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Seiberg-Witten invariants and double covers of 
4-manifolds 

YONGBIN RUAN1 AND SHUGUANG WANG2 

We establish explicit formulas for Seiberg-Witten invariants of 
(possibly ramified) double covers of smooth 4-manifolds. 

1. Introduction. 

Double covers are an important construction in smooth 4-dimensional mani- 
fold theory and had been intensively studied in the pre-gauge theory period. 
For example, Cappell-Shaneson [2] and Fintushel-Stern [3] used double cov- 
ers along RP2 in their constructions of 4-manifolds that are homotopic (in 
fact homeomorphic) but not diffeomorphic to RP4. Akbulut and Kirby [1] 
obtained the explicit diffeomorphism types for double covers of S4 branched 
along surfaces that can be pushed from a 4-disk to its boundary S3. In 
a different context, most of the known complex surfaces of general type in 
the geography problem are constructed as double covers of ruled surfaces 
through the work of U. Persson, G. Xiao and Z. Chen. 

The introduction of Donaldson's gauge theory has revolutionized the 
study of smooth 4-manifolds. Donaldson theory was particularly useful to 
study topological constructions in 4-manifolds, such as connected sums and 
fiber connected sums. One of focal points of Donaldson theory was to find 
formulas for Donaldson invariants under such constructions, for example, the 
blow-up formula and the gluing formula for fiber sums over torus. These 
formulas played a crucial role for the developments of gauge theory and 
its applications to 4-manifolds. Naturally, we would like to have a formula 
for Donaldson invariants for the double covers in view of their previous 
applications. 

To obtain such a formula, the second author [23] considered the natu- 
ral problem how to compare the moduli spaces of anti-self connections on 
a 4-manifold and its double branched cover.   The motivations here are to 
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study connections that have singularities along 2-dimensional surfaces and 
to construct possibly new "exotic" 4-manifolds from quotient manifolds in 
connection with real algebraic geometry. This method of studying singu- 
lar connections has proved to be quite effective in the remarkable work of 
Kronheimer-Mrowka [11]. However there is much less progress in the goal 
of relating the Donaldson invariants on a 4-manifold and its branched cover. 
The difficulty is to do with the fact that in order to have a smooth equiv- 
ariant moduli space, we need to use an invariant Riemann metric which 
is "generic" among invariant metrics (the covering manifold has a natural 
involution action which interchanges the two sheets of the covering map). 
The same invariant metric is however rarely "generic" among all metrics 
and hence the associated ordinary moduli space is not necessarily smooth 
in general. (Hambleton and Lee [6] describe the stratum structure of the 
ordinary moduli space. See a different treatment in [4].) Regardless of the 
smoothness, a structure theorem is obtained in [23] for the fixed point set of 
the ordinary moduli space under the induced involution action, which con- 
tains the equivariant moduli space as one component. In the current paper, 
this kind of structure theorem will be extended and will play an important 
role. 

The recently discovered Seiberg-Witten invariants [26] are much easier to 
understand than the Donaldson invariants in nearly all the aspects. Com- 
plete formulas for Seiberg-Witten invariants of connected sums and fiber 
connected sums have been obtained. These formulas underline the latest de- 
velopments in Szabo's examples about irreducible non-symplectic manifolds 
[22] and Fintushel-Stern's theorems relating Seiberg-Witten invariants to 
some knot invariants [5]. Seiberg-Witten theory has also brought new light 
to double cover constructions. For example, in the case of a general type 
complex surface with free anti-holomorphic involution, it is shown in [24] 
that the (non-simply connected) quotient manifold has vanishing Seiberg- 
Witten invariants but is indecomposable; Kotschick [9] further shows that 
it is irreducible. In a different direction, the first author [20], [21] developed 
a new technique (the virtual neighborhood method) in order to deal with 
the issue that the invariant Riemann metric is not generic among all met- 
rics. One would hope this time to be able to express the relation between 
Seiberg-Witten invariants on the quotients and the 4-manifolds as branched 
covers. This is the topic of our paper. 

In order to state our theorems in a concrete way, we introduce the set- 
up to be used. Let p : X —► X be a smooth double cover branched along 
an orient able connected surface S.   Suppose £ is a spinc structure on X, 
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with determinant line bundle L. The virtual dimension of the associated 
Seiberg-Witten moduli space is 

dL = -{c1{L)2-2ex-Zsx), 

where ex and sx are respectively the Euler characteristic and signature of 
X. 

First we consider the case that E = 0, namely p : X —► X is a unramified 
double cover. It is clear that there is a well-defined pull-back spinc structure 
£ on X via the projection p. Using the decomposition of the moduli spaces 
as in [23] and the virtual neighborhood technique of [21], we obtain the 
following result: 

Theorem A. (Theorem 4.2) Suppose that p : X —> X is an unramified 
cover and £ is a^spinc structure of X such that di = 0, ci(L) is non- 
torsion, and b2(X),b2(X) > 1. Then the Seiberg-Witten invariants satisfy 
the following relation: 

SW(£) = ][] SWfc ® 7) mod 2, 

where JC is the set of isomorphic classes of complex line bundles on X which 
pull back to the trivial bundle on X. 

In other words, Theorem A states that modulo 2, SW(£) is the sum of 
the Seiberg-Witten invariants of all spinc structures on X that pull back to 
the spinc structure £. (from [26], there are only a finite number of non-zero 
terms in the sum.) 

Next consider the case E ^ 0. Introduce the adjunction term of E with 
respect to L: 

Ji(E) = |c1(L).[S]| + [S]2 + eE. 

For definiteness, we concentrate on the case of ci(L) • [E] < 0. Although f 
is not a meaningful spinc structure because of the branched locus E, we can 
obtain a spinc structure £ on X whose determinant line bundle is p*(L) ® 
PjDp]"1 and whose restriction £|^g is isomorphic to the pull-back of £|X\E 

through the projection p. Consider the complement 

ps : X\E - X\E 

equipped with cylindrical end metrics. Then, pB is an unramified double 
cover again and the same argument for proving Theorem A applies to give 
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a relation between the relative Seiberg-Witten invariants. Using various 
gluing results due to Morgan-Szabo-Taubes [15] and Mrowka-Ozsvath-Yu 
[18], we study the relation between the relative invariant and the invariant 
of closed manifolds. After some detailed analysis, we obtain 

Theorem B. (Theorem 7.14) Let p : X —> X be a double cover branched 

along a surface E with [E]2 > 0; and such that b^iX) > 1; &2~(X) > 1; and 
Hi (X, Z) contains no 2-torsion. Suppose that £ is a spin0 structure on X 
whose determinant bundle L is such that ci(L) • PD[E] < 0; and the virtual 
dimension and adjunction term both vanish: di = ^L(E) = 0. Moreover 
assume [E]2 < 2g — 2 and Ag — 4 is not divisible by [E]2. Then the following 
equality holds: 

SW(i) = SW(Z) mod 2. 

In the case [E]2 = 0, we did not obtain a relation between the Seiberg- 
Witten invariants of the closed manifolds. However, we have 

Theorem C. (Theorem 6.8) Assume X, X, £, £ as in Theorem B except that 
Hi(X, Z) is allowed to have 2-torsion. As for E, we assume [E]2 = 0 and 
g>l.  Then 

SW(Ji) = SW{£) + %(X, E)     mod 2, 

where %(X, E) is a relative invariant defined in Definition 6.7, which de- 
pends on the topology of the embedding E C X. 

The adjunction equality JL(E!) = 0 plays a key role in the above the- 
orems, without which the theorems are not valid. The implication of 
JL(E) = 0 is that as far as Seiberg-Witten theory is concerned, the branched 
cover p : X —> X can be treated as complex branched cover along a complex 
curve. Thus Theorems B and C may be viewed as extensions of the familiar 
formula relating the canonical bundles of complex branched covers. As a 
simple application, in the situation of Theorem B, if X is a complex surface 
of general type then any smooth double cover X always has a Seiberg-Witten 
basic class. 

The reader probably notices that we left out the case [E]2 = 0 and 
g = 0,1. We remark that Theorem C fails in this case due to the more 
complicated gluing formula. We leave a more complete study to a future 
project. 

The paper is organized as follows: In Section 2 we will use the virtual 
neighborhood method to prove a relation between a Donaldson type invari- 
ant and the invariant counting the fixed points of an involution. In Section 3, 
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we prove the structure theorem of Seiberg-Witten theory with a ^-action. 
We apply results of Sections 2 and 3 to prove Theorem A in Section 4. In 
Section 5, we collect some basic topological properties for branched covers, 
by combining which with the study of relative invariants in details we prove 
Theorem C in Section 6 and Theorem B in Section 7. 

Convention. As it is commonly used now, we will abbreviate the word 
Seiberg-Witten as SW in this paper without further remark. 

2. A comparison theorem. 

Recall that the famous Lefschetz fixed point formula relates the information 
of fixed points to that of the total space. Our result in this section can 
be regarded as a generalization of the Lefschetz formula. Suppose that B 
is a smooth oriented Hilbert manifold and J7 is a smooth oriented Hilbert 
bundle. Let F : B —► J7 be a Fredholm section, namely F is represented 
by Fredholm maps in local trivilizations of J7. Throughout the section we 
assume that the moduli space A4 = JP~

1
(0) is compact but not necessarily 

smooth. Let r be an orientation preserving involution acting on #, J7 and 
commuting with the projection TT : J7 —> B. Let Mf C M. be the fixed 
point set. For any x E Mf, r acts on kerDF^ and cdkeYDFx. The induced 
action of r on these spaces has eigenvalues ±1 as r is an involution. Let 
ker^1 DFX, coker^Di^ be the ±1 eigenspaces. The virtual dimension of Mf 
is 

(2.1) dim ker+ DF - dim coker+DF; 

an x G Mf is a smooth point of Mf if and only if coker+i5jPx = 0. In [21], 
the first author outlined a so-called virtual neighborhood method to extract 
invariants $/,$ from Mf and M respectively. The virtual neighborhood 
method can also be used to compare $/ and $. This is the purpose of this 
section. Although we are concerned only with Seiberg-Witten equations in 
this paper, the result in this section holds in general. Therefore, we shall 
work on the general framework of Hilbert manifolds and Fredholm maps. 
For a technical reason, we assume that the virtual dimensions of both Mf 
and M are zero. 

