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Hermitian-Einstein metrics and Chern number
inequalities on parabolic stable bundles over Kahler
manifolds

L1 Jiayu

Let X be a compact complex manifold with a smooth Kzhler metric
and D = 7", D; adivisor in X _ with normal crossings. Let E be a
holomorphic vector bundle over X with a stable parabolic structure
along D. We prove that there exists a Hermitian-Einstein metric
onE' =F |7\ p and obtain a Chern number inequality for a stable
parabolic bundle.

Without the assumption that the irreducible components D; of D
meet transversely, using Hironaka’s theorem on the resolution of
singularities, we also get a Chern number inequality for a more
general stable parabolic bundle.

1. Introduction.

Let X be a compact Kahler manifold of complex dimension n with a Kahler
form w. Let E be a rank r holomorphic vector bundle over X. It is proved
that F is stable if and only if £ admits a Hermitian-Einstein metric, under
the assumption that F is indecomposable ([N-S], [D1], [D2], [D3], [U-Y]).
The theorem yields Bogomolov-Gieseker inequality easily, which says that,
if E is stable,

T -

(2C(E) — 101 (E)Y) - w2 >0.

r

Let D = Y7, D; be a divisor in X with normal crossings, we introduce a
parabolic structure of F with respect to D which consists of flags of E|p,
and weights attached to the flags, we define the notion of parabolic stability
of a parabolic structure (see Section 2). Set X = X\ D, E' = E|x. In section
3, we construct a metric Ko on E’ with the property that |Fg, |k, € LP(X)
(p > 1). In Section 4, we construct Kéhler metrics wy (0 < oo < 2) on X
and show that (X,w,) satisfies the three assumptions in Section 2 of [S1].
It is proved in Section 5 (Proposition 5.10) that the parabolic structure is
parabolic stable if and only if (E, Ko) is analytic stable (Definition 5.2, also
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see [S1],p.877), which yields one of our main results (Theorem 6.3) that the
parabolic stability of a parabolic structure is essentially equivalent to the
existence of a Hermitian-Einstein metric on E’ with respect to w, for some
0 < a < 2. Furthermore, we prove a Chern number inequality in section 7
(Theorem 7.5) for a stable parabolic structure.

In section 8, we prove a Chern number inequality (Theorem 8.3) for a
more general stable parabolic structure. In this case, we do not assume
that the irreducible components D; of D meet transversely, and we need not
suppose that the flags of E|p, satisfy the compatibility condition (Definition
2.1 and Definition 8.1). We use a theorem of Hironaka [H] on the resolu-
tion of singularities to get complex manifold X by successively blowing up
submanifolds such that the proper transforms D} of D;, (i = 1,---,m) do
not meet each other. Let g : X — X be the canonical map, and let & be a
Kihler form on X. We show (Lemma 8.5) that the stable parabolic struc-
ture of E along D = 3", D; induces a stable parabolic structure of ¢*E
along D* = 37", Df on X using the Kahler form ¢*w + ew for sufficiently
small € > 0. Then Theorem 7.5 yields another main result of this paper, the
Chern number inequality Theorem 8.3.

If D is a smooth divisor, Li-Narasimhan [L-N] construct a metric Ko on.
E’ with |Fk,|k, € LP(X) (p > 2). If X is of complex dimension 2, they
show the equivalence between the stability of a parabolic structure and the
existence of a Hermitian-Einstein metric on the bundle, using the restriction
of the Kahler metric w to X.

Parabolic bundles over Riemann surfaces is treated in [MS, B, K, Na-St,
P, S1, S2].

Acknowledgement. The author would like to express his gratitude to
Prof. G. Tian for his advising in the construction of the metrics on the
bundle. He would like to express his gratitude to Prof. M. S. Narasimhan
for his explaining the Hironaka’s theorem.

2. Parabolic stability over Kihler manifolds.

Let X be a compact Kéahler manifold of complex dimension n with a Kahler
metric w, D a divisor in X with normal crossings. Let X = X \ D, the
restriction of w to X gives a Kahler metric on X, we fix it once for all. Set
D = ", D; where the irreducible components D; of D are smooth and
meet transversely.

Let E be a holomorphic vector bundle over X, E’ = E|x. Define I to be
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the set of all tuples of integers (k1,--- ,k;) with1 < j<nand 1< k; <m.
For each J = (k1,--- ,k;) € I, denote by X7 the smooth variety defined as
the intersection of D, - - - Dg;.

Definition 2.1. A parabolic structure on E with respect to D consists of
a) flags of E|p,(1<i<m):
Elp,=FiD>F;>---D>F, >{0}=F, 4

where Fl’+1 is a proper subbundle of Ff 1<1l<m-—1), and
the flags satisfy the following compatibility condition: For every
J = (k1,--- ,k;) €1, {Flkilpkl...pkj,l <1< 4,1 <1< my,} yields a
flag of E|Dk1---ij which is a refined flag of {-Fllkilel-“ij ,1 <1< my,}
for each s € {1,---,5}.

b) weights of,ab, - ,a},, attached to Fj,F3,---, Fy,, satisfying 0 <
o] <oy < - <op <L

A holomorphic vector bundle E with a parabolic structure is called parabolic
bundle.

Definition 2.2. We define the parabolic degree of a parabolic bundle E by

m m;

pardeg E = deg E + Z Z rank(F}/F}, )} deg[D;]
i=1 =1

where [D;] is the line bundle defined by the divisor D;, deg F (resp. deg[D;])
is the degree of E (resp. the degree of [D;]) in the usual sense using the
Kabhler form w.

Suppose that V is a proper coherent subsheaf of F with quotient torsion
free. Then there is a natural flag of V'|p, by coherent subsheaves

Vip,=FiV>---DF.V>{0}=F. .,V
induced by F{ nNv 2 ...D F,’;li NV D {0}, clearly, n; < m;. Let us
define the weights attached to the flag by (V') = the largest of such that

Fiv Q_F,i N V, i.e., the subscript k is the largest integer with the property
that F}V CF;,1<1<n;, 1 <i<m.



