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In this paper we explore the asymptotic geometry of negatively 
curved homogeneous manifolds. We characterize asymptotic har- 
monicity in terms of various natural measures. We also show that 
the Bowen-Margulis, harmonic, and Liouville measures on the unit 
tangent bundle and the corresponding measures on the boundary 
are always in the same measure class. We then show that Cheeger's 
constant, the Kaimanovich entropy, and the bottom of the spec- 
trum are all maximal for these spaces. Along the way we present 
sharp asymptotic estimates for Jacobi fields and the Poisson and 
Green's kernels. Finally, we present examples showing that in gen- 
eral these manifolds are not asymptotically harmonic. 

1. Introduction. 

In this paper we explore the geometry of complete simply connected nega- 
tively curved homogeneous spaces, henceforth abbreviated NCHS's. The 
structure of non-positively curved homogeneous spaces was investigated 
early on by D. Alekseevskii [1] in 1974. Much of the general structure 
of these spaces was described by R. Azencott and E. Wilson ([5] and [6]) 
and T. Wolter ([46] and [47]). They proved that these spaces all have a 
solvable simply transitive group of isometries of the form A K N, where A 
is a (non-unique) Abelian group and N is the nilradical. These transitive 
isometry groups admit left invariant metrics which make them isometric to 
the manifold, although two non-isomorphic groups may be isometric. See 
[5] for more details. 

E. Heintze [29] and J. Wolf [45] among others examined the present case 
of (strictly) negative curvature. Here the dimension of A is one, and by 
homogeneity these spaces have bounded curvature — b2 < K < —a2 < 0. 
E. Heintze also proved in [28] that an NCHS admits a compact quotient if 
and only if it is a symmetric space. In fact, the same is true if we replace 
compact by finite volume. 
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Over the past few decades, new tools have been developed for studying 
the geometry and rigidity of compact manifolds of negative curvature. Both 
measure theory and analysis play a prominent role in these investigations. 
Here we draw on these ideas to develop a parallel theory for NCHS's. In 
particular, we define natural generalizations of the existing structures on 
the universal covers of compact manifolds to NCHS's. Then we attempt 
to apply many of the same tools for examining these structures on simply 
connected negatively curved manifolds with cocompact lattices (henceforth 
cocompact manifolds) to the case of NCHS's. However, the success of this 
approach rests on finding suitable replacements for compactness arguments. 
One especially important feature of NCHS's is that, in principle, much of 
the dynamics of the compact case can be replaced by the action of the 
transitive group of isometrics. However, the compact situation does not 
entirely correspond with that of NCHS's. For example, some results relying 
on the ergodicity of the geodesic flow g1 in the compact case do not hold for 
NCHS's. 

Next to global symmetry one of the strongest properties a manifold can 
possess is being harmonic. This condition states that the mean curvature 
of its metric spheres is everywhere constant. The Lichnerowicz conjecture 
states that every harmonic manifold is a locally symmetric space. Z. Szabo 
in [44] verified the Lichnerowicz conjecture for compact manifolds with fi- 
nite fundamental group. However, Damek and Ricci [17] found a class of 
harmonic non-symmetric manifolds (all of which are homogeneous spaces of 
so called Heisenberg type). 

A manifold is asymptotically harmonic if the mean curvatures of all the 
horospheres are everywhere constant. Horospheres are the limits of metric 
spheres through a fixed point whose centers go to infinity along a geodesic 
ray. Hence this property is a truly asymptotic version of harmonicity. One 
of the two main goals of this paper is to study asymptotic harmonicity for 
NCHS's. Below we will give several equivalent characterizations of this prop- 
erty. Combining the recent results of P. Foulon and F. Labourie [22] together 
with two remarkable papers of Y. Benoist, P. Foulon, and F. Labourie [10] 
and Besson, Courtois, and Gallot [12] proves that any negatively curved 
compact asymptotically harmonic manifold is in fact symmetric. Both C. 
Yue [50] and F. Ledrappier [37, 38] have done much to characterize com- 
pact asymptotically harmonic manifolds in terms of their measure theoretic 
properties and other features of their geometry. 

For any simply connected non-positively curved manifold we can define 
the boundary (topologically a sphere) to be equivalence classes of geodesies. 
Two geodesic rays are equivalent if they stay a bounded distance away from 
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each other for all time. Note that we can identify measures on the boundary 
sphere with measures on the unit tangent sphere at any point x G M via 
the map which projects along geodesies originating at x. 

We will define three important measure classes on the boundary sphere 
of an NCHS, in analogy with the case of cocompact manifolds. They are the 
Patterson-Sullivan measures /x^, spherical harmonic measures vx, and visual 
measures A^ for each x G M. As we will see, certain properties of these 
measures are closely tied in to the asymptotic geometry of the manifold. 
From these three measures one constructs (see section 3) the Bowen-Margulis 
measure //, harmonic measure i/, and Liouville measure A respectively on the 
unit tangent bundle. These three measures are invariant under the geodesic 
flow and derivatives of isometries. For the weak stable, weak unstable, strong 
stable, and strong unstable foliations there are measures which are invariant 
under diffusion on the corresponding foliation. We denote the measures 
respectively by UJ

SS
,UJ

S
,UJ

SU
, and a;w, and they are referred to (regrettably) 

as the harmonic measures for their respective foliation. Another natural 
object to consider is the flip map F : SM —> SM defined by F(v) = — v, 
and for each x G M this induces a corresponding map on dM. Naturally, 
the pullback of a measure under the flip map is called the flip of the measure. 

We present here the three main theorems of the paper for convenience. 
For cocompact manifolds A. Katok and D. Sullivan independently conjec- 
tured (see [9]) that if any two of the Bowen-Margulis, harmonic, or Liouville 
measures coincide then the manifold is a locally symmetric space. In the co- 
compact case these measures are all ergodic with respect to the geodesic flow, 
and so the conjecture is equivalent to asking that any two of the measures be 
in the same measure class since they would then coincide by flow-invariance. 
Katok proved this conjecture in dimension 2. In the non-compact case any 
two ways to pose this conjecture are distinct. In the first theorem we prove 
the analogue of the second statement of the Katok-Sullivan conjecture is 
false for NCHS's. We also show a somewhat surprising relationship between 
the Kaimanovich Entropy /?, the exponential volume growth rate h, the 
Cheeger constant CM, and the bottom of the spectrum Ai (see Sections 2 
and 5 for definitions). 

Theorem 1. For any NCHS M, we have the following 

1. For all x G M the measures iix,vx,\x and their flips are all in the 
same measure class. 

2. The measures //, v, \, uss, CJ
S, UJ

SU
, anduju are all in the same measure 

class, and 
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5. h2 = cjtf = /3 = 4Ai, moreover we can express this constant in terms 
of algebraic data. 

In above parts (1) and (2) we also give explicit formulas for the Radon- 
Nikodym derivatives of any two of the measures. We remark item (3) above 
is somewhat striking because in the cocompact case any two of these quan- 
tities coincide precisely when M is asymptotically harmonic [50]. A conse- 
quence of the last item of the theorem is that M has no discrete spectrum. 
We discuss this in Section 2. 

In the second theorem we show that equality of some of these measures 
implies asymptotic harmonicity as in the cocompact case. For what follows, 
U(v) denotes the second fundamental form of the horosphere in the direction 
of v, and T(V) is the derivative of the Poisson kernel along a geodesic through 
v e SM (see Sections 2 and 4 for details). 

Theorem 2. For any NCHS M, the following are equivalent: 

1. trU andtvU2 are both flip invariant, 

2. tiU is flip invariant and any one of iix,u
ss, or usu is flip invariant, 

3. r is flip invariant and any one ofi>x,u;s, or (JJ
U
 is flip invariant, 

4. For any x, any two of the measures iAx<>vx, or \x coincide, 

5. Any two of the measures \, UJ
SS, or UJ

S
 coincide, 

6. Any two of the measures \, CJ
SU

, or UJ
U
 coincide, 

7. Either T(V) = h or T(V) = tiU(v), and 

8. M is asymptotically harmonic. 

It is worth remarking that the proof of the equivalence of conditions 1 and 
8 in the above theorem does not depend upon the homogeneity of M, and 
holds true for general negatively curved manifolds. Most of other conditions 
have been shown to be equivalent in the case of cocompact manifolds (see 
C. Yue [50]). 

Lastly, Theorem 3 shows how equality (up to scalar) of the measures /x, 
z/, and A are related to various geometric implications. 

Theorem 3. For any NCHS M, we have the following relationships 

1.  The following are all equivalent, 
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(a) for anyxeM any one of -j^, ijg, *£, or &£-, is continu- 
ous, 

/oo 
txU{gtv)-h.dt = Q, 

-oo 

(c) X is a multiple of fi. 

2. The following are all equivalent, 

(a) for any x e M any one of ^ , $£, ^jj-, or ^} is continuous, 
/oo 

trU(gtv)-T(gtv)dt = 0, 
-OO 

(c) X is a multiple of v. 

3. The following are all equivalent, 

(a) for any x 6 M any one of 4^-, J^; or ^^r; ^
S
 continuous, 

/oo 

T(0*v)-hdi = O, 
-OO 

(c) ii is a multiple of v. 

We organize the paper into seven sections, consisting of the three main 
results and some examples. Section 2 presents background material and 
proves some basic results about volume growth and asymptotic behavior. 
In Section 3 we establish the measure theory and describe the measures in 
multiple ways. In Sections 4 through Section 6 we prove Theorems 1-3. Sec- 
tion 4 focuses on integral formulas to establish certain relationships between 
the measures to obtain Theorem 1. In Section 5 we establish some of the for- 
mulas for Theorem 2 as well as find other information about these measures. 
Section 6 finishes up the results for the harmonic measures and compiles the 
three theorems. We end the paper in Section 7 with an explicit class of 
examples of NCHS's which are not asymptotically harmonic demonstrating 
that none of the criteria of Theorem 2 are trivially satisfied. A more subtle 
question is whether there exist asymptotically harmonic NCHS's which are 
not harmonic. 
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2. Entropy, Volume Growth, and the Cheeger Constant. 

2.1. Preliminaries. 

We will begin by fixing our notation. Henceforth we will always denote our 
NCHS by M and SM will be its unit tangent bundle with geodesic flow g*. 

Let P : SM —> M denote the projection of 5M onto M. The distance 
function on M and the Sasaki distance on SM will both be denoted by d(-, •) 
and may be distinguished by the context. 

Associated to g* are the strong stable and strong unstable manifolds 

Wss(^) = {we SM^v^tw)   ^00
) 0} 

and 
Wsu{v) = {w G SM^v.g^)   ^-00

) 0}. 

We define the (weak) stable and (weak) unstable manifolds >Vs(i;) = 
U*>VSS(^) and yVu(v) = UtW

sw(^) respectively. 
The following description can be found in [29]. Fixing a point o G M we 

may identify (the orbit) M = G • o with the simply transitive solvable group 
of isometries G = A tx N with some left invariant metric. Let g = a+n be the 
Lie algebra of G. Without changing the isometry class of the corresponding 
left invariant metric we may choose the inner product on g so that a is 
orthogonal to n. The orbit N • o of the nilradical sits in M as a horosphere. 
Let va E S0M be the inward pointing tangent vector perpendicular to N -o at 
the point o, i.e. PWss(i>a) = N • o. We will call va the abelian direction. We 
will abuse notation and also consider 1^ to be the corresponding element of g. 
Then in fact a = Rv^ and we will denote the elements of A as a* = exp^a, 
parametrized by t £ M. The one parameter subgroup a* • o and its flip a-* • o 
are geodesies and the only geodesic one parameter subgroups. Furthermore, 
the eigenvalues of ad^ have positive real parts. We refer the reader to [18] 
for further properties and details of the Lie group structure of G. 

For each x G M the standard spherical Lebesgue measure on S^M will 
be denoted by A^. 

For a fixed left invariant metric on M the connection restricted to left 
invariant vector fields is given by the formula 

(2.1) VXY = 1 ([X, Y) - sd*x(Y) - adM*)) 

where ad* denotes the adjoint of ad. Since n is nilpotent and a and 
n are orthogonal,  we have VVeLX   =   ^(ad^-ad*a)(X)  and Vx^a   = 
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-i(ad*a + adVa)(X) as two special cases. In particular we see that A corre- 
sponds to a geodesic in M. 

The geometric boundary of M (denoted dM) defined earlier as equiv- 
alence classes of geodesic rays induces a compactification of M where the 
topology on the boundary comes from geodesic cones based at points in M. 
Anderson and Schoen (see [4] or [2]) proved that for any simply connected 
manifold with pinched negative curvature the geometric boundary coincides 
with the Martin boundary, and it carries a natural Holder structure. 

For any v G SM, v(t) = Pgtv will denote the unit speed geodesic in the 
direction of v at time t. The points on dM corresponding to the equivalence 
classes of the geodesic rays v(t) and — v(t) will be denoted by v{oo) and 
v{—oo) respectively. For x ^ y G M, we will also denote by vx,y the unique 
element of SXM such that the geodesic vx^(t) passes through y for some 
t > 0. Similarly, vx£ is the unique vector such that vx^(oo) — £ G dM. By 
[4] there is a natural Holder continuous projection map TTX : (M \ {x}) U 

dM -> SXM defined by ^x{y) = vx,y. Let pv(y) = limt-.oo d(v(t),y) -1 be 
the Busemann function associated to the point 'u(oo) = £ with basepoint 
^(0) = x. We will also denote this by px^(y). 

A family of linear maps L(t) : v1 —> (gtv)1' is called Jacobi tensor along 
v(t) if L(t)w is a Jacobi field for each w e v±. A Jacobi field J(t) is called 
stable (resp. unstable) if J(oo) = 0 (resp. J(—oo) = 0). There are Jacobi 
tensors A(v,£),2£(i;,t) : v1- -* (gtv)1- such that for w G v1-, E(v,t)w (resp. 
A(v,t)w) is the stable (resp. unstable) Jacobi field J(t) with J(0) = w. We 
call E(v,t) (resp. A(v,t)) the stable (resp. unstable) Jacobi tensors along 
the geodesic v(t). 

For v G SM the stable, Es(v), and unstable, Eu(v), distributions on 
^M with respect to g1 are the tangent spaces to the Wss(v) and Wsu{v). 
After identifying Es{v) (resp. Eu{y)) with TpvPWss(v) = v1- (resp. 
Tp-yPW^f) = v^-), the corresponding stable and unstable Jacobi tensors 
along a geodesic v{t) are given by 

E{v,t) = dg^E*^) and k(v,t) = dg^u^ 

respectively. Applying the chain rule gives us the relations 

A(v, t + s) = A(gsv, t)A(v, s) and JB(i;, t + s) = E(gsv,t)E{v, s). 

