 6.5. 

Let A C T be an annulus containing the edges of /i and jfe. Surgering 
A using the 1-handles Hah, Hcd and the 2-handles N(fi), N(f2) clearly gives 
an annulus B C X. Let C = T — A. Then the torus S — B UC bounds a 
solid torus V C X (since X contains no incompressible torus, is irreducible, 
and C is incompressible in X). 

Lemma 6.5. The core of C has algebraic intersection number 1 with the 
meridian ofV. 

Proof. Assume otherwise. 
Let / be the face bounded by the da-Scharlemann cycle a of length 2 or 

3. 
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Figure 6.4. 

a 

Figure 6.5. 
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Let A! C A be an annulus containing the boedges of /i and /2, and 
disjoint from the edges of / (and the vertices d and a). Let C" = T — A'. By 
Lemma 3.7 of [GLul], V = nhd^Ui^aU/) is a solid torus whose meridian 
intersects the core of C algebraically n times, where n is the length of a. 

Then M = V Uc V7 is a Seifert fiber space over the disk with two 
exceptional fibers. (Note that the core of C cannot be a meridian of V, as 
this would produce a punctured lens space in if (7).) Since \dM n K7\ = 2, 
dM must compress in if (7). Looking at the intersection of a compressing 
disk with Af shows that Af is boundary parallel in K (7) — M. But this 
contradicts the incompressibility of T. 

Since if (7) is irreducible and T is incompressible, it follows that dM 
bounds a solid torus V" in if (7). Then if (7) = VU V'U V7' is a Seifert fiber 
space over the 2-sphere with at most three exceptional fibers (again using 
the irreducibility of if (7)). But since if (7) contains an incompressible torus 
(and iii(if (7)) is finite), this is a contradiction. □ 

Proof of Theorem 6,3. Let X be the side of T containing dHab and dHcd. 
Let 6 C dX be the simple closed curve pictured in Figure 6.6 (note that S 
runs once over each of dHab^ dHcd). 

Let T' : T —> T be the involution indicated in Figure 6.7, with the 
following properties: 

(1) T' interchanges vertices d and a and vertices b and c; 

(2) T' leaves each edge of /1 invariant; 

(S)7 r' interchanges the two arcs 5 fl T. 
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Furthermore, after isotoping the edges of / on T we may assume 

(4) T' leaves the union of the edges of / invariant. 

(Note that this isotopy will result in one or two of the edges of / coinciding 
with one or two of the da-edges of fi and /2, according as a has length 2 or 
3.) 

Since 5 is disjoint from dfi and 9/2, we may regard it as lying on S = 
B U C. Note that S has algebraic intersection number 1 with a core of C. 
Therefore, by Lemma 6.5, by applying to T a suitable power tp of a Dehn 
twist along the core of C, we may assume that (p(5) bounds a meridian disk 
D of V. Define r = yr'tp-1. Then r satisfies (1), (2) and (4) above, and, 
instead of (S)7: 

(3) r interchanges the two arcs dD Pi T. 

Claim 6.6. r extends to an involution of X with no fixed points on dX—T. 

Proof. First extend r to an involution of dX = T\JdHabUHcd (interchanging 
the 1-handles), so that dfi and dD are invariant. Note that r has no fixed 
points on dD and exactly two fixed points on dfi. We may now extend r 
over fi and D, and hence over N = nMx(dXUfiUD). Since dfi and 52) 
are clearly homologically independent on dX, dN = dX U F where F is a 
torus. For the usual reasons, F bounds a solid torus V C X. Note that T\T 

has exactly four fixed points, as does T\dX. Thus T\F has four fixed points 
(it loses two after surgering by fi but gains two after surgering by D). By 
Lemma 6.1, T\F extends over V7. We have thus extended r over X. D 

Claim 6.7. r extends to an involution of Xf with exactly four fixed points 
on dXf - T. 
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Proof. First extend r over dX/ = TudHda^dH^ by mapping each 1-handle 
to itself by the involution shown in Figure 6.8. 

Then df may be isotoped on dX* so that it is invariant under r, and 
so that T\df has exactly two fixed points. (If / has two edges, each edge 
contains a fixed point; if / has three edges, one fixed point occurs on an edge 
of / and the other on a component of df fl OHda-) Thus r may be extended 
over / and hence over AT' = nMx>(dX' U /). Note that dN' = dX' U F 
where F is a surface of genus 2, and that T\F has exactly six fixed points. 

