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1. Introduction. 

It is well-known that Positive Mass Theorem has a fundamental importance 
in Einstein's general relativity. The positive mass theorem for 5-dimensional 
Lorentzian manifolds is therefore interesting in the context of Kaluza-Klein 
theory which provides a 5-dimensional general relativity containing both 
Einstein's 4-dimensional theorey of gravity and Maxwell's theory of elec- 
tromagnetism. This idea of Kaluza-Klein was enthusiastically received by 
unified-field theorists and was extended to higher dimensions to include 
the strong and weak forces (i.e., 11-dimensional supergravity theories and 
10-dimensional superstrings). We refer to review article [OW] for higher- 
dimensional unified theories from the general relativity side. Mathemati- 
cally, the existence of Spinc structures on orientable 4-manifolds provides a 
unified treatment on gravity and electromagnetism. In this paper we adapt 
Witten's method and the analytic arguments of Parker and Taubes to such a 
Spinc structure. This yields a Positive Mass Theorem (Theorem 1.6 below) 
for hypersurfaces in 5-dimensional Lorentzian manifolds. 

Let N be a, 5-dimensional Lorentzian manifold with Lorentzian metric g 
of signature (—1,1,1,1,1), which satisfies the Einstein equations 

~ S 
(1-1) Ra/3 -   2" 9(xp = Tap, 

where i?^, R are the Ricci and scalar curvatures of g respectively, T^p 
is a symmetric tensor field which is interpreted physically as the energy- 
momentum tensor of matter. 

Definition 1.1. A spacelike hypersurface M of N is called asymptotically 
flat of order r if there is a compact set K C M such that M — K is the 
disjoint union of a finite number of subsets Mi, • • • , Mk — called the "ends" 
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of M — each diffeomorphic to the complement of a contractible compact set 
in i?4. Under the diffeomorphism the metric of Mi C M is of the form 

(1.2) Qij = 5ij + CLij 

in the standard coordinates {x1} on i?4, where a^ satisfies 

(1.3) ay = 0(r-r),       dkOij = ©(r"""1),       S/^ay = O^"2). 

Furthermore, the second fundamental form of M satisfies 

(1.4) hij = OCr"^1),       flfc^ = 0(r-T-2). 

A ?7(1) line bundle L over M is called asymptotically flat of order r if there 
is a trivialization of L over the end and a tz(l)-value 1-form A such that on 
end M/, the connection on L can be written as 

(1.5) dAj = dj + Aji, 

where Aj is real, and satisfies 

(1.6) Aj = 0(r-T-1),       dkAj - 0(r-T-2). 

We will often identify the end Mi C M with the corresponding set Mi C -R4. 

The curvature FA = dA of such a connection on L may be interpreted 
physically as the electromagnetic field. For spacelike asymptotically flat hy- 
persurface M and asymptotically flat line bundle L, we can define the total 
energy, the total linear momentum and the total electromagnetic momen- 
tum. They are defined in each asymtotic end Mi as limits over the sphere 
5/y of radius i? in Mi C R4. 

Definition 1.2. Total energy of end Mi is defined as 

(1.7) Ei=  lim C^1 [    (djgij-digj^dW, 

total linear momentum of end Mi is defined as 

(1.8) pik =  lim C41 [    2{hik - SikhjfidSV, 
R^00        JsRil 

total electromagnetic momentum of end Mi is defined as 

(1.9) quj = lim C71 I [    2Ajdni - [    2Aidnj) , 

where C4 = 12UJS and OJS is the volume of unit sphere 53 with standard 
metric. 
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Definition 1.3. The current matrix of electromagnetic field on end Mi is 
defined by 

where 

w/n = 2-1(-g?12 - qf13 - qf14 + qfM + q^2 + g^), 

ujm = 2-1(-gz
2
12 + ^s + ^4 + 44 " 9/42 - 9?23)? 

o—1/  2 2,2 2,2 2   \ 
WJ33 = ^     (?Z12 ~ 9/13 + 9/14 - 9/34 + %42 - 9Z23J) 

^44 = 2~ (g/12 + gzi3 - 9^4 - ^34 - q^2 + qm), 

ulij =   ^2   QUkQlkj,       1 < h j < 4, i 7^ J- 

When the asymptotic order r > 1, these quantities are finite, indepen- 
dent on the choice of asymptotic coordinates. Since quj = —%i, £li is real 
symmetric. Moreover, Hi is traceless. 

