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This paper considers generalized harmonic maps from a simpli- 
cial complex to a complete metric space of (globally) non-positive 
curvature. It is proved that if a simplicial complex admits an "ad- 
missible weight" satisfying a local combinatorial condition, then 
any such generalized harmonic maps must be constant maps. The 
local combinatorial condition is in terms of a nonlinear generaliza- 
tion of the first eigenvalue of a graph. This has applications in 
the Archimedean and non-Archimedean representations of finitely 
presentable groups. 

1. Introductions. 

Differential geometry is applied to study the representations of finitely pre- 
sentable discrete groups in this paper. A well known fact is that these groups 
can be realized as fundamental groups of finite simplicial complexes. The 
main results here are about the representations of such groups in the isom- 
etry group of a complete metric space of (globally) non-positive curvature. 
This includes all representations in noncompact semisimple real and p-adic 
Lie groups. 

The most prominent examples of such discrete groups are lattices in a Lie 
group G. They are discrete subgroups Y C G such that the quotients r\G 
have finite volumes with respect to the Haar measure on G. The rigidity of 
representations of lattices have been extensively investigated since the early 
sixties. The theory culminates in Margulis' superrigidity and arithmetic- 
ity theorem. Techniques employed by people in studying theses problems 
include as diverse as representation theory, ergodic theory, linear algebraic 
group theory and differential geometry. 

Along the development, the method of differential geometry has played 
an important role. The idea is to represent a certain class by a canonical 
object, and then use the curvature of the symmetric space associated to 
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the Lie group to get vanishing theorems. In the local rigidity case, the 
objects involved are harmonic forms in a certain group cohomology class. 
While in the global rigidity case the objects involved are harmonic maps in a 
homotopy class induced by a group representation. Harmonic maps should 
be viewed as nonlinear versions of harmonic forms. 

Though the results proved using differential geometric methods are some- 
times not as strong as others, they usually give more intuitive insight into 
these problems. Actually most early results on group cohomology vanishing 
theorems and local rigidity theorems are in this direction. Also since dif- 
ferential geometric method only requires local condition, it often applies to 
some more general category which cannot be approached by methods using 
global conditions. For example, in the recent proof of local rigidity of hyper- 
bolic cone manifolds by Hodgson and Kerckhoff [8], the universal coverings 
of such cone manifolds are no longer symmetric spaces and only the local 
curvature condition is available. 

In this article, differential geometric method is applied to study fun- 
damental groups of simplicial complexes. These simplicial complexes are 
equipped with a weight function on their edges. Analogues of "curvature" 
are defined on simplicial complexes using the local combinatorial data of 
the weight function. This can be viewed as a generalization of Garland's 
p-adic curvature in [6]. Also introduced are generalized harmonic maps 
from simplicial complexes into metric spaces of non-positive curvature. The 
key point is a nonlinear generalization of Garland's vanishing argument. 
This technigue was developed in [21] to generalize Margulis' superrigidity 
for Archimedean representations of lattices in p-adic simple Lie groups of 
rank no less than two. In the present article this argument is extended to 
treat non-Archimedean representations. The proof involves generalized har- 
monic maps into Bruhat-Tits buildings, or more generally, complete metric 
spaces of (globally) non-positive curvature. The local conditions involve the 
geometry of the tangent cone of these metric spaces. 

We remark that the linear case of Garland's argument gives cohomology 
vanishing theorem which was the content of [6]. It was later elaborated by 
several groups of authors ( see [1], [22], [17], and [25] ) and applied to proving 
property (T) of such groups, which is equivalent to the vanishing of all groups 
cohomology with respect to any irreducible unitary representations in this 
case. 

The ariticle is organized as the following. §2 contains a brief introduction 
to rigidity problems and the relations to harmonic maps. §3 studies the 
geometry of the tangent cones of a complete metric space of non-positive 
curvature.  The important projection maps from these metric spaces onto 



Generalized harmonic maps and representations of discrete groups    547 

their tangent cones are also constructed. §4 defines and proves the existence 
of generalized harmonic maps from simplicial complexes to complete metric 
spaces of non-positive curvature. §5 introduces a notion called the first 
eigenvalue of a graph in a complete metric space of non-positive curvature. 
In §6 the main vanishing theorem is proved . §7 discusses applications to 
both Archimedean and non-Archimedean representations. 