In cases such as Seiberg-Witten equations, we can actually choose a 
generic r-invariant Riemann metric and a generic r-invariant perturbation 
such that Mf is a smooth manifold (but M may not be smooth). This is 
because the usual transversality argument still works in the equivariant set 
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up. In other words we can assume cokev+DFx = 0 for any x G Mf. On the 
other hand, the virtual dimension of Mf is zero. Therefore, A4f is a set of 
discrete points and $^ = #Mf mod 2. 

Theorem 2.2. Suppose that the virtual dimensions of Mf and M are zero 
and Mf is a smooth manifold.  Then we have 

(2.3) $/ = $ mod2. 

Proof Suppose that x G Mf. By the assumptions, 

(2.4) ker+ DFX = coker+DFx = 0 

and 

(2.5) dim ker" DFX = dim cokerT^. 

The first step is to add a local equivariant perturbation a such that x is 
a smooth point of Ma = (F + cr)-1(0). Locally, we can view F as a map 
TXB —¥ Tx (fx is the fiber over x). Recall that we have a local Kuranishi 
model of F as follow: There are orthogonal splittings 

TxB = \ss£DFx®X, 

Tx = vcciDFx © cokerDjRc 

and a map 
cf): X —> cokeTDFx 

such that there is a change of local coordinates x : TXB —> TXB with the 
properties 

(2.6) F o x"1 = DFX + ^ 

and </)(0) = 0, (d^)o = 0. Furthermore, %, </>, X are r-equivariant. 
By (2.5), kerDFa. = ker"Di^ and cokerDl^ = coker'Di^.  Further- 

more, 
dim ker DFX = dim cokerDi^. 

Therefore, there is a r-equivariant isomorphism 

(2.7) (£' : kerDF* -> cokerDi^. 
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Let /? : TXB —> R be a r-equivariant cut-off such that /? = 1 in a small ball 
around the origin and vanishes outside a slightly larger ball. Furthermore, 
we assume that supp(/?) fl Mf = {x}. Let e > 0 and let a = e/3(/)f. Consider 
the perturbed equation 

Faox-1=T + <l> + *. 

Clearly, Fo- is r-equivariant and ^(x) = 0. Moreover, 

(DFa)o*T + e<l>r 

is an isomorphism. So, x is a smooth point of F^. Therefore, to simplify 
notation, we can assume that any point x G Mf is a smooth point of M.. 
Hence, we have a decomposition 

(2.8) M = MfUMr, 

where Mr is compact and disjoint from Mf. 
Next, we use the virtual neighborhood method to compare $^ and $. 

Let us give a brief outline of the virtual neighborhood method [21]. First, 
we find finitely many sections si, • • • , s^ defined over a neighborhood U of 
M such that 

DF + J^ ti* : TB x Rfc -+ T 

is surjective on M. Then, we change our equation to 

(2.9) FV = F + Y^tiSi : W x R* -► .F. 
i 

By the construction, M x {0} c ^1(0) and its linearization bFv is surjective 
on M x {0}. Hence, we can assume that it is surjective on U x Rfc. Therefore, 

tf = JF
,-1(0)c«xR* 

is a finite dimensional smooth manifold and M x {0} c U. Let 

S : C/ -^ Rfc 

be defined by S,(^,ti) = t*. Then S'-^O) = M x {0}. Since A^ is compact, 
we can assume that S is proper by shrinking the neighborhood. Then, from 
the infinite dimensional triple {B,T,F), we construct a finite dimensional 
triple (C/, R^ji?) called a virtual neighborhood. To define a topological in- 
variant, one just applies the finite dimensional technique to ([/, Rfc, S). 
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In our case, we need to construct a r-equivariant virtual neighborhood. 
Since F is already transverse at Mf, we don't have to do anything there. 
For any x G M^ extend a basis izi, • • • , Uix of cokerDFx to be sections (still 
denoted by ui) supported in a neighborhood of x e B. We choose Ui such 
that 

r(supp(iXi)) nsupp(wi) - 0 

and 

(2.10) (supp(^) U supp(T(^))) nMf = Q. 

Then, we can construct r-equivariant sections by 

Si — Ui +T*Ui. 

Clearly, s;|SUpp(Wi) = Ui. By continuity, {ui} and hence {si} generate 
cokerDFy for all y in some neighborhood Ux of x. Choose finitely many 
Uxs to cover Mr and such that Uxr\Mf = 0. Enumerate all the correspond- 
ing sections as si, • • • , s*.. Then, 

(i) Si is r-equivariant, 

(ii) supp(s;) n Mf = 0, and 

(hi) si, • • • , sfc generate cokerDi^ for y E M. 

These mean that DFy + X^s; satisfies the requirement of the virtual 
neighborhood construction and we can construct a virtual neighborhood 
([/, Rk, S). Note that Fv : B x Rfc x JT is r-equivariant with a trivial action 
on R*\ Therefore, r acts on U and S is r-equivariant. One can check that 
the fixed points set Uf of U is 

(2.11) C// = C/n(M/xRfc). 

Since r acts on Rfc trivially, we can choose a r-invariant regular value y of 
S close to 0. Moreover, 

(2.12) $ = #5-1(7/)mod2. 

Clearly, r acts on S~1(y) and 

S-l(y) = S-1(y)fUS-1(y)r, 

where S~1(y)f is the fixed points set and S~1(y)T is the rest. Obviously, 

(2.13) $ = #S-1(y)/ mod 2. 
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By (2.12), 

S-1(y)f - S-\y) n (Mf x R
fc) = Mf x {y}. 

Therefore, $ = $/ mod 2 , and we finish the proof. □ 

Remark. For the fixed point set of a Zn action, n > 2, one can also con- 
struct an equivariant virtual neighborhood. However, the action on R^ is 
not trivial. 

3. Seiberg-Witten theory with a ^-action. 

In the literature on gauge theory with a group action, the typical situation 
is to compare the equivariant moduli space on a manifold with the moduli 
space on the quotient manifold under a group action. In this section we 
undertake a different direction of investigation: we will compare the ordinary 
moduli space on a manifold, via the fixed moduli space, with the moduli space 
on the quotient manifold. 

Let p : Y —> Y be a smooth unramified double cover of Riemannian 4- 
manifolds (not necessarily compact) and a : Y —> Y the covering involution. 
The metric h on Y is assumed to be the pull-back of a metric h on Y. A 
spinc structure will be viewed either as a 5pmc(4)-principal bundle or as 
a pair of C/(2)-vector bundles satisfying the usual conditions. Specifically 
let a spinc structure £ on Y be given by a S'pinc(4)-bundle P —* Y with 
determinant line bundle L and spinor bundles W^. Denote their pull-backs 
on Y respectively by £, P, L and W^, through the projection p : Y —» Y. 

Consider a lifting r of cr*: 

T -» 

(3.1) 

PSO >   ^SO, 

where P50 is the frame bundle of Y. Let f = detr, then we also have the 
commutative diagram 

P —^ P 

(3.2) 2:1 |2:1 

PSO X Pr -^ Pso X Pr, 
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where Pj is the principal [/(l)-bundle associated to L. It is clear that r is 
determined by cr* and f up to ± signs. 

As usual let A(L),r(W+) respectively denote the space of connections 
on L and the space of sections on W+. (Throughout this section, we suppress 
without harm the usual Sobolev orders for all spaces involved.) 

Definition 3.3. If (A,<f>) G A(L) x r(W+), then define 

T*(A,<t>) = (f*A,(T-1yci>), 

where f*A is given by 

(3.4) D^A(a) = T{DA{T-
1
 OSOCJ)) 

for s e r(L) and (r-1)*^ = r"1 otfroa. 

If g is a gauge transformation, then define T*g = rogor"1. (Recall that 
a gauge transformation is an automorphism on P which covers the identity 
on Pso in (3.1).) 

Observe that r o g o T~
1
 = goo a, where go : Y —> S1 is the map whose 

multiplication gives rise to p; thus the r* action on a gauge is uniquely de- 
termined by that of a. Under the same veil, since any two liftings in (3.1) 
differ by a gauge transformation, the induced action of r* on the configura- 
tion space B(£) = A(L) x r(W+)/C/ is independent of the choice of r, where 
Q is the space of gauge transformations. Let B(€)T be the fixed point set of 
T*:B(Z)->B(£). _ _ 

Using the action r* on A(L) x r(W+), we set 

(3 5) B(I)   = {r*-invariant pairs (JM)} 

{r*-invariant gauge transformations}' 

Note that unlike B(f)r, the set B(g)T does depend on the choice of r. It is 
straightforward to check that the map 

f3 6x A(L) x r(W+) -+ B(0 

(A,<t>)~[A,<l>] 

induces injective maps B(f)* -^ B(£)*T^(as usual * denotes irreducible pairs 
(A,^), i.e. (fr^O). We will regard #(£)* ^ subset of iB($)*r by identifying 
it with its image. 
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Consider also the SW moduli space M(£) = M(^, h, Ji) c #(£), namely 
the solution space, up to gauge transformations, of the perturbed SW equa- 
tions for (A,4>) G A(L) x r{W+): 

(3 7) ^) = 0 

where q((j)) = cf) ® (/>* — ^j-Id, and jl € £l+(Y) and h are assumed to be 
invariant under a^ By restricting the relevant actions, we obtain the fixed 
moduli space M(£)T C B(£)r and the equivariant moduli space M(£)r C 
B(£)r. Again while M(^)*T is independent of r, the subset M(£)* does 
depend on the choice of the lifting r. 

