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1. Introduction. 

This paper proves sharp inequalities for the frequencies of vibration of strings 
and cylindrical membranes, under either fixed or fixed-free boundary con- 
ditions. We establish such inequalities also on the "generalized" cylinder, 
which is the cross-product of an interval with a homogeneous Riemannian 
manifold. The goal is to better understand the effect that inhomogeneities 
in the mass distribution have on the frequencies of vibration. 

Theorem 2, for example, says roughly that for a vibrating string fixed 
at one end and free at the other, moving mass towards the free end will 
tend to decrease the frequencies. To make this more precise, suppose w is a 
positive function on the interval (0, L) and \j(w) is the j-th eigenvalue of the 
weighted Laplacian w~1d2/dx2 on that interval, under Neumann boundary 
conditions at x = 0 and Dirichlet boundary conditions at x = L; this means 
that for some eigenfunction ^j, 

ip'j + Xj(w)w^j = 0   for x e (0, L),        ^-(0) = ^(L) = 0. 

Physically, Xj(w)1/2 is proportional to the j-th characteristic frequency of 
a string with mass density w that is free at the lefthand end and fixed at 
the right. The precise statement of Theorem 2 is that if the total mass 
Jo w(x) dx in each subinterval (0, 5) is at least s, then 

for all positive integers n and all convex increasing $. Here Aj(l) is the j-th 
eigenvalue of the unweighted Laplacian d2/dx2

) that is, the j-th eigenvalue 
1 Research partially supported by National Science Foundation Grant DMS- 

9622837. 
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for the homogeneous string with mass density w = 1. Note that taking 
$(a) = ap for p > 1 yields a result for the spectral zeta function, and that 
taking n = 1 gives Xi(w) < Ai(l), which means that moving mass towards 
the free end of the string certainly decreases the fundamental tone. Of 
course, this movement of mass might increase the j-ih frequency for j > 1, if 
we unwisely choose to move mass towards a nodal point of the corresponding 
eigenfunction of the homogeneous string. Thus it seems impossible to get a 
simple inequality that holds for each Xj individually, which is why we resort 
to "averaging" the eigenvalues by summing their reciprocals, in (1.1). 

The rest of this introduction provides context for "isoperimetric" eigen- 
value inequalities of this kind. First, it is intuitively clear that if we make a 
string (or membrane) heavier, it will vibrate more slowly. It is reasonable to 
suppose, also, that we can slow down the vibration by simply moving some 
of the mass of the string from places where the string vibrates very little 
towards places where it vibrates a lot, while not increasing the total mass. A 
result along these lines was proved by P.R. Beesack and B. Schwarz [4], who 
showed that for the interval (—L, L) of length 2L fixed at both ends, one 
has Xi(w) < Ai(u>*), where w* is the symmetric increasing rearrangement 
of w; note that on each subinterval (—5,5), the string with density w has 
more mass than the string with density w*, and so the tu-string "should" 
vibrate more slowly. B. Schwarz [26, Theorem 1] extended this result to cir- 
cular membranes, and Z. Nehari [23, Theorem II] found a similar result for 
superharmonic w; see [17, Theorem 4] for a generalization of these results. 

The first eigenvalue is fairly well understood, then, but it is not clear 
how the higher eigenvalues should be affected by this shifting of mass around 
the membrane, since the higher eigenfunctions have complicated patterns of 
nodal lines. In general we cannot hope that a single mass density exists 
for which all the eigenvalues are extremal, and so we average the higher 
eigenvalues in order to get an extremal result. Two such averages for which 
results are already known are the spectral zeta function 

00 

y   1 

3= 

for fixed exponent p and, more generally, the ^-functional 
n 

E* 1 

j=1    AM 
for positive integers n and convex increasing functions $. (Take $(a) = ap 

to recover the zeta function from the ^-functional.)   In [18], for example, 
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the author and C. Morpurgo studied the ^-functional for simply (and dou- 
bly) connected membranes under Dirichlet boundary conditions, with the 
extremals being obtained by conformally mapping the membranes to disks 
(and annuli). The ^-functional was shown to be convex in w, also. The au- 
thor's paper [17] deals with inhomogeneous circular membranes with mass 
concentrated towards the center and develops extremal results for the spec- 
tral zeta function, results that fail for the ^-functional. 

Incidentally, in two dimensions the operator w~1A is exactly the 
Laplace-Beltrami operator for the metric wg (where g denotes the euclidean 
metric), and so our results for cylinders fall readily into spectral geometry. 
See the papers of S.-Y. A. Chang [9] and B. Osgood, R. Phillips and P. 
Sarnak [24] for somewhat related results on determinants of Laplacians, on 
various manifolds. 