The following Positive Mass Conjecture was proved first by R. Schoen 
and S.T. Yau [SY1, SY2, SY3], then by E. Witten [W, PT]. 

Theorem 1.4 (Schoen-Yau, Witten). Let N be a 4-dimensional Loren- 
tzian manifold with Lorentzian metric g of signature (—1,1,1,1); which sat- 
isfies the Einstein equations (1,1), M C N be a spacelike asymptotically flat 
hypersurface of order r > ^. If M satisfies the dominant energy condition 

Too > JY.TM   and r°° ^ 1^1 r 

then, for each end Mi, we have 

* > ,E& 
If Ei0 = 0 for some lo, then M has only one end and N is flat over M. 

One key point in Witten's argument is to prove that there is a positive 
definite Hermitian metric on Spin(3,1) spinors. This fact was verified by T. 
Parker and C. Taubes [PT] in terms of representation theory of spin group 
51/(2, C), and was extended to Spin(A, 1) spinors by the author in terms of 
representation theorey of spin group i?f7(l, 1). Consequently, Positive Mass 
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Conjecture can be proved for spin spacelike hypersurface in 5-dimensional 
Lorentzian manifolds [Zl]. It should be true for all spin group Spin(n,l), 
an issue we will address elsewhere. 

Now since N is 5-dimensional and M is an orientable hypersurface in 
iV, M has a Spin0 structure. It means that there is a U(l) line bundle 
L on N such that S ® L2 is globally-defined over M, where S is (locally) 
spinor bundle of iV, which is not globally-defined on N except that N is spin. 
Denote W = S(2) L*. W is called the complex Witten-Dirac spinor bundle, 
and L is called Spinc structure. Let A be a U(l) connection 1-form on L, 
and denote F^ as the curvature of L restricted on M. The corresponding 

connection on L2 is CLA = d + ^A Let V be the metric connection on S. 
Then the globally-defined connection VA and the metric on W are defined as 
follows: write <f> = si ® oi, ip = S2 ® (72 locally, where si, S2 € 5, cr^, cr^ G L, 
then 

VA^ = V5i ® (Jl + 51 ® dA^l) 

(^ ^> W = (51, S2)S ' (0-1, (72>L ' 

Obviously, VA is compatible with the metric (, )w. At each p G M, we 
fix an orthonormal frame {ea|a = 0,1,2,3,4} with eo normal to M and 
^1,62,63,64 tangent to M. (Here, and henceforth, repeated indices are 
summed with Latin indices running from 1 to 4 and Greek indices running 
from 0 to 4.) Denote {ea\a — 0,1,2,3,4} as its dual frame. 

Definition 1.5. The above M satisfies the charged dominant energy con- 
dition if 

(1.10) Too >    E T0i + \ /E ^   and Too > M + \FAap\ 
hJ 

Theorem 1.6. Let N be a 5-dimensional Lorentzian manifold with Loren- 
tzian metric g of signature (—1,1,1,1,1), which satisfies the Einstein equa- 
tions (1.1), M C N be a spacelike asymptotically flat hypersurface of order 
r > 1. Let L be the Spin0 structure of complex Witten-Dirac spinor bun- 
dle of M with U(l) connection A, which is also asymptotically flat of order 
r > 1. If M satisfies the charged dominant energy condition (1.10), then, 
for each end Mi, we have 

Ei> { 
yj\Qi\2 + 2 \q112qiM + qmqm + «14«23| if   \Pi\ = 0> 

\Pi\ + }j2^\Qi\2 + PtniPi if   IP/IT^O, 
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where \Pi\ = yj^pfv \Qi\ = yj^i<j QUJ 
and Pi = \pi\ 1 (piuPitoPiZim)* 

if \Pi\ ^ 0. If EiQ = 0 for some IQ, then M has only one end and N, L are 
flat over M. Moreover, pi0k = 0, qi0ij = 0. 