448 Jiayu Li

Definition 2.3. We define the parabolic degree of V' by

pardegV =degV + Z Z rank(FiV/Ff 1 V)aj(V) deg[D;]
i=1 [=1

Definition 2.4. We say that a parabolic bundle F is parabolic stable if for
every proper coherent subsheaf V' of E with quotient torsion free we have

pardegV  pardegE
rankV rankE

3. Construction of metrics on vector bundles.

Let E be a parabolic bundle over X as given in Section 2. At a point p € D
through which j(1 < j < n) of the D; pass, we may choose local holomorphic
coordinates in a neighborhood U = A" = {|]z;] < 1,4 =1,---,n} of p =
(0,---,0) such that DNU = {z---2; = 0} is the union of coordinate
hyperplanes. The complement U* = U\UND = (A*)I x A" is a punctured
polycylinder P*(j,n) given by {(21,- - ,2n)||zi| < 1,21---2; # 0}.

Definition 3.1. If {e1, - ,er} (r = rankE) is a holomorphic basis of E in
A" satisfying the property that, for any ¢ € {1,---,j}:

{er—rinﬁl’ e ,e,} is a basis of Fy,, over U N D;,

. . i
{er—rfni-ﬁl’ e ,e,.} is a basis of Fy,,_; over U N D;,

{er-—r§+1’ e ,e,.} is a basis of Fi over U N D;

where # = rankF},l = 1,---,m;, we say that it preserves the flags on
UnD.

The following lemma is clear.
Lemma 3.2. There is a holomorphic basis {e1,- - ,e.} of E in A™ such

that it preserves the flags on U N D.

Proof. We choose a holomorphic basis {e1,"- , e} of E|p,..p;, such that it
preserves the flag F' yielded by {F}|p,..p;,1 < 1 < ms;,1 <4 < j}. Since
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F is a refined flag of {F}|p,..p;,1 < | < m;} for each i € {1,---,j}, the
basis {ej, - -- , e,} can be extended naturally so that it preserves the flags on
U N D. This proves the lemma.

Let {e1, - ,e;} be a holomorphic basis of E in a neighborhood Up,
of p1, {f1,---, fr} a holomorphic basis of E in a neighborhood Uy, of ps.
Suppose that (fi, -, fr) = (e1,"- ,er)g, i.e. fg = €agapin Up, NUp, # 0,
Upy NUp, "D = U_Dy, (1 < j < n). Assume that {e,---,e,} (resp.
{f1,--+, fr}) preserves the flags in Uy, (resp. in Up,). Then on each Dy, (i =
1, 27 ) .7)7

(1) gaﬁ=0ifr—rfjl+1§ﬂ§r—rlk‘, aSr—rﬁl

here 7% =rank Flk",2 <I<mg +1.

For each i =1,--- ,m, we choose a metric on the line bundle [D;] defined
by the divisor D;. Let o; be the canonical section of D; which vanishes on
D;. We may assume that its langth |o;| < 1. Weput 0 = 0, ® -+ ® om,
which is a section of [D], then |o| = IL;|o;| < 1.

Put ,Bli = ag- ifr—rg <l<r-—riy, Where'r'§ =rankF},j= 1,---,m;.
Set
o, A
pi=
—Bi
g;
|os| i
St =
|o; |ﬂ:
Now we construct a metric H on E|ps(;n). Let {e1,--- ,e,} be a holomorphic

basis of E' in U preserving the flags on UND. Assume that UND = U]_, D,
we define the metric H so that its matrix with respect to {e1, - - ,e,} is
(Sk1)2...(Sk3)2. Set (ell"l"'kj, el ,efl"'kj) = (e1, - ,e-) Bk - Bk it is well
defined in a small neighborhood of any point z € P*(j,n), and it is a
holomorphic basis of E' there. It is clear that with respect to the basis
e’lcl'"kj oo ek ) the matrix of H is identity.

There are finite neighborhoods U; and V;(i = 1,---,N) such that, 1)
U; DD V; and U;V; D D; 2) associated to each U; there is a unique j-tuple
(k1,--+,k;) with 1 < j < n such that Uy N Dg, N --- N Dy, is an open
coordinate chart of Dy, N --- N Dg; disjoint from any other Dy (k # ki,
l=1,---,5). Let Up = X\ U;V;. Then {U; | i = 0,---,N} is a finite
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covering of X. Suppose that {1; € C°(U;) | i = 0,--- , N} is a partition of
unity corresponding to the covering. In each U; (i =1,--- ,N) we choose &
metric H; on E’ as above and in Uy we choose a smooth metric on E. We
define a metric Ky on E’ by

N
(2) Ko = Z¢iHi

=0

Lemma 3.3. Let Ky be the metric on E' defined above, then its curvature
form satisfied that |Fi,|k, € LP(X)(p > 1).

Proof. It is clear that, in Uy \ (UjkUs)(k =1, ,N),|Fk,|x, € L. Sup-
pose that U;; NU;, D Dy, (1 <41 < N,1 <49 < N), Dy, - --ijl is assoiated
to Uy, Dk, Dy, - - - Dy, is associated to Us,. Let {e1,-:-,e,} be a holomor-
phic basis of E preserving the flags on U;, N D, and let {f1, -, fr} be a
holomorphic basis of E preserving the flags on U;, ND. We write fg = exgag,
then

ily--L; kaly-l;
(fi 2 )

= (fr- BB Y5 = (e1 - e)gB B - f
kq---ks; ki---ks; o _ _ .
= ey e ()T (BR)TH(BM) TgpR B - Bl
where g is the matrix with elements g.g3.