Let 7 be a complex line bundle on Y. The J7(2)-bundles W^ ® 7 then 
give a twisted spinc structure £ ® 7 on V. Let M(^) = M(^, /i, //) and 
M(^®7) = M(^®7, h, jj) be the SW moduli spaces on Y with the indicated 
spinc structures, metric and perturbation. We now have the structure of the 
fixed moduli space and the relation with moduli spaces on the quotient, 
which is a key step in this paper. For later applications we emphasize that 
Y and Y are allowed to be non-compact here. Write x*7 = cr(x), Vx 6 Y for 
convenience. 

Theorem 3.8. Suppose p : Y —> Y is an unramified double cover, £ is a 

spin0 structure on Y and £ is the pull-back on Y. Let now r be the natural 
lifting on £ given as the pull back of the identity isomorphism on £. 

(1) There is a natural disjoint decomposition 

(3.9) Mtfr =  U M(Ok, 
[k]eK 

indexed by the set K of equivalence classes of maps k : Y —> S1 sat- 
isfying k(x<7)k(x) = 1 for all x € Y, where k ~ kf if and only if 
g(xcr)k(x) = g{x)k,(x) for some map g : Y —> 51. Moreover, under 
the natural multiplication, K is a group consisting of 2-torsion only; 
in particular the union in (3.9) is finite. 

(2) There is a natural isomorphism K —> K,, where JC is the set of iso- 
morphism classes of line bundles on Y that pull back to the trivial 
bundle on Y via the projection p : Y —> Y. Furthermore for each 
[k] G K, there is a natural homeomorphism M(£)fcr —► M(£ ® 7fc)*; 
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where 7^ E /C is the line bundle associated to k. Consequently we have 
a natural homeomorphism 

(3.10) M(e)*T^  I] M(£®7)*. 
lileJC 

Proof. (1) Let [A, <(>] G M(0*T. We first show that there exists a k : Y -> 51 

satisfying k(xa)k(x) = 1 for all re G Y, such that [A,^] G M(£)%,.. Indeed 
since [A,<f>] G M(^)*T, there is a gauge g such that r*(^4,0) = g*(i4,^); so 
(r og"1)*^) - (A,^). Let r7 = r o g-1 then [A,^] G M(Y)"£ and r72 

is a gauge fixing (A,^); by irreducibility of (A, </>) one has T
/2
 = 1. Write 

r7 = kr for a unique map k : Y —> S'1; then r7 = 1 implies k(xa)k(x) = 1. 
So we have shown M(£)*r = U[fc]€jft:M(^)^r. 

Using^the irreducibility alone, a similar argument as above also shows 
that M(^)^r and M(£)j£/T are either identical or disjoint, and they are iden- 
tical if and only if k ~ fc7. Moreover for any k E K, k(xa)k(x) = 1 implies 
g{x<T)k{x)2 = ^(x) with ^(x) = fc(x), namely A;2 ~ 1. So fc is either trivial 
or a 2-torsion. 

(2) For any k : Y —> Sl satisfying k{xa)k{x) = 1, the quotient manifold 
Q = (y x Sl)/{x,r) ~ (xa,k(x)r) is well-defined. By projecting to the first 
factor one gets an 51-principal bundle 7^ = Q —> Y, and one can check 
easily that this gives rise to an isomorphism K —> tC. For instance to check 
the surjectivity, let 7 —» Y be an 51- bundle with trivial pull-back p*7 —> Y. 
Choose any global trivilization 5 : Y —> p*7 and define fc : Y —> 51 by 
requiring p(s(x)) = k(x)p(s(x<7)) G ^(x)- Then fc is independent of the 
choice of 5 and 7 = 7^.. 

Finally to construct the homeomorphism M(£)|;r —> M(^®7A;)*, consider 
the C/(2)-bundles on Y, W^ = W± ® C, where C is the trivial line bundle. 
Let p : W^ —► W^ be the action given as 

p(u 0v) = T{U) ® {kv)\ 

p should be understood as an order-two lifting of a. By pull-back, M(£c)* 
is homeomorphic to the irreducible moduli space on Y with spinc structure 

Wfjp = W±® (C/fc.) = W± ® 7^, 

namely M(^c)* is homeomorphic to M(£ ® 7A;)*- 
On the other hand p = (fcr) ® Id, so we have the 1-1 correspondence 

{(fcr)-invariant SW solutions} A—► {/9-invariant SW solutions} 
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and it follows that M(£)lT is homeomorphic to M(£c)*. Combining with the 

previous paragraph, we have that M(£)|;r is homeomorphic to M(£ ® 7^)*. 
D 

Remark. (1) The complex line bundle A —> Y associated to the double 

cover Y —> Y (a Z2-bundle) obviously belongs to /C which in general 
is larger than {[A],0}. Note that Ajnay be trivial, although the real 
line bundle a —► Y associated to Y —> Y is never trivial from the 
connectedness of Y (A is the complexification of a). 

(2) Chern class yields the identification JC = ker{p* : £r2(Y,Z) —► 
iJ2(y, Z)}, which gives another way to index the unions in (3.9) and 
(3.10). The Gysin sequence of the 50-bundle Y —> Y shows that kerp* 
is the image of the map Ae : H1^) ^ H2(Y), where e G H1^) is 
the Euler class of the sphere bundle. Since 2e = 0, one sees again that 
kerp* consists of some 2-torsion plus the trivial element. 

(3) The theorem remains to be true if M(£)* is replaced by 23(0* through- 
out. In fact since onb^the irreducibility is used in the proof, neither 
the solution space M(0* nor the dimension of the manifold Y matter 
for the conclusion of the theorem. 

4. SW invariants on unramified covers. 

Based on the structure theorem in the previous section, we compare here the 
corresponding smooth topological invariants of the moduli spaces. An initial 
attempt in this direction was made in [23] for instanton moduli spaces and 
the Donaldson invariants, which provides some rudiments for our discussions 
below. In connection with group actions Seiberg-Witten invariants are easier 
to handle because of the clearer display of Seiberg-Witten basic classes in 
the quotient map. Combined with the virtual neighborhood method, this 
makes it possible for us to get a better understanding of the relation between 
the invariants. 

We continue using the set-up of Section 3 and confine ourselves to the 
special case that Y and Y are both compact. In addition we assume b^Y) > 
l,6j(y) > 1 so that the SW invariants are well-defined on Y,Y. (The 
assumption &2~Q0 > 1 may be surplus in some cases e.g. when bi(Y) = 0, 
as we have bf(Y) = 1 + b^Y) + 2b%(Y) - 2b1(Y) from the usual Euler 
characteristic and signature formulas for the double cover Y —» Y.) 
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Lemma 4.1. Suppose ci(L) is not a torsion class. Then there is a generic 

metric h on Y such that with respect to h,h = p*h respectively, the spin0 

structures £ ® 7,7 G /C; and £ all admit no reducible SW solutions with 
perturbations fj, = Ji = 0. 

Proof. Since ci(L) is not torsion, the class ci(L2) is not torsion either (they 
are equivalent statements). By the usual transversality argument, there is 
a generic metric h on Y such that the class ci(L2) (more precisely its image 
in H2(Yj R), the same below) is not represented by any h-ASD (=anti self 
dual) harmonic 2-form. We claim that f admits no reducible un-perturbed 
SW solutions with respect to the pull-back metric h. Since otherwise, ci(L) 
is represented by an h-ASD harmonic form a, hence ci(L2) is represented 
by the cr-invariant h-ASD form a = a + a*a. Thus ci(L2) is represented by 
the pushing down of a, which is an h-ASD harmonic form. This contradicts 
our choice of h. 

Any reducible solution on a £ ® 7 would pull back to a reducible solution 
on p*£ ® £>*7 = £. Thus the non-existence of reducibles on £ implies that on 
£ <g> 7 for any 7 E /C. □ 

More directly, reducible solutions can be avoided under the stronger 
assumption that ci(L)2 > 0, which implies ci(L)2 = 2ci(L)2 > 0, and hence 
£ ® 7 and £ do not admit reducible solutions by a simple argument as in 
[24]. 

Our main result in the section is the following: 

Theorem 4.2. Let £ be a spin0 structure on Y and £ = p*£ be its pull-back 

on Y. Suppose that ci(L) is not torsion and the virtual dimension of the 
moduli space associated to £ is zero. Then we have the following relation 
among the SW invariants: 

(4.3) SW(£) = Y^ SW(Z ® ^ mod 2> 
76/c 

where K is isomorphism classes of complex line bundles on Y that pull back 
to the trivial bundle on Y. 

Proof. For virtual dimensions, we have dimM(£) = 2dimM(£) = 0 and 
dimM(£(g>7) = ^dimM(£) = 0. Thus the SW invariants involved are all 
obtained by counting the moduli spaces in a suitable way. 
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Fix a generic metric h on X as in Lemma 4.1, so that 

M(0,M(£®7)>7€K: 

all do not contain reducible solutions for any small perturbations // and 

By Theorem 3.8, the fixed moduli space M(£)r = LUelf M(^)lT is home- 
omorphic to 

(4.4) n^®^- 
7€/C 

The compactness theorem in [14] implies that M(£®7)s are all compact; thus 
M(£)r is also a compact space. By the usual transversality argument applied 
to our equivariant moduli spaces M(^)^r, we can choose a small generic a- 
invariant perturbation Jl such that M(£)r is non-degenerate everywhere and 
so has the smooth discrete topology. Prom Theorem 2.2, its associated SW 
invariant SWf(£) = #M(£)r is subject to the relation 

(4.5) SWf(t;) = SW(€)    mod 2. 