We also prove an analogous theorem for 4-dimensional Lorentzian man- 
ifolds in the appendix. Namely, 

Theorem 1.7. Let N be a 4-dimensional Lorentzian manifold with Lorentz- 
ian metric g of signature (—1,1,1,1), which satisfies the Einstein equations 
(1.1), M C N be a spacelike asymptotically flat hypersurface of order r > ^. 
Let L be the Spinc(3,1) structure of N with U(l) connection A, which is 
also asymptotically flat of order r > | over M. If M satisfies the charged 
dominant energy condition (1.10), then, for each end Mi, we have 

Ei>y/\Ih 2   ,   i/-i |2 + \Qi\ +2 \PiiQm + Pmm + PisQinl 

where |PZ| = yJ^iPiv \Qi\ = y/'ZiKjIuj' % El° = 0 for some lo> then M 

has only one end and N, L are flat over M. Moreover, pi0k = 0, qi0ij = 0. 

2. Spinors. 

Let N be a 5-dimensional Lorentzian manifold, and M be a spacelike hyper- 
surface in N. Denote H as the field of quaternions. The hyper-unitary group 
HU(1,1) = Spin0(4:, 1) is the double covering group of connected Lorentz 
group £0(4,1) (see [Ha], p272). A Spinc structure on N is a globally de- 
fined 1277(1,1) xz2 U(l) bundle W over M locally of the form W = StStL*. 
For any X G End(W), denote X* the adjoint of X under HU(1,1) Xz2 U(l) 
Hermitian structure. Denote 

N = {X € End(W),X = X*,Trace(X) = 0}. 

There is an invariant metric on K defined for X, Y E ^ by, 

(X, Y) = ~^e(Trace(XY)). 

Moreover, for any X G T*N with coordinate (xo,xi,a;2,X3,X4), we have a 
canonical identification of X to an element in K, i.e., 

(2.1) X»( X0.      X    V 
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where x = xi + X2I + £3 J + x±K. As in [Zl] one can prove that this defines 
an isometry T*N = H. 

The spinor bundle W has a HU(1,1) x^L^l) invariant Hermitian metric 
defined by 

(<£, rj;) = (1 "ni-(2'V2 

for 0 = (£1, £2)* € W, if; = (r/i, 772)* € W. This metric is not positive definite. 
The Clifford multiplication is the map T*N®W —> W that sends X®^ 

to Xcf), where Xcj) means that spinor </> is mutiplied by the corresponding 
matrix (2.1) of covector X. Obviously, XY + YX = -2g(X,Y) • Id. The 
choice of a timelike covector e0 gives another Hermitian metric on W by 

(& ^) = {e0<i>, iP) = Zi'Vi + &- m 

for <f) = (£1, £2)* € W, ij) = (7/1,7/2)* G W. This new metric is positive definite 
and Sp(l) x Sp(l) Xz2 U(l) invariant. Furthermore, for any X e T*N, 
x G T*M^ spinors </>, ijj G W, we have 

(2.2) 

{X<t>, V) = W, XV),     <*<£, V) = " (^ ^),     (eV, V> = <</>, e» . 

The proofs of above facts are similar to those in [Zl]. By (2.1), we get a 
canonical representation of the coframe 

(2.3) 

(JO- e2-f   J   H,     e3~(  J   ^),     e4^(^   ^ 

Now we derive the Pauli representation. We identify H = C2 as follows: 
For any XH = xi + X2I + #3J + 3:4^ = (^1 + ^2^) + ^(#3 ~ x4-f) G if, 
we identify it to xc = (xi + a:2i,X3 - ^i)* G C2. Since I • XJJ = I(xi + 
X2I) + J(—/)(x3 - X47), J - XH = J(xi + X2/) - (xa - X47), and K - XH = 
J(—I)(xi + X2I) — I(xs — 2:4/). We can obtain the following canonical Pauli 
representation 

For any XH^UH G iT, we have ^(XHVH) = ^(x^yc)- This fact implies 
that, for any faif) eW, 9ie (</>, tl))H = 3?e ((/>, -0)0, where ( , )H is quaternions 
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Hermitian metric on W and (, )c is the corresponding complex Hermitian 
metric on W while W is viewed as a complex rank-4 bundle. 