I am deeply grateful to my advisor Professor Shing-Tung Yau for his 
guidance and encouragement. Special thanks go to Professor Kazhdan who 
read a preliminary version of this article and gave several useful suggestions. 
Part of this work was reported in the colloquium at Yale Univeristy in Jan- 
uary, 1998. I would like to thank Professor Garland, Mostow and Margulis 
for their invitation and interests in this work. In the original version of 
this work, §3 and Lemma 6.6 were written only for the case of Bruhat-Tits 
buildings. It was under the suggestion of the referee that I write up the 
more general case here. I want to take this chance to thank the referee. 

2. Rigidity problems and harmonic maps. 

We state Mostow's strong rigidity theorem and Margulis' superrigidity the- 
orem in this section and discuss the approach of harmonic maps. 

Let H be a real simple noncompact Lie group which is not locally iso- 
morphic to SX(2, R) and F C H a lattice. 

Theorem 2.1 (Mostow). If p : T \-* H is an injective homomorphism 
such that p{r) is also a lattice in H then p can be extended to be an auto- 
morphism of H. 

Let Xi and X2 be two complete locally symmetric space associated with 
H of the same finite volume. In terms of the metric rigidity of locally 
symmetric spaces, the theorem can be restated as : 

Theorem 2.2. An isomorphism between the fundamental groups of Xi and 
X2 is induced by an isometry between them. 

A natural question is whether there exists a relative version of this pic- 
ture, i.e. if G is another simple Lie group, can a homomorphism p : F i-> G 
be extended to be a homomorphism p : H i-> G? This leads to the super- 
rigidity theorem of Margulis and is true for non-Archimedean simple Lie 
groups as well. For an Archimedean or non-Archimedean local field fc, by a 
fc-simple Lie group we mean the k rational points of a linear algebraic group 
which is defined and simple over k. 
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Theorem 2.3 (Margulis). Let H and G be simple Lie group of Archi- 
medean or non-Archimedean type. Assume H is noncompact and simply 
connected with rank greater than or equal to two. Let Y be a lattice in H. 
If p : F i—> G is Zariski dense then either one of the following is true (1) 
p has bounded image in G. (2) p extends to a continuous homomorphism 
H i—> G , in this case G and H necessarily have the same Archimedean or 
non-Archimedean type. 

The statement of the theorem we depose here includes only the simplest 
case. Margulis' theorem is true for much more general cases. For the general 
cases and the proofs of Margulis' superrigidity theorem, we refer to Margulis' 
[12] or Zimmer's [24] books. 

In Margulis' proof, an important step is to show there exists a F equiv- 
ariant rational map from H/H' to G/G7, where Hf C H and G7 C G are 
algebraic parabolic subgroups, see lemma 5.1.3 in [24]. Then such a rational 
map is shown to extend to a homomorphism from H to G. 

When H is a real simple Lie group, Margulis's theorem admits a differen- 
tial geometric proof. The differential geometric method shares similar idea. 
First we find a F equivariant harmonic map from H/H" to G/G77, where 
H" C H and G77 C G are corresponding maximal compact subgroups. Then 
use the curvature condition and the Calabi-Matsushima-Weil vanishing ar- 
gument to show the map is either a constant map or totally geodesic. When 
this map is totally geodesic, it can be lifted to a homomorphism from H to 
G. 

Harmonic maps are generalizations of harmonic functions or harmonic 
forms. While harmonic functions or harmonic forms can be defined as the 
critical points of Dirichlet integrals, harmonic maps also allow a variational 
characterization. Namely, harmonic maps between Riemannian manifolds 
M, iV are critical points / : M i-> N of the energy integral 

(2.4) £(/) = J\\df\\2dgM 
M 

Here the norm ||d/|| is defined by thinking df as a section of the bundle 
T*M®f~lTN with the induced Riemannian metric. Unlike harmonic func- 
tions or harmonic forms, harmonic maps satisfy nonlinear partial differen- 
tial equations. 

