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Rigidity of area minimizing tori in 3-manifolds of 
nonnegative scalar curvature 

MlNGLIANG CAI AND GREGORY J. GALLOWAY1 

The following conjecture arises from remarks in Fischer-Colbrie-Schoen 
([FCS], Remark 4, p. 207): If (M,g) is a complete Riemannian 3-manifold 
with nonnegative scalar curvature and if E is a two-sided torus in M which 
is suitably of least area then M is flat. Such a result, as Fischer-Colbrie 
and Schoen commented, would be an interesting analogue of the Cheeger- 
Gromoll splitting theorem. Here we present a proof of this conjecture as- 
suming E is of least area in its isotopy class. The proof is a consequence of 
the following local result, which is the main result of the paper. 

Theorem 1. Let (M,g) be a C00 S-manifold with nonnegative scalar cur- 
vature, S > 0. If T, is a two-sided torus in M which is locally of least area 
(see Section 2), then M is flat in a neighborhood o/E. 

It follows that E is flat and totally geodesic and that locally M splits 
along E. A partial infinitesimal version of Theorem 1 was observed in [FCS], 
namely, if E is a stable minimal two-sided torus in M with nonnegative scalar 
curvature then E must be flat and totally geodesic, and the scalar curvature 
and normal Ricci curvature of M vanishes along E. In [CG] the authors 
proved Theorem 1 under the assumption that M is analytic. The result 
in the analytic case follows as an immediate consequence of a more general 
result which holds for C00 manifolds, see Theorem B in [CG]. Here we will 
make use of Theorem B to present a proof of Theorem 1. 

We note that, under the assumptions of Theorem 1, M need not be 
globally flat. Consider, for example, S1 x S2, where S2 is a sphere which 
is flattened near the equator E. Then S1 x E is a torus which is locally of 
least area in S1 x S2. 

The idea of the proof of Theorem 1 is as follows. It is first shown that E 
cannot be locally strictly of least area. If it were, then under a sufficiently 
small perturbation of the metric to a metric of (strictly) positive scalar 
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curvature, E would be perturbed to a torus which is still locally of least 
area. But this would contradict the fact that a compact two-sided stable 
minimal surface in a 3-manifold with strictly positive scalar curvature must 
be a sphere, cf. Theorem 5.1 in [SY1]. It is then shown that on each side 
of E there is a torus which is locally of least area. By cutting out the 
region bounded by these two tori and pasting it appropriately to a second 
copy, one obtains, using Theorem B, a smooth 3-torus with nonnegative 
scalar curvature. By Schoen and Yau [SY], this 3-torus must be flat, and 
Theorem 1 follows. We now proceed to a detailed proof of Theorem 1. 

In all that follows we work in the C00 category. For simplicity, all surfaces 
are assumed to be embedded. However, by pulling back to the normal bundle 
of E, it is clear that a version of Theorem 1 holds for immersed surfaces, 
as well. By definition, a compact two-sided surface E in a 3-manifold M is 
locally of least area provided in some normal neighborhood V of E, A(E) < 
^(E7) for all E7 isotopic to E in V, where A is the area functional. If the 
inequality is strict for E7 ^ E, we say that E is locally strictly of least area. 
Note that "locally of least area" implies "stable minimal". 

Let V be a normal neighborhood of a compact two-sided surface E in a 
3-manifold M. Then, via the normal exponential map, V = (—£, (!) x E, and 
the metric g = ds2 takes the form, 

2 

(1) ds1 = dt2 + ^ Qijfa x)dxidxJ • 

The following is a restatement of part of Theorem B in [CG]. 

Lemma 1. Let (M,g) be a 3-manifold with nonnegative scalar curvature, 
S > 0. Suppose E is a two-sided torus in M which is locally of least area. 
Then with respect to geodesic normal coordinates along E (see equation 1), 

for all n and all x G E. 

Lemma 1 is used below to ensure that after certain cut and paste oper- 
ations the resulting metric is smooth. 