Since these tensors both satisfy the Jacobi equation, it is easy to see that 
E{y,t) = A(—v, —£) once we identify (—v)1- with v1. The (symmetric, 
positive definite) second fundamental form of the horosphere PWss(v) at 
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the point Pv e M is denoted by U(v). It is related to the stable and 
unstable Jacobi tensors by 

U(gtv) = -E(v,tyE-1(v,t)     and, 

V(-gtv) = A(v,t),A-1(v,t). 

Prom Proposition 2.8 of [14] (for example) it follows that 

det E(v, t) = eSo -tr u(9av)ds     and 

(2.3) t 
detA(v,t) = eSotrU(-9s^s 

In the literature U(v) is more commonly defined to be the second fundamen- 
tal form of PWsu(v), i.e. our U(—v). However for the sake of consistency 
with some of the propositions we have adopted the viewpoint of C. Yue in 
[50]. 

Define the volume element in polar coordinates to be Y(x,y) = 
tn~1detd(expa.) -i, s where t = d(x,y). For v £ SM, define A(v,t) to 
be the Jacobi (Lagrange) tensor such that A(v, 0) = 0 and A'(v, 0) = Id. 
Observe that A(v, t) = t • d(exppv)vt\v±. Then the volume element V(i;, t) = 
V(v(0), v(t)) along a geodesic v(t) can be described as V(v, t) = det A(v, £). 
In terms of the Jacobi tensors A and £?, the tensor A can be uniquely de- 
scribed as 

(2.4) A(v,t) = (A(M) -E(v,t))(A'(vt0) - -E'M))-1. 

This follows from observing that Afa^t) formally satisfies the given prop- 
erties and the Jacobi equation. It is well defined since A'(v, 0) is positive 
definite and E'(v,0) is negative definite. Furthermore, it is analytic on 
SM x R since the map exppv(wt) is analytic in v, w, and t. 

Remark 2.1. By examining the above formulas notice that A(—v, — t) = 
-i4(t;, t) and A'(v, 0) - Ef(v, 0) = C7(—v) + U(v). Hence we may write 

_ det(A(M)-£(M)) 
1 ' ;       det(C/(^) + U(-v)) ' 

Also since the eigenvalues of A are exponentially increasing and those of 
E(v,t) are exponentially decreasing, we have 

«-K» det A(u, t)      det(J7(t;) + ?7(-t;))' 
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For what follows, denote by S(x, r) the metric ball of radius r centered 
at x. 

Definition 2.2. The volume growth entropy h for M is the exponential 
growth rate of the volume of balls: 

hd=flimsupl06V0lg(:r'r). 
r—»oo T 

Note that h is independent of x by the triangle inequality. 

2.2. Asymptotic Control of Jacobi Fields and Volume Growth. 

The purpose of this subsection is to prove the following 

Theorem 2.3. There are constants C5, CQ > 1 independent of v G SM 
such that for all T > 0; 

-J- < det A(^,T)e-tr(ad-)T < C5, 

and 

7^ <V(u,T)e-tr(ad*a)T <C6. 

Furthermore, as T —> 00 (resp. T -» — 00), det A(t>,T)e~tr(adt;a)T and 
V(t;, r)e~tr(adva)T converge exponentially fast to continuous functions on 
5M\Ws(^a) (resp. SM^W^-v^)). 

Remark 2.4. See Section 7 for examples of spaces where 

limdetA(^T)e-tr(ad*a)T 

and 
lim V(v,r)e-tr(ad^)r 

are not continuous at >Vs(i;a). 

Before proving this theorem, we will present two simple corollaries. 

Corollary 2.5.  The exponential volume growth rate satisfies h = trad^ . 
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Proof. Define the equivalence relation ~ by declaring A c^ B if there exists 
a constant C > 1 such that ^B < A < CB. Then using the bounds in 
Theorem 2.3 we obtain the following estimate for Yo\(Br{x)). 

Vo\(Br{x)) = f       r V(T/, *) dt dAx 
JSXM JO 

~ f      [ ^"^MtdAx 
JsxM JO 

r^ gtrad^r^ 

The statement of the corollary follows immediately. □ 

Definition 2.6. For negatively curved manifolds, the Margulis function is 
defined to be 

_        ..def,. VolQSrfr)) 
Cuaxix) = limsup ^ . 

For compact manifolds the Margulis function is always finite and the 
limsup can be replaced by lim. However, A. Katok showed that in dimen- 
sion 2 it is constant only for symmetric surfaces, and the corresponding 
conjecture remains open in higher dimensions [50]. In contrast, for NCHS's 
we always have 

Corollary 2.7.  The limit limr_*oo   Q  hr      exists and is a positive constant 

CMar = CMar\x) • 

Proof. Writing Vol(6'r(x)) in polar coordinates for any r > 0 yields 

Vol(Sr(x)) 
etr(adva)r 

= /     V(^,r)e-tr(ad^rdAx 
JsxM 

By Theorem 2.3, for any v e SXM the integrand in the expression above 
converges exponentially quickly to a positive value, bounded independent 
of v. By the Lebesgue Dominated Convergence Theorem the above integral 
converges as r -» oo to a finite value which by definition must be CMar^)- 
Now observe that Vol(5r(a:)) = Vol(AS'r(o)) since there is an isometry which 
carries Sr(o) onto Sr(x). Hence CMar(^) is constant. □ 

In order to prove the theorem we must first control Jacobi Fields along 
the abelian geodesic. Set adVa = D + S where D and S are symmetric 
and (resp.) skew-symmetric endomorphisms of g (i.e acting on left invariant 
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fields). For any v £ SM define the curvature operator to be the endo- 
morphism of TpvM given by R(v) = R(v, ')v. Also denote by ||t parallel 
transport along the geodesic v^t). 

Lemma 2.8. In the abelian direction, the stable Jacobi tensor is 

E{vgL,t)=\\te
Ste-ad"*t. 

The unstable Jacobi tensor is given by 

A(va,t)=\\te
SteBt 

where B is the unique solution of the linear equation {B + 25)5 = {D — 
S){D + S) with the same eigenvalues as adVa (7/ad^ is a normal operator 
then B = adl^). Furthermore, the second fundamental form at gtvai of the 
horosphere corresponding to yVss(gtv8i) is U(gtva) =\\t eStDe~St ||_t; and 
similarly U^g^) =||t eSt(B + S)e-St \\-t. 

Proof, For any left invariant field X along v^t) we have that V^X = SX 
(from 2.1). Hence X restricted to the geodesic v^t) is given by Xty^it)) =\\t 
eStX{p). Therefore the curvature operator at gtvai is R{gtv3) = — \\t 
eSt(D2+[D, S])e-St ||_t, since by 1.4 of [18] we have /2(va) = -(D2+[D, S]). 
Here again we are identifying g with S0M. 

For any Jacobi field Jya(t) along v^t) the Jacobi equation then becomes 

V„aV„a JVR(t)- \\t e
St(D2 + [D, S])e-St ||_t JVa(t) = 0. 

We now search for solutions to this equation of the form Jua(£) =||t 
eStL(t)JVeL(0) for some parametrized endomorphisms L(t) of Vg^. Explicitly, 

V«.J^(t) =||t jte
StL(t)JvM =||t eSt(SL(t) + L'(t))JVa(0)- 

So the Jacobi equation above becomes 

0 =||* eSt(S2L + 231' + L")JVeL{0)- \\t e
st(D2 + DS - SD)LJVsi(0). 

The second order constant coefficient equation Llf + 2SLf — (D2 + DS — SD — 
S2)L = 0 has solutions which correspond to the various Jacobi fields. For 
the stable and unstable fields, the cocycle properties imply that L(t + s) = 
L(t) - L(s). Hence, L(t) = eBt for some matrix B. 

After substituting L = e5*, we are reduced to solving the equation B2 + 
2SB + S2 = D2 + DS-SD or (B + 2S)B = (D-S)(D + S) which has one 
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solution B = -D - S = - ad^. This solution gives all stable Jacobi fields, 
JVa(t) = E(v^ t)JVgL(0). The reason being that the eigenvalues of adVsi have 
negative real parts (see Heintze [29]) which implies that e""^^* t^00

) 0. 
Similarly, the linear operator B corresponding to the unstable Jacobi fields 
Jv&(t) = Afaa, t)JVwL(0) will be a solution of (B+2S)B = (D-S)(D+S) with 
all eigenvalues having positive real parts. The existence and uniqueness of 
this solution are a consequence of the existence and uniqueness of A(va,t). 

To examine this solution substitute B with B = C - adVa then the 
equation becomes 

(2.5) C£-ad;aC = 0. 

Suppose first that C is not invertible. By formula 2.5, B leaves ker(C) 
invariant, but then -adVa |ker(C) = (-B - C)lker(C) = £|ker(C)- This is im- 
possible since the eigenvalues of - ad^ and B have negative and positive 
real parts respectively. Hence C is invertible and we may write equation 2.5 
as B = C~l ad*a C which shows that the eigenvalues of B are identical to 
those of adVa. Unfortunately, there is no simple expression for this solution 
in terms of D and 5, unless S commutes with D. 

Lastly, using the relation U^g^) = A^^A"1^,*) from 2.2 and a 
simple computation results in the given formula for U{±gtva). D 

Corollary 2.9.  We have detA(±i;a,t)   =  etradw*t  and detE{±vai,t)   = 
„— tr adu,, t 

Proof. Prom the above lemma, we have the following expression for the stable 
and unstable Jacobi fields E(va,t) =\\t e^e'^^ and A(<;a,t) =||t eSteBt. 
Recall that the eigenvalues of B are those of adVa and that eSt and \\t act 
orthogonally. Taking determinants, we obtain det A(va,t) = det \\t eSteBt = 
etrBt = etTadVSit and similarly detE^t) = e-traduat. Lastly we use the 

relationships A(±t;a,t) = ^(T^a, -*) to establish the other two cases.      □ 

Now recall that -b2 < K < -a2 < 0. Let d denote the Sasaki metric or 
the metric on M depending on the context. In the rest of the section, define 
w+ ^ Wss(v) H Ww(-<;a) for v G SM \ WSK) and w' = Wsu(v) n Ws(^a) 
for v e SM \ Wu(-t'a). The w* are well defined since the corresponding 
stable and unstable leaves intersect in one point. We then can make the 
following estimates 
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Lemma 2.10. Let f : SM —► R be any a-Holder continuous function. Then 
there are constants Ci,C2 > 0 such that for any v e SM and all t > 0, 
either d(v,w+) < Ci and Iftfv) - /(^Ol < ^e"^ or d(v,w-) < d 
and Ifig-tv) - /GT^")! < de^K 

Proof. We first claim that there is a constant Ci > 0 such that for all 

v e SM the function mm{d(v,itf+),d(v,tO} is less than ^i- By homo- 
geneity it is enough to prove the lemma for v G SQM, since we can translate 
the vector v to 50M by an isometry g € G which leaves Ww(-'ya) and 
Ws(t;a) invariant and hence dgw± = w^gv. Recall from the definition of w± 
that the functions d(v, w+) and d(v, w') are continuous on S^M \ {^a} and 
S0M \ {-Va} respectively. The function mm{d(v, tt;+), d(v, w')} can be ex- 
tended to a continuous function on all of 50M since d(v} w~) < d(v, w+) in 
some neighborhood of v* and d(v, w+) < d(y, w') in some neighborhood of 
-^a. Hence, by compactness of S0M the function mm{d(v,w+)}d(v,Wv)} 
achieves a maximum. Let this maximum value be the constant Ci. 

Now consider the above construction in hyperbolic space of constant 
curvature K = -a2. In this case there is a constant C depending only 
on Ci and a such that for all t > 0 either d(gtv,gtw+) < Ce-at if 
d(v,w+) < Ci or dig^v.g-'w-) < Ce""' if d(v,w-) < d. By the 
standard Toponogov comparison theorem for triangles, these same esti- 
mates hold in our case. Then by the Holder condition there is a constant 
a such that either \ftfv)-ftfv)+)\ < 6"^,^+)" < de-aat or 
\f(g-*v) - Kg-'w-)] < C'dtfv,g'w-T < de-aat where C2 = C'C".     D 

For any Holder function / : SM -» M, define 

If(v,T)l*[jT\ftetv)-ftfw^\M   for   vG5M\W5K) 
1 0 for        vGWs(i;a). 

If we denote by ±Ws(vaL) the set Wu(-vaL) U >Vs(va), then we have the 
following estimates. 

Corollary 2.11. /// is an a-Holder function which is constant on the set 
±Ws(vai) then there is a constant C3 such that the estimate //(v,T) < C3 
holds for all v G SM and all T > 0. Furthermore limr-oo */(>>, T) always 
exists and is continuous for v G SM \ W8^) with 7/(v,oo) - If(v,T) < 
de~aaT for some constant C4 which depends continuously on v G SM \ 
>Vs(i>a). ia5%; t/ie convergence is uniformly exponentially fast on compact 

subsets of SM\WSK) 
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Proof. Let To > 0 be the first value of t such that d(gtv,gtw^) < Ci where 
Ci is the constant from Lemma 2.10. Then we can split the integral up as 

If(v,T)= f    \f(gTo-tv)-f(gtw+)\dt+ (T\ftfv)^ftfwt)\dt. 
JO JTo 

Since //(v, T) is nondecreasing in T we may assume without loss of generality 
that T > TQ. By assumption we have the equality f(gt(±v8L)) = /(t;a). Also, 
d(gtv, g1™*) < Ci for 0 < t < To, so we have the following estimate 

rp rri 

I " tfig-^v)) - /(0| dt < f 0 C2e-aatdt. 
Jo Jo 

For the second integral we have the similar estimate 

/   Wv) - f(va)\dt = /      0 |/(/(/M) - /K)| dt 
JTo JO 

rT-To 
< / C2e- 

rT-To 
--"^dt. 