The application of harmonic maps into rigidity and moduli problems 
was initiated by Yau. In particular, his idea of using harmonic maps to 
prove the holomorphic rigidity between quotients of bounded symmetric 
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domains was completed by Siu [20]. It was later taken up by Jost-Yau, 
Mok, and Siu to study rigidity problems on other locally Hermitian sym- 
metric spaces. In 1992, Corlette [5] proved the Archimedean superrigidity for 

lattices in 5p(n, 1) and F^~ ' using harmonic maps. Later, Gromov and 
Schoen [7] consider harmonic maps into Bruhat-Tits buildings and prove 
the non-Archimedean superrigidity for lattices in these groups. These to- 
gether complete the proof of the arithmeticity of lattices in such real rank 
1 groups which was not covered in Margulis' theorem. Their proofs involve 
a Bochner formula for manifolds with special holonomy. Then Jost-Yau 
[10] and independently Mok-Siu-Yeung [15] gave the first geometric proof of 
Margulis' superrigidity theorem for cocompact lattices by elaborating the 
Calabi-Matsushima-Weil vanishing argument, see [4], [14], and [23]. 

We try to push this idea to cover more general discrete groups, in par- 
ticular lattices in p-adic simple Lie groups. A key step is to define harmonic 
maps for general domains with group actions. The model case is the action 
of p-adic lattices on the associated Bruhat-Tits buildings. This leads to our 
consideration of gereralized harmonic maps on simplicial complexes. Gen- 
eralized harmonic maps on other domains were also treated in the articles 
of Jost [9], Korevaar- Schoen [11], and Margulis [13] in different contexts. 

3. Tangent cones of complete metric spaces 
of non-positive curvature. 

We first recall the definition of complete metric spaces of non-positive cur- 
vature. 

Definition 3.1. A complete metric space (N^d) is said to be of (globally) 
non-positive curvature if the following two conditions are satisfied: 

(i) (AT, d) is a length space. That is, for any two points P, Q the distance 
is realized as the length of a rectifiable curve connecting P to Q. We 
call such distance realizing curves geodesies. 

(ii) For any three points, P, Q, and R let (1—t)Q+tR denotes the point on 
a distance realizing geodesic joining Q and R with distance t • d(Q, R) 
from Q. Then 

(3.2)   d2(P,(l-t)Q + tR) 

< (1 - t)d2(P,Q) + td2(P,R) - t(l - t)d2(Q,R) 
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Remark 3.3. It is easy to deduce from (ii) that the geodesic joining any 
two points is unique in N. 

Our definition of non-positive curvature was borrowed from [11]. There 
are other definitions of metric spaces of non-positive curvature; for example, 
Aleksandrov spaces and CAT (0) spaces. Here we require that (ii) holds 
globally. This condition actually implies N is simply connected at least for 
locally compact N. 

We quote a quadrilateral comparison theorem due to Reshetnyak [18] 
which will be used later. 

Theorem 3.4. Let (AT, d) be a complete metric space of non-positive curva- 
ture. For any {P, Q, i?, S} ordered four points in N, pick {P, Q, P, S} C R2 

such that d(P,Q) = |P- Q\, d(Q,R) = \Q - R\, d(R,S) = |P - S\, 
d(S,P) = \S- P|, then for any0<\,5<l 

(3.5)   d((l-\)P + \S,(l-6)Q + 6R) 

< \(1-X)P + XS-(1-6)Q + 5R\ 

Proof See [11] Corollary 2.1.2. □ 

A locally compact simply connected complete metric space of non- 
positive curvature iV allows a compactifition N = N U ON by using the 
equivalence classes of geodesic rays. Any isometry action induces a contin- 
uous action on the boundary. The convergence in the compactified space 
can be described as the following. Consider any sequence {a;} in iV, pick 
up any base point o in AT. There exist a small geodesic ball B0 centered at 
o which is compact. Let k be the unique geodesic joining o and a;, k inter- 
sects with the boundary of BQ at a unique point b^ The sequence {bi} has 
a convergent subsequence 6^. —> 6. Then {a^} converges to the equivalence 
class represented by the geodesic joining o and b. 

Two interesting examples of locally compact complete metric spaces of 
non-positive curvarure are Riemannian symmetric spaces of non-compact 
type and Bruhat-Tits building. 