Lemma 2. Suppose E is a compact two-sided surface in a 3-manifold (M, g) 
with nonnegative scalar curvature, S(g) > 0. Then there exists a neighbor- 
hood UofT, and a sequence of metrics {gn} on U such that gn —> g in C00 

topology on U, and each gn has strictly positive scalar curvature, S{gn) > 0. 
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Proof. Let V = (—£, £) x E be a normal neighborhood of S, so that the metric 
g takes the form (1). Consider the sequence of metrics gn = e~2n t g. A 
straight forward computation gives, 

Sign) = e2ri"lt2(5(5) + Sn-^l + tHt - n"1*2)), 

where Ht is the mean curvature (in the metric g) of E* = {£} x E. It is clear 
that by taking £ sufficiently small and n sufficiently large we have *S'(^n) > 0. 
□ 

In the next lemma we show that if E C M is locally strictly of least area 
then by perturbing the metric of M slightly, E gets perturbed to a surface 
which is still locally of least area. 

Lemma 3. Suppose E is a compact two-sided surface in (M3,p) which is 
locally strictly of least area. Let {gn} be any sequence of metrics such that 
9n —> 9 in C00 topology. Then for any neighborhood UofH and any positive 
integer N there exists, for some n > N, a surface En C U isotopic to E in 
U which is locally of least area in (M,gn). 

Proof The proof makes use of basic existence and convergence results for 
least area surfaces. Let V = [—£, £] x E be a compact normal neighborhood 
of E contained in J7, and restrict attention to the compact Riemannian 
manifold-with-boundary (V,g). Since E is locally strictly of least area, we 
can choose £ sufficiently small so that, 

Ag(E) < Ag(Z')     for all E7 e X(E), E7 ^ E, 

where X(E) is the isotopy class of E in V, and Ag is the area functional in 
the g metric. 

Set Vb = [—|, |] x E. Let / = f(t) be a smooth nonnegative function 
on [—£,£] such that / = 0 on [— |,f]. By making the derivatives /'(ifc^) 
sufficiently large in absolute value, with f^i) > 0 and f(—£) < 0, we obtain 
a conformally related metric g = e^g with the following properties. 

(1) 9\vo =9\vo' 

(2) (V, g) has strictly mean convex boundary, i.e., dV has positive mean 
curvature. 

(3) For all E' G 1(E) such that E' ^ E, ^(E) < Ag(Z'). 
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For each n, set gn = e^gn. Then the metrics gn satisfy: (1) gn\vo = gnWo, 
(2) gn —> g in C00 topology and (3) for n sufficiently large, (V, gn) has mean 
convex boundary. For each such n let, 

an=    inf    Agn(J?). 

Then by Theorem 5.1 and Section 6 in [HS] (see also [MSY]) there exists 
for each n a surface En G 2T(E) such that A^^n) = an. In applying the 
results from [HS] we have used the fact that V is P2-irreducible (provided 
E 7^ S2,P2) and that V does not contain any compact one-sided surfaces. 
(If E = 52 or P2, one may appeal to Theorem 5.2 in [HS] and use specific 
features of the topology of [—£,£] x E). 

For each n, E^ is a compact stable minimal surface in (V,gn), and the 
sequence {an} is bounded. It then follows by well-known convergence ar- 
guments that there is a subsequence of surfaces, call it again {En}, which 
converges locally in C00 topology to a compact (embedded) minimal surface 
E in (V,</); see especially Section 2.2 in [M], which applies fairly directly 
to the situation considered here. By the nature of the convergence, {En} is 
eventually contained in any tubular neighborhood of E, and for n sufficiently 
large, En will be transverse to the normal geodesies of E. It follows that 
E^ covers E via projection along the normal geodesies. Since E is neces- 
sarily two-sided (again, because V does not contain any compact one-sided 
surfaces), it follows that the covering of E by En must be one-sheeted, i.e., 
projection along the normal geodesies of E provides a diffeomorphism of En 

onto E; see e.g., [S]. 
Thus, E is isotopic to E since each En is. Furthermore, we have, 

j4g(E) = lim an < lim ^n(E) = ^(E). 
n—MDO n—KX) 

Since E is strictly of least area in its isotopy class in (V, (?), we conclude that 
E = E. But by the above convergence, this means that for n large enough, 
En is contained in int VQ, in which gn = gn. It follows that, for such n, En 

is locally of least area in (V, gn). This concludes the proof of Lemma 3.   □ 

Proof of Theorem 1. Let V = {—£-,£) x E be a normal neighborhood of 
E with metric g as in equation (1). Choose £ sufficiently small so that E 
is of least area in its isotopy class in V. For technical reasons we modify 
the metric g as follows. Let g be the metric on V of the form (1) but with 
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component functions %, 1 < i, j < 2, defined by, 

" (t x) = S9i^t'x^     forte[o,e) 
\9ij(-t,x),    foit€(-e,0}. 