Obviously, W = W+ © W~ over M, where W^ = {(f) G W : *<f> = ±^} 
(* = _e

1e2e3e4). The 'half spinor bundles' W^ are orthogonal w.r.t. metrics 
( , ) and ( , ). Moreover, since e0* = *e0, e0 preserves W^. Now the space 
of 2-forms of M splits as the self-dual part /\+ and the anti-self-dual part 
/\~, /\   = spanje^e^e^}, where 

ci = e1 A e2 ± e3 A e4, 

(2.5) e£ = e1Ae3±e4Ae2, 

ef = e1Ae4±e2Ae3. 

Define the Clifford multiplication of 2-form on W by: (e* Ae7') = eV (i 7^ j). 
A straightforward computation shows /\   VF^ = 0. Furthurmore, 

(2.6) eV = -6%, e/e2 = _e2e^    e/e3 = e3e^    e/e4 = e4e/) 

(2.7) eJ_ei = _eie^ eV = e
2
ei,   eV = -e3ei,   e£e4 = e^ 

(2.8) 

and 

eKei = _eieX) eKe2 = e2eKj   eV = e3e^,   e5e4 = -e4ef 

(2.9) e+e+ - O-if     PJPK _2pI      pK I  _2  J 

(2.10) elei = 2e5,   e£e^ = 2ei,   e^ei = 2e^. 

3. Hypersurface S'pm0 Dirac operator. 

Let N be a 5-dimensional Lorentzian manifold, and M be a spacelike hy- 
persurface in N. Fix a point p £ M and an orthonormal basis {ea} of T^iV 
with eo normal and ei, 62, 63, 64 tangent to M. Extend ei, 62, 63, 64 to 
an orthonormal frame in a neighbourhood of p in M such that (V;ej)p = 0. 
Extend this to a local orthonormal frame {ea} for N with (Voej)^ = 0. 
Let {ea} be the dual frame. Then (Vie-7)^ = —Zi^-e0, (Vie0)^ = —/i^e-7, 

where /iij = (Vieo,ejV 1 < 2,j < 4, are the components of the second 

fundamental form at p. The metric connection V and V, together with 
a [/(I) connection A on L, induce two connections on W. These induced 
connections on W, which we denote by VA, VA respectively, are related by 

(3.1) VAi = VAi + \hije
0eK 
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By definition, V^ is compatible with the metric (, ), i.e., 

d((^)*ei) = ((VAi0,V>) + (^VA^)) *1. 

Using (2.2) and (3.1), we can prove that V^ is also compatible with the 
metrics (, ) and (, ), i.e., 

d(W) * ei) = ((VAi^) + (^ VA^)) * 1. 

In a local orthonormal coframe {e1} of M, Spinc Dirac operator DA and the 
hypersurface Spinc Dirac operator DA are defined by 

DA = JVAU      DA = JVAU 

respectively. Obviously, DA is self-adjoint with respect to the metric ( , ). 
We also have the following standard Weitzenbock formula: 

D
2

A = V*AVA + J + IFM, 

where R is the scalar curvature of M, and Fjf is the restriction on M of 
the curvature of L. Prom (3.1), we have 

DA = DA + ye0, 

where H = £] ha is the mean curvature of M. Moreover, 

d( (eV, V-) * e*) = {(DA4>, il)) - (</>, DAII)) * 1 

= ((pAcl>^)-(<t>,DA'4>))*\. 

and 

d( (0, VA^) ***) = ( (VA*^, VAZ^) - (</>, ("VAZ + h^e^VA^) ) * 1. 

It follows that the adjoints under the metric (, ) are D*A = DA, D\ = DA, 

V*Ai = -VAZ + hije0e:j. With the information, we can easily derive (as in 
[Zl]) the following two Weitzenbock formulas, 

(3.2) Pi^VlVA + ^ + tfV^VitfeV + iFf 

(3.3) = W*AVA + i (Too + To^eV + Ff). 
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The integral form of Weitzenbock formula (3.3) is 

|VA</>   +((£,#</>)- DA<I> (3.4)       /  I VA</> 
2 + U RA - DAcf)2 = l [    L, [e\ ef^AjA * e\ 

JMl X ' * JdM X ' 

where R = ±(Too + To^e1 + Ff), and [e\ e>] = eV - e^V. 
Now recall that M and L are asymptotically flat of order r > 1 with 

asymptotic coordinates {dx1} on the end. Orthonormalizing {dx1} yields an 
orthonormal coframe 

e* = dxi + iaijbcia:fc + 0(r"T-1). 