We proceed to define the tangent cone of AT at a point P. First, we 
define the angle between two geodesic rays at P. For any two other points 
Q, P, denote (1 - s)P + sQ by Qs and (1 - t)P + tR by P*. 
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Lemma 3.6.  The expression 

m, d2(P,Qs) + d2(P,Rt)-(P(Qs,Rt) 
[ ' ; 2d(P,Qs)d(P,Rt) 

is bounded between —1 and 1 and non-decreasing as s, t —> 0+ 

Proof. By the triangle inequality 

d2(P,Qs) + d2(P,Rt)-d2(Qs,Rt) 

2d(P,Qa)d(P,Rt) 

^^ d2(P, Qs) + d\P, Rt) - (d(P, Qs) - d{P, Rt))2 

2d(P,Qa)d(P,Rt) 

<1 

Similarly, we can prove it is bounded below by —1. We show that for s, t < 1 

d2(P, Qs) + d2(P, Rt) - d2(Qs, Rt)      d2(P, Q) + d2(P, R) - d2(Q, R) 
2d(P, Qs)d{P, Rt) - 2d(P, Q)d(P, R) 

The above inequality is equivalent to 

(3.8)      d2(Qs, Rt) < (s2 - st)d2(P, Q) + (t2 - st)d2(P, R) + std2(Q, R) 

The right hand side of (3.8) is exactly the length of \QS — Rt\ in the compar- 
ison triangle PQR in R2. Therefore (3.8) follows from Theorem 3.4. This 
implies the monotoneness of the expression (3.7) in general. □ 

We define the angle 0 suspended by Q and R at P by taking cos9 to be 
the limit of (3.7) when s, t —» 0+. It is obvious that this angle depends only 
on the geodesic rays spanned by Q and R and is denoted by 0([Q], [R]). 

Lemma 3.9. dp(Q,R) = d2(P1 Q)+d2(P,R)-2d(P, Q)d(P,R)cos0([Q], [R]) 
is a pseudo-distance function on N. 

Proof. In the definition of cos0([Q], [R]) we may take s = t, then dp(Q,R) 
can be written as 

(3.10) lim U(Qt,Rt) 
t—►o • c 
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The function jd(Qti Rt) is non-increasing as t —» 0+ and thus the limit exists 
as a pseudo-distance. □ 

Now we can define the tangent cone of N at P e N 

Definition 3.11. The tangent cone of N at P, (TpN,dp) is defined to be 
the metric space N/ ~ where ~ is defined by Q ~ R iff dp(Q1 R) = 0. The 
projection map N —> N/ ~ is denoted by 7rp. 

Notice that when N is a Riemannian manifold, the map TTP : N —> TpN 
is just the inverse of the exponential map. 

The following lemma is clear from the above characterization of dp. 

Lemma 3.12. irp is distance non-increasing and distance preserving in the 
radial direction, i.e. 

(3.13) dp(7rp(Q), 7rp(R)) < d(Q, R) 

(3.14) dp(7rp(P),7rp(Q)) = d(P,Q) 

Lemma 3.15. The tangent cones of a complete metric space of (globally) 
non-positive curvature are again complete metric spaces of (globally) non- 
positive curvature. 

Proof. Take limt_>0+ jd(Qt, Rt) as the definition of the metric on the tangent 
cone. It follows from taking limit of the non-positive curvature condition 
(3.2). □ 

This lemma holds for a more general situation where only a upper bound 
of the curvature is assumed, see [16]. 

Definition 3.16. We say a complete metric space of non-positive curvature 
JV is well approximated by the tangent cone at P if there exist a S such that 

(3.17) d2(Qs,R) < d2p(7rp(Qs),7rp(R)) + r(s) 

for any Qa = (1 - s)P + sQ with d(P, Qs) < S and lims^o+ ^f- = 0. 

Actually we have the following Taylor expansion for d2(Qs, R). 

(3.18) d2(Qs, R) = d2(PJ R) - 2d(P, R)cos0([Q], R) • s + R(s) 
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with lim^o ^ = 0 and 

cosom R) = Jm 2d(P,Qs)d(P,R)  

A priori 0([Q], R) depends not only on the direction but also the location of 
R. 

On the other hand, for dp(/Kp(Qs), irp(R)) we have 

(3.19)        d2p(7r(Qs), ir(R)) = d2(P, R) - 2d(P, R)cos0([Q], [R]) • 5 + 52 

The condition that N is well approximated by the tangent cone implies 
cos9([Q],R) = cosO([Q],[R]). 