Set
G = (8")'98" = (Gap)

By (1) we can see that G, are able to be extended holomorphically to Dy,
and that G,g = Haﬁcrz:'ﬂ (o # B) where

Yo = min{ afl —afll, 1—(0/1-"1 —afil |t=2,-+- ,mg, +1}>0
and H,p are able to be extended holomorphically to Dg,. So, using the
holomorphic basis (e’lclmkjl,-n ,e’rclmkjl), applying the fact that G,g are

holomorphic away from the divisor, we can calculate the curvature form

and obtain
FKO = 0% |ak1 |2(’7_1)d‘zk1 dzkl +A4

where

7> min{ ot —afl;, 1 (bt — 1)) [i=2 muy +1}>0,
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A is smooth, QT is smooth.
Similarly, if ﬂﬁ"zl i D U§-=1ij, we can show that, in ﬂﬁ"leik,

l
3) Fo =) ay g low, 7 VdMdzb + A
j=1
where
vi zmin{ o;” —e;?;, 1— (0" —e;7y) |$=2,--- ,mp; +1} >0,
O, is smooth (j =1,---,1), A is smooth. Therefore the lemma follows.

4. Singular metrics on manifolds.

Recall that w is a Kahler metric of X. For 0 < a < 2 we define

m
We = V-1 (—2%&-) 265|0i|2_°‘ + Cow
i=1

where C, is a constant large enough so that w, is a Kahler metric on X.
We set wy = w.

For any point p € D, we choose a neighborhood U, of p. Assume that
(21, , 2n) is a coordinate system in U such that U,N D = {21 --- z; = 0}
Then we can see that, in Uy, \ D, w, is quasi isomeric to

J n
Z Idil_adzi ANdzZ; + Z dz; N\ dz;
i1 i=j+1

Applying the weighted Sobolev inequality proved in [St] (Theorem 2.2.56),
we obtain, for any f € C*®(X)

U lflrlal_adv)% = ((/M Lo ([ 1rPror=av) )

if2<r< 2:__1"‘, where dV is the volume element of w, 7 is the gradient
with respect to w.
2)

Since in Up \ D,| v fI* = Y1y |a%€|2’

of

Ve f22 Co (Sl Z] 1 3

(4)
> Calo]*| v fI?
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we have the Sobolev inequality:

([ o)’ < ((f o)’ ( i)

f2a2<r< %?_‘—f‘, where dV,, is the volume element of w,, and 7, is the
gradient with respect to wy.

Therefore, we have the following proposition.

Proposition 4.1. (X,w,) satisfies the three assumptions in [S1] (Section
2), that is, (1) (X,wa) has finite volume; (2) there ezists an ezhaustion
function ¢ with Ayd bounded; (3) if f is a nonnegative bounded function on
X with Aaf > —B (B € IP(X),p > n), then ||fllzx) < C(IBllexy +
[|fllz1(x)) where Ay is the Laplace operator with respect to wy.

Proof. Assumption (1) is clearly satisfied. We set ¢ = log|o|2. Then Ay¢ =
—+/=1A,00¢. The Poincaré-Lelong formula ([SABK], Ch. II, Section 1,
Theorem 2) yields that it satisfies Assumption (2). To prove Assumption
(3) is satisfied, it suffices to show that the Moser’s iterative argument [Mo]
(also see [G-T], Ch. 8) works on the manifold (X,w,), which is guaranteed
by the Sobolev inequality that we proved above.

5. Analytic stability and parabolic stability.

Let B’ = E|x, K a Hermitian metric on E', let dx = Ok + 0 be the
Hermitian connection of K, Fg the curvature of dg.

If |AaFk|k € LY (X, wa), (0 < @ < 2), where A, is the contraction with
respect to the Kéhler form w,, we can define (see [L-N], [S1]) the analytic
degree of (E, K) by

do(E, K) = g /X tr(AaFi)dVa
_v1

= trFyg A xwq,
2m X
v—1 wrl
T oon /XtTFKA (n—=1)

If V is a proper coherent subsheaf of E’ with quotient torsion free, we can
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define the analytic degree of V' (see [L-N], [S1]) by
do(V,K) = v-i / tr(AaFk), )dVa
27 D¢

-1 1 =12
S At Vo — — Va
o /Xt'r(ﬂ'AaFK)d o /x 07|k o &

where 7 is the orthogonal projection with respect to the metric K onto V in
the complement of an analytic set. The analytic set is of codimension > 2,
outside which V is a proper subbundle of E'.

Let Sk = Sk (E’) denote the vector bundle of self-adjoint endmorphisms
of E’ with respect to K.

Definition 5.1 ([L-N]). Suppose that K, H are Hermitian metrics on E’
with the property that |A.Fix|x € L'(X,wa) and |[AoFh|g € L} (X,ws).
Let H= Kh. If

a) H, K are mutually bounded;

b) [Oh|kw. € L*(X,wa)
then we say that H and K are compatible with respect to wq.

It is proved in [L-N] (Lemma 3.4) that, if K and H are compatible with
respect t0 we, then do(E, K) = do(E, H).

Definition 5.2. Suppose that K is a Hermitian metric on E’ with the prop-
erty that |A,Fx|k € L}(X,w,). We say that (E, K) is analytic stable with
respect to wg, if for every proper coherent subsheaf V' of E’ with quotient
torsion free,
do(V,K) do(E,K)
rankV < rankF

We compute the analytic degree of (F, Ko) with respect to w, where K
is defined in Section 3. For this purpose, we introduce a metric K; of F over
X. We adopt the same notations as that in Section 3. Let H’ be a metric on
E|a» whose matrix with respect to the basis {ej,-- ,e,} is identity. Then
we choose, in each U; (i =1,---, N), a metric H] on E as above, and define
the metric K; by

N
K1 =oho + Zd’ihé

=1

Proposition 5.3. do(F, Ko) = par deg E
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Proof. Set Ki 1Ky = h, then tr F; Ko =trFg, + 00log det h.
do(E,Kp) =deg E + —/ d0logdet h A *w

We have

do(E, Ko) = deg E + ——/ 00 log det (H(Sz)2> A *w

- 3. i—2
+ o /Xaalogdet (];[(S) h) A *w

By the Poincaré-Lelong formula ([SABK], Ch.II, Section 1, Theorem 2), we
have

i

do(E, Ko) = par deg E + v-1 / 80 log det (H(Si)_2h) A *w
2T X

By the construction of the metrics Ko and K3, it is not difficult to see that
log det(]];(S*)~2h) can be extended smoothly to X, so the last term on the
right hand side of the identity vanishes, this proves the proposition.