Under the same perturbation, M(^)T is now diffeomorphic to the union 
in (4.4) and hence 

7<E/C 

Together with (4.5), we arrive at the desired result. □ 

Remark. There are examples of unramified double covers Y —> Y in which 

Y has a spinc structure with non-trivial SW invariant and Y has vanishing 
SW invariants for all spinc structures, e.g., take Y to be the quotient of a 
free anti-holomorphic involution on a complex surface Y (see [24]). Thus in 
general, not all basic classes on Y are pull-backs from Y. 

Examples. (1) Suppose Y is a minimal complex surface of general type 
with 62" (V) > 1 and £ is the natural spinc structure associated. Sup- 
pose also there exists a smooth unramified double cover p : Y —> Y. 
Then Y inherits a structure of a minimal complex surface of general 
type and £ = p*£ is associated spinc structure. According to Witten 
[26] for example, we have SW(Z) = 1, SW(£) = 1 and SW^ ® 7) = 0 
for non-trivial 7, with which our theorem above is consistent. Indeed 
Theorem 4.2 may be viewed as some sort of generalization to arbitrary 
smooth double covers p : Y —» Y. 
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(2) (Kotschick-Morgan-Taubes [10]) Let iV be a smooth 4-manifold such 
that bi(N) = &2~(iV) = 0 and AT has an unramified double cover. Then 
for any smooth 4-manifold YQ whose SW invariant is non-trivial, it is 
shown in [10] that Y=Yo#N has a non-trivial invariant SW(£) but the 
double cover Y of Y is a connected sum and so has trivial invariants. 
Our theorem above is consistent with this, since it is easy to verify in 
this case that for the line bundle A associated to the cover Y —> Y, £ 
and £<g) A are the only spinc structures in /C with non-trivial invariants: 
SW(Z) = SW(Z®\) ^ 0 (following [10]), so SWfc) = 0 mod 2 from 
Theorem 4.2. 

Finally we make an observation about complex line bundles whose Chern 
class is 2-torsion. 

Proposition 4.6. Let Y be a smooth- (not necessarily compact) manifold 
of any dimensions. For a complex line bundle A on Y, its Chern class 
ci(A) G -ff2(Y, Z) is 2-torsion if and only if A is the complexification of a 
real line bundle on Y. 

Proof. If A is the complexification of a, A = a ® C, then A02 = a02 ® C. 
Of course a02 is a trivial real line bundle; hence A02 is trivial too and 
2ci(A) = ci(A02) = O. 

Conversely if 2ci(A) '= 0, then A is isomorphic to its dual and so to 

its conjugate: A -=-* A. Composing with the anti-linear conjugation map 
A —> A, one gets a map u : A —» A, which is an anti-linear isomorphism 
over each fiber. Since u is an involution, A = Reu © Imu as real bundles, 
where Reu — Fix-u and Imu — {y G A | u{y) — —v). Since u is anti-linear, 
multiplying i gives an isomorphism Rew —» Imu. Hence A = a © a as real 
bundles and consequently A = a ® C, where a = Reix. □ 

Note that even if the real line bundle a is nontrivial, OL® a and hence 
the complexification A may still be trivial. Moreover from 

ci(A) = e(a © a), 

one sees readily ci(A) = w\ (a)2   mod 2. 

5. Topological preparations on branched covers. 

We set up our notations and collect together some elementary results that 
will be used for the next two sections. Let X, X be smooth 4-manifolds and 
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E C X be an embedded orientable connected surface. Consider a smooth 
map p : X —> X and put E = p~1(E). (As a rule we shall always use the~ 
sign to indicate some pull-back object by p.) For our purpose, p is an m-fold 
cover branched along E if p : X\E —> X\E is unramified m-fold cover, and 
p has the form z i-> z™ locally on the normal complex planes of E and E in 
X and X. We take m = 2, namely double branched cover, for the rest of 
the paper. 

It is a familiar fact that a double branched cover exists if and only if 
[E] € H2(X,Z) is divisible by 2; see for example Hirzebruch [7]. Granting 
the existence, the diffeomorphism type of X is then uniquely determined by 
E and a class a e #2(^5 Z) such^that [E] = 2a; so we will fix the class a in 
order to fix the branched cover X and denote the induced line bundle by 77: 
c1(7i) = PD(a). 

Let N be an open tubular neighborhood of E C X; N will also be 
viewed as the normal line bundle of E C X when no confusion arises. The 
associated circle bundle is denoted by TT : S —> E. Take YQ = X\cl(N) and 
YQ = p-1(Yo) ("cl" denotes the closure). Then p restricts to an unramified 
cover p : YQ —> YQ- 

Lemma 5.1. Let n = [E]2 and g be the genus o/E as before.  Then we have 

(5.2) H2{S, Z) » T?9 0 Z/(nZ). 

/n particular when n > 0; /me bundles on E a// ^mZZ fracfc £0 torsion bundles 
on S via the projection TT : S —► E. 

Proof. Consider the Gysin sequence of the circle bundle TT : 5 —► E with 
coefficient group Z: 

—► i?0(E) -^ iI2(E) -£> #2(S) —^ iJ^S) —> 0, 

where A; is the multiplication by the Euler characteristic of the circle bundle, 
namely k(x) = nx. Thus H2(S) w iJ^E) 0 Imyr* and Irnvr* w iJ2(E)/Imfc, 
from which the result follows. □ 

When n > 0, the lemma simply reflects the fact that the normal bundle, 
having degree n, pulls back to the trivial bundle on S. 

Recall for any smooth double un-ramified cover Z —> Z, fCz is defined 
to be the subgroup of H2^, Z) consisting of isomorphic line bundles on Z 
that pull back to the trivial bundle on Z. (Z is suppressed in the notation 
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of Kz as the double cover will be self-evident in the following discussions.) 
Denote also /C^ = £z\{0}- As remarked in Section 3, an application of 
Gysin sequence shows that /C^ is always a finite set of 2-torsion elements. 

Proposition 5.3. (1) The group ICs C H2(S,Z) consists only of 0 and 
[n/2] G Z/(nZ) C H2(S,Z) if n is even. Consequently any bundle in 
KIYQ) whose restriction on S always belongs to Ks, can be extended to 
a bundle on X. 

(2) // [E] E i?2(^?Z) is not a torsion element of odd order, then /Cyo is 
non-empty, in fact 7y|y0 E £y0- 

(3) // Hi (X, Z) contains no 2-torsion, then /Gj>0 has at most one element. 

Proof. (1) It is obvious, since [n/2] E Z/(nZ) is the only possible 2-torsion 
in H2(S, Z) by Lemma 5.1. 

(2) We just need to show 7/|y0 ^ 0. In the cohomology sequence with Z 
coefficients 

H2(X,Yo) -£— H2(X) -£-> H2(Yo), 

we have H2(X,Yo) £ #2(cl(iV),S) ^ #0(E) by excision and the Thorn, 
isomorphism. Thus Imi* is precisely the set of multiples of PD[E]. Of 
course ci(r/|y0) = j*(PD(a)). If ci(r/|y0) = 0, then PD{a) = mPD[E] for 
some m, and hence (2m - 1)PD\S\ = 0m view of PjD(a) = PD\S\/2. This 
contradicts the assumption. 

(3) It suffices to verify that H2(Yo) has at most one 2-torsion element. 
By universal coefficient theorem, it is enough to show Hi(Yo) has at most 
one 2-torsion. Consider the exact sequence of (X,YQ): 

H2(X) -^ H2(X,Yo) —*— fri(yo) -^ H^X). 

By excision and Thorn isomorphism H^X^YQ) = HQ(Y) = Z. Thus 

Im&^#2(X,y)/Im;*^Zm 

for some m and hence it can contain at most one 2-torsion. On the other 
hand, since Hi(X) has no 2-torsion, any 2-torsion in ^(lo) must be in 
ker j* and so in Im6. □ 

Remark. Part (2) of the proposition remains to be true under a weaker 
assumption 0 ^ [E] E H<2{X,7i) by using an argument involving extension 
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groups and real line bundles. The condition in the proposition is good 
enough for later applications, as we shall require PD\S\ • ci(L) ^ 0 which 
forces [S] to be non-torsion. 

We introduce some natural definitions to be used throughout the section: 

Definition 5.4.     (1) Given any line bundle L —> X, the virtual dimension 
with respect to L is defined to be 

(5.5) dL = ±[c1(L)2-(2ex+3sx)], 

where ex and sx are respectively the Euler characteristic and signature 
ofX. 

(2) The adjunction term of E with respect to L is defined to be 

(5.6) JL(E) = \PD\Z] - ci(L)| + [E] • [E] + es. 

Convention. The two cases with PD\S,] • ci(L) < 0, PD[E] • ci(L) > 0 are 
"dual" for the following discussions, and can be dealt with similarly. Prom 
now on, we shall stick to the case PJD[E] • ci(L) < 0, which is consistent 
with the associated spinc structure of a complex surface, where L is negative 
canonical bundle and L intersects negatively with a complex curve. 

Proposition 5.7. Let eY and sY be the Euler characteristic and signature 
O/YQ.  Then we have 

2ex + 3sx = 2eYo + 3sYo + 4 - 4g + 3[E]2, 

where g is the genus o/E and [E]2 = [E] • [E]. 

Proof. Prom the additivity of Euler characteristic we have 

ex = eY0 +
eN- e(Y0nN) = eYo + 2 ~ 29' 

For signature we have also the Novikov additivity: sx = sY + 5cj /^.  Of 

course scW\ = [E]2. Putting all these formulas together we show the propo- 
sition. □ 
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Proposition 5.8. (1) Suppose L —> X be a line bundle such that ci(L) • 

PD\L] < 0, and letL = L- PD\L] -+ X, where L = p*L. Then we 
have 

(5.9) dz = 2dL + 1 JL(S). 