Subclaim 6.8. X' = iV'-'Up W where W is a handlebody of genus 2. 

Proof. If F were incompressible in X, it would be incompressible in E(K) 
(since T is incompressible). On the other hand there is an annulus in E(K) 
(in fact, in X7) with one boundary component on F and the other hav- 
ing slope 7 on dE{K). An easy combinatorial argument then shows that 
F would remain incompressible under the meridional Dehn filling, since 
A(7, fi) = 2 (see for example [CGLS, Theorem 2.4.3]). This contradiction 
implies that F compresses in X'. Since F is incompressible in A/7, it must 
compress in W. Since X' contains no incompressible torus, and is irre- 
ducible, W must be a handlebody. □ 

By Lemma 6.2, T\F can be extended over W. Since that, by construction, 
T^X

1
 — T has exactly four fixed points, this proves Claim 6.7. □ 

Claims 6.6 and 6.7 show that r can be extended to an involution of E{K) 
so that T\dE(K) has exactly four fixed points. By Lemma 6.1, r extends to 
an involution of S3, showing that K is strongly invertible. But now [EMI] 
shows that t = 2, a contradiction. □ 

Theorem 6.9. Suppose that GQ contains 
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Figure 6.10. 

(1) a da-Scharlemann cycle of length 2 or 3; and 

(2) bc-edges which are not parallel on GT> 

Then GQ  does not contain an ab-Scharlemann cycle of length 2,  a cd- 
Scharlemann cycle of length 3; and an (ab,cd)-bigon. 

Proof. Suppose for contradiction that GQ contains faces /i, /2, /s as shown in 
Figure 6.9. After a homeomorphism of T we may assume (using Lemmas 5.5 
and 5.6) that the edges of /i, /2 and /s appear in GT as shown in Figure 6.10. 

Let / be the face bounded by the da-Scharlemann cycle of length 2 or 
3. By Lemma 5.6, the edges of / lie in an annulus A in T. 

Claim 6.10.  The core of A is not parallel to the simple closed curve in T 
defined by the edges of f2- 

Proof. Assume otherwise. Then there would be an annulus A in T containing 
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A - 

Figure 6.11. 

Figure 6.12. 

vertices a, 6, d and the edges of /2 and /, and disjoint from vertex c.  See 
Figure 6.11. 

The argument of Lemma 3.7 of [GLul] shows that M = nhd(A U Hda U 
HabUfUf2) is a Seifert fiber space over the disk with two exceptional fibers. 
Since |9iVnif7| = 2, dM must be compressible in if (7) by the minimality of 
T. But arguing exactly as in the last paragraph of the proof of Lemma 6.5, 
this is a contradiction. □ 

Claim 6.10 and the hypothesis that there are non-parallel bc-edges on 
GT imply that the edges of / lie in the edge classes indicated by dotted lines 
in Figure 6.12. 

Let X be the side of T containing dHab and dHcd- Let 6 be the simple 
closed curve on dX pictured in Figure 6.10.   (Note that S runs once over 
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 -»- 

Figure 6.13. 

i ««-i 

f0-0t   fGK5i 
:---]--->»—•: — ;---T---«-—! 

[b-o'* 10-04 
Figure 6.14. 

each of 9iJat and dHC(i.) Since fi,f2,h are clearly independent, and since 
S is disjoint from dfi U 5/2 U 5/3, 5 bounds a disk D in X. 

There is a homeomorphism taking T to Figure 6.13, where only the arcs 
dfi n T, c?D n T and the edge classes of / are pictured. 

Let r : T —► T be the involution indicated in Figure 6.14. 
Note that 

(1) r interchanges vertices d and a and vertices 6 and c; 

(2) r leaves each edge of /1 invariant; 

(3) r interchanges the two arcs dD n T; 

and after isotoping the edges of / (which may result in one of these edges 
coinciding with the da-edge of /1) 

(4) r leaves the union of the edges of / invariant. 
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Figure 6.15. 

(a) (b) 

Figure 6.16. 