(V,g) is a smooth Riemannian manifold (by Lemma 1) such that S(g) > 0 
and reflection across £, (t, x) i-> (—t, a:), is an isometry. Further, E is of least 
area in its isotopy class in (V,g). By choosing £ even smaller if necessary, 
we guarantee that Lemma 2 holds for the neighborhood U = V. 

If S were strictly of least area in its isotopy class in (V, g) then Lemmas 
2 and 3 would imply that there is a two-sided stable minimal torus S7 near 
S with respect to some metric of strictly positive scalar curvature on V. 
This would contradict Theorem 5.1 in [SY]. Thus, there exists a surface 
E G 1(E), E ^ E such that A$(2) = A§(E). Hence, E is also of least area 
in its isotopy class. 

We claim that E is contained in one of the components of V \ E. If not, 
then E and E must meet. Since E and E are stable minimal tori in (V,g) 
they must be totally geodesic (cf. [FCS]). Since they are totally geodesic 
and distinct, they must meet transversally. Thus, the intersection of E and 
E will consist of a finite number of circles. By reflecting the portion of E in 
(—£, 0] x E across E to [0, £) x E and smoothing out the resulting ridge along 
the circles of intersection, we obtain a surface isotopic to E with less area 
than E, which is a contradiction. Thus, E lies to one side of E and does not 
meet E. 

These arguments imply that in the original Riemannian manifold (V, g) 
there exist two tori E+ and E~~, one on each side of E, each isotopic to E 
and each locally of least area. Let W be the region in V bounded by E+ 

and E_. Standard properties of isotopies [H] imply that W has topology 
[— 1,1] x T2. By taking two copies of W and gluing them appropriately along 
their boundaries, we obtain, by Lemma 1, a smooth Riemannian manifold 
with nonnegative scalar curvature which is diffeomorphic to a 3-torus. By 
Schoen and Yau [SY], this 3-torus, and hence W must be flat. □ 

By fairly standard continuation arguments, Theorem 1 can be globalized 
as follows. 

Theorem 2. Let M be a complete connected 3-manifold of nonnegative 
scalar curvature whose boundary (possibly empty) is mean convex. If M 
contains a two-sided torus E which is of least area in its isotopy class then 
M is flat. 



570 Mingliang Cai and Greg Galloway 

Proof. By the maximum principle, either E is a boundary component of M 
or S is in the interior of M. If E is a boundary component, let Mo = M. 
If E is in the interior and disconnects M, let MQ = ?7o, where C/Q is one of 
the components of M \ E. If E is in the interior and does not disconnect M, 
let Mo be the manifold with boundary obtained by "separating" M along 
E. In all cases, E is a boundary component of MQ. TO prove Theorem 2 
it suffices to show that MQ is flat. Consider the normal exponential map 
$ : [0, oo) x E -> Mo along E defined by $(£, x) = expx tN, where N is the 
inward pointing unit normal along E. (Note $ need not be defined on all of 
[0, oo) x E.) 

By Theorem 1, Mo is flat in a neighborhood of E. (It is easily seen 
that Theorem 1 is still valid if E is a boundary component.) Then, by 
standard arguments (which require only nonnegative Ricci curvature), since 
E is locally of least area there exists a > 0 such that $ : [0, a) x E -* 
$([0,a) x E) is an isometry. (Here [0, a) x E carries the standard product 
metric and hence is flat since E is). Let £ be the largest number (possibly 
oo) such that $ : [0, £) x E —► $([0, £) x E) is an isometry. Consider first the 
case £ = oo. Using that the limit of a sequence of normal geodesies to E is 
a normal geodesic to E, one easily verifies that $([0, oo) x E) is both open 
and closed in MQ. Hence, $([0, oo) x E) = MQ and MQ is flat. 

