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Integral curvature bounds and bounded diameter 

CHADWICK SPROUSE 

We prove an analogue of Myers' diameter bound for Riemannian 
manifolds in the case where the Ricci curvature below a positive 
constant is small in an averaged sense. This improves several pre- 
vious results for manifolds with small amounts of nonpositive cur- 
vature. 

1. Introduction. 

One of the earliest and most fundamental theorems relating local geome- 
try to global geometry/topology is that of Myers [10], which states that a 
complete Riemannian manifold with Ricci curvature bounded from below 
by (n — l)fc > 0 is compact, with diameter < ir/y/k, and finite fundamental 
group. There have been several attempts to generalize this in various direc- 
tions, the closest in spirit to the following being those of Elworthy-Rosenberg 
[5],[6], Rosenberg-Yang [14], and Wu [15] which extend the theorem to man- 
ifolds with small "wells of negative curvature". In these cases, the wells are 
assumed to be of either small diameter ([5], [15]), or small volume ([6], [14]). 
(Note that with this type of theorem it is also necessary to impose a re- 
striction on the "depth" of the wells, such as a fixed but arbitrary lower 
Ricci curvature bound, as can be seen by attaching a very small handle to 
a sphere, or by attaching two spheres by a very small neck.) In addition, 
in [14] there are related generalizations of Bochner's vanishing theorem and 
Myers' 7ri-finiteness result for wells bounded in L1-norm. 

Here, we show using an inequality of Cheeger-Colding that in fact for 
a complete Riemannian manifold with (nonpositive) lower Ricci curvature 
bounds, one has bounded diameter and finite fundamental group provided 
that the Ricci curvature below some positive constant is small in a suitable 
integral sense. This generalizes several of the results in the above papers. 
In particular, all theorems on the finiteness of 7ri(M) in the above are con- 
sequences of Theorem 1.3 below. Furthermore, [14, Theorem 11.1] and [15, 
Theorem 1] should be compared with Corollary 3.2 and Theorem 1.2, where 
we are able to bound the diameter of M by a value arbitrarily close to TT 

without restricting the set of points on which the Ricci curvature can be 
nonpositive. 
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For many recent results on manifolds with integral curvature bounds, 
see [11], [12], [13] and the references therein. 

Notation: Let Ric_(a;) denote the lowest eigenvalue of the Ricci tensor, 
Ricx. (Mn,g) will always be a complete n-dimensional Riemannian mani- 
fold. For an arbitrary function / on M, /+(x) = max{/(:c),0}. 

Theorem 1.1. Let (M, g) be a compact Riemannian manifold with Ric > 0. 
Then for any 5 > 0 there exists s = £(n, 5) such that if 

then diam(M) < TT + 5. 

In the case that (M, g) is noncompact or does not possess nonnegative 
Ricci curvature, one can achieve a similar result by averaging the 'bad' part 
of Ric over metric balls. 

Theorem 1.2. Let (M,g) be a complete Riemannian manifold with Ric > 
(n — l)k (k < 0). Then for any i?, S > 0; there exists e = 6:(n, fc, JR, 8) such 
that if 

t1'2)       sup vnirffL nw I      ((n - l) " Ric-MF < e^ fc'^ 5)' 
x    VOl(tf(X,K)) JB(X,R) 

then (M, g) is compact, with diam(M) < TT + 5. 

Finally, we show that under similar conditions, one can also restrict the 
topology of M as in Myers5 Theorem. 

Theorem 1.3. Let (M,g) be a complete Riemannian manifold with Ric > 
(n — l)k (k < 0). Then for any R > 0; there exists s = e{n, k, R) such that 

if 

(L3)        sup vni^L m\ I      ((n " ^ - Ric-)+^ < ^ ki R)i 
x    VO[{B{X,K)) JB(X,R) 

then the universal cover of M is compact, and hence 7ri(M) is finite. 