These are exactly the same properties as those of the r in the proof of 
Theorem 6.3. Hence a verbatim application of the subsequent part of that 
proof, i.e., starting at Claim 6.6, gives us the desired contradiction. □ 

Theorem 6.11. GQ does not contain both a configuration as in Figure 5.9 
and a face as in Figure 6.15. 

Proof. Assume for contradiction the existence of both configurations in GQ. 

The argument breaks up into two cases according to whether the edges of 
Figure 5.9 appear on GT as in Figure 5.12(i) (Case (i)) or 5.12(ii) (Case (ii)). 
Let /i, /2, /s be the faces of Figure 5.9 and / the face of Figure 6.15. 

Case (i). Note that the arcs of (dfi U dfz U df) fl Hda relate the labelling 
at vertex a to that at vertex d. Similarly the arcs of {dfi U 9/2 U df) fl Hhc 
relate the labellings at vertices b and c. Using this, the edges of df must lie 
on GT as shown in Figure 6.16(a) or (b). We assume the configuration is as 
in (a); the argument for (b) is identical. 

Let r : T —*• T be the involution indicated in Figure 6.17. 
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Figure 6.17. 

Suppose that /i, /2, / lie in X, and /s in X'. 

Claim 6.12. r extends to an involution ofX with no fixed points on dX—T. 

Proof. First extend r to an involution of dX by having r interchange diJ^a 
and dHfo. Then <9/i and <9/ may be isotoped so that r interchanges them. 
Thus r may be extended over /i and /, and hence over N = nhdx(<9X U 
/i U /). We have dN = dX U F, where F is a torus and r\F is an involution 
with exactly four fixed points. As before, F bounds a solid torus V in X 
and r extends over V by Lemma 6.1. □ 

Claim 6.13. r extends to an involution of X' with exactly four fixed points 
on dX' - T. 

Proof. This is exactly like the proof of Claim 6.7, replacing the / of that 
argument by /s. □ 

Claims 6.12 and 6.13 give the desired contradiction, exactly as in the 
proof of Theorem 6.3. 

Case (ii).   As in Case (i) the arcs of (<9/i U a/2 U df) n {dHda U dHhc) force 
the edges of df to lie on GT as pictured in Figure 6.18(a) or (b). 

We assume the configuration is as in Figure 6.18(a). The argument for 
(b) is similar: after applying a Dehn twist to T along the central vertical 
curve we get (the reflection of) configuration (a) (with /1 and /2 inter- 
changed). 
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Figure 6.18. 

df2 df ,Wr-<-, 
h© i 0--i 
^ f   i lew i 

Figure 6.19. 
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Let r be the involution pictured in Figure 6.19. 
Claims 6.12 and 6.13 now hold for r, as in Case (i). (The argument for 

Claim 6.13 is exactly the same; for Claim 6.12 we here use /2 instead of fa.) 
Thus again we get a contradiction. 

This completes the proof of Theorem 6.11. □ 

Theorem 6.14. Suppose that GQ contains a cd-Scharlemann cycle.  Then 
GQ does not contain a configuration as in Figure 6.20. 

First we have the following lemma. 

Lemma 6.15. Suppose that GQ  contains a configuration fi  as in Fig- 
ure 6.20. Then the cd-edges ofQ, are not parallel on GT- 
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A/2 h 

Figure 6.20. 

Figure 6.21. 

Proof. Let /i, i = 1,2,3,4, be the faces of £} pictured in Figure 6.20. 
Assume for contradiction that the cd-edges of fi are parallel on Ggn. 

By Lemma 5.5, the aft-edges of O are not parallel on GT- Then, up to 
homeomorphism of T, the edges of /i and /a appear on GT as shown in 
Figure 6.21(a) or (b). 

In Case (a), let A be an annulus in T containing the edges of /i and /s. 
Let M = nhd(^ U Hda U Hhc U /i U /a). Then 7ri(M) ^ (re, y, 2: | xy, zy^x2), 
where re, y, z are represented by the cores of Hda, Hhc and A respectively. 
Thus z = 1 in 7ri(M). But this contradicts the incompressibility of T in 
K(i). 

In Case (b), a homeomorphism of T takes Figure 6.20(b) to Figure 6.22. 
We may now apply the argument of Case (a) to again contradict the 

incompressibility of T. □ 

Proof of Theorem 6.14-   Assume otherwise. By Lemma 6.15, and by con- 
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(a) 

Figure 6.22. 