(2)   The adjunction terms are simply identical: */?;(£) ='^(2). 

Proof. (1) Keeping in mind PD[E] = p*(PD[E]/2), it is straightforward to 
check (5.9) by using the Euler characteristic and signature formulae for the 
branched double cover X —> X: 

e^ = 2ex - eE, ^ = 25x - [S] . 

(2) It is straightforward to verify Jg(E) = ^(S). D 

Remark. Another useful way to express L is L = p*(L ® r/-1). 

A metric on E induces a complex structure on E and hence also on the 
total space iV of the normal bundle of E. Let KN, K^ denote the canonical 
line bundles of N and E (the bundles are of course independent of the 
metric up to isomorphism). The next proposition gives the significance of 
«/L(S) = 0, which will be used in the gluing process. 

Proposition 5.10.  Given a line bundle L —> X, then JL(E) = 0 if and 
only if the restriction L\N is isomorphic to Kjj . 

Proof. One needs to show that JL(E) = 0 if and only if L|E « ^JV
1
!^- If 

JL(E) = 0 then 

ci(L|E) = ci(L) • PD\L] = es + [E]2 = -c^K^) + ci(PJD[E]|E) 

implying L|s w K^1 ® (PJD[E]|E). On the other hand 

ciOMs) = -c2{Tw)\z = -C2(rs e iV) = cx^) - c^p^pjis), 

and consequently one has L|s w ^iv1!^- Reversing the process one gets the 
converse. □ 
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Remark. The adjunction equality JLO^) = 0 is satisfied by any complex 
curve E in a complex surface X with L to be the negative canonical bundle 
if-1. The equality is also satisfied by the "opposite" of complex curves, 
a real part XR, namely an orientable connected component of the fixed 
point set of an anti-holomorphic involution on X. (In this situation, if-1 • 
PD[XJI] = 0 and ex + [XR]

2
 = 0.) In general if L is a SW basic class on a 

smooth 4-manifold X, then JzXE) < 0 for any surface E with [E]2 > 0 [15], 
[14]. 

Consider now a spinc structure £ on X with the determinant bundle 
L —> X. Because p : X —> X is a branched cover, £ does not directly 
pull back to a spinc structure on X. Nevertheless, L = L ® PD\S\~l is a 
characteristic line bundle on X from the relation of Stieffel-Whitney class, 
W2{X) = W2(X) — PJD[E] mod 2. Therefore there are spin0 structures 
on X, parametrized by 2-torsion elements in iy2(X,Z), whose determinant 
bundles are L. When i?2(X, Z) contains 2-torsion, there does not seem to 
be a way to define a preferred spinc structure on X with determinant L, 
similar to that there is no canonical Riemann metric on X arising from a 
given metric on X. 

Proposition 5.11. There exists a spirf structure on X with determinant 

L, denoted by \, whose restriction to YQ is isomorphic to the pull-back spin0 

structure 0/£|yo. 

Proof. Consider first the case [E]2 = 0. So also [E]2 = 0, and by Lemma 
5.1, H2(S,Z) hats no 2-torsion. Thus we can glue the pull-back p*(£Jyo) 
with the spinc structure on N = p~l(N) defined by the line bundle L\^ 

along the neck S x [—1,1], since the two spinc structures, with the same 
determinant bundles, are isomorphic on the neck. Let £ be such a glued 
spinc structure on X (not unique). It follows from a standard cohomology 
argument that det £ = L+2mPD[Yl] for some integer m. The spinc structure 
£ = £ ® PD[E]_m is what is required in the proposition. 

Consider the other case [E]2 / 0. Here Lemma 5.1 tells that there is a 
single 2-torsion /? in H2(S^ Z), which is in fact given as (3 = (^E2)l, where 

1 E H2(S, Z) is the pull-back of the generator of #2(E, Z). Gluing as above, 
we have a spinc structure £ on X whose determinant is either L + 2mPD[S] 
or L + 2mPD[E] for some integer m, where the ambiguity occurs because 
of /3. As L is a characteristic bundle, it must be L + 2mPD[Tl] that is the 
determinant. Furthermore using E2 ^ 0 and the determinant restricts to L 
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on E, we find that m must be zero, and hence £ is already the required spinc 

structure. □ 

Remark. The proof also shows that when [E]2 ^ 0 there is a unique way 
to glue spinc structures on Yb and iV, and when [E]2 = 0, the glued spinc 

structures on X are parametrized by 2mPD[Tl] for integer m. 

6. SW invariants on branched covers: 
the [E]2 = 0 case. 

Continue the set-up introduced in Section 5. Assume in addition that [E]2 = 
0 and the determinant of the spinc structure £ on X satisfies the adjunction 
equality JL(S) = 0, which means that L restricts to a degree 2g — 2 bundle 
on E. Moreover we require the genus g > 1 so the preceding restriction of 
L is non-trivial. 

The goal in this section is to relate the SW invariants on X and X. Our 
idea is to first rewrite the invariants on X, X in terms of relative invariants 
on the cylindrical extensions of the complements of the branched locus. 
Because the cylindrical extensions are unramified covers, we then relate the 
relative invariants using the procedure of Section 3. 

We are going to use the relative SW invariant formula given in Morgan- 
Szabo-Taubes [15]; the basic set-up is recalled here for reader's convenience. 
Introduce the cylindrical extension 

y = ci(yo)u5(5x[o5oo)) 

with the extended spinc structure from £|Y0 and product metric on the cylin- 
der, and consider the perturbed SW equations: 

(6.1) pA<l> = 0, F+ = q(</>) +iti + ih. 

Here /J, E £1%(Y) is supported in Yb, and h G ft+QO is supported in Sx [1, oo) 
and determined by a harmonic 1-form on E. More precisely, on S x [1, oo), 
h is the pull-back of the 2-form on S = E x 51: 

(6.2) h = *sa + dt A a, 

where a is a small but non-zero harmonic 1-form on E. Let (^4, (j>) be a finite 
energy solution, namely the Chern-Simons functional C(At, fa) is bounded 
for all t, where {At, (t>t) is the restriction of (A, (j)) to S x {£} C Y. Then it is 
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proved in [15] that as t —> oo, (At, <f>t) converges exponentially to the unique 
SW solution on S] moreover the action 

(6.3) c(A,<j>) = ^J FAAFA 

is finite and takes discrete values as (A, </>) varies. 
Let MC(€\Y) denote the SW moduli space of all solutions to (6.1) with 

finite energy and fixed action c. As their limits on S are irreducible, all 
solutions in Mc(£|y) are also irreducible. According to [15], the introducing 
of h ensures the compactness of MC(£|Y). With the additional generic per- 
turbation //, the index calculations and Fredholm operators argument show 
that MC(£|Y), if non-empty, is a smooth compact manifold of dimension 

-(c-2eY-3sY). 

The usual procedure gives the relative SW invariant SWC(^\Y), which de- 
pends only on the topology of Y, the spinc structure £|Y, the action c and 
the orientation for H1^) © Hl(Y). 

If c is chosen to be ci(Z/)2 —2es, then Proposition 5.7 shows that MC(£|Y) 

has the same virtual dimension as the SW moduli space M(^) of £ on X. 
Furthermore, after a generic perturbation, there is a unique SW solution 
among all spinc structures on A/", which can then be glued with the solutions 
in MC(£|Y) to get all solutions in M(£). This gluing in turn yields the 
following identification of the corresponding invariants [18; Corollary 9.8]. 

Theorem 6.4 (Morgan-Szabo-Taubes). Let E C X be an embedded 
surface of genus g > 1 such that [S]2 = 0; and Y be the cylindrical exten- 
sion of the complement of a tubular neighborhood ofT,. Suppose £ is a spin0 

structure on X such that JL(S) = 0 for its determinant bundle L. Then the 
relative SW invariant of £|y with respect to the action c = ci(L)2 — 2eE is 
equal to the SW invariant on X: 

(6.5) SWC(Z\Y) = SW®. 

For the spinc structure £ on X constructed in Proposition 5.11, its de- 
terminant L satisfies J£(S) = Jz,(X!) = 0 by Proposition 5.8. Thus we can 

apply the above result to the cylindrical extension Y = p~'1(Y), with respect 

to fly- 
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Corollary 6.6.   Under the same conditions as the previous proposition, the 

relative SW invariant of \\y with respect to the action 

c = ci(L)2-2eg 

is given as SW^\y) = SW(£). 

Remark. Using JL(S) = 0, one sees that c = 2c where c is as in Theorem 
6.4. 

As recalled above, after perturbations, there is only one SW solution on 
the cylindrical extension of the neighborhood N [15], and this is the reason 
why only one value of the action c is picked up in the gluing and conse- 
quently in Proposition 6.4. For other values of c, the corresponding relative 
invariants provide additional topological invariants for F, even though they 
are not necessarily related to any invariants on the closed manifold X alone. 
A specific case that will be useful to us is in the following situation: Recall 
that rj —> X is a line bundle that is Poincare dual to a 6 H2(X, Z), where a is 
such that 2a = [E] and determines the branched cover p : X —> X. Consider 
the twisted spinc structure £(8)77 on X, whose determinant is 1/ = L®P£)[E]. 
Take the moduli space of finite energy Seiberg-Witten solutions on £|Y ®7j|y 
with the same action c = ci(L)2 — e^ as before and the associated relative 
invariant SWc^ly ® vW)- Notice that the application of Proposition 6.4 
to £ ® 77 would require a different action value ci(Z/)2 — es, so the relative 
invariant SWc^y ® 77(y) can not be pushed to equal the absolute invari- 
ant SW(£ ® 77) on X. Instead <SWC(£|Y ® T/IY) is an invariant of the triple 
(X, E, a), and may be viewed as an invariant of the cover X —> X. 