Both Riemannian manifolds of non-positive sectional curvature and 
Bruhat-Tits buildings are well approximated by the tangent cone at all 
points. In the Riemannian case, this can be deduced from the first vari- 
ation formula of geodesies. In the building case, the tangent cone is actually 
locally isometric to the building. 

4. Generalized harmonic maps. 

Let X be a finite simplicial complex with counting measure fi on its vertices 
and 7ri(X) the fundamental group of X. Denote the set of vertices of X 
by -X'(O) and the set of all i dimensional simplices of X by X(i). For any 
vertices rci, • • • a^+i, (#1, • • • a^+i) denotes the i simpliex spanned by them if 
it exists. 

Definition 4.1. h is said to be a weight function on X if h is a non-negative 
symmetric function on X(0) x X(0) such that ^(x, y) > 0 if (x, y) is an edge, 
and h(x, y) = 0 otherwise. 

We may lift h to a function defined on X(0) x X(0) which is invariant 
under the diagonal action of 7ri(X). Here X denotes the universal covering 
oiX. 

Let TV be a metric space and p : ^i{X) -^ I(N) a group homomorphism 
into the isometry group of N. Consider the space of p equivariant maps 
from the set of vertices of the universal covering of X to AT. That is 

(4.2) Ep = {/ : X(0) -> N, f(<yx) = p{i)f{x) for all 7 G TQPQ} 

The generalized energy functional and the generalized harmonic map are 
defined as the followings. 
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Definition 4.3. For any f eEp , the /i-energy functional Eh(f) is defined 
to be 

(4.4) Eh(f) = J J h(x, y)d\f {x), f (y)W(x)dti (y) 

where the integral is taken over 7ri(X)\X x X by the equivariance of h and 

/• 

Definition 4.5. / G Ep is said to be a generalized h -harmonic map if 
Eh{f) attains the minimum of Eh in 5^. 

In general, we may consider a measure space (X, //) and a group F acting 
on X preserving fi. The weight function h is then a non-negative function 
on X x X which is F invariant. This is the general case discussed in [9]. 
We list two other examples here. It is not known whether our vanishing 
argument can be extended to these interesting examples. 

Example 4.6. If X is a Riemannian manifold of dimension n, then we can 
take he{x,y) = ■^mXBixrfiy), where XB(x,e)(y) is the characteristic func- 
tion of the geodesic ball B(x1 s). The energy Eh£(f) approaches a constant 
multiple of the usual energy functional /1 V/|2 as e tends to zero. See [9] 
and [11]. 

Example 4.7. Let (X^/J,) be a locally compact group with the Haar mea- 
sure //. In [13], the author took a strictly positive continuous function (f) on 
X satisfying some growth condition and let /i(a:, y) = (/)(x~1y). 

Let X now be a finite simplicial complex with weight function h and 
(TV, d) a complete metric space of non-positive curvature. 

Theorem 4.8. Let N be locally compact If p :T = ^liX) H-> I(N) is a 
homomorphism such that the induced action on dN does not have any fixed 
point then the generalized h-harmonic map exists. 

Remark 4.9. The assumption on p can be weakened. We only have to 
assume p is reductive in the sense of [9] where a more general existence 
theorem is proved. 

Proof. Let p be the number of vertices of X. The space of p equivariant map 
Ep can be identified with Np. We think of Eh as a function on Np by picking 
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a fundamental domain for the action of 7ri(X) on the univeral covering of 
X. We shall prove the functional Eh is proper and convex on Np, then there 
exists a minimum point for Eh- Convexity of Eh follows from the fact that 
d2 is a strictly convex function, see Corollary 2.1.3 in [11]. Suppose Eh is 
not proper, then there exists a sequence {/;} —> oo in Np with Eh (fi) < K, 
for some constant K. In particular, by passing to a subsequence , we may 
assume there exists a vertex v such that fi (v) converges to a point in dN. 
We may well assume v is a vertex of the fundamental domain. Let d-g be 
the simplicial distance on X(0). Suppose the simplicial distance between 
v and 7 (v) is realized by a path v = xo, #1 • • * ^d = 7 (v) where Xi are all 
vertices of -X"(0), then 

d-l d-l 

dN {fi (x), fi (7 (x))) <^2dN (fi (XJ) , fi (XJ+I)) < ci ^T \jEh (fi) 
3=0 j=o 

<ci>/Fdjf (v,7(v)) 