Figure 6.23. 

Figure 6.24. 

sidering the arcs (dfi U dfs) n Hda and (<9/i U a/3) n Hbc, one sees that the 
edges of /1 and /s must appear on GT as in Figure 6.23(a) or (b). 

We will treat these two cases separately. 

Case (a). Because of the existence of non-parallel afe-edges on GT, GT 

contains exactly two cd-edge classes, I and II, shown in Figure 6.23(a). 
Let a be the cd-Scharlemann cycle in the hypothesis of the theorem, 

bounding a face /, say, of GQ. By Lemma 5.5, a contains an edge 62 in 
class II. Let v be the vertex of GQ at which 62 has label d, and let ei be the 
edge of a with label c at v. See Figure 6.24. 

Using the arcs of (8/2 U df*) fl Hab, we see that the da-edge of /* must 
appear on GT as in Figure 6.25. 

Since 62 is in class II, v £ s(d; a7, /?). Also, we must have /?' € s(d; a, a7). 
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Figure 6.25. 
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Hence v G s^a',/}'). The arcs of (df U 8/4 U ^(vertex /?)) fl iJcd now 
dictate that v G 5(c; /?, a). Hence the edge ei is in class 1. Furthermore, /? G 
s(d; v1 (3

r), and therefore (by considering the arcs of dQr\Hcd) /?' G s(c; /?, v). 
This implies that both edges of GT with label (3 at c are cd-edges in class I. 
But this contradicts Theorem 5.2. 

Case f&j.   Let r be the involution of T indicated in Figure 6.26. 
Note that 

(1) r interchanges vertices a and b and vertices c and d; 

(2) r leaves the union of the edges of fi invariant; 

(3) r leaves the union of the edges of /a invariant. 

Suppose /1, /s lie in X, and /2 in X'. 

Claim 6.16. r extends to an involution ofX with no fixed points on dX—T. 
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Proof. Extend r over c?X, by interchanging dHda and dHfo. Then <9/i, 
9/3 may be isotoped on dX so that each is invariant under r, with T|<?/I, 

T|C?/3 each having two fixed points. Thus r may be extended over N = 
nhd(&X: U /1 U /s). Note that dN = dX U F, where F is a torus which, as 
usual, bounds a solid torus V in X, and that T\F has no fixed points. Thus 
T\F is a 2-fold covering transformation, with quotient a torus (since T\F is 
orientation preserving). Hence F can be parametrized as S1 x 51 so that 
T|F is given by (0, <p) »-► (0,9? + TT). It follows easily that r|F extends to an 
involution of V. □ 

Claim 6.17. r extends to an involution of X' with exactly four fixed points 
on dX' - T. 

Proof. This is exactly like the proof of Claim 6.7, here using the face /2. □ 

Claims 6.16 and 6.17 now give a contradiction, as in proof of Theo- 
rem 6.3. 

We have thus shown that neither Case (a) nor Case (b) can hold, proving 
the theorem. □ 

7. Euler characteristic arguments. 

In this section we apply Euler characteristic arguments to the graphs A^ 
and A to get a lower bound on the number of faces of Ax of length at most 4 
(Theorem 7.1), and to show that A must contain a vertex at which one of a 
certain number of combinations of faces of length at most 4 must be incident 
(Theorem 7.2). 

Theorem 7.1. For any label x of GQ, 

3nf + 2nf + n| > V , 

where nf denotes the number of faces of Ax of length i, and V is the number 
of vertices of A. 

Proof. Fix x and write ni = nf. 
The graph A is contained in the disk DA in Q bounded by A (see [GLul]). 

Let a = ax be the number of ghost x-labels. By Theorem 5.6 of [GLul], 
a < 2.   Let LJ be the number of edges (counted with multiplicity) of the 
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outside region of A^ (i.e., the region containing ODA). Let V,E,F be the 
number of vertices, edges and faces of Ax. Then 

y^ jrij + a; = 2E . 

In particular, 

Hence 

5F - 714 - 2ns - 3n2 + w < 2E 

2        1 2 3 1 
F < -E + -714 + -713 + -712 - T^ 

D O O O D 

This, along with 2V = E + a (use the parity rule) gives 

That is, 

£     5 
3n2 + 2n3 + 7i4>----a + 5 + u; 

> V - 3a + 5 + v . 