Prom Proposition 5.3, 77|y G /Cy. The above discussion can also be 
carried out for other line bundles 7 G /Cy. Indeed, since 7 restricts trivially 
to 5 by Proposition 5.3, it can be extended trivially over the neighborhood 
of E and yields a bundle 7 on X satisfying PD[E] -01(7) = 0. Thus the 
relative invariant 5'Wc(£|y ® 7) is well-defined, as JL^-/^) — JL(J^) = 0. 

Definition 6.7. For any spinc structure £ on X with JL(S) = 0, define 
fc^(X, E) as follows: 

where c = ci(L)2 — 2eE. 
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Remark. The k^(X^ S) is an invariant of the 2-dimensional knot S C X. 

We now come to the main results in this section. 

Theorem 6.8. Let p : X —> X be a double cover branched along a surface 

S with genus bigger than 1, [S]2 = 0, and such that b^CX^fe^-X") ^ •'•• 
Suppose that £ is a spinc structure on X whose determinant bundle L is 
such that ci(L) -PDp] < 0, and the virtual dimension and adjunction term 
both vanish: di = Jli^) = 0. Moreover let\ be a spin0 structure on X 
whose determinant bundle is L = p*L ® PZ)[E]-1 and whose restriction to 
Yo is the pull-back 0/£|yo. (The existence of £ is established in Proposition 
5.11.) Then the following equality holds: 

(6.9) SW{£) = SW^) + k^X, E)     mod 2. 

Proof. For the cylindrical extension Y of Yb, obviously Y = p~1(Y) is the 
cylindrical extension of YQ and Y -+ Y is an unramified double cover. 

For the spinc structures f ® 7, parametrized by 7 G /Cy, choose the 
same generic perturbation /i and small form h ^ 0 as in (6.1), so that the 
relative moduli spaces Mc(£|y ® 7) for a given c are smooth manifolds of 
the correct dimension \(c— 2ey — 3sy). Let Mc(^|y) be the relative moduli 
space with the pull-back perturbations p*/x, p*/i, and the action c = 2c. 
Since h = *5a + dt A a from (6.2), it is easy to see p*h = *ga + dt A a, and 

hence Mc(£|y) is a compact (but probably non-smooth) space by [15]. 

If r denotes the involution on £|y = f |p, obtained using the projection 

P : fly ~> fly? then Theorem 3.8 gives a homeomorphism: 

(6.10) M^\?) » Mc(f |y) U (   ]J Mc(e|y ® 7) 

(Note that the irreducibility, required in Theorem 3.8, is not an issue here, 
since all relative moduli spaces contain only irreducible solutions by the 
exponential convergence to the irreducible solutions on S and S.) 

Suppose now c = ci(L)2 — eE and so c = 2c = ci(L)2 — 2eg. Since 
di = «/L(S) = 0, it follows from Proposition 5.8 that also 

d£ = J£(E) = 0. 

Thus Theorem 6.4 and its corollary can be applied and yield 

sw(o = sw^\y), sw® = swe(z\Y). 
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Moreover Mc(£|y <g> 7), 7 e /Cy all have dimension \(c- ley — 3sy) = 0. 
Thus the relative invariants obey 

(6.11) SWc{i\Y) = #Mc(£|y), kt{X, E) = 2 #^c(^|y ® 7). 

As for 6'M^(^), an application of Theorem 2.2 to £|y = £|p with the involu- 

tion r gives SW~(fj?) = #-/Wc(f|y)T  mod 2; thus also 

(6.12) SW@) = #MMY)
T
   mod 2. 

The combination of (6.10)-(6.12) together proves the formula (6.9). □ 

We haven't found any example such that fc^(X7E) ^ 0 although we 
believe it should exist. The closest thing we come up, as pointed out by 
Selman Akbulut, is to take a connected sum of branched covers. First note 
that there is a double cover 53 —> Q branched along the circle F, where 
Q is a diffeomorphism copy of Q (one can use the involution (x, y, z, w) »-> 
(x,y,—z,—w) on R4). Given any two double covers Xi —> Xj branched 
along Ei with i = 1,2, one can cut a small disk Di at a point on E* such 
that (Di, Di n E) is diffeomorphic to (Q, F). In view of the branched cover 
53 -^ Q, the connected sum operation can be performed and gives rise to a 
well-defined double cover 

Xi#X2 —> Xi#X2 

branched along Ei#E2. 
Now take (XL, EI) to be a complex surface together with a smooth com- 

plex curve, and take (X2, E2) to be (54, T) as the quotient of S2 x S2 under 
the involution that is the diagonal complex conjugation on 

S2 x S2 = CP1 x CP1 

(T is the torus 51 x 51 consisting of the fixed points). By taking connected 
sum, we have a double cover Xi#(S2 x S2) of Xi branched along Ei#T. If 
this branched cover satisfied the assumptions of Theorem 6.8, we would have 
fcf(-Xi,Ei#T) 7^ 0. However since the complex curve Ei already satisfies 
the adjunction equality, the surface Ei#T does not and Theorem 6.8 does 
not apply. 

We exclude the torus case E = T in Theorem 6.8, because the issue of 
reducible SW solutions on S needs to be handled differently in the gluing 
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formula. By using a forthcoming work of Mrowka, Morgan and Szabo, it 
may not be difficult to extend Theorem 6.8 to cover the torus case. Here 
we are content to point out an example (due to Akbulut again) which may 
be useful for this situation. Namely we take a connected sum of any 4- 
manifold X with the above branched cover S2 x S2 —► 54, where this time 
the connected sum is taken away from the branched torus T. The result 
is a double cover X = S2 x S2#2X -> X = S4#X branched along T, 
with [T]2 = 0 and Jz,(T) = 0 for any line bundle on X. (The analogue 
of this construction in the unramified case is the Kotschick-Morgan-Taubes 
example [10].) 

7. SW invariants on branched covers: 
the [E]2 > 0 case. 

Assume the set-up as in Section 5, but this time we investigate the case 
n = [E]2 > 0. It is worth pointing out that a distinguished role is played 
by the adjunction term JL(E). We shall make the key assumption that the 
adjunction equality holds: JL(E) = 0; this will be important in both the 
gluing of SW invariants and the requirement of the zero-dimensionality of 
the SW moduli space on X. The equality JL(E) = 0 indicates that in essence 
we deal with the complex surface picture locally around the branched locus 
E. 

We shall need a formula for a relative SW invariants which follows almost 
directly from the description of SW moduli space on the circle bundle TT : 
S —> E by Mrowka-Ozsvath-Yu [18]. In order to put things in perspective, 
we need to explain briefly the set-up which they use. 

Endow S with the metric 

(7.1) gs = 0 + **9*, 

where i9 is a connection 1-form on the circle bundle S —> E and g^ is a metric 
of constant curvature. In order to define a variant of SW equations on 5, 
the important observation made in [18] is to use the reducible connection 
0V = (d, 7r*Vs) on the tangent bundle 

T5 = Re7r*TE, 

induced by the Levi-Civita connection VE of #£, rather than the usual choice 
of Levi-Civita connection of gs. 

By using a base spinc structure such as WQ = C 0 TT*^^"
1
, where K^ is 

the canonical bundle on E, one can write any other spinc structure W on S 
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uniquely as W = WQ ® E for a line E on S. By tensoring with a canonically 
defined connection on WQ [18; formula (24)], a Hermitian connection A on 
E induces a 0V-compatible connection on W (called 0V-spinorial in [18]), 
which is coupled with 0V to give the Dirac operator PA 

as well as the SW 
equations on W: 

(7.2) pA4; = 0, *sTr(FA) = rty), 

where ^ is a section of W and FA is the curvature of the compatible con- 
nection on W. 

Prom Lemma 5.1, H2(S) « Z29 © Zn and the subgroup Zn corresponds 
precisely to the image of H2(Y1) w Z via the pull-back map TT*. (All co- 
homology groups have Z-coefficients unless otherwise stated.) Of course 
the induced projection TT* : Z —> Zn is not injective; as observed in [18; 
Proposition 5.1.3], one can define a lifting map by including the datum of 
connections on the corresponding line bundles: Let ef £ Z and A' be a 
connection on the bundle Ef over E corresponding to e7. Then the map 
q(e\A') := (7r*(e/),7r*A/) is a one-one correspondence between the pairs 
(ef,Af) and the pairs (e,j4), where e E Zn and A is a connection on the 
corresponding bundle E over S that has trivial holonomy along fiber circles 
of TT : 5 -» E. 

We can now spell out the details of [18; Corollary 1.0.5] that applies 
suitably to each individual spinc structure on S. 

Theorem 7.3 (Mrowka-Ozsvath-Yu). Suppose the genus gofHis big- 
ger than 1 and 0 < n < 2g — 2. Given a line bundle E —*• S and its spin0 

structure W = Wo®E on S, suppose the associated SW moduli space Ms{E) 
contains an irreducible solution.  Then the following hold: 

(1) The Chem class ci(E) G Zn C H2(S), and for every irreducible 
(A,ip) G Ms(E)*, A has trivial holonomy along fiber circles; so 
(ci(E),A) = q(e',A') for a unique pair {e\Af). 

(2) Furthermore, if ci(E) is represented by e G Z with 0 < e < n, then 
Ms(E) is identified with the union: 

(7.4)     T29ll l]J Syme+in(E)) JJ j ]J Sym2s-2-(e+^(E) ] , 

where T2g is a 2g-torus, "Sym" means a symmetric product, I = {i G 
Z>o | e + in < g - 1}; and J = {j G Z>o | g - 1 < 6 + jn < 2g - 2}. 
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Remark. The statement can be modified without the assumption n < 
2g — 2. We impose the assumption here because in our case with E C X, 
the existence of a SW basic class on X will imply n < 2g — 2 via the adjunc- 
tion formula. (Originally a well-known theorem of Kronheimer-Mrowka [12] 
states that the inequality also follows from the non-triviality of the Donald- 
son invariants.) This also explains why we exclude the cases with the genus 
g = 0,1, since n > 0. 