Here ci is the maximum of h(xy) ^or a^ edges (x, y). By the above compu- 
tation, we see that djv (fi (x), 7 (fi (%))) is independent of i, and therefore 
fi (x) and j(fi (x)) define the same limit in dN. Since this is true for all 
7 G F, lim fi (x) is a fixed point in dN, a contradiction. The theorem is 
proved. □ 

5. Local first eigenvalues in a metric space. 

Let (JM, Z/) be a measure space with a finite non-negative measure v. Let ^ 
be a non-negative symmetric function on M x M and we assume ^(v) = 
jM ^'(v, u)dv(u) is finite for all v. 

Let (T, dx») be a complete metric space of non-positive curvature. Fol- 
lowing [11], we define L2(M, T) to be the set of separable maps </>: M —► T 
for which the inverse image of open sets are measurable such that 

(5.1) /#,*(■)= /  *(u)d2
T(',(l>(u))dv(u) 

JM 

is finite at some point in T. 

Lemma 5.2. Let (f) E L?'(M,X), then there exists a unique point 4>^ in T 
minimizing /(/>?^(*)- 

Proof See Lemma 2.5.1 in [11] □ 
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In our application, T is going to be the tangent cone of a complete metric 
space of non-positive curvature. ^ is called the weighted center of mass of 
cj) with respect to \I/. 

The following proposition gives more precise information about the be- 
havior of the function / = 1^ near (/>#. 

Proposition 5.3. For any P G T, 

(5.4) I(P) > I(fo) + d2(P, fo) [  *(u)dv(u) 
JM 

Proof. Parametrize the geodesic joing 4>q/ and P by 7 such that 7(0) = fa 
and 7(1) = P. By (3.2), we have 

J *(ii)4(7(t), ^(u)) < (1 - t) J *(fi)4(7(0), ^(ti)) 

+ tJ^(u)d2
T(1(l)^(u)) 

-t(l-t)y*(ii)4(7(0),7(l)) 

Since 

J $(«)4(7(0)^(«)) < I ^(ti)4(7(*)^(«)) 

Plug this into the last inequality, the zeroth order term in t are canceled. 
Divide every term by t, we get 

|*(u)4(7(l),*(i0) 

> J *(«)4(7(0), <f>(u)) + (1 - t)4(7(0), 7(1)) J *(u)du(u) 

Let t —> 0 and the proposition is proved. D 

Definition 5.5. The first eigenvalue of (M, ^O in T is defined to be 

(5.6) A1(M*,r) = nun /*(ti)4(^,0(tt))d1/(u)  

where the minimum is taken over all nonconstant 0 e L2(M,T). 
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When T is an Euclidean space R71, we have 

(5.7)        AK^.^R^^n^^'^^-ffff^W 

The minimum is taken over all </> with J^ ^(u)(l)(u)du(u) = 0 because we 
can translate the weighted center of mass fa to the origin in Rn. It is easy 
to see Ai(A/l,^/,Rn) is independent of n and we denote it by Xi(M^f) . 
When (.M, U) is the set of vertices of a graph with counting measure and ^ 
is the adjacency matrix of the graph, this coincides with the usual definition 
of first eigenvalue for a graph. 

6. Vanishing theorem for harmonic maps. 

In this section, we are going to deal with a special class of weight functions. 
For any vertex x in X, we recall that St(x) denotes the subcomplex formed 
by simplices containing x and Lk(x) the union of the faces of St(x) that 
do not meet with x. Lk(x) is also endowed with a simplicial structure and 
Lk(x)(0) cX(0). 

Definition 6.1. We say^jsan admissible weight function if h(x,y) = 
fxp(x,y,z)dij,(z) for some nomiegative symmetric function p on X(0) x 
X(0) x X(0). We let (X, h,p) denotes such an admissible weight. 

For example, if X is a 2-dimensional simplicial complex such that each 
edge is the face of at least one 2-simplex, then an admissible weight can be 
obtained by assigning a positive number to each 2-simplex. 

Definition 6.2. If (X,h,p) is an admissible weight, then px = p(x, •, •) is 
called the induced weight on the simplicial complex Lk(x). 

We remark that px can also be viewed as a function on X(0) x X(0) 
which supports on Lk(x)(0) x Lk(x)(0). 