Now consider the case £ < oo. Since MQ is complete, each normal 
geodesic to E, jx : t i-* $(£, x), 0 < t < £, extends to t = £. Suppose 
that $ : [0,£] x E -> $([0,£] x E) is an isometry. Then E^ = $({^} x E) 
is an embedded totally geodesic torus in MQ which is locally of least area. 
By the maximality of £, E^ must meet some component E' of SMQ. By the 
maximum principle for hypersurfaces, E^ and E7 must agree, E^ = E7. One 
can now argue that $([0,£] x E) is both open and closed in MQ. Hence, 
Mo = $([0,£] xE) is flat. 

Now suppose $ : [0,^] x E —> $([0,^] x E) is not an isometry. The only 
way this can happen is if two normal geodesies to E, 7^, i = 1,2, meet 
at t = £, 'Yx1(£) = 1x2 {£)- Since there can be no focal points to E along 
7tfil[o^]> there exists a neighborhood Ui of xi in E such that $ : [0,£] x Ui —> 
$([0,£] x Ui) is an isometry. Hence, §{{£} x Ui) is an embedded totally 
geodesic hypersurface in MQ which (by the choice of £) is a constant distance 
£ from E. It follows that $({^} x Ui) and §({£} x U2) must agree near the 
common end point 7^ {£) = 7X2 (£). By a straight forward continuation 
argument we conclude that each geodesic segment 7^, x G E, of length 
2£ meets E orthogonally at both end points. It is now easily argued that 
$([0,^] x E) is both open and closed in MQ. Hence, Mo = $([0,^] x E) is 
flat, and the proof of Theorem 2 is complete. □ 
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We make some concluding remarks. 

1. The results presented here were motivated in part by certain problems 
concerning the topology of black holes in general relativity, cf., [CG] 
[Gl], [G2]. 

2. The example mentioned after Theorem 1, M = Sl x 52, with 52 

flattened near the equator £7, and E = S1 x JE7, shows that stability 
is not sufficient to imply flatness. Assume the S'1 factor and E have 
the same radius. Cutting M along E we obtain two solid tori, the 
boundary of each of which is a copy of E. Gluing the two solid tori 
back together along their toroidal boundaries after a suitable twist 
we obtain a manifold Mr diffeomorphic to 53 with nonnegative scalar 
curvature which contains a stable minimal torus. Applying Theorem 
A in [GL], which is proved by a local construction, we can add an 
asymptotically flat end to M' to obtain an asymptotically flat manifold 
diffeomorphic to R3 with nonegative scalar curvature which contains 
a stable minimal torus. In the language of general relativity, we have 
obtained an asymptotically flat time symmetric initial data set on R3 

satisfying the constraint equations which contains a stable toroidal 
apparent horizon. However, we know of no such vacuum (scalar flat) 
examples, and conjecture that there are none. 

3. Using the higher dimensional work of Schoen and Yau [SY2] it appears 
that Theorem 1 can be extended to higher dimensions as follows: Let 
Mn have nonnegative scalar curvature. If E is a compact two-sided 
hypersurface in Mn which does not admit a metric of positive scalar 
curvature and which is locally of least area then a neighborhood of E 
splits. We are grateful to a referee for suggesting an alterative proof of 
Lemma 3, valid in higher dimensions, which makes this generalization 
possible. Further aspects of this will be discussed elsewhere. 

4. In [FCS], Fischer-Colbrie and Schoen proved that a complete stable 
minimal surface in an orientable 3-manifold with nonnegative scalar 
curvature must be conformal to the complex plane or the cylinder A. 
In the latter case it has been shown that A is flat and totally geodesic, 
cf., [FCS] and [CM]. The example M = R x S2, where S2 is flattened 
near the equator, shows that M need not be flat. However, in view 
of the results cited and the results presented here, it seems reasonable 
to conjecture that if the cylinder A is actually area minimizing (in a 
suitable sense) then M is flat (cf., Remark 4 in [FCS]). 
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