More precisely, the torus part in (7.4) corresponds to reducible solutions 
in Ms(E). As for an irreducible pair (A^i/;), let (e7, A') satisfy (ci(E), A) = 
q(e', A'), where 0 < e' < 2g - 2 and e' / g - 1. If e' < g - 1 then {A, ^) is 
the pull-back of a unique solution (^l7, a) to the equations: 

(7.5) 2FA, - FKV = iM2 * 1E, dA,a = 0, 

where a / 0 is a section of E'. Fixing e7, the set of all solutions {A\ a) is 
identified with Syme (S) by solving the Kazdan-Warner equation. If e7 > 
g — 1 then equations (7.5) are replaced by their dual: 

(7.6) 2FA, - FK^ = -i|/3|2 * 1E5 &X,0 = 0, 

where 0 ^ (3 € ^(K^1 ® i?7); the solutions (A', (3) are parametrized by 
Sym2^-2-e,(E). 

For the purpose of the gluing, we also need to understand the SW solu- 
tions on the cylindrical tubular neighborhood 

N = NoUdNo=s[-l,oo)xS, 

endowed with the metric <7cyj = dt2 + gs. The natural complex structure on 
N gives a canonical spinc structure 

Viewing S = dNo, it is easy to see W^\d]sr0 = C (Bp*^1 = WQ] moreover, 
using the inward normal vector of ONQ in iVo, the spinc structure on NQ 

induces one on the boundary dNo, which is precisely the spinc structure WQ 

on S. 
It turns out in order to make use of the complex structure on JV, it is more 

convenient to use a compatible Kahler metric g rather than the cylindrical 
metric ^cyj. According to [13], g can be obtained by extending it from the 

cylinder [0, oo) x S where it is conformal to gCY^ g = e~ntgCy\i the last 
formula being observed by G.-Y. Guo for the first time. The point is that 
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there is a well-defined Spin0 {A) bundle on N determined by the conformal 
class of <7Cyj, and so the Dirac operators of <7,<W[ can be compared on the 

same bundle, cf. Hitchin [8]. Thus, as proved by [17], there is a one-to-one 
correspondence between the SW moduli spaces on N that use the metrics 
g and #Cyj. Of course using g and W^, the SW moduli space for the spinc 

structure W^ ® E is simply given by the set of solutions (A; a, /?) of 

2A^-AF^=i(H2-|/3|2),       ■ 

(7.7) 2Fl2-Fg=a*®/?, 

where A is a connection on E and ^ = (a, P) € T{E @ E ® KN ). 

Proposition 7.8. For any (A,^) € M5CE)* wtk (CI(JE7),J4) = q(e',A'), 
there is an SW solution for the spinc structure WQ ® ^E', which converges 
exponentially to (A, -0) on ^/ie cylinder [0, 00) x 5. 

Proof. We consider the case e < p — 1; the other case # — 1 < e is entirely 
similar. Here (A, ?/>) is the pull-back, from S to 5, of a vortex solution 
{A',a) to (7.5) and defined on E' —> E. The projection TT : AT —► S also 
pulls back the vortex to a pair (TT*^, 7r*a) defined on WQ" ® 7r*£". Then we 
need to find a real valued function u on N such that ew(7r*A/,7r*a) satisfies 
equations (7.7) above, which are equivalent to the single Kazdan-Warner 
type equation: 

I    *    |2 • 

(7.9) Au + M_e2w + i A 7r*FA, - i A FKN = 0. 

The last equation can be solved using the usual upper-lower solution method, 
and the key is to construct upper and lower solutions. The exponential 
convergence on the cylinder follows from that u converges to zero on the 
cylinder. For details, compare with [18; section 8]. □ 

We proceed to examine the relative invariant problem in the context 
that we will need. To that end we shall use Theorem 7.3 and Proposition 
7.8 only in a rather special situation. For the rest of the paper, we continue 
using the notations as introduced in Section 5, and assume again the spinc 

structure £ on X is such that 

JL(S) = -ci(L) • PD\S\ + 2 - 2g + n = 0. 
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Then by Proposition 5.10, the restriction £# is the same as the canonical 
spinc structure W^ on N introduced above; thus the further restriction £5 
is just WQ corresponding to e = 0 G Zn. Let UQ € Ms(E) be the unique 
irreducible solution in Sym0(E) in the decomposition 7.4, namely UQ is the 
pull-back of (0,1) where 0 is the trivial connection and 1 is the constant 
section, both on the trivial bundle E' = C —» S. Moreover we assume the 
virtual dimension ^(E) = 0. Put a cylindrical metric gYdt2 + 62 + 7r*g^ on 
y = y0u[-l,oo) xS. 

Definition 7.10. The relative invariant SW^y) of £|Y is defined to be 
the sum of the finite energy solutions (A, (/>), counted with suitable signs, to 
the perturbed SW equations of £|Y, such that 

(1) the action c(A, </>) = ^ JY FA A FA equals ci(L)2 - 4 + 4# + 3n2,. and 

(2) after gauge transformations, (A, (/)) converges exponentially to -UQ on 
the cylinder of Y. 

Strictly speaking, to use the SW equations (7.2) on 5, we need to fix 
a connection V/ on the tangent bundle Ty that restricts to the reducible 
connection 0 V on the cylindrical part of Y. Then by using a V^compatible 
connection on on WQ", other V^compatible connections are in one-to-one 
correspondence with connections on the trivial C-bundle and the SW equa- 
tions on Y can then be defined in the usual way. 

In the definition above, the moduli space of the finite energy solutions 
has dimension zero, following the usual index calculations. The compactness 
of the moduli space follows from the existence of a uniform bound on spinors 
as well as the fact that there is only one flow, namely the constant flow, on 
R x S which connects UQ and MQ itself, see [18]; compare with the [S]2 = 0 
case in [15]. 

Remark. Our discussion of relative invariants here is undoubtedly very 
concentrated; for a more complete account see a recent paper by Ozsvath 
and Szabo [19]. 

We are in the position to state a relative invariant theorem; the ana- 
logue for Donaldson invariants has been shown by Kronheimer-Mrowka [12; 
Proposition 5.8]. 

Theorem 7.11. Let E C X be an embedded surface with 

0<n= [S]2 < 2g - 2. 
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Suppose 2g — 2 is not divisible by n. If £ is a spin0 structure on X such that 
di = JL(S) = 0 for its determinant bundle L, then we have 

(7.12) SW^\y) = SW{i). 

Proof. As usual consider Xr = YQ U ([—r, r] x 5) U N with a neck of length 
2r inserted in the middle. Extend the the product metric dt2 + gs from the 
neck to a metric on Xr and fix a connection V7 on Tx, obtained by gluing 
properly the pull-back connection of 0V on the neck with the Levi-Civita 
connections on the interiors of YQ and iV. Then using [18; Lemma 5.2.1], 
the difference of the Dirac operators on W+ associated with V7 and Vp is 
a compact operator, and hence the SW invariants defined by using V7 and 
Vp are the same. We shall keep V in our discussions from now on. 

The following line of arguments is similar to the instanton case of [12]. 
Consider the relative moduli space M(£|y) of SW solutions on the cylindrical 
extension Y = YQ U ([0, oo) x 5) that satisfy the conditions in Definition 
7.10. Note that the solution UQ on S extends uniquely to a SW solution 
UQ on the cylindrical extension N U ([0, oo) x 5), since only the constant 
flow connects IZQ with UQ by [18]. According to the general argument [16], 
for any (A,<f>) € M(£|y), we can glue the restriction (A, 0)|you[o,r]x5 with 
U'QIJJU ([0, r] x A?) and deform it into a SW solution. In other words, we have 
the injective map 

Tr:M(£|y)^M(£;Xr). 

To complete the proof, we just need to show that Tr is surjective for 
sufficiently large r. Suppose the contrary that there is a sequence n —> oo 
together with solutions Vi G M(£; Xri) which do not lie in the image of T^. 
We will obtain a contradiction as follows. 

Imitating the compactness argument of [14], one shows that Vi has a 
convergent subsequence, Vi —> (t/,^!,--- ,Wfc,^")? where v^v" are finite 
energy SW solutions on Y and N and wi are finite nonzero energy SW 
solutions on the tube S x R, respectively. Furthermore, the boundary value 
of vf matches the —oo boundary value of wi, the +oo-boundary value of wi 
matches the —oo boundary value of u^ and so on. By Theorem 9.2.5 of [18], 
v'lWijv" are smooth points of the corresponding moduli spaces. Therefore, 
each moduli space has a nonnegative virtual dimension. By the additivity of 
the index, the virtual dimension of vi > 0 unless no wi appears in the limit. 
We can also view this as follow. If some Wi appears in the limit, we construct 
an open subset of the moduli space by the gluing argument. Then, we notice 
that there is a gluing parameter R+ corresponding to wi. This contradicts 
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the zero dimensionality of the moduli space. From the assumption, g — 1 
is not divisible by n, so Theorem 7.3 says that Ms(E), with E trivial here, 
does not contain the torus component that consists of pull-back reducible 
solutions from S; thus all solutions in Ms{E) are non-degenerate by [18; 
Propositions 5.8.4, 5.9.4]. Hence, along the general line of [16], both v' and / 
v" converge exponentially to some elements v!, u" G Ms(E) on the cylinders 
of Y and iV. We intend to show that vf = u" = ^o by counting dimensions. 