Hence 

If(ViT) < ^(1 - c—To) + Cb(1 _ c-aa(T-To)) < ^ = 
J aa aa oca 

Prom the above estimates we can compute for all R > T we have 

C,2/._£ If(v,R) - If(v,T) < ^{e-aa(T-To) - e—(«-ro)) 
aa 
C2   _ = ^le'^T-To)^ _ e-aa{R-T)y 
aa 

Choosing C4 = 5keaaTo, as R —> 00 the second estimate follows. 
By the continuous dependence of w+ on v e SMy W5^) it follows that 

To and hence C4 depend continuously on v G SM \ Ws(t>a). Now observe 
that If(y, T) is continuous in v for any fixed T. By the continuity of C4 the 
tail If(w,oo) — If(w,T) decays exponentially quickly in T and uniformly 
in w for w sufficiently near v £ W3^). Hence, If(v,oo) is continuous for 
v e SM \ >Vs(va). In the same way the uniform convergence follows from 
the continuity of C4. □ 

Before we begin the proof of the theorem we need to establish the above 
results for the case of tr U. 
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Lemma 2.12.  The function tiU(v) is bounded and uniformly Holder con- 
tinuous on SM. Furthermore, it is constant on the set iW^a)- 

Proof Eberlein (see [30]) showed that the Wl foliations are continuous for 
general Hadamard manifolds. Now we examine the proof of Proposition 4.4 
in the appendix of [8]. The upper bound on the curvature of M gives us an 
Anosov splitting of TSM for the geodesic flow g1 with respect to the Sasaki 
metric. Since we have a transitive group of isometries on M the derivatives of 
the flow g* only depend on the values at the tangent space at one base point 
in M. It follows that the derivatives of the flow are bounded. This suffices 
for the proof of Proposition 4.4 which then shows that the distributions El, 
for i = 5, S5,ti, su, generating the foliations W2 are Holder continuous. 

The bundle TSM splits as TSM = Th 0 Tv 0 T0 where T0 is the one 
dimensional span of the geodesic spray, Tv is the vertical bundle (i.e. the 
tangent bundle to the unit tangent sphere foliation), and Th is the horizontal 
bundle (orthogonal complement of Tv 0 T0 with respect to the Sasaki met- 
ric). T^ is isomorphic to v1- € TpvM via the map dP and T^ = TvSpvM is 
also canonically isomorphic (and isometric) to v1- via the connection map. 
We define £ : Th —> v1- —> Tv to be the induced smooth bundle isomor- 
phism. Since v1 = TpvPWss(v)i the second fundamental form U(v) of 
PWss(v) can be viewed as an automorphism of T^ (or of T^). Then we can 
express (see Section 1 of [26]) the stable and unstable distributions in terms 
of U(v) as, 

E? = {X + U(-v)C(X)\XeTZ}   and   Es
v
s = {X - U{v)CX\X e T*}. 

Since C is smooth, the regularity of U(v) as a section of (T*)* ® Tv is the 
same as that of Ess and Esu (see the beginning of the proof of Lemma 2.4 
in [26]). In particular trU is Holder continuous as a function. 

Lastly, since tr U is G-invariant it only depends on its values at SQM and 
hence it is bounded and uniformly Holder. The last statement follows from 
±Ws(va) being an orbit of G. □ 

Remark 2.13. Since the curvature tensor is analytic and G-invariant, its 
values only depend linearly on the degree 2 exterior algebra of the tan- 
gent space at one point. In particular, its derivatives are all uniformly 
bounded. Remark 3.3 of Chapter IV of [8] states that the Busemann func- 
tion is C00, and hence the leaves of the W2 foliation are individually C00 for 
i = s^ss^UjSU. 
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Proof of Theorem 2.3. Since the isometries in N are transitive on W^a)^ 
tiU{y) is constant on W5^) and — Ws(t>a) separately. Furthermore 
tr f/(va) = tr [/(—1^) (see Lemma 2.9) so tr U is constant on ±Ws{vSL). Now 
in [24], using only curvature bounds, tr U is shown to be an ^-Holder func- 
tion. Hence, applying Corollary 2.11 to txU{v) we obtain a constant C > 0 
such that /0

T | trUtfv) - tr(8idvJ\dt = /0
T | tr l/^v) - trI7(i;a)|rft < C. 

By equations 2.3 it follows that, 

det A(v,T)e~tr(adt'a)T = eIo(trU(-93v)-^(a'dvSi))ds^ 

By our estimate above for the exponent we see that this expression is 
bounded above and below by the uniform constants <j-,C5 respectively, 
where C5 = ec. The second bound follows from the first by Remark 2.1. 

The existence and continuity of the positive limits for these functions as 
T —► 00 is a direct consequence of the existence and continuity of ItTu(y, 00) 
given in Corollary 2.11. The continuity of the negative limits follows in the 
same way since 7tr UM (v, -T) = Jtr u^ (-v, T). □ 

2.3. Cheeger's Constant and the Bottom of the Spectrum. 

Let 

be the bottom of the L2-spectrum of the Laplace-Beltrami operator A = 
divV on a manifold iV (see Chapter I of [15]). I.e. \i(N) is the smallest 
value of A such that (A + A)/ = 0 admits a solution / G L2(iV). Set 
Ai = Ai(M). Denote by A|ss = sup^{Ai(M \ K)} where K ranges over all 
compact subsets of M. Then Xfs is the infimum for the continuous spectrum 
or discrete eigenvalues with infinite multiplicity [13]. 

Cheeger's isoperimetric constant for M is 

.  -Vol(dN) 

where the infimum is taken over all compact n-dimensional submanifolds 
of M with smooth boundary. The significance of CM is given by Cheeger's 

c2 

inequality [16] which says -jf- < Ai. Combining this with Corollary 3 of 
Brooks [13] we obtain, 

Theorem. For any complete simply connected negatively curved manifold 

r2 h2 Cf<\i<xr<^- 
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In our case we show, 

Proposition 2.14. For any NCHS, M, we have ?f = Ai = Afss = *£. 

Proof. We first remark that for any fixed point o E M, the Laplacian of the 
function r = r(x) = d(x^o) is given by 

{Vr(x),VV(o,x))      fyt-rVfat) 
V(o,x) V(v,r)     ' 

where v = i;0)a; (defined toward the beginning of this section). Using equar 
tions 2.2 and 2.4 we may rewrite the above as 

(to AM)'      ^(   )A-i(   ) 
deti4(t;,r) v     ;       v '  ; 

= tr U(-grv)(I - EA"1)"1 + U{grv)(kE-1 - J)"1. 

By Theorem 2.3, the limit as r —> oo of the last expression is h, uniformly in 
v G S'M\>Vs(va). For each e > 0, let iVe c M be a choice of submanifold in 

Cheeger's isoperimetric inequality satisfying voiWe) = cM+e- For any fixed 
e > 0 and any S > 0 since N€ is bounded then by the above computation 
we may choose a basepoint o = i;a(t) for some sufficiently large t such that 
we can guarantee that Ar(a;, o) > h— S for all x G N€. Also, we remark that 
|Vr| = 1. Hence if * denotes the Hodge operator, Stokes theorem says: 

Vo\(dN€) > f    *dr= [   *Ar > (h-6) Vol(iVe). 
JdNe JNe 

Thus CM + € > h —5. Since e and 5 were arbitrary, we obtain CM > h. 
2 

Cheeger's inequality [16] states that -f- < Ai. Finally, by Corollary 3 of 

Brooks [13], Ai < Afs < ^. Putting these inequalities together we see they 
are all equalities. □ 

Remark 2.15. We remark that the above statement is in contrast to the 

cocompact case where Ledrappier [39] showed Ai = ^- iff M is asymptot- 
ically harmonic (and hence symmetric). On the other hand, NCHS's need 
not be asymptotically harmonic (see Section 7). 
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3. Three Important Classes of Measures on dM and SM. 

We will need to know how to differentiate measures. Consider a separable 
metric space X with metric p which is a countable union of directionally 
limited sets (see section 2.8.9 of Federer [19] for a definition). In Section 
2.8.9 of [19] Federer shows that any Riemannian manifold satisfies this con- 
dition. Also, dM equipped with the visual metric from SXM defined by 
/-x(v(oo),w{oo)) = (v,w)x is directionally limited since it is inherited from 
the metric on the tangent sphere. 

Let Bp{x,r) denote the open ball in X of radius r about x. For two 
locally finite Borel measures ^ and (j) on X, define the quantities 

r-*o   <t>(Bp{x,r)) 

and 

r^o    (t){Bp{x,r)) 

We define the derivative of ip with respect to (j) to be the limit -^T(X) = 

D(ilJ,(f),x) = D(il),(f),x) whenever it exists. Theorems 2.8.18 and 2.9.5 of 
[19] together imply that -A{x) exists and is finite for (^-almost every x G X. 
Theorem 2.9.15 of [19] states that ^ is absolutely continuous with respect to 
0 if and only if D(ip, (j), x) < oo for ^-almost every x e X (see also Theorem 
2.12 of [40] for a simpler description in the Rn case). Lastly, Theorem 2.9.7 
of [19] shows that in the case of absolute continuity, -^T(X) coincides with 
the usual Radon-Nikodym derivative (f) almost everywhere. In particular, 
these theorems show that if -^T(X) exists and is positive (f) and T/J almost 
everywhere then the two measures are mutually absolutely continuous with 
Radon-Nikodym derivative -^(x). 

We now turn our attention to measures on dM. If we project the 
Lebesgue measures A^ on SXM to dM under the homeomorphism which 
takes v to its corresponding asymptotic class then we obtain what are called 
the visual measures which we will (by abuse of notation) also denote as A^. 
This is an example of a system Px of G-equivariant measures on <9M, i.e., 
for g e G, g*Px = PgX. There are two other important measures on dM we 
want to consider, but first we shall prove a useful proposition about such 
systems of measures. 

Proposition 3.1. For any two G-equivariant systems of finite positive 
Borel measures Px and Qx on dM which do not have atoms at va(oo), if the 
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transitional probabilities gpKO and ^T^ (£) coincide for all x, y € M and all 
£ 6 dM then Px and Qx coincide as measures up to a scalar constant 

Proof. By Theorem 7.8 of [21] (c.f. Theorem V.5.3 of [31]), the measures 
Px and Qx are Radon measures since they are finite Borel measures and 
dM is locally compact and Hausdorff. We may equip dM with the visual 
metric for any x E M defined by Za;(t;(oo),tf;(oo)) = {v,w)x which has r- 
balls Bx(€,r) = {ry E dM\/.x(^7]) < r} for £ e dM and r > 0. From 
the discussion at the beginning of the section, we have that ^f-CO exists 
for Qx almost every £ G dM. In particular, the measures are nonzero so 
^7f-(£) exists and is positive for some fixed x and £ ^ ^(oo).   Since the 

Radon-Nikodym derivatives ^-(0 and ^-(O exist and coincide we have 
that fe(0 - |fe(0S(£)|fe(0 = ^(0 for every y G M. Then by G- 
equivariance of Px and Qx and the relation gBx(£, r) = BgX(g£, r) we obtain 

that 3^(0 = ^(5r~10 for aU 5 ^ G. Setting y = gx we can put this 

together to get ^(0 = g^GT1^ 

Since G is transitive on dM \ v^oo) we have ^-(v) = ^^"(0 for aU 
^ G M and rj G <9M \ t;a(oo). By hypothesis v^oo) has measure 0 for both 
Px and Qx so then we conclude by our earlier discussion that Px and Qx 

are in the same measure class. The Radon-Nikodym theorem implies that 
Px and Qx are scalar multiples (independent of x) for all x G M. □ 

In direct analogy with the co-compact case, we may define the Patterson- 
Sullivan measures on dM as follows. 

3.1. Patterson-Sullivan Measures. 

In what follows we denote the left-invariant Haar measure on G by m. 
Define the following smooth function on M x M 

gs(x,y) = I e-sd^yUm(g) 

Notice that by definition gs is G-invariant and hence constant in the first 
factor, i.e. gs(hx,y) = gs(x,y) for ft, G G. Also if 

AGGritsfdetAdGT1) 

is the modular function for g G G, then we have the relationship 

gs(x, y) = AQ(h)gs(z, hy)       Mx, y, z G M    andV/i G G. 
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We define the critical exponent S to be the value of 5 for which gs(x, y) 
diverges for all 5 < S and converges for all s > 5. Since G has bounded 
exponential growth 6 exists and is positive. We now show that in our case 
gs diverges. This will turn out to simplify the definition of the Patterson- 
Sullivan measures (see [42] and [20] for other, more general situations). 

As a straightforward consequence of Corollary 2.7 we have, 

Lemma 3.2. The function (s—h)(7s(o, o) — CMar 9°^ to 0 as s —> h+
; where 

Cuar is the Margulis constant In particular, 5 = h and g^ diverges. 

Consider the finite Borel measures on M defined by 

^(B) = 7^ f e-sd^^dm(g). 
9s{o,o) JB 

Since ^(0,0) = gs(x,o) for all x G G we see that the ILX are probability 
measures. 

Definition 3.3. For each x G M, a Patterson-Sullivan measure ^x is any 
finite Borel measure on M U dM obtained as a weak limit lims._,h+ /4£ in 
the space of Borel probability measures on M compactified by c?M, for some 
sequence s; —> h+. 

Note that weak limits exist since the space of such measures is weakly 
compact. Also, iix are in fact supported only on dM since ^s(o, o) diverges 
as s —> h. We will now show that /i^ is independent of the choice of weak 
limit. If B C dM is any Borel set, and Bx C SXM is the corresponding set 
under the projection to the unit tangent sphere, then 

Lemma 3.4. For any set B C dM, 

ljbx(B) = -?—f   lim e-htV(v,t)d\x(v) 
^Mar JBX t

-*00 

where Cy[ar is the Margulis constant Furthermore, the fix are non-atomic. 

Proof. Prom Lemma 3.2 we found that ps(o, o) = -^{Cyizx+M^s)) for some 
function M{s) decaying to 0 as s —> h+. Using this we compute 

HX{B)= lim       ('"I?*       f0 f   e-*tV{v,t)d\x{v)&t = 
s—h+ CMar + M(s) J0     JBx 

lim ^-^ r I  e-stV{v,t)d\x{v)dt. 
s->h+    C7Mar   ^0     JB- 
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Since the integrand is bounded everywhere and we are multiplying by (s—h), 
only the tail of the integral with respect to t will contribute anything as 5 
converges to h. So by a change of variables t —» ^^ we obtain, 

Mx(B)=  lim ^^ r [   e-^-^tV(v,t)dXx(v)e-htdt = 
s->h+    ^Mar   «/0     JBX 

1      f00   f r h 
lim —- /      /    e-rV(v, -)e-^rd\x(v)dT. 

s-+h+ ^Mar JO     JBx S-h 

Finally, by Theorem 2.3 the integrand V(i;, ^h)^"7-^7^ is everywhere 
bounded and converges (for r > 0) as 5 —> h+ uniformly on compact subsets 
of SXM \ W5(t;a). Hence, by dominated convergence we may take the limit 
inside and integrate to obtain the stated result. 