It is clear that

/ trFg, A (\/:—1_ (-23_0‘) ZI’(;’; ?EII‘)T;P_Q + Caw)

1 wn—l
=C" t AN—
a /X kR T

and

(V=1 (2) T Bloi>= + Caw) "™
(n—1)!

=t /Balogdeth/\

/ d0logdet h A
X

w1
(n—1)!
So, we have the following proposition
Proposition 5.4.
| do(E, Ko) = C*par deg E
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Then we consider the parabolic degree and the analytic degree of a co-
herent subsheave of F.

Proposition 5.5. Let V' be a proper coherent subsheaf of E with quotient
torsion free.

1) If K; is a metric on E

degV = _-——V—l / tr(AFg,), )dV
27‘(’ X

2) If Ko is the metric defined in Section 8, we have
pardegV = do(V, Kp).

Consequently, |0r|k, € L*(X).

Proof. By a theorem of Hironaka ([H],p.145, Corollary 2), we can find a
complex manifold X , which is obtained by successively blowing up complex
submanifolds, such that the following holds. Let ¢ : X — X be the canonical
map and let {P“}(¢ = 1,---,N) be the components of the exceptional
divisor S; then there exist positive integers {m;}(i = 1,---, N) such that
the canonical map from ¢*(V) to ¢*(F) maps ¢*(V) isomorphically onto a
proper subbundle of ¢*(E) ® O(—m;P[**).
We first prove 1), i.e.,

deg(V) = Y1 / tr(Fieypy) A 4o
2T X
Note that for any choice of a metric v on ¢*(V') we have
deg(V) = L= [ r(Fy) A xq” ().
2t Jx

Now consider the metric on ¢*(V') obtained from the metric on ¢*(E) ®
O(—m;P;**), where we use on ¢*(E) pullback of K; and on each O(P™)
some metric. Let |S;| be the norm of the canonical section of O(P[) with
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respect to the metric. we have
—q ,
X ) ne)
v—1 * *
= o )"(\str(q (Fiyly)) A *+q*(w)
\/_

271’ )"(’\ S

degV =

-ﬁz’iEalog |32 A *g*(w)

=5— — / tr(Ficypy) A #w + Yo = _Tzzga log |S;[? A *¢*(w)

27 X\S
\/2;__ tr(Fi,|y) N *w — —- / C1(O(P™)) A *q* (w)

ey

tr(Fth,) A *w
X ,

where C(O(P}*)) is the first Chern form of O(FP;™*).

From now on, we suppose that K; is the metric of E defined in this
section.

It is clear that

trFy,|, = trFg,), + 801log det((K1|v) ™ (Ko|v))

Using 1) we have
do(V, Ko) = deg V + Y- / D0 1log det((K1|v) " (Kolv)) A #w

We will use blow up as above to calculate the second term on the right hand
side of the last identity, which equals

V-1

a * -1/ % *
o e s 221080t D)0 Bl ) 20 ()

We denote by D} the proper transform of D;, we may assume that ¢ YD) =
Y., Df + S is a divisor with normal crossings.
Suppose that the flag of V|p, by coherent subsheaves is

Vip,=FiV>.---2>F.V>{0}=F., .V,

the weight attached to the flag is o (V), -, 0%, (V) (see Section 2). Let
a=rankV.
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Put 5; = aj- ifa—rj <l<a- ;-_,_1 whererj- = rankF]?'V, ji=1--,n;
Set
oz |1
A=
26%
|o[*

. TIY, 528
B'=
[T, |52

where o} is the canonical section of D;.
We have

v-1
21 JX\q-1(D)
V=1

= —§7r_ X\q—l(D)—ga lOg det (H(AiBi)_l(q*(Kl)Iq*(V))—l(q*(KO)|q*(V)))

99log det((q*(K1)lg(v)) " (@*(Ko)lg»(v))) A #q*(w)

K3

._1/ _ .
A xq* (W) + — 00 log det A'BY) | A x¢* (w
@+ 5 [, B9sdet (T[(4BY ) neg'(o)

1

Let p € ¢~1(D).Assume that Df,- - , D, P, , P, pass through p. Sup-
pose that fi,---, fa is a holomorphic frame of ¢*(V) in a neighborhood
Up of p and that f is a holomorphic frame of O(—m;P*), assume that
fi = 9ijq*(e;) ® f where ey, -- , e, is a holomorphic basis of E around ¢(p)
preserving the flags, g = (gij) is & matrix with constant rank a. Further-

more, we may assume that f; = ¢*(ex,) ® f on Dy = U;?=1D;,z' =1,---,a,
that is gijID; =0if j # k; and giki|D; = 1. We have
(5) (fis fiYur = 941
k b
(6) (Fir 1)y = [T 1ot T 1961 97
t=1 t1=1

Here H is the local metric on E’ defined in Section 3, H' is the local metric
on E constructed in this section, 3f is defined in Section 3.

Let (21, -, 2x) be alocal coordinate system around p and P* is defined
by zz=0,2=1,---,b. Then

b b
(7) 7" (w) =Z( IT = II 7jwlmdzz/\d7m)

Lm \i=li#l j=lj#m
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By (5),(6) and (7) we can see that

/x 30 log det (H(A’Bz e (K1) lgr(vy) Mg (Ko) g (V))) A xq*(w)

\¢~1(D)
=0

We therefore have

e

) * -1/ * *
o Jio 90log det((¢" (K1)lg~(v)) ™ (¢"(Ko)lg(v))) A *q"(w)

= 801log |of|2 A *q*(w
-y (% e gory 221 q(>)

i=1 j=1
+ z Z & Z B010g |S|? A *q* (w)
i1 ]—1 =1 27r X\q~1(D)
Z Z —_1 /~ 90log o} |? A xq*(w)
i—1 _7—1 2T X\D