This paper proves only lower bounds on l/\j, or equivalently, upper 
bounds on Aj. Few sharp bounds in the opposite direction are known; most 
famous is surely the Faber-Krahn estimate Ai(fi) > Ai(fi*) for the funda- 
mental tone of a domain i7 under Dirichlet boundary conditions (with ft* 
being the ball of the same volume as Q). J. M. Luttinger [19] extended 
the Faber-Krahn estimate to the trace of the heat kernel by showing that 

E^e-^'^*) > J2T=ie~tXj{Q) for a11 * > 0- For further sharP estimates 
on eigenvalues, see the books by G. Polya and G. Szego [25] and C. Bandle 
[2], and the survey paper [1] by M. S. Ashbaugh and R. D. Benguria. 

The next section presents results under fixed-free boundary conditions, 
and Section 3 does the same for the fixed boundary conditions. Then Sec- 
tion 4 describes open problems and conjectures, in particular for the trace 
of the heat kernel. See the Appendix for summary tables of the results in 
this paper and in [17], along with some discussion of the relative strengths 
of the three "mass concentration" hypotheses we use. 

My thanks go to the Columbia University Mathematics Department for 
its hospitality during the summer of 1997, and to William Minicozzi for a 
helpful conversation. 

2. Results for mixed Dirichlet-Neumann 
boundary conditions. 

Fix L > 0 throughout this section. 
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Fixed-free strings. 

Take a bounded positive function on the interval (0, L), that is, take w G 
/^(O, L) with w > 0 a.e. Consider the eigenvalue problem with mixed 
Dirichlet-Neumann boundary conditions: 

-il)"(x) = \w(x)<ip(x)        for 0 < x < L, and       ^(0) = ^(L) = 0. 

Physically, we think of the interval (0, L) as representing an inhomogeneous 
string fixed at the righthand end and free at the left, and having mass density 
w(x). The eigenvalues A give the squares of the frequencies of the string's 
modes of vibration. In this eigenvalue problem, the operator —w~ld2/dx'1 

on (0, L) is positive and has a discrete spectrum {Aj(u>)}, with 0 < Ai(^) < 
A2(w) < \?>(w) <•••—► oo. See Section 5 for further properties of the 
eigenvalues and eigenfunctions. 

Our first theorem says that if we redistribute mass towards the free end 
of the string then the fundamental tone Ai goes down, exactly as intuition 
would suggest. Note that we do not need pointwise control of the mass 
density, just control of its integral. 

Theorem 1.   Take w, v G /^(O, L), with w > 0 and v > 0 a.e. and 

(2.1) /   w(x) dx>       v(x) dx       for all s G (0, L). 
Jo Jo 

Then 

AiH < Ai(t;) 

with strict inequality unless w = v a.e. 

See Section 7 for the proof, and [17, Theorem 4] for a similar theorem on 
the ball with Dirichlet boundary conditions. The hypothesis (2.1) says that 
the string with density w has more mass in each interval (0,5) near the free 
end of the string than does the string with mass density v. 

The theorem does not extend to the second eigenvalue: one can take 
v = 1 and apply perturbation methods to show that a function w exists 
with ^w{x)dx > s for all s but with A2(^) > A2(l). This makes sense: 
imagine taking mass from around the maximum point at x = 2L/3 of the 
second mode ip2(x) = — cos(37rx/2L) for the string of density 1 and moving 
the mass leftwards, placing the mass near the node of vibration at x = L/3 
and thus allowing the frequency to increase. 
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The theorem does extend to the higher eigenvalues in an average sense, 
when v = 1. Specifically, we will examine sums of finitely many reciprocal 
eigenvalues and convex means of these reciprocals; the spectral zeta function 
will be a special case. In order to state these extensions we need to develop 
some properties of the higher eigenvalues. Before doing so, though, we 
remark that the reciprocal 1/Xj is a reasonably natural object to consider 
since it is precisely the j-th eigenvalue for the inverse of the Laplacian (that 
is, the Green operator). 

The first property we need is a lower bound of Weyl type: for some 
a e (0,1) that depends on u>, 

(2.2) A^w) > aj2       for all j > 1, 

which is a special case of (5.3). From this it follows that we may define the 
zeta function of the operator w~1d2/dx2 on (0, L) to be 

A   i i 
/    ^  /   x for p > -. 

The zeta function derives its name from its similarity to the Riemann zeta 
function. We also define the <&-functional 

for convex increasing $ and n either a positive integer or +oo.  Obviously 
this gives the zeta function when n = +oo and $(a) = ap for fixed p > 1. 

The monotonicity principle for the $-functional says that: 

decreasing the function w pointwise will increase every eigen- 
value, and hence will decrease the ^-functional. 

For suppose w and v are positive functions with w > v. Then obviously the 
minimax principle (5.1) implies that Xj(w) < Xj(v) for all j, and this proves 
the monotonicity principle, since $ is increasing. 

The next theorem weakens the hypotheses of the monotonicity principle 
in the case that v = 1, by showing that the monotonicity principle holds 
provided only that the average of w is at least 1 on every subinterval starting 
at the free end of the string. 
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Theorem 2.   Take w G /^(O, L), with w > 0 a.e. and 

(2.3) /   w(x) dx>s        for all s e (0, L). 
Jo 

Let n be a positive integer or +oo. Let $(a) be convex and increasing for 
a > 0, with $(0) = 0 and ^(Ai^)"1) > 0.  Then 

with strict inequality unless w — 1 a.e. 