Lastly, fix has no atoms since the integrand in the statement is always 
bounded and A^ is non-atomic. □ 

Let Be = B0(^e) C dM be the e-ball in the visual metric from the 
basepoint o e M, and let CHBe be its geodesic convex hull. Then 

— (C) = lim ^(^fc'7^ 

= km hm     ,;„: 

= lim lim -r^1—T,—rr-rr 

= lim lim  s—     — 

The last equality holds because the quantity es^y^~d^x'z^ is bounded for 
z € CHB€ and converges as e —> 0 to ehpx^y^ where Px^(y) is the Busemann 
function. 

Remark 3.5. The Patterson-Sullivan measures are G equivariant (i.e. 
ligX(gB) = fAx(B)). It suffices to show that for each s > h the measures 
/4 are G equivariant. This in turn follows from the G transformation prop- 
erties of gs(x, y) and that we integrate against a left invariant Haar measure 
in the definition. 
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3.2. Spherical Harmonic Measures. 

Consider the Laplace-Beltrami operator A on M. The Dirichlet problem 
is solvable for M according to the work of Sullivan [43] and Anderson and 
Schoen [4]. Hence for any continuous function / on dM there is a harmonic 
function Uf, continuous on M U c?M, which takes the values of / on dM. 
The spherical harmonic measure vx for a point x G M is defined as the 
unique measure such that for all / £ C0(<9M), 

*/(*) = /   /(0<M0- 
JdM idM 

Notice that these are probability measures since for / = 1, the function 
Uf = 1 is harmonic. 

For re, y E M we have the Green's kernel G(x,y) for the operator A 
which is a harmonic function in x and y separately, has an integrable pole 
at y = re, and decays to zero on the boundary. In [4], M. Anderson and R. 
Schoen proved that 

—^(0 = #(x,y,0 = hm -^—( 

exists for all £ G <9M.  K is also harmonic in y and K(x,r),£) = 0 for all 

Theorem 1 (and Remark 2.1) of [2] show that K(x, y, £) —> oo as y —► £. 
The harmonic representation formula then implies that i/^ has no atoms. 

Remark 3.6. Later in Proposition 6.4 and Lemma 6.5 we will show that 
there is a global constant C > 0 independent of v e SM such that 

^<G(i;(0),t/(t))e-ht<C 

for all t > 1. In Theorem 6.10 the limit as t —► oo is explicitly given. 

The next category of measures we will look at are closely related to the 
harmonic measures. 

3.3. A-Harmonic Densities. 

We will follow Ancona [3] for the general theory in this subsection which 
is not specific to the homogeneous case.   Recall Ai is the bottom of the 
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spectrum of the Laplacian. Then for A < Ai we have Green's kernels G\ : 
M x M —» (0, oo] for the operator A + A satisfying 

poo 
Gx(x,y)= /    extpt(x,y)dt 

Jo 

where pt(x,y) is the heat kernel, i.e. the kernel for the operator ^ — A. 
Hence, in the discussion above for harmonic measures, we had G(x,y) = 
Goix^y). We also have the following estimates for A' < A < Ai (equations 
6' and 7 of [3]), 

(3.1) G\{x,y) < Ce-Pd{™) for x.yeM, d(x,y) > 1, 

(3.2) Gxfay) < Ce-Wx^Gx(x,y)        for x,y G M, 

where /?, (3' and C are positive constants depending only on curvature bounds 
a, 6, dimension n, A, and A'. 

In the case of a homogeneous space, for any fixed y G M (in the future we 
will take y = o) we can define, in analogy with Patterson-Sullivan measures, 
the function 

(3.3) n\(x,y)=  / G\(x,gy)dm{g). 

Since the Ricci curvature is bounded below, a result of Yau (see [15]) 
states that for the left invariant Haar measure m corresponding to the Rie- 
mann volume, 1 = §Qpt(x,g • o)dm(g). Expressing this using the modular 
function gives det Ad(h) = J^Ptix^gh • o)dm(g). Hence, 

poo 
n\{x, h • o) = det Ad(h) /    eXtdt. 

Jo 

We then see that for A > 0, n\ diverges, but equals — jdetAd(h) for all 
A < AQ — 0. We then call 0 = AQ the critical value. Then for B C M and 
A < 0, we define 

(3.4) ux(B) =.-£■   = -A /  Gx{x,g'o)dm(g). 

For each A < 0, this forms a G-equivariant family of probability measures on 
M. Since the space of probability measures on the compactification MUdM 
is itself weakly compact, we may take a weak limit to obtain the spherical 
0-harmonic measures, 

i/5 =  lim IA x     \Zo-   x' 
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Notice that from this definition v® is a probability measure supported 
on dM. Also, the G-equivariance implies that the particular weak limit 
chosen can be taken independent of x. The next proposition shows that 
these measures are independent of the choice of weak limit. 

Proposition 3.7. For all x e M, v® = vx. 

Proof. We would like to apply Proposition 3.1 but to do so we must prove 
that the z/£ are non-atomic with the same Radon-Nikodym derivatives as 
the vx. 

First we compute the Radon-Nikodym derivatives for the i^. Let Be C 
dM be a sequence of balls in the cone topology converging to £ as e —> 0 
and let CHB€ be their geodesic convex hull. Then 

d^'    S*°(B«) 

= lim lim    y, .„ . 

= lim lim T t——  
e-OA-o- JCHBeGx{x,z)dm(z) 

= hm lim  ? 
y——.    

«-»o A-o-       JCFB£ GA(a;, ^)dm(2r) 

= A'(x,i/,0. 

The last equality holds because the ratio G
Aru is bounded for z G CRB^ 

and converges to K\(x,y,€) as e —» 0. Furthermore, the A-Green's kernels 
G\(x,y) converge to G(x,y) as shown in [2] yielding the result. 

Next, K(x, y, £) —► oo as y —► £. So if i/^ had an atom at £, the above 
Radon-Nikodym derivative shows that the weight of the atom for v® would 
grow arbitrarily large as y —► £, contradicting that it is a probability mea- 
sure. Hence the v® have no atoms. 

Since the v® are by construction finite Borel measures we may apply 
Proposition 3.1 to these two systems of probability measures to finish the 
proof. □ 

Thus ux is described by 3.4, which we will use in Section 6 to prove 
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Lemma 6.13 which states that for a certain constant C, 

^■(0 = ^limV(vx^t)G(vx^t). 

We now turn our attention to three canonical G-invariant, flow-invariant 
measures on SM related to the above measures. We will define these in our 
context after Kaimanovich [35], and then explore their structure. 

3.4. The Kaimanovich Construction. 

Set d2M = dM x dM \ { diagonal } . Kaimanovich [35] developed a corre- 
spondence between cr-finite Radon measures on d2M (space of geodesies) and 
flow invariant measures on SM. In fact, SM is homeomorphic to d2MxR by 
the map v h-> (?;(oo),i;(—oo),/?v(o)). Given any symmetric function <t)(x,y) 
on M x M and any system of equivalent measures TX on dM satisfying 

*£(£) = lim^M 

then we can form a flow invariant measure r on 5M, by formally setting 

dr(v) = fx(v(oo),v(-oo))dTx(v(oo))dTx(v(-oo))dt 

where 

viz*     <Kvuin) 

This definition of the measure r is independent of the choice of x, whenever 
fx exists. 

3.5. Liouville Measure. 

Liouville measure A is defined by d\{v) = d\x{v)dm{x) where m is the 
unique left invariant Haar measure coinciding with the Riemannian volume, 
x is the footpoint of i>, and \x is the Riemannian volume on the unit tangent 
sphere SXM. This coincides with the Riemannian volume on SM endowed 
with the Sasaki metric. This is G-invariant since the Haar measure m is 
G-invariant and the \x are G-equivariant. It is flow-invariant since it can 
also be described as the volume form 6 A d6n where 0 is the pullback of the 
canonical contact 1-form on the cotangent bundle. 
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The Liouville measure corresponds to the measure r in the Kaimanovich 
construction formed by setting (f)(x, y) = V(x, y) and rx = \x. Kaimanovich 
attributes this to Otal (see [35]). Notice that (j){x^y) — V(v, t) if v and t 
are chosen so that v{0) = x and v(t) = y. See Lemma 6.12 of [11] for an 
explanation of the symmetry of <f)(x, y) for this case. In particular, ^(O — 

limz_>f ^yz) • We will supply a direct proof of this in Proposition 5.1. 

3.6. Harmonic Measure. 

The harmonic measure v is defined to be 

where vx are the harmonic measures at infinity, and Gx is called the Green's 
cocycle and is defined by 

„ ,  '   s def ,. G(yi,y2) 
Gx(vX) = I™ 

yi^G(x,yi)G(x,y2)' 
2/2-^C 

This corresponds to taking TX = vx and </>(£, y) — QUV\ in ^he Kaimanovich 
construction. Note Gx(£, 77) is equivariant with respect to isometrics since 
the Green's functions are. The boundedness of Gx follows from Theorem 5 
of [2]. Also, this definition of v does not depend on the choice of x since 
it is a simple check that K(x,y^)K(x,y1r))Gy(^rj) = Gx(£,r)). Hence, 
the continuity of Gx(^rj) follows from the continuity of K. To check G- 
invariance we simply take g E G and compute 

<M£? Vi 0   _     Gx(^r])dux(^)dux(ri) 
dv^gt,, gr), t)      Gx(g£, gri)dvx(gg)di>x(gri) 

_ Gx(^r))dvx(£)dvx(r)) 
Gg-ix(^ V)d^g-ix{i)dvg-ix{ri) 

= 1. 

We can also do the exact same construction replacing G and v everywhere 
by Go and z/0 to produce the corresponding Ao-harmonic measure. However, 
by Proposition 3.7 these coincide in the homogeneous case. 

3.7. Bowen-Margulis Measure. 

The Bowen-Margulis measure ji is defined to be 

diifa C, *) = e-h^^diix(V)dfix(Odt. 
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Here /?x is the Busemann cocycle defined by PxiZiV) — Px^iy) — Px^iv) 
for any y on the geodesic between 77 and £• This corresponds to taking 
Tx = Mx and (t>{x^y) — e*1^'^ in the Kaimanovich construction. Also, 
since the Busemann functions are G-equivariant it follows that f3x is. As 
above, /zx are the Patterson-Sullivan measures at infinity. This definition is 
independent of the choice of x since 

Px£{y) + PxM +f3x(^V) = Pyfarfi- 

Again this is by definition flow-invariant and we check G-invariance by 

Mti, 9Vi t)      eM9Uv)d^x(g^)dfix(gri) 
e^^d^iOdfixir,) 

e^-^^d^-^Odui^M 

= 1. 

3.8. Harmonic Measures Along Foliations. 

For a foliation F of SM with C2 leaves, we let C2'^ be the space of contin- 
uous functions on SM which are C2 along the leaves of F. In analogy with 
the case of foliations of compact spaces (see [23]) we shall call a measure r 
of SM harmonic with respect to F if 

0= /    A^/dr 
JSM 

for all / G C2'^ with A^f integrable, where A^ is the Laplace-Beltrami 
operator along the leaves determined by a family of distinguished metrics 
on the leaves. 

Harmonicity of the measure r is equivalent to the property that on any 
flow box E its corresponding system of conditional measures ay along the 
plaques E(y) satisfy d<jy(x) = hy(x) dirty (x) for a almost every y, where 
rrty is the Lebesgue measure on the plaque E(y) with respect to the metric 
induced from the leaf, and hy(x) is a harmonic function on E(y) with respect 
to the Laplace-Beltrami operator on the leaf. 

For the four foliations >VSS, Ws, Wn, Wsu we provide the leaves with the 
pullback metric under the projection to M. We may define four measures 
(locally disintegrated) as 

• dujss(v) = dtipv(v(oo)) x dm(Pv) 
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• dus(v) = dupv(v(oo)) x dm(Pv) 

• dujsu(v) = diJ,pv(v(-oo)) x dm(Pv) 

• duu(v) = dvpv{v{—oo)) x dm(Pv). 

We will see in Corollaries 4.2 and 4.4 that these are (not necessarily unique) 
harmonic measures for the corresponding foliations. 

Remark 3.8. Note that since left invariant Haar measure m on M is unique 
up to scalar, every G-invariant measure on SM projects to a multiple of 
Lebesgue measure on M. This is quite different from the compact case (see 
Conjecture 2.8.4 of Yue [50]). 

4. Integral Equations. 

In this section we will establish some integral formulas and apply them to 
obtain some characterizations of asymptotic harmonicity. 

Note that from equations 2.3, 

trTT(n^\ -    (detj?(M))' =    (detA(-v,-t)y 
W   ' det£(M) detA(-t;,-t)  ' 

Geometrically, tr U{v) can be interpreted as the mean curvature of the horo- 
sphere PWss{v). 

We similarly define 

T{V) = jt\t=QK{v{0),v{t),v{™)) 

where K is the Poisson kernel. 
The visual function rx : SM —> SXM is defined by rx(v) = 7rx(v(oo)). 

Notice that rgX(dg(v)) = dg{rx(v)). 
Now we begin by presenting two integral formulas proven by C. Yue in 

the case of compact manifolds (see Theorem 1.9.4 of [50]). We also prove 
a similar formula specific to NCHS's. We recall from Section 3.8 that Ass 

makes sense since each horosphere is a C00 manifold by Remark 2.13. Let 
Cl denote C1 functions of compact support. Let Q be the trace of the (2,1)- 
tensor ad, that is for any choice of orthonormal basis Xi of g, Q = trad = 
^.(tradx^Xj. In what follows we will consider Q as a left invariant vector 
field. Now we present a pair of Propositions whose integral formulas relate 
the measures fxx,ux,(jjs, and LJ

SS
 to asymptotic harmonicity. 
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Proposition 4.1. For all </> e Cl(SM), 

/    (<£ + (h - tr U)(f))d^xdm{x) = 0, 
JSM 

andifc^e C^(SM) then 

/     Ass(t)diJ,xdm(x) = 0. 
JSM 

Furthermore, 

[     <j)(v) + (h+ (v, Q> - tiU(v))(t>(v)dfix{v) = 0 
J5XM 

for all G-invariant </) E C1(S'M). 

Proo/. The first two formulas follow by the same proof in [50] and [48] which 
work with our given hypotheses as well. For the third formula, define a 
vector field by 

Y(y) d=f /      tXWvLyiv) = /      <i>(ry(v))X(ry(v))e-h^dnx(v 
JSyM JSXM 

where rx(v) = vXiV(00') is the visual function, and X(v) is the geodesic spray 
projected to SM (so X(v) = v). 