We note that in the aforementioned papers, all theorems on the finite- 
ness of 7ri(M) are proved in the class of Riemannian manifolds with Ric > 
(n— !)&, diam < D, and vol > v. By a theorem of Anderson [1], this implies 
that the number of isomorphism classes possible for 7ri(M) is finite. How- 
ever, in the above we merely require that our curvature quantity is small 
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in an averaged sense, rather than assuming a strict lower volume bound on 
(M, g). Hence there are an infinite number of possible isomorphism classes 
for 7ri(M). For instance, S3/Zq with constant sectional curvature 1 metric 
will always satisfy the hypotheses of Theorem 1.3. On the other hand, in the 
noncollapsing case one can also extend a result of [14] to achieve finiteness 
of 7ri(M) when no pointwise curvature bounds are assumed at all (Theorem 
4.2 below). 

As with [15], [14, Theorem 11.1], the proofs of Theorems 1.1-1.3 are 
geometric, being for the most part faithful to Myers' method in [10]. This is 
in contrast with [6], which depends on more analytic techniques. For recent 
probabilistic arguments, see [2] for an entirely different proof of the original 
theorem of Myers, and also [9] for results related to [14]. 

Acknowledgement. The author would like to thank Peter Petersen for 
very helpful advice and encouragement. 

2. Compact manifolds of nonnegative Ricci curvature. 

Let Ai, A2, W be open subsets of M such that Ai,A2 C VF, and all minimal 
geodesies 7^ from x G Ai to y G A2 lie in W. f will be any nonnegative 
integrable function on M. 

In order to convert integral curvature bounds on M into integral bounds 
along geodesies we will use the following estimate of Cheeger and Colding 
([4, Theorem 2.11]): 

(2.1)     / f    f^(s))dsdVAlxA2 
JA1XA2 Jlx,y 

C(n, k, R) (diam(^2) vol(Ai) + diam(Ai) vol^)) /  fdV. 
Jw 

IA1XA2 «/7x,y 

< 

Where for k < 0, 

(2.2) C{n,k,R) = &Xe<dBk^K)\ 
area(9B/c(a:, ^)) 

(2.3) R > sup{d(x,y)\(x,y) G (Ai x A2)}, 

and Bk(x,r) denotes the ball of radius r in the simply-connected space of 
constant sectional curvature k. We will assume henceforth in this section 
that Ric > 0 on M, and thus C(n, fc, R) = C{n). 
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Ai and A2 will be metric balls of small radius, W = M, and / = ((n — 
1) — Ric_)+. We assume that all geodesies are parameterized by arclength 
and, by possibly removing a set of measure 0 in Ai x A2, that there is a 
unique minimal geodesic from x to y for all (re, y) G (^4i, A2). 

Proof of Theorem 1.1.   Let p, q € M be such that d(p, q) = diam(M) = D, 
r>0, j4i = fl(p,r), i42 = B(g,r). 

Then (2.1) gives 

(2.4) f f    ((n-l)-Ric-)+dsdVAlxA2 
JA1XA2 Jlx,y 

< 2rC(n) (vol(Ai) + vol^)) / ((n - 1) - Ric_)+dy, 

which implies 

(2.5) inf        /    ((n-l)-mc-)+£fa 

< 2rC(n) (^-TT + -4T^) f ((n " ^ " Ric_)+dy 
Vvol(Ai)     yo\(A2)J JM 

< ArC(n)——^— f ((n - 1) - Ric-)+dV, K J rn vol(M) yM
u J ^ 

where the final inequality follows from relative volume comparison. We can 
then find a minimizing unit-speed geodesic 7 from x G Ai to y G A2 which 
realizes this infimum, and will show that for L = d{x, y) much larger than 
TT, 7 cannot be minimizing if the right hand side of (2.5) is small enough. 