Let hx(') = jpx{',y)dn{y) = /i(x, •), then by Definition 5.5 with 
{M,v) = Lfc(x)(0) with counting measure, ^ = px, \I> = hx and T a 
complete metric space of non-positive curvature, we have 

(6.3)     A1(Lfc(*)(o),fc,r) = ^lklxMy^T{<i>{yU{z))dydz 
* Sx^y^H^Aiy^dy 
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for all non-constant (j) G L2(I/fc(x)(0),T). 
When T is an Euclidean space, we define 

Definition 6.4. The local first eigenvalue of an admissble weight (X^h^p) 
is defined to be 

(6.5) MMX>P)=   T^Xi(Lk(x)(0)9px) 

We are ready to prove the vanishing theorem. In the rest of this section, 
(TV, d) is a complete metric space of non-positive curvature. 7rq : N H-> T^Af 
is the projection map defined in Definition 3.11. We recall that the tangent 
cone TpiV is again a complete metric space of non-positive curvature and 
\i(Lk(x)(p),px,TpN) makes sense. 

Lemma 6.6. If f : X(0) i—> N is a generalized h-harmonic map and N is 
well approximated by the tangent cone at f{x), then ^f{x){f{x)) Tninimizes 
the function 

Hx,y)d2
f{x)(-^f(x)(f(y))W(y) L IX 

in Tf(x)N for any x. 

Proof We first note that the integral is actually taking over Lk{x). Since / 
is a generalized /i-harmonic map, f{x) minimize 

/(.)= f Kx,y)d\,f(y))dv{y). 
Jx 

Consider any variation along a geodesic ray from f{x) to Q, by (3.18), we 
have 

(6.7) 

-2 j h(x, y)d(f(x), f(y))co80([Q], mW(y) ■ s + R(s) J h(x, y)d^y) > 0 

for any direction. Since lims^o —^   = 0, we get 

(6.8) J h{x, y)d(f(x), f(y))cos9([Q], f{y)W{y) < 0 

By the well approximated by the tangent cone assumption, 

cosO{[Q],f{y)) = cose{[Q\,[f{y)]), 
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therefore 

(6.9) Jh(x,y)d(7rf{x)(f(x)),irm(f(y)))cos9([Q], [f(y)])d»(y) < 0 

Integrate the Taylor expansion for the function dffx\(m,nf(x)(f(y)) (3-19), 
the lemma is proved. □ 

Theorem 6.10. Let N be a complete metric space of non-positive cur- 
vature which is well approximated by the tangent cone at all points. If 
(X, h, p) is a finite simplicial complex with an admissible weight such that 
Xl(Lk(x)(0)1pXjTpN) > 5 for all x G -X'(O) and P E N, then any general- 
ized h-harmonic map from -X"(0) to N is a constant map. 

Proof. We first recall for any point P in iV, the projection map irp : N *-+ 
TpN is distance nonincreasing and is distance preserving in the radial di- 
rection. 

Therefore, for any x e X(0) 

C6-11)    g J J P(x>y>z)df{x) (*f(x)(f(y)),*f(x)(f(z))) dfi{y)dfi(z) 

< \ ffp(*> y> z)d2 (/(»)> /(*)) MyWW 

By the previous lemma and the definition of the first eigenvalue (6.3) apply- 
ing to the map TT/^X) 

0 f '• Lk(x)(0) i-> Tf(x)N, the left hand side is no less 
than 

(6.12) \i(Lk{xm,px, Tf{x)N) J h(x, y)d2 (/(x), f{y)) d^y) 

Since \i(Lk(x),px,Tf(x)N) > ^, we have 

(6.13) Jh(x,y)d2(f(x)J(y))dii(y) 

< J Jp(x, y, z)d2 (/(y), f(z)) diL(yW(z) 

Now we integrate over X with respect to the variable x and by definition 
HVi*) = Ip(x^y^z)dl^(x). We get a contradiction unless Eh(f) = 0, i.e. / 
is a constant map. □ 
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7. Applications to representations of discrete groups. 

In this section, k denotes a non-archimedean completion of either an alge- 
braic number field or an algebraic function field in one variable over a finite 
field. 