Z Z 5% deg[Dj]
i=1 j=1

So
do(V, Ko) = par degV

This completes the proof of the proposition.
Similarly we also have

Proposition 5.6. Let V' be a proper coherent subsheaf of E with quotient
torsion free.
do(V, Ko) = Cy~'par deg V

Proposition 5.7. Suppose that Ko is the metric constructed in Section 3.
If K and K are compatible with respect to w,, then do(V, K) = do(V, Ko)-

Proof. Let h = Ky 1K. We adopt the notations in the proof of Proposition
5.5. In particular g : X € X is the blow up. We shall prove

/X\q—l(D)B-alogdet (I;I(AiBi)_l(q*(Kl)Iq*(V))—l(q*(K)Iq'(V))) /\*q*(wa)

=0
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For any point p € ¢~ %(D), around it we use the holomorphic frame ez(l"" k)

defined in Section 3.
Suppose that

¢"(W)g* (") = hijg(ef ),

and (Lo 5
fi=gi;0°(e;"V)® f
It is clear that

k 1
_a . .
9i5 = 9i;4" (I I g, k') if Tk(Fl€,+1) <Jj< rk(F,f:l)
=1

where k; =1,--- ,my.

We have , L

(¢* (W) fir F3) 1 = girhusgls(f, f)

Here H is the local metric on E’ defined in Section 3.

Since ¢*0; = o} [17 _1 Strs ko € LP(X), [BhlKowa € L*(X,ws), using
(6) we can show the claim, which yields the proposition.

Finally, we consider the equivalence between parabolic stability and an-
alytic stability.

The following lemma is a corollary of a theorem of Siu ([Siu], Theorem
4.5).

Lemma 5.8. Suppose that A is a thick set in P*(ko,n — 1)(0 < ko < n —
1), assume that G is a coherent analytic sheaf on P*(ko,n — 1) x A and
that F is a coherent analytic subsheaf of G with quotient torsion free on
P*(ko,n — 1) x A*, where A = {|z| < 1}, A* = A\ {0}. If for every point
P € A, Flipyxa~ can be extended to {p} x A as a coherent analytic subsheaf
of Glipyxa , then F can be extended uniquely to a coherent analytic subsheaf
of G on P*(ko,n—1) x A.

Li-Narasimhan showed in [L-N] (Lemma 6.2) that the extension of a
coherent subsheaf of E' = E|x is a local problem. So applying Lemma 10.6
in [S1] and using Lemma 5.8 at most n times, we can prove the following
proposition.

Proposition 5.9. Suppose that K is the metric on E' = E|x constructed
in Section 3. If V is a proper coherent subsheaf of E' with quotient torsion
free and |Ony |k, € L2(X), then it extends to a coherent subsheaf of E.
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Proposition 5.10. Suppose that E is a parabolic bundle, assume that Ky
is the metric constructed in Section 3. Then E is parabolic stable if and only
if (E, Ko) is analytic stable with respect to we.

Proof. Using (4) we can obtain

/ |57rleodV§ Ca/ |57TV|Ko,wadVa-
X X

So the proposition follows from Proposition 5.4, Proposition 5.6 and Propo-
sition 5.9.

6. The existence of H-E metrics .

In this section we prove one of our main theorems in this paper.

Definition 6.1. A Hermitian metric H on E’ = E|x is called Hermitian-
Einstein with respect to w,, if AaFfi = 0 where F}JI- =Fy— %I is the
trace free part of the curvature Fp, I is the identity endomorphism of E’.

Definition 6.2. Suppose that F is a parabolic bundle, K is a Hermitian
metric on E' = E|x, we say that it is compatible with the parabolic structure
with respect to w, if K and Ko are compatible with respect to w,, where
Ky is defined in Section 3.

We set
yo=min{ of —0f_;, 1= (cj—aj_y) | I1=2,--- ,mi+1,i=1---,m}.

Theorem 6.3. Let X be a compact Kéhler manifold of complez dimension
n and D a divisor of X with normal crossings. Let E be a holomorphic vector
bundle with a parabolic structure along D. If E is parabolic stable there exists
a Hermitian-Einstein metric with respect to we, for any 2(1—79) < a < 2 on
E' compatible with the parabolic structure with respect to wy. Conversely, if
E is indecomposable and E' admits a Hermitian-FEinstein metric with respect
to wa (0 < a < 2) compatible with the parabolic structure with respect to wq,
then E is parabolic stable.

Proof. If E is parabolic stable, by Proposition 5.10 we know that (E, Ko)
is analytic stable with respect to w, for any 0 < a < 2. According to (3)
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we know that we can choose any 2(1 — ) < a < 2 such that |AFk,|k{ €
L% (X). Theorem 1 in [S1] yields that there is a H-E metric on E’ compa,tible
with the parabolic structure with respect to wq.

Conversely, suppose that H is a H-E metric compatible Wlth the
parabolic structure with respect to wy, we have pardeg F = C 1‘"da (E,H).
Suppose that V' is a proper coherent subsheaf of £ with quotient torsion free,
by Proposition 5.6 and Proposition 5.7 we have par deg V = C1™d,(V, H).
Then by an argument similar to the one used in the proof of Theorem 7.3
in [L-N] we can show that E is parabolic stable if E is indecomposable.

7. Chern number inequality(I).
Suppose that H is a Hermitian-Einstein metric on E’ compatible with the
parabolic structure with respect to wq (2(1—"0) < a < 2), which is obtained
in Theorem 6.3. It was proved in [S1] (Proposition 3.4) that

(8) (202(E, H) - 2) [wWa]*22>0

where r = rankFE.

Ci(E, H) = Y2 tr Py,
2
Co(E, H) = —#(MH A trFy — trFy A Fi)
Since det H = det Ko, we have C1(E, H) = Cy(E, Kj).
Lemma 7.1.