Denote e0 as da:0. Then, on each end, 

VAj = fl,. - ±rkjidxkdxl + ^Aji + ofr-21-1), 

5A = da^aj - \rkjldxjdxkdxl + ^dx0 + ^dxiAji + 0(r -2T-1 
), 

where T^; = jC^/Pw + %jy - ^fc^) = 0(r r 1). Therefore JD^ gives the 
maps for the weighted Holder spaces 

defined by connection V^ on W.   Here we are using the weighted spaces 
defined in the papers of Bartnik [B] and Lee-Parker JLP].   For constant 
spinor </>o, djfa = 0, we have DAfo G Cl'^^W), and D^0 G C^_2(W). 

The following lemma can be easily proved in the spirit of [PT], 

Lemma 3.1. Suppose M; L are asymptotically flat of order r > 1 and </>, 

{(pi} G VF are C1 spinors which satisfy VA^ — 0; ^A^i = 0 for each i, 

(i) // limx_,oo 0(^) = 0; where the limit is taken along M in one asymp- 
totic end, then (/> = 0. 

(ii) If {(f>i} are linearly independent in some end, then they are linearly 
independent everywhere on M. 

Proof By the assumption, we have V^i^ = —\hije0e^(j). Then 

d\tf = 2 Xe{VAM)  <C\h\\<l>\ 

Therefore the lemma can be proved in the same way as Lemma 4.1, [ZlJ.D 
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Lemma 3.2. //M; L are asymptotically flat of order r > 1 and the charged 
dominant energy condition (1.10,) holds on M, then the map 

D\ : C2^{W) — C^iW) 

is an isomorphism. 

Proof. First note that the lower order term in (3.2) 

( 
i^ + ^-iv^eV + iF^ 

lies in C^_2(W). Consequently, Theorem 9.2(d) of [LP] shows that D2
A is 

an isomorphism provided it is injective. To show injectivity, suppose that 
(j> € C^l^W) satisfies D\4> = V^VA^ + R^ = 0. Integrating over the region 
Mr C M inside radius r in asymptotic coordinates, we have 

JMr  ' X / JdMr   X / 
* e 

But 

(</>, VA^) = ($, (vA^+^hije0.^.^ = ©(r-2^1), 

and yo/(aMr) = 0(r3) by (1.2), (1.3). Hence the right hand side of the 
above integral vanishes in the limit as r —* oo. Therefore V^ = 0 on M. 
Hence cf) = 0 by Lemma 3.1 (i), and the proof of the lemma is complete. □ 

Theorem 3.3. // M, L are asymptotically flat of order r > 1 and the 
charged dominant energy condition (1-10) holds on M, then for any con- 
stant spinor (po on ends, the following boundary value problem has a unique 
solution (j) e C2>a(W), 

■  limr_+oo</>   =   0o- { 
Proof. Since D^o 6 C^_2(W), Lemma 3.2 show that there is unique 

01 e C^(W) such that D2^ = -D2^. Then (j) = fa + (/>o satisfies 

D2
A<I) = 0. Let ^ = DA(I> e Chr-ii^), then 

/    VA^
2

 + (Ih, t) = I     (</>, VA^) * c* = /     0(r-2r-3) ^ 0 
JMr X / «/^Mr   X ' JdMr 

as r —> oo. Therefore V^V7 = 0 on M. Hence ^ = 0 by Lemma 3.1 (i) and 
0 is the unique solution of (3.5). □ 
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4. Positive Mass Theorem. 

In this section, we will prove Positive Mass Theorem. 