Since a < 2, if CJ > 2 we are done. If u; < 1, then Ax can have at most one 
ghost label x, i.e., a < 1, and again we are done. □ 

Regard A as a graph in the 2-sphere Q. Thus A has one outside face, 
i.e., the one containing &DA; 

all others are ordinary faces. For each vertex 
v of A, let <Pi(v) be the number of ordinary faces of A of length i incident to 
v (counted with multiplicity). We will consider faces of order i, 2 < i < 4 
(recall that (pi(v) = 0 for all v). Note that J2i Vi{v) ^ 8 for all v. 

Let p = (p2iP3)P4) be an ordered triple of non-negative integers with 
Y^ Pi < 8. We say that p is o/ type [fo, •.. ? fcm]? 2 < m < 4, fcm > 0, if 

Pi = ki ,        2 < i < m — 1 , 

We say that p is special if it is of one of the following types: [5], [4,2], [4,1,2], 
[3,4]. 

We say that a vertex v of A is of type [£2, • • • ? km] if the triple (p(v) = 
(V2(v),.^3(v),^4(v)) is, and similarly we say v is special if (^(v) is. (Thus, 
for example, a vertex of type [4,1,2] has incident to it 4 bigons, 1 3-gon, and 
at least 2 4-gons.) 
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Theorem 7.2. A contains a special vertex. 

Corollary 7.3. A contains a vertex at which at least three bigons of A are 
incident 

We shall need the following lemma. For p = (p2jP3ip4) as above define 
~P2     i     2/03     ,    p4 
2    "f"    3    "^   4 •       ■ 

a(p) = 2f + ^ + ^ 

Lemma   7.4. If a(p) > 7 then p is special. 

Proof Assume a(p) > 7. We enumerate several cases. 

(1) p2 > 5. Then p is of type [5]. 

(2) p2 = 4. Then a(p) > 7 implies ^ + f > 1. 

If ^ > 2, then p is of type [4,2]. 
If pa = 1, then ^ > ^, hence p4 > 2, and p is of type [4,1,2]. 
If p3 = 0, then p4 < 4 (since X)/9i < 8), hence ^ < 1, a contradiction. 

(3) p2 = 3. Then a(p) > 7 implies ^f + ^ > f. 

If ^3 >: 4, then p is of type [3,4]. 
If p3 < 3, then, since ps + pA < 5, we have ^ + T^¥ + ! = i'a 

contradiction. 

(4) p2 z= 2.   Then, since ps + p^ < 6, we have a{p) < ^ + ^ = 7, a 
contradiction. 

(5) p2 = 1. Then ps + P4 < 7 and a{p) < \ + § • 7 < 7, a contradiction.D 

Proof o/ Theorem 7.2.  Let V, E, F, £ be the number of vertices, edges, faces, 
and ghost labels of A, respectively. Then 

2E = 8V - £ 

hence 
E = 4V--. 

Also 
2=V-E+F 
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giving 

Let Fi be the number of faces of A of length i, i = 1,2, Then ]£V Fi = F, 
hence 

J^bFi = 15V + (lO     5t 

i ^ 

Also, 

Y^iFi = 2E = 8V-e . 
i 

Subtracting, we obtain 

(3/ 
10 ~~2~ 

Let Ft be the number of ordinary faces of A of length i. Recall that 
£ < 4. Then, unless the outside face of A has length 1 and £ = 4, (7.1) 
implies 

3F2 + 2F3 + F4 > 7V . 

Now iFi = Y^v <Pi(v)i for all i- Hence 

Sft + 2F3 + A . E (^|W + 5fi + 2^0) = Ea(v(l,)) . 

Therefore there exists a vertex v of A such that a(ip(v)) > 7. This vertex is 
special by Lemma 7.4. 

Finally, suppose that the outside face of A has length 1 and £ = 4. Then 
(7.1) gives 

3F2 + 2F3 + F4 > 7V , 

i.e.,      ^2a(ip(v))>7V. 
V 

Let ^0 be the vertex of A belonging to the outside face. Then, since £ = 4, 
there are only three ordinary faces of A incident to VQ (see Figure 7.1). Hence 
a((p(vo)) < HJT < 7. It follows that there exists a vertex v with a(ip(v)) > 7 
in this case also. □ 
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Figure 7.1. 
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