We calculate that div \y=xX(ry(v))   =  —trU(v) for v  E   SXM and 
ry(gtv) = r2/(^). Then we have on the one hand, 

div \y=xY(y) = /      div |2/^(0(r2/(i;))X(r2/(.;))e-h^^)^(^) 
JSXM 

= [     (i+ih-trUiv^dfi^v). 
JSXM 

However, when (f) is G-invariant we notice that Y(y) is a left-invariant vector 
field. Observe that for the orthonormal basis {Xi} of g, ([Xi^Y]^Xi) = 
^2^ (Y,Xj) ([XijXj^Xi). Now we can again calculate div\y==xY(y). Using 
the formula for the connection (2.1), 

(VxXXi) = ^(([XunXi) - (Y, [XuXi]) - (Xi, frXi])) = ([XunXi) ■ 
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By the definition of the divergence we have 

dv Y=J2 <yxtY, Xi) = Yl <[^. n ^> 
i i 

= ^<y,Xj)([Xi,Xj],Xi) = -(Y,^fc 

= - (l>(v,Q)dfjbx(v). 
JSXM 

On the other hand, we already calculated div \y=xY{y) in the first statement 
of the lemma. We equate the two calculations to obtain the statement.    □ 

The second formula above shows that 

Corollary 4.2. du83 = dnxdm{x) is harmonic for the W88 foliation. 

We have similar formulas for vx, see Yue [50].   The proof of the third 
formula is entirely analogous to that in Proposition 4.1. 

Proposition 4.3. For all <f> e C^(SM)y 

[    (<j)+(T-trU)(l))dus = 0, 
JSM 

and if&e C^(SM) then 

/     As(f)dvxdm(x) = 0. 
JSM 

Furthermore 

[     <J>+(T+(V,Q)- tTU)(f>dux = 0 
JSXM ISXM 

for all G-invariant </> G ^(SM). 

The second formula above shows that 

Corollary 4.4. du8 = duxdm(x) is harmonic for the W8 foliation. 
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Lemma 4.5. 

and 

h =  /       X,xU(v)diix, 
JsxM 

[     (±v,Q)diJJX = 0. 
JSXM 

Proof. Recall that the fix are probability measures so we may write 

1 = nx{SxM) = f     dfix= [     e-hp^dii0. 
JSXM JSoM 

Now we use the following formula for the Laplacian of the Busemann 
function (see [50]) 

Ae-^M = (h2-htrC7(vy>c))e-
h^(i/). 

Taking the Laplacian of IJLX(SXM) yields 

0 = A^faM) = f     Ae-^WdvLo 
JSoM 

=  [      h(h-tTU(v))e-hP^xUfi0 
JsoM 

= h(h— /      tTU(v)diJLx) 
\      JsxM J 

which is the first statement. Using the third formula of 4.1, this also implies 
the second statement. □ 

Lemma 4.6. UJ
SS
 is a g*-invariant measure if and only iftvU = h; i.e. if 

and only if M is asymptotically harmonic. Similarly, u8 is a gt-invariant 
measure if and only if r = tr U. 

Proof From Proposition 4.1 we have for all </> e C^(SM)^ 

0= [   (^ + (h-tr U)<l>) dujss. 
JSM 

Thus tr 17 = h if and only if for all </> e Cl(SM), 

0= [    <])du;ss 

JSM 

at JSM 
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This happens if and only if UJ
SS
 is (^-invariant. 

The LJ
S
 case follows the same way from the integral formula in Proposi- 

tion 4.3. □ 

We now show that //x and A^ are in the same measure class. 

Lemma 4.7. Explicitly, for all v G SM \ Ws(va) and x G M, 

d^X(v) = lim V(v,t)e-ht 

dXx t-^oo Chfar 

where the constant Cuar is the Margulis function. In particular, nx and Xx 

are absolutely continuous with each other. 

Proof. If B* C SXM is an e neighborhood of v then we may compute using 
the definition of the measures (recall 3.4), 

diiX/ N            jBxY\mt^ooe-htV{w,t)d\x{w) 
-j7-{y) = lim — —    .    N  
dXx e-^0 C/MarArcl-o;?) 

,.     V(v,t)e-ht 

= lim —K— . 
t->oo        OMar 

The last equality only holds when v £ W8^) where it follows by continuity 
of the integrand. Notice that since ^a(oo) is not an atom for either measure, 
fix and Xx are in the same measure class. □ 

Recall the flip map F : SM —> SM given by F(y) = —v. A measure 77 
on 5M (or on a tangent sphere S^M) is said to be flip invariant if F^rj = 7/. 

Corollary 4.8. The measure fix is absolutely continuous with its flip. Ex- 
plicitly, for v e SXM YW^a), 

^■(V)=lim   VM) 

dF*iJ,x *—00 V(-v, t) 

Proof. Since A^ is flip invariant, by the previous lemma we have the formula 

agfcM = ftJ:(«)fe(«) = fc(-f )fc(«) = **~~ &■ n 

Next we characterize asymptotic harmonicity in terms of flip invariance 
of iix and tr U. 
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Proposition 4.9. M is asymptotically harmonic iff /ix and tr U are flip 
invariant. 

Proof. If M is asymptotically harmonic then tiU = h. Hence equations 2.3 
and Remark 2.1 applied to Corollary 4.8 imply that fj,x is flip invariant. 

Conversely, if jp?* (v) is constant then since iix and F*IJLX are probability 

measures it follows that d£* (v) = 1. Prom Corollary 4.8 we have that 1 = 

limt->oo d^Ai-vt)'  ^0 ta^nS ^e log of both sides and applying equations 
2.3 we obtain roo 

/    tr Ui-gty) - tr {/(-g^-v^dt = 0. 
Jo 

Replacing v by gsv and performing a change of variables we obtain 

re 

/    tr Ui-g^v) - tr U^g^^v^dt 
Jo 

oo 

trUi-gt+sy) - trU^g^i-v)) + h-hdt 
o 

oo poo 

dt 

./O 
poo poo 

= I     tTU(-gt+sv) -hdt- /    tr Ui-gtsi-v)) - h 
Jo Jo 
/oo poo 

tr Ui-gty) -hdt-        tr Ui-g^-v)) - h dt. 

Taking derivatives with respect to s yields 

2 h - tr U(gsy) - tr U(-gsv) = 0 

for all s. Hence tr U(y) +tr U(—y) = 2 h. Combining this with flip invariance 
of tr U gives tr U(y) = h. □ 

Remark 4.10. Prom the proof of Lemma 2.10 we have that if a continuous 
function / : SM —► SM is ^-invariant and G-invariant then it is constant. 
(We can drop the Holder condition since by pMnvariance we don't care 
about the rate at which the function decays). For another proof see [27]. 

This property can be restated in terms of measures. 

Remark 4.11. Any two absolutely continuous, flow invariant, left-invariant 
measures rj and rf on S'M, with continuous Radon-Nikodym derivatives 
coincide up to scalar multiplication since the Radon-Nikodym derivative 
then satisfies the conditions of Remark 4.10, and hence are constant. 
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A measure rj on SM (resp. SXM) is said to be flip quasi-invariant if it is 
absolutely continuous with its flip F^rj. In other words, dr}(-v) = f(v)dr)(v) 
for some strictly positive function / on SM {SXM). 

We observe that the proof of Lemma 2.1 in [49] does not use the specific 
properties of the Patterson-Sullivan and visual measures. We restate it here 
in its more general form. 

Proposition 4.12. Suppose {Px}xeM and {Qx}xeM are two families of 
pairwise absolutely continuous measures on dM. If both families are flip 
quasi-invariant for each x E M then for all x e M, Px and Qx are in the 
same measure class. 

Examining the proof given in [49] and stringing the Radon-Nikodym 
derivatives together yields the following explicit description of ^. 

Corollary 4.13. With the setting of the above proposition, if Fx : dM -+ 
dM is the flip map about the point x e M, the points x, z G M and £, 77 € dM 
are arbitrary, and y is any point on the geodesic 7^ (i.e. Fy(€) = rj) then 
jfifciQ is related to ^(rj) by the following 

dPX dPZ dQZ dPy dPy dQy dPX    ,   ..   dQy  , ^ 

Even without asymptotic harmonicity we always have, 

Lemma 4.14. u)ss is in the same measure class as X, JA, and v. 

Proof. Let r be one of A, /x, v. Then by definition of each of these measures 
they are flip invariant on SM. Hence with respect to the tangent sphere 
foliation SXM by Remark 3.8 we may disintegrate r as dr — dTxdm(x) where 
the conditional measure TX on SXM is flip invariant. By Propositions 4.12 
and 4.8 for each x e M dfix = fdTx for some positive function / on 5M. 
Therefore dcu38 = fdTxdm = fdr. 

Note that since for any g G G we have dngx(dg{v)) = dfix(v) and 
dTgX(dg(v)) = dTx(v) since dg is an isometry, we get that / is G-invariant. 
□ 

5. Asymptotic Harmonicity and Jacobi Fields. 

We turn our attention to other means of examining asymptotic harmonicity. 
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Proposition 5.1. For £ G dM \ v^oo), 

dAy
vs/ t-ooV^.t) 

Proof. By Lemma 4.7 for w € SM \ >Vs(va) and a; 6 M, we have 

^(fl=lim%^!!, 
dAx t-+oo OMar 

where the constant CMar is the Margulis function. Hence by the generalized 
chain rule applied to ^(£)SJjJ(0, 

^(0 = ^£(0 Jim X^l. 

D 

Corollary 5.2. //M is asymptotically harmonic then ^-(O is continuous 
inx,y,€. 

Proof. Since trJ7 = h, we have that detA(v,t) = eht. Hence by Remark 

2.1, limt_>oo yfcjfi = 1^t^^)Xu\^v)) ' T,:lis is continuous in *>, w along with 

ehpx,e(2/)# Hence ^(0 (strictly speaking an equivalence class in L2(dM, Xy)) 

given by Lemma 5.1 has a continuous representative with ^-(^(oo)) = 

ehpx>z(y\ Observe that by continuity this agrees with the value had we 
computed it using ^K(oo)) = lim^o i^gfcfcjj- □ 

5.1. Other Characterizations of Asymptotic Harmonicity. 

First, we discuss the Sturm-Liouville formula. Recall that we can split 
TSM = Th 0 Tv 0 T0 where T0 is the one dimensional span of the geodesic 
spray, Tv is the vertical sub-bundle (the tangent bundle to the tangent 
sphere foliation), and Th is the horizontal sub-bundle (the orthogonal com- 
plement of Tv 0 T0 in the Sasaki metric). The fibers of Th and Tv over 
v E SM are each canonically identified with v1-. With these identifications 
the canonical symplectic 2-form u on Th © Tv = v1- © v1- takes the form 
c^((a;i,T/i),(x2,T/2)) = (^132/2) — (x2,yi)' The following lemma is a direct 
consequence of the flow-invariance of UJ (for example see Lemma 3.2 of [49]), 
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Lemma 5.3 (Sturm-Liouville). 

A>, t) (U (-g'v) + U tfv)) E{v, t) = U (-t/) + U(v). 

Remark 5.4. A (^v, — t) = A-1 (v,t) since Id = A(v,t — t). 

Prom these equations we obtain the following result. 

Proposition 5.5. For all v G 5714", trJ7 is flip invariant if and only if 
det (U (v) + U (—v)) is constant 

Proof. Prom equations 2.2 we may compute 

(A*Ey = A*{U{-gtv)-U(gtv))E, 

or simply, 
A*"1 (A*^)^-1 = U (-gty) - U tfy). 

Taking traces of both sides yields 

tr (A*£)' (A*^)-1 = tvU (-gty) -tiU (g'v) . 

Since (A*E) (v, t) is non-degenerate for all t 6 R we may write this as 

(det (A*£))'     ^ TT,    t v     wr, t N v ,    ; A   //   = tr £/ (-a^v) - tr U (g^) . 
det(A*£) v   y   J yy   J 

Now taking determinants of the Sturm-Liouville equation (Lemma 5.3), we 
obtain 

det (A*E) = det(t/(^) + [/(_^))- 

This with the equation above yields 

,     N (det (U (gty) + U (-g^)))' TT r t \ rr (     t \ 
(5.1) v ,   \rT

K*   {—TT)  \ {{'   = trU Wv) -tvU (-gty). 
^     J det([/(^) + ?7(-^)) Ky   ' v   y   J 

Hence det (U (gtv) + U (—gtv)) is constant in t if and only if tr U (gtv) is flip 
invariant. In this case det (U (gtv) + U {—gtv)) is constant by Remark 4.10 
since det (U {gtv) + U {—gtv)) is continuous, which completes the Proposi- 
tion. □ 
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Remark 5.6. The above proof works on any complete manifold M without 
conjugate points (see [14]) to show that tr?7 is flip invariant if and only if 
det (U (v) + U (—v)) is flow invariant. If furthermore, M covers a manifold 
with an ergodic geodesic flow then det (U (v) + U (—v)) is also constant if it 
is flow invariant. 

Corollary 5.7.   We have 

tr C/(^v) - tr Ut-g^dt = 0, 
/ J — < 

and if CV8L = det(l!7(?;a) + U(—v^))  l, then we have 

lim e-htY(v,t) = C^eJo^WO-h*. 
t—>oo 

Proof. Prom 5.1 in the proof of the above Lemma, for any s and t we obtain 
the relation 

det(tf (0*1;) + Ui-gty)) = det(U(gsv) + U{-gsv))e^>u^r^-tvU^9r^dr. 

In particular, 

lim det([/(^) + C/(-5^)) = det(tf(i;) + U{-v))e^trU^r^-tlU^-9r^dr 

t—►oo 

exists and is continuous for v G SM \ Ws(i;a) by Corollary 2.11 since tr U 
is constant on ±Ws(v2). 

The continuity of U(v) on SM for spaces of bounded negative cur- 
vature originally due to Eberlein, may be found in [30]. It follows that 
<let(U(gsv) + U{—gsv)) is continuous and G-invariant, and uniformly contin- 
uous because it is determined by its values on the compact set SXM. Hence 
limj-.oo &eXj(U{gtv)+U{—gtv)) is constant on Ws(i>) since it is flow-invariant. 
By G-invariance it is constant of *S'M\>Vs(fa)- However, by Lemma 2.8, we 
find that 

det(tf GAa) + Ui-gW)) = det(||t eStDe-St ||_t + \\t e
St(B + S)e-St ||_t) 

= det(D + B + S)= det(U(va) + U(-vA)). 