Let Ei(t),...,En(t) = 7/(t) be parallel, pointwise orthonormal vector 
fields along 7, Y; = sin(^)JSi(*), z = 1, ...,n - 1. Then denoting by Li(s) 
the length functional of a fixed-endpoint variation of curves through 7 with 
variational vector field Y^ we have by the second variation formula for ar- 
clength 

(2.6) 
i=1    as      s=0       i=1J0 

= lL(n-1)icos2(T)'sia2{T)mc{l'^)ds 

= (n-l)^gcos2(f)-sin2(^)dS 
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+ J    sin2(T)((n-l)-Ric(7',7
/))dS 

.2 

2       V*     L? 
L 

(n-l)Lf1_ir 

+ J   sin^^an-lJ-RicCy.y))^. 

And if the above quantity is negative, then there is a fixed endpoint variation 
7a(t), satisfying 

d2 

(2.7) ^2length(7s) <0, 
s=0 

and thus 7 = 70 cannot minimize arclength. 
But then, 

(2.8)    J   sin2(^)((n-l)-Ric(y,y))d5 

< /  sin2(^)((n - 1) - Ric_)+ds 
JO L 

< [ ((n - 1) - Ric_)+ds 

< 4rC(n)—    J,,.   / ((n - 1) - Ric_)+dV. w rn vol(M) yM
u J J+ 

So suppose that we want to assure D = diain(M) < TT + 8.  Then letting 
r = ^, choose AT = ./V(<5) such that 

(2.9) r^<^ 

By the triangle inequality, 

(2.10) L = d(x, y) > dip, q)-2r = D(l-^y 

So then showing that L must be less than TT + | will finish the proof. By 
(2.6), 7 cannot be minimal if 
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This, together with (2.10) implies that 7 cannot be minimizing if 

(2.12) 

So then choosing 

we have that if 

then 

(2.15) D = diam(M) < T < TT + 6. 
1 ~ Tv 

□ 

3. Complete Manifolds of Ricci Curvature Bounded Below. 

We first assume that R > TT. Then we will in fact show the following: 

Theorem 3.1. Let (M,g) be a complete Riemannian manifold with Ric > 
(n - l)k (k < 0). Then for any fixed R > TT, there exists £ = e(n, fc, it!, 5) 
such that if 

(3.1) *    m.  [       ((n-l)-Ric_)+dF<s(n5A;,i255)5 

for some B(p, R) C M then M = B(p, R) C S(p, TT + 5). 

Proo/. Again we will use estimate (2.1). Fix p G M, VF = B(p,R). Then 
g will be any point in W such that TT + 4r < d(p, g)  < R - 3r, where 
0 < r < l(R - TT) is to be determined, and Ai = B{p,r), M = B(q,r). 
Prom the triangle inequality, all minimal geodesies from x G Ai to y G An- 
lie in W. 
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As in the proof of Theorem 1.1, there is a geodesic 7 of length L from 
x € Ay to y £ A2 with 

(3.2)     f((n - 1) - Ric_). )+ds 
if 

< 2rC(n, k,R)' 1 

vol(B(p,r)) 

^r))) JB< 

< 2rC(n, jfc, R) 

vo[(B(q,r))J JB(P,R) 

Vk(R) 1 

((n - 1) - Ric-)+dV 

< 2rC(n, k, R) 

vk(r)vol{B(p,R)) 

) vol( 

vk(R) 

+ !^__l__'l /        ((n _ 1) _ Ric_)+dV 

Vk(r) 

+^M'l ) f       ((n _ i) _ RicMV. 
^ vk(r) Jvol(B(P,R))JBip^ ' ,+ 

Now suppose we want to show that B(p1R) C B(p, n + 5), where J < 
^(i? — TT). Then fixing r = |5, and proceeding as in Theorem 1.1, we have 
that (3.2) implies that 7 cannot be minimizing if 

(3.3) 

-5C(n,k,R)        '             ,/R,    nxx / ((n - 1) - Rac-J+dV 
2 ^fcCi5) vol{B{PiR)) JBfaR) 