We recall by Archimedean representations of T we mean a homomor- 
phism of F into a real simple Lie group G. In this case we consider har- 
monic maps into the Riemannian symmetric space associated with G and 
the tangent spaces are Euclidean spaces. Therefore the first eigenvalue is 
independent of the target space. The next theorem follows from combining 
Theorem 4.8 and Theorem 6.10. It was also proved in [21]. 

Theorem 7.1. If (X,h,p) is a finite simplicial complex with an admissible 
weight such that Ai)/oc(LA:(x),p) > 5, then the image of any Zariski dense 
representation of TI\{X) in a real simple Lie group with trivial center G is 
precompact in G. 

It was pointed out by the referee that if the maximal compact subgroup 
of G is Zariski closed in G, then the theorem implies 7Ti(X) does not have 
any Zariski dense representation in G. 

This theorem, when applies to Bruhat-Tits buildings, gives a new proof 
of a case of Margulis' superrigidity theorem. We state it as a corollary. 

Corollary 7.2. For any integer I > 1, there is an integer M such that if 
k has residue field of cardinality at least M, if H is a simply connected k- 
simple Lie group of rank I, and if Y is a cocompact lattice in H, then the 
image of any Zariski dense representation ofT in a real simple Lie groups 
with trivial center G is precompact. 

We remark that the restriction of the cardinality of the residue field is 
not necessary in Margulis' theorem. However, we cannot get rid of this 
assumption at this moment. The proof of Corollary 7.2, also appeared in 
[21], consists of estimating the lower bound of Ai for Bruhat-Tits buildings. 
The admissible weight p used in this case is equal to l{l — l)p where I is the 
dimension of the building and p(a) is the number of I dimensional simplices 
having a as a face. This estimate essentially appeared in [6] where the 
author showed the vanishing of the first group cohomology for such lattices. 

Now we consider non-Archimedean representations. Let G be a simply 
connected noncompact fc-simple Lie group and N denotes the Bruhat-Tits 
building associated to G. TqN is a simplicial cone with a complete metric 
of non-positive curvature. It is isomorphic to the cone over the link of the 
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minimum dimensional simplex containing q. For material about Bruhat-Tits 
buildings, we refer to [3] and [2]. The theorem we proved is the following. 

Theorem 7.3. Let (X^h^p) be a finite simplicial complex with an admissi- 
ble weight such that \i(Lk(x)(0),px,TqN) > ^ for all x G -X'(O) and q £ N, 
then the image of any Zariski dense homomorphism p : TTI (X) h-> G lies in 
a bounded subgroup of G. 

In general, the first eigenvalue Ai is hard to compute. In a later paper 
we give an estimate in the case when AT is a tree, which includes all rank 1 
buildings. In this case, the tangent cone of N are n-pods Pn ~ U£=1(R

+ U 
{0})/ ~ so that the equivalence relation ~ identify the origin of all R+U{0}. 
We show that §Ai(£/, h) < \i(G,h,Pn) < \i(G,h) and prove a fixed point 
theorem for actions on trees. 

For higher dimensional AT, so far we can only compute 

WLkixm^TgN) 

in the following example. Let G — PGL(3, Q2) where Q2 are 2-adic num- 
bers. iV is then a 2-dimensional simplicial complex and there are three types 
of tangent cones. Firstly, if q is an interior point of a 2-simplex, then TqN 
is an Euclidean two plane. Secondly, if q is an interior point of a 1-simplex, 
then TqN is the union of three half planes. Lastly, if q is a vertex, then TqN 
is a cone over the spherical building associated with PGL(3, Z/2Z). The 
spherical building associated with PGI/(3, Z/2Z) is a bipartite graph with 
7 vertices representing points in the projective plane P2 (Z/2Z) and other 
7 vertices representing lines in the same space. The edges of this graph is 
given by the incidence relations in P2 (Z/2Z). 

Now we take a torsion-free cocompact lattice F in G and let X = r\N 
be the quotient simplicial complex. Take p so that p(x, y, z) = 1 if (re, y, z) 
is a 2-simplex and p(x, y, z) = 0 otherwise. Then Ai(Lfc(a:)(0),pa;, TqN) = ^ 
when q is a vertex. This Ai is attained by a map (f> : Lfc(x)(0) —> TqN so 
that d((f)(x), (t>(y)) is a constant if (x,y) is an edge. It looks very plausibe 
that in this case we can prove the harmonic map is actually a simplicial 
isometry. 
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