Solimt_>oodet(t/(5fiv)+f/(-5ti;)) = det([/(i>a)+C/(-ua)) on5M. Similarly, 
replacing v by — v shows limt_)._0o det(U(gtv) + U(—gtv)) = det(C/(va) + 
Ul-v*)). Then 

lim det(tf (0*u) + U^v)) 
t—tOQ 

lim det{U{gsv) + U{-gsv))e^uU{9rv)-tvU{-9rv)dr', 
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which after cancelling the constants yields the first claim. 
Prom the above we have that 

det(^(t;) + ^(-^))"1 = Cy^^^^-trUi-g^dr^ 

Then the second claim follows from the first claim by equations 2.3 and 2.4, 
which states that 

lim e-htV(v,t) = det(U(v) + C/(-^))-1eJo00trf/(-^-h^. 
t—KX) 

□ 
If tr U = h then from the previous corollary and Lemma 4.7 we see that 

2^- is constant. Then since they are both probability measures fix and A^ 
must coincide. Conversely, if they coincide for one (and hence all) x G M 
then u>ss = A and so by Lemma 4.6 M is asymptotically harmonic. This 
shows 

Corollary 5.8. M is asymptotically harmonic if and only if Xx = nx for 
any x G M. 

We will now derive yet another characterization of asymptotic harmonic- 
ity in terms of flip invariance. 

Proposition 5.9. M is asymptotically harmonic if and only if both tiU 
and tr U2 are flip invariant Similarly, M is symmetric if and only if U is 
flip invariant. 

Proof Assume trU2(v) = tTU2(—v) and trU(v) = trU(—v). Then after 
taking traces the Riccati equation applied to gtv and —gtv becomes 

tr Utfv) = tr [/2(^) + tr fl^v) 

and 
tr Ui-gty) = tr C/2(-^) + tr R^v) 

respectively. Since R(gtv) = R(—gtv) we may subtract the two equations to 
obtain 

tTU(gtv) = trU(-gtv). 

However, by flip invariance of tr U we have tr lf{gtv) — — tr U(-'gtv) hence 
trIJ(gtv) = 0.   It follows that trf/ is ^-invariant and G-invariant, hence 
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it is constant on 5M, and equal to h. Conversely, if M is asymptotically 
harmonic, then tr U = h so tr U is flip invariant and tr U = 0. So by the 
same Riccati equation we see that tr U2(v) = tr i2(v), and hence tr U2 is flip 
invariant. 

For the second statement, again using the Riccati equation we have 

U(±gtv) = U2(±gtv) + R(±gtv). 

By flip invariance of R and [/, U{—gtv) = U(gtv). This implies that U is 
covariant constant. Hence we read from the Riccati equation that U2 = —R. 
So R is covariant constant, which implies M is symmetric. □ 

Proposition 5.10. For any x G M, nx = ux if and only if M is asymptot- 
ically harmonic, in which case r = h. 

Proof. If fix = vx then by subtracting the formulas from Propositions 4.1 
and 4.3 we have 

/     (h-r)^x = 0 
JSXM 

for all (/> 6 C*. Observe that vx is positive on open sets since it is the 
hitting probability measure on dM for Brownian motion. This implies that 
h = r. Also by looking at the respective Radon-Nikodym derivatives we get 
K(a:,i/,0 = e-h^M so 

0 = Aif = Ac"hp = h(h - tr tf)e- hp 

so h — tr U. 
Conversely, if trC/ is constant then h = tr U (Corollary 2.9) and conse- 

quently, Ae~hpa!»*(y) = 0 and so uniqueness of the Poisson Kernel implies 
K{x^y^) = e~hpx^(y\ Hence since ^x and vx satisfy the hypotheses of 
Proposition 3.1 we have that /i^ = ux. D 

Remark 5.11. The above proposition holds true for negatively curved com- 
pact manifolds as well. See [50]. 

Before we prove the equivalence of the asymptotic harmonicity and ux = 
Xx we develop some notions of Kaimanovich which will be used in the proof. 
In what follows Px will be the Wiener measure on continuous paths ttx 

starting at x. 
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Definition 5.12. The Kaimanovich entropy (3 for homogeneous spaces is 
defined to be the quantity 

/3=  /      IV^lnif^yX00))!2 dvx(v), 
JsxM 

which by G-invariance is independent of x (see [34]). Similarly define for Px 

almost every Brownian motion ut on M, 

def ,.      dfavt) 
a lim 

t—>oo t 

For homogeneous spaces, the following Lemma is due to Kaimanovich 
[32]. We include a proof for completeness. 

Lemma 5.13. 

a = tTU(v)dux(v) 
JSXM 

Proof. In Theorems 1 and 2 of [41] Prat showed the transience of Brow- 
nian motion and that UJOQ 6 dM is well defined for P^-almost every a;*. 
He also showed d^u^+i) = o{t). It follows (for example [33]) that 
lim^ d{vx^{at)^t) = 0  Then a =: JJ^^ _^ooM> By the It6 Lemma 

(for example [41]) we have that for P^-almost every Brownian motion ujt that 

1   /** 1   /** 
a= lim - /   Apa.|Cl;00(a;a)rfs= lim - /   trC/^,^)^. 

t^oo t J0 t^oo t J0 

Then consider the dynamical system in the space of paths starting from rr, 

(Tru;)t = g^r)-1^^ 

where g^r)'1 is the group element sending u;r to x. This preserves P* and 
is ergodic so by the Birkhoff ergodic theorem, 

a= [   tTU(vx/aoo)dF°(u>). 
Jnx 

However, since ux is the hitting probability measure on dM for paths 
starting at rr, we can write this integral as 

a= /     tTU(vx£)dvx(€). 
JdM 

Converting to the measure on the unit tangent sphere completes the lemma. 

□ 
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Lemma 5.14.  The Brownian escape velocity is the volume growth entropy, 
i.e. a = h. 

Proof. Let p : G —> G/N = A be the quotient projection to the abelian line. 
We may write a Brownian path u)t in M starting at the point o as n^ • o 
where at = p{wt) and nt G N. In 2.4 of [7] M. Babillot proves that almost 
surely, 

1.md(o1aL1o)=h 

t—►OO t 

(in her notation, 2p(H) = h). She also shows in Theorem 2 of [7] that nt 
almost surely converges to some point noo. Then we may compute for almost 
every cjt, 

a = Hm d(Q^) = lim d(°>W°) = lim dfc1 • o, at • o) ^ 
t—too        t t—*oo t t—*oo t 

Now since nt converges, then for all t > 0, d(o, n^1 • o) < C for some 
C > 0. Then by the triangle inequality for t > 0, 

d(o, a^ • o) — C      dfji^1 - o,at' o)      d(o, at • o) + C 
t - ~t - t ' 

However taking limits as t —> oo and combining with our previous esti- 
mate yields 

a=lim^v^)=h. 
t—>oo t 

Proposition 5.15. For any x G M, vx = Xx if and only if M is asymptot- 
ically harmonic. 

Proof. First if M is asymptotically harmonic then by Corollary 5.8, iix = 
\x for each x G M. At the same time, by Proposition 5.10, vx = nx. 
Consequently vx = Xx for all x G M. 

For the converse we begin by equating the Radon-Nikodym derivatives, 

UVy CLAy 

Using Proposition 5.1 and Section 3.2 we may evaluate both sides to get 

t-+ooV(vx^t) 
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Setting f(v) = J^0tiU(gtv) — hdt, we have by Corollary 5.7, 

(5.2) K(y,x,£) = e-hp^^+^vy^-f^^. 

Notice also that since both K{x,y,t;) and Py^{x) are smooth in rr, y and 
Holder in £, then f(vy^) — f{vx£) is also. Hence we may directly compute, 

dt dr 

= —1^=0 / trl7(^v)-hds = h-trtf(t;), 

i.e. T(V) = tTU(v). 
Since f(v) is bounded on SM the above shows that 

lim - log K(x, ut, c^oo) = h a — h2 

by Lemma 5.14. However, by Theorem 2(c) of [34] which is asserted for Lie 
groups, the expression above is simply /?. 

Combining this with Holder's inequality for the probability measure vx 

we get (see [49] for a similar computation) 

JsxM 

> /       \-\t^K{v{Q),v{i)M°°)) 
JSXM I at 

dvx{y) 

> 
SXM \dt 

t=0K(v(0),v(t),v(oo)) dvx(v) 

SXM 
T(v)dux(v) 

-if ' \JSXM 
tTU(v)dux(v) )   = a 

The second to last inequality above follows from equation 5.2 and the last 
equality by Lemma 5.13. Now since by Lemma 5.14 a = h, all of the above 
inequalities are equalities. Then by the equality case for Holder's inequality 
we have 

d;\t=0K(v(0)Mt),v(oo)) T(V) = 

However, trll — T — h. 

dt' 

□ 
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6. Harmonic Measures and the Remaining Cases. 

We now complete the proof of the three theorems. 
For A < 0, set K\(v,t) = K\{v{ti),v{t),v(oo)) and G\{v,t) = 

G{y{pi),v{t)). As before, we will write G(v,t) for C?o(f,£) and K{v,t) for 
Ko{v,t). Following Ancona [2] we shall say that an operator C is weakly 
coercive if there exists a positive e such that C + e admits a positive super- 
harmonic function. For instance A, and hence A + A are weakly coercive 
operators for A < Ai. The boundary Harnack inequalities for weakly coercive 
operators (Theorem 2 of [2]) states 

Theorem 6.1. Let C{v,6) be a cone in the direction v and angle 0 in M 
and set y = i>(l). Then if u and w are two positive C-harmonic functions 
on C(vi 6) vanishing at C(v, 6) D dM, then 

c-iu{y) < u(£l < cu(y) 
w(y) " w(x) -   w(y)' 

for all x G C(vf(l),Q) and where c depends only on £, M, and 6. 

By replacing the boundary Harnack inequality (Theorem 5.1 of [4]) for A 
by the boundary Harnack inequality for weakly coercive operators (Theorem 
2 of [2]) we may apply the same proof of Lemma 3.2 of [25] to show 

Lemma 6.2. The function T\(V) = ^It^oKx^^t) is Holder continuous on 
SM. 

Similarly we may obtain the following lemma by combining the proofs 
of Lemma 3.10 and Lemma 3.11 of [25] and using the Harnack inequalities 
for weakly coercive operators. Note that the proofs do not depend on com- 
pactness of the underlying manifold and otherwise apply without change to 
our case. 

Lemma 6.3.   There are constants Ci, C2 such that for t > 1, and A < 0; 

Cf1 < Kx(v,t)Kx(v(0),v(t),v(-oo)) < d 

C21 < Kx(v(0),v(t),v(-™))Gx(v,t)-1 < C2. 

We now state a prove a Proposition about the asymptotic exponential 
growth rate of these quantities. 
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Proposition 6.4.  There are constants Ci,C2 > 0 independent of v £ SM 
such that 

^-<KA(t;,t)e-^W<C1 

and for t>l, 

L<Gx{v,t)eT^t<C2. 

Furthermore, as t —► oo (resp. t —> — oo), 

Kxiv^e-^*'** 

and 

converge to continuous functions on SM \ Ws(^a) (resp. SM \ Wu(—v^)). 

Proof By definition K\ satisfies K\(x,z,€) = K\(x1y^)Kx(y1z^) for all 
x,y e M and f G dM. In particular, for all v e SM, K\(v,t + s) = 
K\(gtv,s)K\(v,t). Hence K'x(v,t) = rxig^Kxiv.t) and so K\{v,t) = 

e/oT^^Sv)ds. Prom 6.3 we get K^g^v.t) ^ K\(—v,t), but by G-invariance 
Kxig'ty^t) = e^^)* so e7*^)* = K^g-^t) ~ Kxi-v^t) = e^"^1 

and hence ^(^a) = rA(—^a)- Also T\(V) is Holder continuous by Lemma 
6.2. 

Prom this point, the proof of the rest of the claims about K\ follows 
the proof of Theorem 2.3 after replacing tr U by T\ and det A by if A- The 
estimate on G\(v,t) follows from the second estimate of Lemma 6.3. Since 
the proof of Theorem 6.2 of [4] only depends on the Harnack inequality for 
harmonic functions we may apply it to weakly coercive operators. We have 
that the function (of y) ^Ixyl) ^^ a Holder extension to (M \ 5(x, 1)) U 
(dM \ {£}). This ratio is continuous in x 6 M, so by G-equivariance for 

9 e G, Ig^ = jgjfc^ implies that it is continuous in £ 0 W'i-v*) 

as well. So in particular, limt_>oo /_ ^A^a) is continuous. However the 

limit of the denominator exists and is continuous for v £ W5^), so the 
same is true of the numerator. □ 

Let T(V) = TO(V). Then we have the following estimates for TX^Q) in 
terms of the curvature bounds — b2 and —a2. 
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Lemma 6.5. For any v G SM we have 

h = lim T(gtv)^ 
t—+oo 

in particular, r(?;a) = h. Furthermore, 

TX(va)>h+\Jl?—±(2b-a))   -A-(%i(26-a) 

Proof. In polar coordinates the integral 3.3 becomes, 

f Gx(x,gy)dm(g)= [       [    Gx{y,t)V{v,t)dtdv. 
JQ JS0M JO 

By Proposition 6.4 all of the G\ are essentially exponential functions. Since 
the integral above converges for A < 0 and diverges for A = 0, the asymp- 
totic exponential decay of G(v^t) = Go(v,t) must be that of V^t)-1 

which is — h. Prom Proposition 6.4, it follows that the asymptotic expo- 
nential growth of K(v,t) is h which is equivalent to the first statement 
of the Lemma.   The second statement is an application of Theorem 4 or 

[3] which shows that if 7 = ( ^(2=1(26- a))2 - A - (^(26 - a))), then 

G\(v, t) < Cee~(7_e)tG(v, t) for any e > 0. Since rx^a) exists the inequality 
follows. □ 

Corollary 6.6. The Kaimanovich Entropy equals the square of the volume 
growth entropy, i.e. (3 = h?. 

Proof. By Theorem 2(c) of [34] /? = lim^oo ^^^^ for almost ev- 
ery Brownian motion conditioned on c^oo = £. However, since d{ut,x) = 
at + o{t) = ht + o(t) it follows from Proposition 6.4 and Lemma 6.5 that 
log K(x, cut, 0 = h21 + o(t) which proves the corollary. □ 

The above corollary allows us to relate the bottom of the spectrum to 
the heat kernel in the following way. 