(n - 1)L (      ^ 
1        L2 

So setting 

H^ 2 vk{\5)        (n-l)(7r+^)/ TT
2
      N 

^'; 8C{n,k,R)vk{R)+vk{2R) 2 \      („ + ffi} > 

we have that if 

(3-5) vnirnL p^ /      ((n" ^ " Ric-)+dvr < e' vol(B(p, i?)) ys(p,fl) 

then the minimizing geodesic 7 from B(p,r) to B(q,r) must have length 
L < 7r+^5. So then .D = ^(p, q) < ir+S. Hence for all points q 6 B(p, R—3r) 
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we have d(p, q) < TT + 5. And since TT + S < R — 3r, this implies that 
no geodesic emanating from p of length greater than TT + 5 can be length 
minimizing. Therefore M = B(p,R) = B(p,R- 3r) C B{p,TT + 5). □ 

By the triangle inequality, one also has: 

Corollary 3.2. Let (M,g) be a complete Riemannian manifold with Ric > 
(n — l)fc (k < 0). Then for any fixed R > TT, there exists £ = e(n, fc, i2, 8) 
such that if 

(3-6)       vniraL m\ I      ^n " ^ " Ric-My < ^^R>s) vol{B(p,K)) JB(J>,R) 

for some B(p, R) C M, t/ien diam(M) < 2(7r + 5). 

Theorem 3.1 shows that Theorem 1.2 holds for R > TT. We are then left 
with showing the result for R < TT. 

Proof of Theorem 1.2. 
Let i?' > TT be fixed. Then for any R < TT, we have as is standard ([8]) 

that there is N = iV(fc, -R, it!') such that any it^-ball in M can be covered by 
N or fewer i?-balls, B{xi,R). So then, 

(3-7)     vnirJ,   pm   / ((n-lJ-RiC-MV vol(.B(2, it')) 7B(2,i?') 

vk(R>)    vol(B(z,R + R')) 

■ sup / ((n - 1) - Ric-)+dV 

■sup vnimt  p\\ I       ((n " l) - Ric-)+^ 
Xi   VO\{B[Xi,R)) JBixuR) 

And thus we have 

(3.8)    sup——!—-/ ((n - 1) - Ric_MT/ 

< N^R^'f^ + f^ sup ^ /        ((n-l)-Ric_MF.D 
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4. Integral curvature bounds and the fundamental group. 

We now show that choosing 

W sup voirmr m) I     ((n - ^ - Ric-)+^ x   vol{B{x,K)) JB(X,R) 

small enough will imply compactness of the universal cover of M. As in the 
proof of Theorem 1.2, we will actually show something slightly more general 
than this. Theorem 1.3 will then follow from (3.8). 

Theorem 4.1. Let (M,g) be a complete Riemannian manifold with Ric > 
(n — l)k (k < 0). Then for any R > 2'K, there exists e = e(n, k, R) such that 

if 

(4-2)       vnifpL m I     ttn-V -Ric-)+dV < *(»>k>R)i vol(B(x, H)) JB(X,R) 

for some B(x, R) C M then the universal cover of M is compact, and hence 
7ri(M) is finite. 

Proof Let R > 27r. By Corollary 3.2 we can assume that diam(M) < R. So 
it is then sufficient to show that 

(4-3) volfBfr R))  I {{n -1)- Ric-^dV -+ 0 
VOl{±?{X,K)) JB(X,R) 

for x in M as 

(4-4)      ^M)!""-
1

)-^-'^-
0

- 
Let N denote the minimal number of fundamental domains in M necessary 
to cover B(x, R). Then we have that 

^ Vkifm     um~ oim / ((n " !) - Kc-hdV vk(R) vol(B(x,3R)) JM" ^ 

vk(R) iVvol(M) yM
u        J J+ 

= Vk{fS    1/,^ f ((n-1) "RM+dV, t;fc(i2) vol(M) 7^^ ; ;+ 
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and the result follows. □ 