/ Co(E, H) Awl2 < / ColE, Ko) A2
X X

Proof. It suffices to show that
/ tr(Fg AFg) Awl™2 < / tr(F, A Fiy) A w2
X X

Suppose tllat f is a compactly suppored function on X, and we set v =
—4m+/—100f. Simpson [S1] showed that

/X F(tr(Fiy A Fig) — tr(Fa A Fig)) A w2
J=I e |
T Tom _7r_/

tr(sFiy)v A w2 — tr(U(s)(0s)0k,8)v Awl ™2
bs 2r Jx
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where e® = K;'H, ¥(s) is constructed as in the definition of Donaldson’s
functional (see [S1] Section 5).

‘We choose
log |o|? }
B

Set Xg = {z € X|log|o|? > —B}. We now recall how one gets H from Ky
(see [S1] Section 6 and Section 7).

One solves the heat equation

fs= ma.x{O 1+ ——

H— = —V A FH
H|t=0 - KO
det H = det K

on Xg with Dirichlet boundary condition H|px, = Ko. If the solution is
denoted by Hp(t), one shows that Hg(t) — H (t) in C10 over compact sets
in X, as § — oo. H(t) is a solution of the heat equation, and there exists a
subsequence t; — oo such that H(t;) — H weakly in Lg,loc'

Set e% = hg = Ky 'Hp(t) in Xg and sg = 0 outside Xg. Since ([S1],
Lemma 3.1 (c))

_ o _1]?
Natrhg = —v/=Ttr(hg(AaFip, — AaFg,)) + '(ahﬁ)h/j 2

Kwao:

and g;tfhﬁbxg <0, because trhg > r = trhﬁlaxﬁ, where A, is the Laplace
operator with respect to wy, we have

2
dVy < C.

Ko,wa

/X '(Ehﬂ)h;%

Here C is a positive constant independent of 3.
By Proposition 5.3 and Lemma 7.1 in [S1] we can see that |hgl|k, is
bounded on both side. So

/};@sﬂﬁ{mdva <c



Hermitian-Einstein metrics and Chern number inequalities 463

We have

/ fﬂtr(FHﬁ A FHﬂ) AN w2_2
Xp
= / fotr(Fry A Fi,) A w2~ ;1/ tr(spFr,)v A wn2
Xp 2w Xp

+ ;1/ tT(‘I’(Sﬁ)(ESﬂ)@KOSﬁ)’U A w2_2
271' Xp

Note that sglax, = 0, fglax, =0, we have
t”"(S,BFKo)'U|6Xp =0

and _
tr(¥(sp)(0sp)Ok,5p)vlox, =0

In Xg,

471'\/

v = —4m/~180f5 = —

By Poincaré-Lelong formula, we have

Balog |o|?

/ fotr(Fay A Frg) Awi™?
Xp
< / fotr(Fry A Fi) A w2_2

C
+— trAoFr,|dVa + — / Os Wa
18 Xﬁ I KOI ﬂ | ﬁIKo

By the Riemman bilinear relations, one gets
tr(Fr, A Frp) Awi™2 > —C|AoFp, 2wy

Since
sup lAaFﬁﬁ| < sup IAaFkL0| <C
Xp Xp

and trFy, = trFk,, we have
tr(Fu, A Frg) A W2 > _Cuwh

Letting 8 — oo, using Fatou’s lemma we obtain

/X tT(FH(t) A FH(t)) /\(4)3'_2 < /X tr(Fr, N Fk,) /\wz_2
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Applying Fatou’s lemma again, we get
/ tr(Fg A Fg) Aw2 < / tr(Fio A Figy) Awl ™2
X X

Proposition 7.2. Let X be a compact Kihler manifold of complez dimen-
sionn and D a divisor of X with normal crossings. Let E be a holomorphic
vector bundle over X with a parabolic structure along D. Let Ko be the
metric of E' constructed in Section 3. If E is parabolic stable, for any
2(1 —v) < a < 2 such that

r

<202(E, Ko) — : 101 (E, K0)2) [wa]2>0

where r = rankFE.

The proposition follows from Lemma 7.1 and (8).

Lemma 7.3.

Cg_n/ Ci1(E, Ko) A C1(E, Ko) A2
X

= / C1(E) A CL(E) Aw™2
X

+23° 3" afrank(F}/F,.) deg(Elp,
i=1 l=1

+) ((Z a%mnk(ﬂi/ml)) (Z a{'rank(ﬂ”/%)) D; .D,-)
i,j=1 =1 =1

where D; - Dj = [y C1([Di]) A C1([D;]) Aw™ 2 is the intersection number of
Di and .Dj(’l:,j = 1, ce ,m).

Proof. Suppose that K is the metric constructed in Section 5. Set h =
KKy, then trFy, = trFy, + 80logdet h. So,
Cl(E, Ko) AN Cl(E, Ko)

— 2
N (2;7r1> (trFx, + 00log det h) A (trFi, + 00log det k)

— 2
= (—2%1) ((trFK1)2 +2trFg, A 80log det h

+881og det h A 89 log det h)
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We adopt the same notations as that in the proof of Proposition 5.3, we
have

/ Ci(E, Ko) A C1(E, Ko) Awl~2
X

_ (g)“’ [ rEy neg

2
42 (_Vz;l) / trFx, A 0log det(IT;(S)2) A wp~2
X

2
o2 trFy, A 00logdet(IL;(S*)~2h) Awl ™2
271' X 1

=\ 2
+ ( 2;1) / 50 log det(IL;(S")%) A 98 log det (IT;(S*)%) A wi™2
X
—\ 2
+ ( 2;1) / 89 log det(T1;(S*) ~2h) A 89 log det(IL;(S*) ~2h) A w22
X

—\ 2
+2 (%) / 80 log det(I1;(5)?) A 8dlog det(I1;(S) "2h) A w2
X

By the construction of the metrics K3 and Kj, it is not difficult to see that
log det(IT;(S*)~2h) can be extended smoothly to X, so

/ trFy, A 30 log det(IL;(S")2h) A w2
X
= / 80 log det(IT;(S%) ~2h) A 80 log det(I1;(S*) ~2h) A w22
X

= / 80 log det (I1;(S%)%) A 58 log det(T1;(S*) ~2h) A wl 2
X

=0

Thus the Poincaré-Lelong formula yields the lemma.
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Lemma 7.4.