Corollary 6.7. The bottom of the spectrum Ai is the eigenvalue for the 

functions yjp(t, x, y) for allt>0 and x G M. 
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Proof. For the proof we follow a computation found in Yue [50].   In [34] 
Kaimanovich states that the following formula for the entropy, 

/? = lim -- /   p(t, x, y) logp(t, x, y)dm(y) 

= Hm -- / I     foP(s, xi y) (i + i°gK5>^J y)) dm(y) |ds 

= Um--/   <  /   Ayp(5,a:,j/)(l + logp(s,a:,i/))rfm(i/)|ds 

*-><*> t J0   [JM     p{s,x,y) J 

= lim - /   ^ /     V^/p(s,x,y)    dm(y) \ ds 
t^oo t J0    {JM ) 

>4Ai, 

since y^s, x, y) has L2 norm 1.   However Corollary 6.6 and Proposition 
2.14 show that (3 = 4Ai = h2. Hence by continuity of p(s, x, y), 

/     V vp(5, x, y)     dm(j/) = Ai 
JM " 

for all s > 0. This implies that Ay/pfax^y) = —\iy/p{t^x^y) as claimed. 
D 

Remark 6.8. In the cocompact case both (3 = ah, a = h and /? = h2 are 
each equivalent to asymptotic harmonicity. This was proved by F. Ledrap- 
pier [38] and [36]. The proofs use the Gibbs states coming from potential 
theory which require an ergodic geodesic flow. 

In the proof of Proposition 5.15 all we used was that /? < h2 and r = tr 17, 
hence 

Corollary 6.9. M is asymptotically harmonic iffr = till. 

We are now in a position to present an explicit asymptotic description 
forC7(v,t). 

Theorem 6.10. For A < 0, we have 

lim GxMe*^ = le/o^K)-^^ 
t-»oo qx 
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for the constant q\ = lim^oo GAK, *)etTA(',a)• In particular, G\(v, t)eT^vJt 

converges uniformly exponentially quickly in t on compact subsets of SM \ 

Proof. By applying Lemma 6.5 and Proposition 6.4 the function 

qx(v)= limGx(v,t)etT^ 
t—KX) 

exists and is bounded on SM and continuous on SM \ Ws('Ua)- 
By Corollary 1 of [2] there exist C, R > 0 independent of x and y G 

M\B(x,R) such that 

\VxGx(x,y)\<CGx(x,y). 

This along with the boundary Harnack inequality implies that there exists 
another C > 0 independent of z G B(x, 1) and y G M \ B(x, R) such that 

lGxiXi{~^
{Z,y)l<^(x,y). 

Written in terms of G\{v,t) and G\{w,t) where v($) = x,w(0) = z, and 
w(t) = v(t) = y, we have 

\GxM - GxM\ < Cd(PwJPv)Gx(v,t). 

Multiplying by etTx^v^ and taking limits in t we obtain \q\(v) — q\(w)\ < 
Cd(Pw,Pv)q\(v). So in particular, ^A(^) is Lipschitz on Ws(v). 

Now since by G-invariance q\(v) is constant on Ws(va) and Wu(—Va), 
by Holder continuity (on each Ws(v)) it follows that q^iy) = lims_^oo q{gsv) 
exists and is the constant q\{—Vg) on each Ws(v) ^ )/Vs(^a). I.e. ^A(^) 

is constant on SM \ W3^). By the symmetry G\(v,t) = G\(—v,—t), 
we have q\(—VQ) = ^(^a)-   Hence, q\ = ^(^) is constant on SM since 

qxM = 9A(-Va). 
The uniform convergence of Gx^^^e^^^ is then a direct consequence 

of Corollary 2.11. □ 

Corollary 6.11.  The Poisson Kernel is given by 

K\(x,y,£) = e~r*(Va)^^)+^.e)~-fK,e) 

where f(v) = f^rx^v) - rxty^dt. 
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Proof. First we recall from the definition of K\ we have 

= lim GxJVy&t + PxAy)) 
t->oo G\(vX£,t) 

= e-rAK) lim gA(^^ + fe^(i/))e^^fa))^M 

t-oo Gx(vx^t)e^M 

= e-i-\(va)Px,z(y)+f(vx,s)-f(vy,z). 

The last equality follows from the asymptotic description of G\ in Theorem 
6.10. D 

We are now able obtain the following alternate description of i/x, 

Lemma 6.12. The constant Cr = — -^x\x=or\(va) exists and is positive, and 
for a set B C dM and the corresponding set Bx C SXM we have 

ux(B) = ±- [   lim G(v,t)V(v,t)d\x(v). 
W JBX t-*

00 

Proof We proceed in the same way as for the proof of Lemma 3.4 but 
substituting the definitions of i/£ and n\(o,o) = — j for fix and gs{p,o) 
respectively. Performing the change of variables t —> -^ we may integrate 

ux(B)=  lim -X [     f   Gx(y,t)V(v,t)d\x(v)dt 
A->0- Jo     JBX 

POO 

=  lim   /    e(h-^K))^ x 

x  /   Gx(v,^-)V(v,^)e^^-h^d\x(v)ds. 
J Bx 

Now by Corollary 6.5, lim^o- h  ^^ > (n-i)(2fc-a) • Also ^ Proposition 
6.4 for 5 > 0, 

lim Gx(v,-^)V(v,^-)e^^-h^ 
A-^0- —A —A 

converges uniformly on compact subsets of SXM \ W5^).   So continuing 
the computation, 

ux(B)=  lim   re{h-Tx{va))^ I   lim G(v,t)V(v,t)d\x(v)ds. 
A^o- J0 JBX ^^ 



Asymptotic harmonicity of negatively curved homogeneous spaces    623 

Prom its definition in terms of the heat kernel, 

POO 

G\(x,y)= /     extp(t,x,y)dt 
Jo 

is real analytic in A for A < Ai. It follows that if A (^5 *) is also real analytic in 
A since it by construction meromorphic but has no poles. Taking derivatives 
in t at t = 0 we obtain the power series expansion rxiv^) = ao(t>a) + CTX + 

«2(^a)A2 + • • •. So limx^o v^~ = —CT exists. In fact writing out the 
definition of K\ in terms of the heat kernel and taking derivatives we obtain, 

CT =  lim     J-        (T(VA) I" tp(tM^MR))dt 
R-+00 G(Va,it)  \ J0 

d f00 \ 
-fo\s=0   /      tp(t,Va(5),Va(i2))dtJ . 

By Lemma 6.5 

*>-Sl"(v(271(*-o))   -A) = (n-l)(26-a)>0- 

So we obtain, 

i/x(B) = — \     lim G{v,t)N(v,t)d\x{y)ds. D 
^r JBX t-*

00 

Directly from the formula in the above lemma we arrive at the following 

Lemma 6.13. Explicitly, for all v e SXM\ Ws(i>a) and x G M, 

and vx and \x are absolutely continuous with respect to each other. 

Corollary 6.14. M is asymptotically harmonic iffr = trU in which case 
the constants Cv^ CT and CQ are related by CrCVBL = CQ- 

Proof. If M is asymptotically harmonic then we have i/x = A^ in which case 
by Lemma 6.13 and Theorem 6.10 and Corollary 5.7, f™ tr U(gsv)—r(gsv)ds 
is constant and since T(va) = trC/(va), it must be zero. It follows that 
T(V) = tTU(v). 
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Conversely, if T(V) = tr U(v) then by the same lemmas and corollary 
TD^iv) = c v*' Since they are both probability measures this constant is 
1. Then the lemma follows from Proposition 5.15. □ 

Using the same proof as 4.8 we obtain, 

Corollary 6.15.   The measure ux is absolutely continuous with its flip. Ex- 
plicitly, for v e SXM \ >Vs(i>a), 

dl/*-(t;) = Km     G^*)V^*) 
dF*vx

K ,     t^ooG(-v,t)V(-v,t) 

From Lemmas 4.7 and 6.13 we immediately obtain 

Corollary 6.16.  The measures iix and ux are in the same measure class 
and for all v € SXM \ >Vs(^a) and x e M, 

J— (v) = "77- I™ enrG(M). 

Following the proof of Corollary 6.14 with the above corollary gives, 

Corollary 6.17. M is asymptotically harmonic iff T{V) — h, in which case 
the constants CMan CT and CQ are related by C^ar = CrCG- 

Proposition 6.18. M is asymptotically harmonic if and only if for some 
x 6 M, i/x, T, and till are flip invariant. 

Proof If M is asymptotically harmonic, then by Propositions 5.15, ux is flip 
invariant. 

For the converse, we find from Proposition 6.15 and Theorem 6.10 that 
for w e SXM \ {±dx(va)}, 

dux V(w,t)G(w,t) 
~{w) = lim 

dF*i>x t->oo V(-w,t)G{-w,t) 
= ef™ trU(-gsw)-trU{-gs(-w))+T(g-sw)-T(g-s(-w))ds ^ 

So if ux is flip invariant, we have 

poo roo 

/    tr U(-gsw) - tr U(g~sw)ds = /    r{-gsw) - T(g~sw)ds. 
Jo Jo 
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By Proposition 6.4 and Corollary 2.3, these integrals make sense. Replacing 
w by gtw and taking derivatives with respect to t yields 

(6.1) tr U(gtw) + tr U{-gtw) = rtfui) + r(-ff*^). 

Combining equation 6.1 with X,iU{v) — tiU(—v) and T{V) = r(—v) implies 
that r = trC/. Hence, by Corollary 6.14, M is asymptotically harmonic.  □ 

Corollary 6.19. If M is asymptotically harmonic then u;s, UJ
SS

, LJ
U
, UJ

SU
, A, z/, 

and /z are a// constant multiples. 

Proof. If M is asymptotically harmonic then T{V) = trU(v) = h, which 
by Theorem 6.10 and Corollary 5.7 implies that lim^oo V(v(t), t;(-t))e~2ht 

and limt_>cxDG(^(t),^(—t))e2ht are constant. Also, /x^ = ux = Xx so from 
the Kaimanovich construction we have that A, /x, and z/ are multiples. By 
flip invariance the other measures are all equal to A. □ 

Now we examine the measures /i,z/,A. 

Proposition 6.20.   We have the following three formulas 

^(v) = lim -J-V(v(t)M-t))e-^ = ^eJSo^Hi* 

^(t;) = ^ Bm V(t;(t)>t;(-t))G(t;(t),i;H)) 

=      ^a     cr
XLtTU(a

tv)-T(gtv)dt 

and 

^M - ^ Ita G«t),»(-<))e"' = H^C'-Crt* 

where 

Cv& = det(^(«a) + t/C-^a))-1, Cr 

= -^-|A=orAM,CG = lim G(t;a)t)e*T^), 
aA t—►oo 

and CMar is the Margulis constant. 
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Proof. We use the definitions of the measures given in Section 3 to directty 
compute the stated quantities. The first equality in the first formula follows 
as an application of Lemma 4.7 and then by applying Corollary 5.7 for the 
second equality. Similarly, the first equality of the second formula results 
from Lemma 6.13 followed by Corollaries 5.7 and Theorem 6.10 for the 
second equality. To verify the last formula use Corollary 6.16 and then 
Theorem 6.10. □ 

Now we may complete the proofs of the main theorems. 

Theorem 1. For any NCHS M, we have the following 

1. For all x 6 M the measures /J^x^x^x and their flips are all in the 
same measure class. 

2. The Bowen-Margulis measure fi, harmonic measure v, Liouville mea- 
sure A, (jjss, us, UJ

SU
, and LJ

U
 are all in the same measure class, and 

3. h2 = trad2a = c^ = /3 = 4A1. 

Proof. By Lemmas 4.7,6.13 and Corollaries 4.8 6.15, 6.16 we have that i/x,/ix, 
and \x and their flips are in the same measure class. First this implies that 
/x, A and v are in the same measure class by the Kaimanovich descriptions of 
these measures in terms of vx and iix. Also, using the description d\(v) = 
dXx(v)dm(x) we see that u;ss,a;s, and A are in the same measure class. By 
the flip quasi-invariance of the measures fix and z/x, OJ

SU
 and u>S3 and (jju and 

cj3 are in the same measure class. By transitivity the other equivalences of 
measures follow. 

The last statement follows from Corollary 2.5, Corollary 6.6, and Propo- 
sition 2.14. □ 

Theorem 2. For any NCHS M, the following are equivalent 

1. tvU andtvU2 are both flip invariant, 

2. trU is flip invariant and any one of fAx1<jJss, or u>su is flip invariant, 

3. r is flip invariant and any one of vx,u
s, or CJ

U
 is flip invariant, 

4. Any two of the measures ^x,uXf or Xx coincide, 

5. Any two of the measures X, uss, or UJ
S
 coincide, 
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6. Any two of the measures A, usu, or uu coincide, 

7. Any two ofT(v),h., ortTU(v) coincide, and 

8. M is asymptotically harmonic. 

Proof. Propositions 5.9 shows that (1) is equivalent to (8). The equivalence 
of (2) and (3) with (8) follows from Corollary 6.19, Propositions 4.9 and 
6.18, and the definitions of u;ss,u;s,ct>sw, and UJ

U
 in Section 3. Combining 

Corollary 5.8 and Lemma 4.6 with Propositions 5.10 and 5.15 we obtain 
that (4) is equivalent to (8). 

Using the definitions of UJ
SS

1UJ
SU

,LJ
S
,(JJ

U
 and dX = d\xdm(x) item (5) is 

reduced to item (4). After noting that A^ is flip invariant item (6) becomes 
evidently equivalent to item (5). Lastly, item (7) is equivalent to (8) via 
Corollaries 6.14, and 6.17. □ 

Now we will show the potentially weaker situation when the //, z/, A agree. 

Theorem 3. For any NCHS M, we have the following relationships 

1. The following are all equivalent, 

(a) for any x G M any one of dIj?* , -£^, ^-, or ^pp, extends to 
a continuous function, 

/oo 

trU(gtv)-hdt = 0, 
-oo 

(c) X is a multiple of //. 

2. The following are all equivalent, 

(a) for any x G M any one of jp*u , ^-, ^-, or ^; extends to a 
continuous function, 

/oo 

trU(gtv)-T(gtv)dt = 0, 
-OO 

(c) X is a multiple of v. 

3. The following are all equivalent, 

(a) for any x G M any one of 4-^-, J^; or ^^J extends to a con- 
tinuous function, 

/oo 

T(0*v)-hdt = O, 
-OO 
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(c) ji is a multiple of v. 