Proof of Theorem 1.6. Fix a constant spinor ^o 7^ 0 on Mi and fo = 0 on 
the other ends. Let (f> = </>o + </>i be the solution of (3.5) with (/>i £ Cj"(W). 
As in [Zl] we have 

(4.1)   / IVA^ + URA 

= o /       (00, [da;x,da^]VAi^o > 
z JdMoo x / 

= o /       (Vo, [d^, da^']Vj^o) * ^ + 7 /       (Vo, [d^, d^Ajifo) * rf^ 
^ o/aMoox ' 4 7^^^^ \ / 

i<j 

We next simplify these terms algebraically. For this we temporarily drop 
the subscript on 0o, writing </>o = (0+, </>") € W+ © W". Similarly, we drop 
the subscript I from £7, Pj, Q/, fi/, pu and 9^. When |P| ^ 0, we choose 
(/>" so that pkdx0dxk(f)+ = - \P\ (jr. Then 

/^o, Pkdx0dxk(/)o\ = /(?!>+, pkdxQdxk(t)~\ + /^~, pkdx0dxk(/)+) 

= -\mo\2- 
Denote the self-dual part of total electromagnetic momentum of end M/ by 

95H = 2~1(9l2 + 934),   q+ = 2-1(gi3 + 942),   ^ = 2-1(gi4 + 923), 

and anti-self-dual part of total electromagnetic momentum of end Mi by 

(4.2)      Qi  =2-1(q12-q34),   q^ = 2-1(^13 - 942),   ^ = S-1^ - 923)- 

Let q+ = e^qf + eJ+q% + e+gj, qr- = eigf + etq^ + e^gf, then 

^ (^0, dxldx3qijicjioS = /</)+, g+i<?!)+\ + {6  , q ty 

(4.3)      «3 

= (^+, (9+ - |Pr2PfcPi^fcg-^)i^ 
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Using (2.6), (2.7), (2.8), (2.9) and (2.10), we obtain 

PkPjdxkeI_dxj = ( - pkpidxkdx1 - pkp2dxkdx2 + pkp3dxkdx3 

+ PkV±dxkdxA J e+ 

= (Pi + P2 - Pz - PI + ZpiPzdx^dx3 - 2p4P2dx4'dx 

+ 2pip4dx1dx'i + 2p2P3dx2dx3)e+ 

Pi + Pi - Pz - Pi + (P1P3 - P4P2)ei 

(piP4 + P2P3)e+Je+ 

= (PI +P2-P3- Pi) e+ + 2 (PIP4 + P2P3) ei 

+ 2(p2P4-pm)e+- 

Similarly, one finds that 

PkP^eidxP = 2 (p2P3 - Pm) ^ + (p? -P2+P3- PA) 4 

+ 2(piP2+P3pi)e+, 

pkpjdxke^dxj = 2(pip3+P2P4)eI+ + 2(p3P4 - P1P2Je^ 

+ (P1-P2-P3+P4)e+- 

+ 

4 

Denote 

ci = qt- \pr2 ((PI+pi - P! - pD^r+2(P2P3 - piP4)^ 

+ 2(piP3+P2P4)?r)' 

C2 = qt- \P\~2 (2(P1P4 + P2P3)gr + (Pi - P2 + P3 - P4)92" 

+ 2(p3P4-PlP2)^), 

C3 = q+ - \P\-2 (2(p2P4-pm)qi + 2(P1P2 +P3P4)^ 

+ (Pl-P2-P3+P4)93")- 
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When |P| = 0, we set 

ci = qt- IS]'2 ((*? + sl-s2
s- sl)qi + 2(5353 - 5154)^ 

+ 2(5153+ 5254)g^J, 

C2 = qt - \S\~2 (2(5154 + S2S3)qi + (sj -sl + sj- sfyq^ 

+ 2(5354-5i52)^J, 

c3 = qt - \S\~2 (2(5254 - 5i53)gf + 2(5152 + 5354)^ 

+ (4-4-4 + 4)%), 

where si, 52, S3,54 are arbitrary real numbers such that |5| = A/^I 
5? ¥" 0- 

We choose (f)~ by Skdx0dxk(l)+ = -15| 0". Then we can repeat the above 
calculation, replacing p^ by 5^. Therefore, 

= 2^+, (Jci + Jc2 + Kcz)i<i>+). 