2
c2n (———V‘l) /X tr(Fiy A Fieg) A w2

2
2
V-1
(E—) /); tT(FKl A FK1) A w"'z

+2) ) " ofdeg(F}/Ff,;)
=1 l=1
m my

+ 3 (of)*rank(F}/F},,)D?

i=1 [=1

where D? = | x C11D;i] A C1[D;] A w2 is the self-intersection number of
D;,(i=1,---,m).
Proof. It is clear that
Fy, = Fx, + 9(h™10k,h)

where h = K7 K. So,
Fg, A Fx, = F, N\ Fi, + 2Fg, A 8(h™18k, h) + 0(h~10x, h) A B(h~10k, h)
Note that

8(h™ 10k, h) = B((Sh) "1k, (Sh)) — (R~ (S~ 18k, S)h)

where S = II;(S?)~2. By the construction of the metrics K; and Ko we
know that (Sh) can be seen as an endomorphism of F, we have

2
v-1
(—271_—) A t”'(FKO A FK()) A w2_2

2
o) B
= (_27r—> /Xt'r(FK1 AFg)) Awl 2

V-1 2 -1 a—1 n—2
—2( 27r> /X tr(Fie, AB(h=1(S~10k, S)h)) A

V-1 2 = 1ol Ap—1a—1 W2
+(‘éw_> /X tr(B(h=1 (S0, S)h) A B(h~L(S 10k, S)h)) Awl
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A simple calculation shows that

2
ci—m (-——V;l) / tr(Fg, A O(h~1(S™10k, S)h)) A w2
X
2

= (__”—1) / tr(Fg, NO(S™10x,S)) A w2
2w X

== > o deg(Fj/F},1)
i=1 I=1

Similarly, we have

2
Ca” (g) / tr(@(h (S 9, S)h) A B(h™1 (S 0k, S)h)) A w2
) [ r(@(57101,9) A (S04 ) 2

ZZ (of)*rank(F}/F}\,)D}

This completes the proof of the lemma.

Theorem 7.5. Let X be a compact Kihler manifold of complex dimension
n and D a divisor of X with normal crossings. Let E be a rank v holomorphic
vector bundle over X with a parabolic structure along D. If E is parabolic
stable, the following Chern number inequality holds.

m m; m  my

(Cf—2C5) +2) > ajdeg(Fj/Fiyy) + > (af)’rank(F}/F},,)D}

i=1 I=1 i=1 [=1

(Cl +2>° Z airank(F}/Ff,,) deg(E|p,)

=1 [=1

+) (Z ofrank(F} /1«“,11)) (Z ofrank(F} /F}, 1)) D; - D,-)
=1

1,j=1 \Il=1

where D; - D; is the intersection number of D; and D; (i,j = 1,---,m),
D? is the self intersection number of D;, Co = [+ CQ(E) A wh” 2 C? =
fX C1(E) A C1(E) Aw™2.
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Proof. By Proposition 7.2, we have

r—1

r

2/ Cz(E, Ko) A w2—2 > / Cl(E, Ko) A Cl(E, Ko) A w2_2
X X

for any 2(1 — 40) < a < 2. that is,

2
- (___*'2;1) / tr(Fg, A Fi,) A w2
X
=\ 2
> —l (;1) / trFg, NtrFg, /\Lc)z_2
T 27 X
SO

1 (m

< (M-
r\ 27

2
) / trF, A trFg, A w2
X
Then the theorem follows from Lemma 7.3 and Lemma 7.4.

8. Chern number inequality (II).

In this section, we assume that D is a divisor in X and that D = ZZ’_‘__I D;
where the irreducible components D; of D are smooth, we do not assume
that D; meat transversely. Let E be a holomorphic vector bundle over X,
we shall define the notion of parabolic structure of E along D and the notion
of parabolic stability for a parabolic bundle, we shall derive at last a Chern
number inequality for a stable parabolic bundle.

Definition 8.1. A parabolic structure on F with respect to D consists of
a) flags of E|p,(i=1,---,m),
Elp,=Fi>F>---D>F, >{0}=F,
where F}, is a proper subbundle of Ff(l =1,--- ,m; — 1).

b) weights a’i, ‘e ,afni attached to Ff, e 7F:;z,- satisfying0 < o < --- <
a;, <1.
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A holomorphic vector bundle E with a parabolic structure is called
parabolic bundle.
We define the parabolic degree of a parabolic bundle F by

m my

pardeg E = deg F + Z Z ojrank(F}/F},,) deg[D;]
i=1I=1

Suppose that V is a proper coherent subsheaf of F with quotient torsion
free. There is a natural flag of V'|p, by coherent subsheaves

induced by FfNV 2 -.- 2 Fi. NV D {0}. We define the weights attached
to the flag by of(V) = the largest of such that FjV C FinV,l=1,--- ,n,.
We define the parabolic degree of V by

m n;

pardegV =degV + Z Z of (V)rank(F}V/F}, V) deg[D;]
i=1 I=1

Definition 8.2. We say that a parabolic bundle E is parabolic stable if for

every proper coherent subsheaf V' of F with quotient torsion free we have

pardegV  pardegFE
rankV rankFE

In this section we mainly prove the following Chern number inequality
for a parabolic stable bundle.

Theorem 8.3. Let X be a compact Kihler manifold of complez dimension
n. Let D =% " D; be a divisor in X where the irreducible components D;
of D are smooth. Let E be a rank r holomorphic vector bundle over X with
a parabolic structure along D. If E is parabolic stable,

m m; m My

(Cf —2C2) +2) ) " ajdeg(Ff/Fiy1) + Y > (af)*rank(F}/Ff,;) D?
i=1 I=1 =1 [=1

1 mo i S
<z <012 +23 " ofrank(F{/F},,) deg(E|p)
i=1 I=1

+3 (Z a;'mnkw‘/ﬂ"ﬂ)) (Z aimnk(ﬂ"/ﬂil»Di-Dj)
=1

i,j=1 \l=1
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where D; - D; is the intersection number of D; and D; (i,j = 1,--- ,m),
D? is the self-intersection number of D;, C} = Sz C1(E) A C1(E) Aw™2,
Cy = f—f CQ(E) Awn2,

Proof. We use the theorem of Hironaka ([H],p.145, Corollary 2) again. By
successively blowing up complex submanifolds, we can find a complex man-
ifold X such that the followmg holds. Let ¢ : X — X be the canonical map
and let {P"}(i = 1,---,N) be the components of the exceptional divisor
S. Let D} be the proper transform of D; (i = 1,--- ,m). We may assume
that D} do not meet each other, and that ¢~}(D) = -7, D} + S forms a
divisor with normal crossings.