It is worth pointing out that given the results in [7], [12], and [14] it is 
very possible that Theorems 1.2-1.3 are true with pointwise Ricci-curvature 
bound replaced by smallness in the D* norm of (— Ric_)+, p > f • However 
(2.1) does not readily generalize to this case. We do have at least one 
obvious extension of a result in [14] to the case of L9 curvature bounds, 
which states that given (M,g) with upper diameter bound, lower volume 
bound, and lower sectional curvature bound, smallness of the L1 norm of 
the Ricci curvature below a positive constant implies finite fundamental 
group. This is a consequence of Theorem 1.3 above, which does not require 
a sectional curvature bound, but it can also be slightly generalized in a 
different direction. Namely, in [14] the lower sectional curvature bound is 
used to control the 1-systole by Cheeger's method ([3]), which has been 
extended to i7 curvature bounds in [11]. Therefore combining the proof of 
[14, Theorem 5] with [11] one has: 

Theorem 4.2. Suppose (M,g) satisfies diam(M) < D, vol(M) > v. Let 
A G R, A > 0; p > n — 1. Then there is si = ei(n,p,v,D,h), £2 = 
e2{n,p,v,D,\h) such that if 

(4.6) / (A - sec_)^V < £1 
JM 

and 

(4.7) / (A - Ric_)+dy < 82, 
JM 

then M has finite fundamental group. Here, sec-(x) denotes the infimum of 
sectional curvatures of 2-planes at x. 

Proof. We follow the method of [14]. 
Let A and B be constants such that the Sobolev inequality 

(4.8) WfWl^-v^AWVfWl + BWfWl 

holds, where | < q < p. By the proof of [14, Theorem 10.1], if 

(4.9) / (A - Ric-)\dV < minCA-1, AS"1), 
JM 
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then the first homology group JH*
1
(M,R) vanishes for every finite cover M 

of M. If we take B = v~^, then by [7] A can be taken to be A(q, v,D), 
under the assumption that 

(4.10) / (A -Ric-)ldV < e3(n,q,v,D). 
JM 

Given that iJ^M^R) = 0 for all M, it is shown in [6] that if 7ri(M) is of 
polynomial growth, then 7ri(M) is in fact finite. By [14, Theorem 6], we 
have that this is true if 

(4.11) / (A - Ric_)^y < £4(71, g, v, D, s), 
JM 

where s is a lower bound for sys1(M). To bound sys1(M) from below, we 
use [11, Theorem 1.2], which shows that there is si(n,p, ?;,£), A) such that 
if 

(4.12) / (A - sec-)p+dV < sh 
JM 

then sys1(M) > s(n,p,v, D, A). So then assuming (4.12) holds, we can 
choose 

(4.13) £5 = min(A 1,XB  1,£3^4) = e5(n,p,q,v,D, A, A). 

Such that if 

(4.14) I (A-sec_)^ 
JM 

dV <Si 

and 

(4.15) / (A - Ric_)^y < £5, 
JM 

then M has finite fundamental group. But then we also have 
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(4.16) / (A - Bic-)%dV 

= [ (A-Ric_)^y+ / (X-Ric^ldV 
^{RioA} y{Ric_<A} 

< (A - A)^1 [ (A - mc-)+dV + 2q(X - A)q vol({Ric_ < A}) 
./{Ric_>A} 

+ 2q I (k-Ric-)q
+dV 

7{Ric_<A} 

< (A - A)9"1 / (A - Ric_)+dF + 2q{\ - A)q vol({Ric_ < A}) 
7{Ric_>A} 

+ 2q vol({Ric_ < A})^£( / (A - Ric^)p
+dV)p 

JM 

< (A - Ay1^ + 2q) [ (A - Ric-)+dV 
JM 

+ 2^(A-A)V(/ (A-Ric-O+dVO*?, 
JM 

where in the final inequality we have assumed that £i was chosen to be less 
than 1. So then we fix a q > ^, and choose £2 = e^in.p.v.D.X.A) such 
that for 

(4.17) / (A-Ric_)+dF<£2, 
JM 

the right hand side of the above equation is less than £5. □ 
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