By the Pauli representation (2.4), we have 

1<J 

where 

C = (     ~Cl      ~ic2 + c3 ^ 
I   iC2 + C3 ci i ' 

which has real eigenvalues A = ± |C|, |C| = Jj^itf- Now we take <j)+ to be 

the eigenspinor of eigenvalue - \C\ with |(/)+|2 = i. We obtain 

E - \P\ - \C\ = AC^1 ( IV^ 2 + U, RA > 0. 
JM • x        / 

Next we compute |C|. Denote 

. = r i^r1 Sfc     </ IPI=o, 
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Obviously, ^fc^fc = 1- A straightforward computation gives 

((if + 4-4- tl)qi + 2(42*3 - hU^ + 2(tit3 + t2U)qz ) 

(4.4) + (2(tit4 + t2t3)«r + (*1 - *2 + *3 - *4)^ + 2(^*4 - tl*2)% ) 

+ (2(^4 - titsjgf + 2(<it2+wfiqi + (<i - 4 - 4+^)?r) 

= (?r)2 + (92-)2 + {%?■ 
Therefore 

ici2 = (^)2 + (4? + fe+)2 + (<?r)2 + fe-)2 + fe-)2 

- 2(t? + t| - 4 - tl)q+qi - A(t2h - tit^q+q^ - 4(tit3 + ht^q^ 

- 4(ti*4 + t2h)qtqi - 2(tj - 4 + 4 - ^)gjgj - 4(43*4 - tifc^fc 

- 4(42*4 - tlt3)^?r - 4(ili2 + tzU)qtq2   - 2(4 -4-4 + *4)93"% 

= ±\Q\2 + ftnf, 

where f = (^1,^2,^3,^4)*. Now we show when |P| = 0, there is an another 
choice of constant spinor ^o such that the third term in (4.1) has sharper 
value. First, by mean value inequality and (4.4), 

(4.5)      |C|2 < 2((<?+)2 + (qt)2 + (qtf + ter)2 + fe")2 + (ft")2) = \Q\2 • 

On the other hand, 

»e jVfo, dxtdxiqijifo) = Ke^+, g+i0+) + Ste^-, g"i</>_) 

= 2W</.+, Q+(f>+\-2^eU-, Q-^, 

where 

n+ - Z'    "^^      ~i?2" + 4 \      n- =(    ~qi       ~'lq^ + ^3" 

When |P| = 0, we can choose (/>+, <j)~ freely. So we choose (f>+ to be the 
eigenspinor of eigenvalue — |Q+| of Q"1", and choose <p~ to be the eigenspinor 

of eigenvalue |Q-| of Q' such that |^+|2 + |</.-|2 = 1, |Q+| = ^EMt)2, 

\Q-\ = vfeiteD2- Then' 

-Ke^; (^o, dx'dajqijifo) = 2 \Q+\ |</»+|2 + 2 |Q-| |r |2 • 
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We choose ^- = 0 if |Q+| > |Q-|, and 0+ = 0 if |Q+| < |Q-|. Thus 

-KeJ^ ^o, dx^qijiih) = 2max{ |Q+|, |Q-| } 
i<j 

= y\Q\2 + 2 1912934 + 913942 + 914923|- 

By (4.5), we know to get a sharper result by choose constant spinor in this 
way when |P| = 0. The proof of the first part of Theorem 1.6 is complete. 

Now suppose Ei = 0. Then pik = 0, 1 < k < 4, cy = 0, 1 < j < 3 and 
quj = 0, 1 < i, j < 4. Take constant spinor {^i^ : /x = 1,2,3,4} which form 
a basis of W on Mi and T/^ = 0 on all other ends Mj, where we take W 
as complex bundle. Let ^ be the solutions of DAV^ 

= ^ constructed from 
this data by Theorem 3.3. The vanishing of Ei then implies VA^V 

= ^ an^ 
i/jfjt —> 0 uniformly on each end except Mi. But this contradicts Lemma 3.1 
(i) unless Mi is the only end of M. By Lemma 3.1 (ii), {^ : fi = 1,2,3,4} 
are linearly independent everywhere on M, so in a local frame {e^} of M, 

--^Rapije^^ + -FA^ = (VAi^Aj - VAJVAI - VA[c.>Ci])^ = 0. 