Note that g*w is a Kahler metric on X \ S, but it is not a metric on S.
Suppose that @ is a Kahler metric on X, then for any € > 0,w, = ¢*w + ew
is a Kahler metric on X.

The parabolic structure of E' along D induces a parabolic structure of
q*E along D* =", D} which consists of

a’) flags of ¢*Elp;(i=1,--- ,m)
¢"Elp; = ¢"Fi|p; D ¢"F3lp; D - ¢"Fy,, Ip; D {0} = ¢"Fp, 41y
b’) weights o4, ,af,. attached to the flags.

Set

pardegq*E = degy., ¢*E

+ Y > ajrank(¢"F{|p; /¢* Fi11Ip;) degge, [D;]
i=1 =1
where
degg+, ¢*E = /~ Ci1(q*E) A xq*w
X
= /_Cl(E) Aw=degFE
X
dogyrolD) = [ CH(IDI) A+ = deglD]
so

par deg ¢*FE = par deg F.
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Put
pardeg, ¢*FE = deg,, ¢*E
m m;
+Y Y " ojrank(q*Fi|p; /q*Fi 11|z ) deg,, [D;]
i=1 [=1
where

deg,, ¢"E = /~ Ci(¢*E) A *(q*w + e@) = deg E + do(e)
X

deg,,[Df] = [ Co(IDi1) A(q'w +2B) = deglDi + 6i(e)
X

and d;(¢) = 0ase —0(:=0,--- ,m).

So par deg, ¢*E = par deg E + 6(¢) where d(¢) — 0 as € — 0.

Let V* be a proper coherent subsheaf of ¢* F with quotient torsion free.
(q“l)*V*|q_1( %\g) can be extended to X as a coherent subsheaf of E, we
denote it by V. Similarly, we can define par deg V* and par deg, V* by

pardeg V* = deg., V*

m  ng

+ D ai(V*)rank(q"Ff|p; (V*)/q" Ffy1lp; (V*)) degge, [D5]
i=1 [=1

and

pardeg, V* =deg, V*

m ng

+> D ei(V)rank(q Ff|p; (V*)/q" Filp; (V*)) deg,, [D;)
i=1 [=1

It is clear that par deg V* = par degV and par deg, V* = par deg V' + n(e),
where 7(¢) » 0 as e — 0.
The following lemma is obvious.

Lemma 8.4. E is parabolic stable if and only if ¢* E is parabolic stable with
respect to q*w.

Furthermore, we have

Lemma 8.5. Suppose that E 1is parabolic stable. Then q*E is parabolic
stable with respect to we for sufficiently small €.
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Proof. If ¢* E were not parabolic stable with respect to w,, there would exist
a proper coherent subsheaf V* of ¢*F with quotient torsion free such that

) par deg, V* 5 par deg. ¢*FE
rankV* —  rankq*E

On the other hand, since ¢*F is parabolic stable with respect to ¢*w (Lemma.
8.4), we have
par deg V* < per deg¢*F

rankV* rankq*FE

We consider degg..((V*)* ® ¢*E).
By (9), we have

(10)

(11) degg,((V*)* ® ¢"E)
= rankV* deg.,, ¢*E — rankq*E degg., V*
deg.,q*E  degg, V*)
rankg*E rankV*

= rankV*rankq*E (

1 m n;

< rankV*rankq*E ( g v ;;(al(V )

p; (V") /4" Fi1lp; (V™)) deggeu[D]

1 m m; ,
ok B Z ,Z ajrank(q*F{|p; /a" Fiy1]p;) deggey D; 1)

+ C(e)

-rank(q*F}

where C(e) » 0 ase — 0.
By (10), we have

(12)  degg,((V*)" ® ¢*E)

1 m NG

> rankV*rankq E( T ;;( ah(V*)

' Tank(q*l’zilp* (V*)/¢* Fiy1lp; (V™)) deggn,, [D}]

m m;
rankq*E Z Z alrank(q*‘Fl ID* /q*‘FH-llD*) degq w[D*])
i=1 =1

(11) contradicts (12) when ¢ is sufficiently small, because degg.,,((V*)*®
g¢*E) = deg(V* ® E) is an integer. This completes the proof of the lemma.
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Now we can finish the proof of Theorem 8.3.

Since (X,we) is a compact Kéhler manifold, D* = Y oiv, Df is a divisor
in X ,and Df (i =1,---,m) do not meet each other. Since E is parabolic
stable, ¢*E is parabolic stable with respect to w, for sufficiently small €. By
Theorem 7.5 we have

m m;

(Cr" —2C5)+2) > afdeg,, (¢ Ff|ps /a* Fiualp;)
i=1 =1
m m;

+> Y (o) ?rank(¢*Fi|p; /q* Fiylps)
i=1 1=1

: /X CL(IDH]) A C1((DE]) A w2

r

1 ™ omi . ) '
< (Cf ©+2> " ojrank(q*F|p; /a*F}\1|p; ) deg,, (E |Dz)

m m;
+ Z <Z ajrank(q* F} |D; Ja* Fiy |D;.' ))

mj
. (Z ajrank(q*F{ |ps /¢ F},, |D;))

=1
[ e aciaom a w:f-2)
where
2, _ * * n—2
Cy = /XCI(q E)AC1(¢*E) A ]
s = /~ Co(q"E) Awi2
X

Letting € — 0, we get the desired inequality. This completes the proof of
the theorem.
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