Proof. In case (1) by considering the expressions for the Radon-Nikodym 
derivatives in part (a) we find they are continuous if and only if 

lim V(v,t)e-ht 

extends to a continuous function on SM. The expression 

lim V(7;(t)^(-t))e-2ht 

t—►oo 

is continuous at v = v^ if and only if limt_>oo V(t;,/;)e~ht is continuous at 
v = Va since the two expressions always converge to the same value for any 
sequence vi —> va, hence (b) is equivalent to (a). Prom Proposition 6.20 we 
see that -^(v) is then continuous. By G-invariance, ^(v) must be constant 
(see Remark 4.11). Lastly, by Proposition 6.20, 

f trU(gtv)-hdt = 0, 

if and only if A is a multiple of i/ (Recall that tiU^v^) = T(gtvSL) = h so 
the integral is always 0 in the abelian direction). 

The second and third cases follow from Proposition 6.20 similarly ex- 
cept that we use respectively, limt-+oo V(v, t)G(v,t) and limt_^oo G(v,t)eht 

in place of lim^oo V(t;,t)e~ht. The continuity of these imply that 
\imt-,ooG(v(t),vl-t))V(v(t)Jv(-t)) and limt->ooG(v(t),v(-t))e2ht are re- 
spectively continuous at va (and everywhere else by G-equivariance). Again 
using the Kaimanovich construction we obtain u = X and /J, = v respectively. 
□ 

7. Examples of Negatively Curved Homogeneous Spaces 
which are not Asymptotically Harmonic. 

Here we present a class of examples of NCHS's which are not asymptotically 
harmonic. This emphasizes the differences between NCHS's and the com- 
pact case, since Theorem 2 states that none of the listed geometric measures 
may coincide, but by Theorem 1 they are all in the same measure class. 

We refer the reader at this point to Section 4 of [18] for the details of 
the construction of amalgamated products of homogeneous spaces. 

Let Mi and M2 be general NCHS's. Then we can form the amalgamated 
product M = Mi#M2 of Mi and M2. For simplicity, we will identify M, 
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Mi = Ax Ni and M2 = A t< N2 with their corresponding transitive group 
of isometries. The Lie algebra of M is g = Ri^ © (ni © n2) where the action 
of ad^ on ri; is the same as in the respective Mi and [1x1,1x2] = 0. The left 
invariant metric on M is uniquely determined from the metrics on the ri; 
and the conditions that |t;a| = 1 and the direct sum in g be orthogonal. 
For our examples below we will need the fact that Mi are both isometrically 
embedded totally geodesic submanifolds in Mi#M2. This is Proposition 4.3 
of [18]. 

For our examples we restrict to the case where Mi is any asymptotically 
harmonic NCHS of dimension n and M2 = B^, the real hyperbolic plane of 
constant curvature — b2 for any b > 0. 

Now choose any unit vector v 6 SeMi C TeM. Then let Vo(t) = 
d(v(t))~1gtv be the pullback of the geodesic tangent vector v'ft) by isome- 
tries to S0M C fl. Since Mi is totally geodesic in M, v0(t) stays in S0Mi. By 
the Lie algebra structure of g, adVa Y = b-Y for Y G TgA^. Formula 2.1 then 
shows that VVaY = 0 and VxY = VyX = 0 for X e TeNi and Y € TeN2. 
Consequently, the left invariant vector field Y is parallel along v(t) (yv^t)Y = 
0). Denote the curvature tensor of M and Mi by R and Ri respectively. 
Since Mi sits in M as a totally geodesic submanifold, the curvature tensor 
satisfies i?(t;0(t),X,?;0(t),r) = i2i(v0(t),X,t;0(t),y) for all X,Y € T0Mi. 
Also, we may compute directly from the definition of curvature using the 
connection formula 2.1 (or using the formula with opposite sign in Sec- 
tion 4.5 of [18]) that R{v0(t),X,v0(t),Y) = i2(vo(t),Va,Vo(t),30 = 0 and 
R{v0{t), y, v0{t), Y) = -b2 (v0(t), va)2-b (ad^ v0(t), v0(t)), for all X e TeNi 
and Y 6 TeN2. Now let {Pi(*)}JLi be a parallel orthonormal base in M for 
vit)1- pulled back via isometries to the origin o such that Pn(t) = Pn(0) G 
TeN2 and Pi(t) G TeMi for i = 1,..., n-1 and all t G R. The above calcula- 
tions along with the symmetry of the curvature tensor allow us to compute 
the curvature tensor in the base {Pi} to be of block form 

i2(^)-i?K(t),.,^(t),.) 
'Ri(v0(t)r,v0(t)r) 0 

0 -b2 (v0(t), v*)2 - b (ad^ v0{t), v0(t)) 

Since R{t) is zero off the diagonal blocks, it follows from the Riccati equation 
Uisfv) = Rtfv) + Utfv)2 that U(gtv) has the block form 

where Ui(gtv) is the second fundamental form for horospheres in Mi and 
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U2(t) is the solution to the scalar Riccati equation U2(t) = —b2 (vo(t),va)2 — 
b (adVa v0(t), v0(t)) + U2(t)2. 

Since we assumed Mi to be asymptotically harmonic, tvUi(gtv) = 
hi for some constant hi > 0. Hence tYU(gtv) = tiUi^v) + U2(t) 
is constant if and only if U2(t) is constant. Now if v ^ ±vSi then 
limt-.oorf(3^,9*^) = 0 in the Sasaki metric by the definition of w+ (see 
Section 2). This shows that either v0(t) = ±vaL or else as v0(t) converges 
to ±va as t —» oo causing —b2 (t>o(£), Va) — b (adVa Vo(^), ^o(^)) to approach 
—b2 in either case. Therefore U2(t) is constant if and only if U2(t) = b 
and b2 (votyiVa)2 + b(a,dVeiv0(t), v0(t)) = 62. This in turn implies that if 
v0(t) = a(^a + l3{t)X(t) with X(t) e 50iVi and a(t)2 + (3(t)2 = 1 then 
(ad^ X(t),X(t)) = b. Since the choice of initial vector v G S0Mi was arbi- 
trary, (ad^ + ad*a)|ni = bid. This implies by Proposition 2.1 of [18] that 
Mi has constant curvature — b2 and hence M is a hyperbolic space of dimen- 
sion n + 1. Simply stated, whenever Mi does not have constant curvature 
—62, M is not asymptotically harmonic. 

References. 

[1] A. V. Alekseevskii, Homogeneous Riemannian spaces of negative curvature, 
Mat. Sb. (N.S.) 96(138) (1975), 93-117. 

[2] A. Ancona, Negatively curved manifolds, elliptic operators, and the Martin 
boundary, Ann. of Math. 125 (1987), 495-536. 

[3]  ,  Sur les fonctions propres positives des varietes de Cartan- 
Hadamard, Comment. Math. Helv. 64 (1989), 62-83. 

[4] M. T. Anderson and R. Schoen, Positive harmonic functions on complete 
manifolds of negative curvature, Ann. of Math. 121 (1985), 429-446. 

[5] R. Azencott and E. Wilson, Homogeneous manifolds with negative curvature, 
i, Trans. Amer. Math. Soc. 215 (1976), 323-362. 

[6]  ,   Homogeneous manifolds with negative curvature,   ii,  Mem. 
Amer. Math. Soc. 178 (1976). 

[7] M. Babillot, Comportement asymptotique du mouvement brownien sur une 
variete homogene a courbure negative ou nulle, Ann. Inst. H. Poincare Probab. 
Statist. 27 (1991), no. 1, 61-90. 

[8] W. Ballmann, Lectures on spaces of nonpositive curvature, DMV Seminar, 
vol. 25, Birkhauser Verlag, Basel, 1995, With an appendix by Misha Brin. 



Asymptotic harmonicity of negatively curved homogeneous spaces    631 

[9] W. Ballmann, M. Brin, and P. Eberlein, Structure of manifolds of nonpositive 
curvature, /, Ann. of Math. 122 (1985), 171-203. 

10] Y. Benoist, F. Foulon, and F. Labourie, Flots d'Anosov a distributions stable 
et instable differentiables, J. Amer. Math. Soc. 5 (1992), 33-74. 

11] A. L. Besse, Manifolds all of whose geodesies are closed, Ergebnisse der Math- 
ematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 
vol. 93, Springer-Verlag, Berlin, 1978, With appendices by D. B. A. Epstein, 
J.-R Bourguignon, L. Berard-Bergery, M. Berger and J. L. Kazdan. 

12] G. Besson, G. Courtois, and S. Gallot, Entropies et rigidites des espaces locale- 
ment symetriques de courbure strictement negative, GAFA 5 (1995), 731-799. 

13] R. Brooks, A relation between growth and the spectrum of the Laplacian, Math. 
Z. 178 (1981), no. 4, 501-508. 

14] I. Chavel, Riemannian geometry—a modem introduction, Cambridge Tracts 
in Mathematics, vol. 108, Cambridge University Press, Cambridge, 1993. 

15] I. Chavel, B. Randol, and J. Dodziuk, Eigenvalues in Riemannian geometry, 
Academic Press, Inc., 1984. 

16] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, Prob- 
lems in analysis (Papers dedicated to Salomon Bochner, 1969) (Princeton, N. 
J.), Princeton Univ. Press, 1970, 195-199. 

17] E. Damek and F.Ricci, A class of non-symmetric harmonic Riemannian 
spaces, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 139-142. 

18] P. Eberlein and J. Heber, Quarter pinched homogeneous spaces of negative 
curvature, Internat. J. Math. 7 (1996), no. 4, 441-500. 

19] H. Federer, Geometric measure theory, Springer-Verlag New York Inc., New 
York, 1969. 

20] R. Feres, Metric entropy rigidity after Besson, Courtois, and Gallot, Notes, 
1994. 

21] G. B. Folland, Real analysis, modem techniques and their applications, Pure 
and Applied Mathematics, John Wiley & Sons Inc., New York, 1984, A Wiley- 
Interscience Publication. 

22] P. Foulon and F. Labourie, Sur les varietes compactes asymptotiquement har- 
moniques, Invent. Math. 109 (1992), 97-111. 

23] L. Garnett, Foliations, the ergodic theorem and Brownian motion, J. Func. 
Anal. 51 (1983), 285-311. 



632 Christopher Connell 

[24] U. Hamenstadt, A new description of the Bowen-Margulis measure, Ergodic 
Theory Dynamical Systems 9 (1989), 455-464. 

[25]  , An explicit description of harmonic measure, Math. Z. 205 
(1990), 287-299. 

[26] Ursula Hamenstadt, Regularity at infinity of compact negatively curved mani- 
folds, Ergodic Theory Dynam. Systems 14 (1994), no. 3, 493-514. 

[27] J. Heber, Homogeneous spaces of nonpositive curvature and their geodesic flow, 
Internat. J. Math. 6 (1994), no. 2, 279-296. 

[28] E. Heintze, Compact quotients of homogeneous negatively curved Riemannian 
manifolds, Math. Z. 140 (1974), 79-80. 

[29]  ,  On homogeneous manifolds of negative curvature, I, Math. 
Ann. 211 (1974), 23-34. 

[30] E. Heintze and H. C. Im Hof, Geometry of horospheres, J. Differential Geom. 
12 (1977), 481-491. 

[31] K. Jacobs, Measure and integral, Academic Press [Harcourt Brace Jovanovich 
Publishers], New York, 1978, Probability and Mathematical Statistics, With 
an appendix by Jaroslav Kurzweil. 

[32] V. A. Kaimanovich, Note on brownian motion paper, Personal Communica- 
tion. 

[33]  , An entropy criterion of maximality for the boundary of random 
walks on discrete groups, Soviet Math. Doklady 31 (1985), no. 5, 1051-1054. 

[34] V. A. Kaimanovich, Brownian motion and harmonic functions on covering 
manifolds, an entropy approach, Soviet Math. Doklady 33 (1986), 812-816. 

[35] V. A. Kaimanovich, Invariant measures of the geodesic flow and measures at 
infinity on negatively curved manifolds, Ann. Inst. Henri Poincare Physique 
Theorique 53 (1990), no. 4, 361-393. 

[36] F. Ledrappier, Propriete de poisson et courbure negative, C.R.A.S. Paris 305 
(1987), 191-194. 

[37]  , Ergodic properties of Brownian motion on covers of compact 
negatively curved manifolds, Bol. Soc. Bras. Mat. 19 (1988), 115-140. 

[38]  , Harmonic measures and Bowen-Margulis measures, Israel Jour- 
nal of Mathematics 71 (1990), no. 3, 275-287. 

[39] F. Ledrappier, A heat kernel characterization of asymptotic harmonicity, Proc. 
Amer. Math. Soc. 118 (1993), no. 3, 1001-1004. 



Asymptotic harmonicity of negatively curved homogeneous spaces    633 

[40] P. Mattila, Geometry of sets and measures in Euclidean spaces, fractals and 
rectifiability, Cambridge Studies in Advanced Mathematics, vol. 44, Cam- 
bridge University Press, Cambridge, 1995. 

[41] J.-J. Prat, Etude asymptotique et convergence angulaire du mouvement brown- 
ien sur une variete a courbure negative, C. R. Acad. Sci. Paris Ser. A-B 280 
(1975), no. 22, Aiii, A1539-A1542. 

[42] D. Sullivan, The density at infinity of a discrete group of hyperbolic motions, 
Inst. Hautes Etudes Sci. Publ. Math. 50 (1979), 225-250. 

[43]  , The Dirichlet problem at infinity for a negatively curved man- 
ifold, J. Differential Geom. 18 (1983), 723-732. 

[44] Z. Szabo, The Lichnerowicz conjecture on harmonic manifolds, J. Differential 
Geom. 31 (1990), 1-28. 

[45] J. Wolf, Homogeneity and bounded isometrics in manifolds of negative curva- 
ture, Illinois J. Math 8 (1964), 14-18. 

[46] T. Wolter, Einstein metrics on solvable groups, Math. Z. 206 (1991), 457-471. 

[47]  , Geometry of homogeneous Hadamard manifolds, Internat. J. 
Math. 2 (1991), 223-234. 

[48] C. B. Yue, Integral formulas for the Laplacian along the unstable foliation, 
Ergodic Theory Dynamical Systems 11 (1991), 803-819. 

[49]  , On Sullivan's conjecture, Random and Computational Dynam- 
ics 1 (1992), 131-145. 

[50]  , Rigidity and dynamics around manifolds of negative curvature, 
Math. Res. Lett. 1 (1994), 123-147. 

UNIVERSITY OF ILLINOIS, CHICAGO 

CHICAGO, IL 60607 
E-mail address: cconnellOmath.uic. edu 

RECEIVED MAY 11, 1998. 