In terms of (2.3), (2.4), we obtain 

^ = 0, 

'   Rijl* ~~ ^Aij       ~Rij2 ~" Rij3* RijOl + RijOZl —RijOS — RijO^ ^ 

Rij2 ~ Rij3* ~~Rijl* ~ ^Aij RijOS — RijOA* RijOl — Rij02^ 

RijOl — Rij02^ —RijOS + RijOAl ~Rijl* ~ ^Aij Rij2 + RijS* 

\ RijOS + RijOAl RijOl + Rij02i —Rij2 + RijS* Rijl* "" ^Aij     ) 

where 

Rijl — RijVl ± ^'34, Rift = RijlS ± Rij42i Rij3 = RijU ± ^23- 

This immediately implies that, over M, Rijap = 0, FAij = 0. Therefore 

TQQ = 0 by the Einstein equations, and ifooj = 0, FAOi = 0 by the charged 
dominant energy condition. Thus the proof of Theorem 1.6 is complete.  □ 

5. Appendix: Analogue on 4-Lorentzian Manifolds. 

In this appendix, we assume N is a 4-dimensional Lorentzian manifold with 
Lorentzian metric g of signature (-1,1,1,1), which satisfies the Einstein 
equations (1.1), and M is a spacelike hypersurface in N which is asymptot- 
ically flat of order r > i. Let L be a 17(1) line bundle which is a Spin0(3,1) 
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structure of N. We assume L is also asymptotically flat of order r > ^ over 
M. The total energy, the total linear momentum and the total electromag- 
netic momentum of each end of M can be defined same as (1.7), (1.8), (1.9) 
except that we integrate over the sphere in 3-dimensional asymptotically flat 
ends. 

Proof of Theorem 1.7. Let V be (locally) 5L(2,C) bundle. The complex 

spinor bundle W of N is equal to (V ® L*) (B (V* ® La). Note that L2 
is globally-defined over M since every orientable 3-manifold is spin. Now 
the Clifford multiplication can be defined as follows: For any X e T*N 
with coordinate (XQ, XI, #2, ^3)5 we identify it to the corresponding elements 
X e Hom(V (g) L3 -+V* ® L3) and X* e Hom(V* ® L2 -> V ® La), 

^   ,  XQ — Xi  X2 + iX3 \      Xra t   .   (     x0 + ^l   — £2 — ^3 
0:2 — IX3  £0 + £1 / \ —^2 + IX3   XQ — X\ 

Then the Clifford multiplication T*JV® W —> W is defined by X® (£, 77)* 
(A^-X^O*- We refer to [pT

5 
Z2] for details. Now let ^0 = (€0,^))*, 

plkdx0dxk(l)o + Y^dxld>xJqiiji<f>o = ^Qi&, Cz2^oJ , 
Z<J 

where 

pzi - qm -P12 + qm - KPIS - Q112) 
-P12 + qm + KPIS - qm) -pn + qm 

-(pn + qm) P12 + qm + KPIS + qm) 
P12 + qm - KPIS + 9*12) Pn + ^23 

Note Ci^ has eigenvalues ±A^, 

A^ = y/ipn - qm)2 + (P12 - qm)2 + (pis - qm)2, 

and C/^ has eigenvalues dbA/^, 

Aft, = vW + «23)2 + (Pn + 9/3i)2 + tos + qm)2- 

We choose spinor ^o = (^o, ^0) such that £0 is the eigenspinor of eigenvalue 
—Az£ and 770 is the eigenspinor of eigenvalue — A^. Moreover, |£o| +|^o| = 1. 
Then 

(00, pikdx0dxk(f)o) + ^2 (foi dx%dx?qiiii<l)Qj = -XQ ^0 - hr, m 
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We choose 770 = 0 if A^ > A^, and £0 = 0 if A^ < A^. Thus, if M satisfies 
the charged dominant energy condition, then 

Ei > y\Pi\2 + \Qi\2 + 2 \piiqm + PMm + PMinl 

If Ei0 = 0 for some ZQ, then M has only one end, pi0k = 0, qi0ij = 0, and 
Rafi-yS = 0, FAOCP = 0 over M. Thus the proof of Theorem 1.7 is complete.D 
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