In fact, since 2g — 2 is not divisible by n, from (7.4) the moduli sp^ce 
Ms(E) has only one zero-dimensional component {^o}- So if u' ^ UQ then 
vf must belong to T29 or Symr(E) from some r > 0 as in (7.4). Let cf,cf' 
be the actions of v'^v". Then ci(L) = cf + c" from the convergence of Vi. 
Let M(£|y; B) be the moduli space of SW solutions on Y which converge to 
elements in 5, where B is either the torus T29 or Symr(S); let M(€\N]B) 

be similarly defined. The dimension formula from the gluing theorem [16] is 

(7.13) <iimM(0 = dimM(£|y;B) + dimM(£|y;B) - m, 

where m > 0 is either 2g — 1 or 2r, depending on B is T29 or Symr(S). On 
the other hand, 

4[dimM(£|y;B) + dimM(^|Ar;B)] = cf + cf' - (2eY + Ssy + 2eN + SsN) 

= c1(L)-(2ex+3sx) 

= 4dimM(0 

using Proposition 5.7 for the middle step, which forces m = 0 and vf = u" = 

Now that both v' and v" converge to -UQ on the cylinders, the gluing 
argument of [16] can be applied once more to show that Vi should lie in the 
image of T* for large i. So the desired contradiction is obtained. □ 

In the theorem we assumed 2g — 2 is not divisible by n, in particular n ^ 
2g — 2, in order to avoid the torus T29 of degenerate reducible solutions on S 
which are pull-backs from the bundle Ef —» S with ef = g—1. The inequality 
n 7^ 2g — 2 implies that L restricts non-trivially on S from JL(S) = 0. 

The following is the main result in the section; all required conditions 
are stated in full for completeness. 

Theorem 7.14. Let p : X —> X be a double cover branched along a con- 

nected orientable surface E, with n = [S]2 > 0, b^X) > 1, b^X) > 1, 
and Hi{X, Z) containing no 2-torsion.   Suppose n < 2g — 2 and 4p — 4 is 
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not divisible by n. Suppose also that £ is a spin0 structure on X such that 
di = JL(^) = 0 for its determinant bundle L. If £ is a spin0 structure 
defined in Proposition 5.11, then we have 

(7.15) SW{$) = SWfc)    mod 2. 

Proof Fix connections V, V' on the tangent bundles Tx, T^ with the prop- 

erty that V7 and V7 restrict to the reducible connections 0V on N and iV, 
and V7 is the pull-back of V' on Y. By tenoring with a suitable connection 
on W+ that is compatible with the decomposition W^+|iv = C(BKN, the SW 
equations on £ = £ ® E are defined for pairs (A, cf)) where A is a connection 
on the trivial line bundle E and (/> € r(VF+); similarly for £ = £ 0 E with E 
trivial. 

With a generic perturbation in the SW equations for £, we have from 
Theorem 7.11 that SW(£) = #M(£|y,r/o), where M(£|y,tto) is the space 
of SW solutions on Y satisfying the conditions of Definition 7.10. Define 
M(£|y,So) similarly, where by our choice, £|y is the pull-back £|y of £|y 

via the projection p. We will switch to the notation £|y for the sake of the 
argument. _ 

It is clear that M(£|y,7io) is contained in M(£|y,Zo) through the pull- 

back map p*. (The solutions UQ^UQ^ defined on S and iS, are the pull-backs 
of the same solution (0,1) on S = E.) 

More precisely applying Theorem 3.8 we have the decomposition into 
equivariant moduli spaces: 

(7.16) M(ej?, UoY = M(|jP, Uo)r I] I    U   M&Y> ^)kr )  , 

where r is the natural lifting on £|p and if- is the set of non-identity 
maps in Ky- (Again the irreducibility of the solutions is insured by that 
of UQ.) From Proposition 5.3 (2) and (3), K~ contains precisely one map 
krj corresponding to the only line bundle 77 |y in /Cy. Now we claim the 

component M^ly,^)^ is actually empty, and hence 

(7.17) JJ M^\y,uo)kr = t 
keKt 

In fact, if there is an element [A, </>] e M(£|p, UQ)^, then by looking at its 

limit we have T*(guo) = kvguo for some gauge transformation g on £|£. On 
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the other hand, since UQ is the pull-back of (0,1) via the fibration TT : E —> 5, 
obviously T*UO = UQ. Thus [So] G M(£|g)* n M(€\§)1 r for the SW moduli 

space M*(^|g) on S with the induced action r. This is however impossible: 

Prom Proposition 5.3 (1), r)\g = [n/4] G Zn/2 C H2(S, Z) is non-zero, hence 

Theorem 3.8 applied to the moduli space e M(f 1^)* yields 

M(%)*nM(%)^T = 0. 

(Theorem 3.8 is applicable here from the remark after that theorem.) 
According to Theorem 3.8, M(^|y,^o) is homeomorphic to M(£|y,So)r 

viap*; thus M(£\^,uo)T is homeomorphic to M(f|y,Mo) from (7.16)-(7.17), 

and consequently SW(^) = #M(£|p, uo)T. On the other hand, by Theorem 

2.2, #M(^|?,So)r = SW(€\y) mod 2. Moreover using Proposition 5.8, we 

see that the conditions of Theorem 7.11 are satisfied by the spinc structure £ 
and so SW(£) is equal to the relative invariant SW(£|p). Putting all things 

together, we have SW^) = SW(€)  mod 2. D 

Remark. (1) If we drop the assumption that Hi(X) contains no 2- 
torsion, then /Cy may contain a non-trivial bundle 7 which restricts 
trivially on S. Namely the disjoint moduli spaces 

M(^y,5o)r,        M(t\y,uo)klT 

may become intersected on their limits on S. Thus the non-emptiness 
of M(t;\y,uo)k^T can not be ruled out like M(^|y,2o)fc77r- It is not 
clear how to define the relative invariant from 

M(€\y, So)fc7r ~ M(£|y (8) 7, wo), 

since the adjunction equality is not valid for the spinc structure £ ® 7 
and Definition 7.10 can not be used. 

(2) Theorem 7.14 would be consistent with Theorem 4.2 if S were al- 
lowed to be empty in Theorem 7.14: When Hi(X, Z), or equivalently 
whenj^pf, Z) has no 2-torsion, ICx = {0} and so Theorem 4.2 says 
SWfc) = SW{€) mod 2, coincident with (7.15). Putting differently, 
(4.3) suggests that (7.15) would not be true if Hi(X, Z) has a 2-torsion. 

(3) Note that even if assuming Hi(X) does not have 2-torsion for the case 
[S]2 = 0 in Theorem 6.8, we still can not drop the relative invariant 
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term /^(X, S). This is just because TJIY restricts trivially on S unlike 
the case [E]2 > 0. Such a difference between Theorems 7.14 and 6.8 is 
already hinted by the following: in the [E]2 > 0 case, the adjunction 
inequality is violated for the spinc structure £(8)77: JL^rji^) = ^L(S) + 

[E]2 = [E]2 > 0, whereas for the [E]2 = 0 case the adjunction term 
JL+2T](^') remains to be zero. 

The next corollary generalizes the familiar formula from holomorphic 
covers of complex surfaces to smooth covers of complex surfaces; in spirit 
it is similar to that the canonical bundle of a minimal complex surface is 
invariant under smooth diffeomorphisms. 

Corollary 7.18. Suppose that X is a complex surface of general type with 
62"(X) > 1, the canonical bundle K, and without 2-torsion in Hi(XjZ). If 
p : X —> X is a smooth double cover branched along an orientable connected 
surface E and E is such that JK(E) = 0,0 < [E]2 < 2g — 2 and Ag —JL 
is not divisible by [E]2 , then ci(p*K) + PD[S\ is a SW basic class of X. 
If moreover X is also a complex surface of general type and both X, X are 
minimal, then ci(K) = d=(ci(i^) + P-D[E]); where K is the canonical bundle 
ofX. 

Proof Let £ be the canonical spinc structure on X] its determinant is K-1 

of course. By the familiar computation [26], SW(£) = 1; hence SW(€) ^ 0 
by Theorem 7.14, and so SW(£*) ^ 0 for the dual £*. Thus the determinant 
of £*, namely ci(p*K) + P-D[2], is an SW basic class on X. 

The second statement follows from the fact that the canonical spinc 

structure and its dual are the only ones with non-trivial SW invariant for 
any minimal complex surface of general type. □ 

The case with [E]2 = 2g — 2 is not covered in the corollary above, even 
though one can show for such a case that X may still have a SW basic class 
and indeed a symplectic structure on it. An example is given in Wang [25] 
where E is taken to be a real part of an anti-holomorphic involution on a 
complex surface X. It would be interesting to determine in the example of 
[25], whether K = p*K ® PD[T] can still be a SW basic class on X for the 
canonical bundle K of X. 
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8. A final remark. 

Theorems 6.8 and 7.14 may be interpreted in terms of varying the holonomy 
of singular SW solutions on X along the surface S. In fact it is possible to 
use this approach to prove alternatively the theorems, which is a little more 
complicated than our current proofs. Schematically it goes as follows: We 
pull back SW solutions from £ to f, where £ = p*(£|y')' is a spinc structure on 
Y' = X\E. The point is that we can choose carefully a Lipschitz Riemann 
metric on X [23] so that these solutions on £ can be viewed as being defined 
everywhere on X with holonomy 0. (The removable singularity theorem 
does not hold here as our metric is not smooth but only Lipschitz.) The SW 
invariants of £ and £ are the same modulo 2 using the virtual neighborhood 
method in Section 2. Because the determinant bundles of £ and £, namely L 
and L, differ by a twist of PjDfS]-1, we are suggested to consider a family of 
SW moduli spaces on £ with the holonomy parameter interpolating between 
0 and 1, as in the Donaldson invariant case according to Kronheimer and 
Mrowka [11]. With the help of Theorem 7.11, we can get the required 
excision results as the holonomy approaches 0 and 1, which in turn give the 
relation between the SW invariants of £ and £. What is interesting about 
this approach is that unlike the Kronheimer-Mrowka picture, it does realize 
the interpolation without contradiction. This is possible precisely because 
the adjunction inequality is satisfied here! 
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