Corollary 3. 

^zt/i strict inequality unless w — 1 a. e. (Here £ is £/ie Riemann zeta func- 
tion.) 

Both theorem and corollary will be proved in Section 8. Note that Aj(l) = 
{2j — l)2(7r/2L)2; we give the corresponding (trigonometric) eigenfunctions 
explicitly in Section 8. 

Very roughly speaking, the theorem says that concentrating the mass 
near the free end of the string will tend to decrease the frequencies of vibra- 
tion. For example, we can choose <J>(a) = a in Theorem 2, and with n = 1 
this choice gives Xi(w) < Ai(l), which is a special case of Theorem 1 above. 
In addition, see Section 4 for remarks on the choice $(a) = e-*/a (which is 
convex for small a) and its relation to the trace of the heat kernel. 

The assumption in the theorem that $(Ai(^)~1) > 0 rules out the trivial 
case where both sides of (2.4) equal zero. That trivial case would have ruined 
the theorem's "strict inequality" statement. Also, note that the hypothesis 
(2.3) certainly holds if w(x) is decreasing and /0 wdx > L. 

The conclusion (2.5) need not be true for p near 1/2; cf. [17, §3]. 

Fixed—free cylinders. 

Write C :— (0, L) x Sl for the cylinder of radius 1 and length L > 0, and 
take a bounded positive function w on the cylinder: w £ C00^) and w > 0 
a.e., with respect to Lebesgue measure dxd9 on C. Consider the following 
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eigenvalue problem on the cylinder with Neumann boundary conditions at 
the lefthand end and Dirichlet conditions at the righthand end: 

—A^ = ^WI/J       for 0 < x < L and all 0, 

and 

|£(o,0) = tf(M) = o. 

Here 
3^      &_ 
dx2 + ae2 

denotes the usual Laplacian on the cylinder. Physically, we think of the 
cylinder as an inhomogeneous membrane fixed at the righthand end and 
free at the left, and having mass density w(x16). Note that Xj(w) > aj 
by (5.3), and so the zeta function J^JLi ^j(w)~p 0f the operator w^A on 
the cylinder makes sense for p > 1. For a more detailed development of the 
eigenvalue problem, see Section 5. 

The next theorem is the analogue for the cylinder of Theorem 2 for the 
inhomogeneous string, and we prove it in Section 9. Most of the discussion 
around Theorem 2 remains pertinent here. 

Theorem 4.  Take w e ^((O, L) x S1), with w > 0 a.e. and 

rs    r2'K 

/    /     u>(x, 0) dOdx > 27TS        for all s G (0, L). 
JO Jo 

Let n be a positive integer or +oo. Let $(a) be convex and increasing for 
a > 0, with $(0) = 0, ^(Ai^)"1) > 0 and /" *(l/a) da finite.  Then 

with strict inequality unless f^ w(x, 6) dO = 27r for almost all x E (0, L). 
If in addition $(a) is strictly convex, then (2.6) holds with strict inequality 
unless w = 1 a.e. 

Of course, when w = 1 we have eigenvalues 

{Xjil) :j>l} = {k2 + (2£ - l)2(7r/2L)2 : k e Z,£ > 1} , 
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by separation of variables. See Section 9 for this. Also, see Section 4 for 
comments on the choice $(a) = e-*/a, in relation to the trace of the heat 
kernel. Lastly, note that [16, Theorem 6] builds on work of J. Hersch [14, 
p. 32] to prove a result that has flavor similar to Theorem 4 but that does 
not require any assumptions on the distribution of mass. 

A computational result for a particular generalized cylinder. 

The preceding subsections concern the fixed-free string (0, L) and cylin- 
der (0,L) x S'1, and give results for both the first eigenvalue (Theorem 1) 
and the ^-functional (Theorems 2 and 4). Naturally one wonders whether 
these results can be generalized to (0, L) x M, for more general Riemannian 
manifolds M. For the first eigenvalue the results do indeed generalize: see 
Theorem 8 below. For the ^-functional the results need not successfully 
generalize, as we will see for the torus M = S1 x S1. This will involve 
looking at the first 53,199 eigenvalues of (0,7r/2) x S'1 x S1. Note that we 
investigate only for length L = 7r/2, though for other values of L a similar 
approach should be possible. 

Write 
2?:=(0,7r/2) x S1 x S1 

for the cross product of the interval of length 7r/2 with the torus, and take 
a bounded positive function w G C^iV) with w > 0 a.e. (with respect to 
Lebesgue measure dxd9id62). Consider the following eigenvalue problem 
on V with Neumann boundary conditions at the lefthand end (a; = 0) and 
Dirichlet conditions at the righthand end (x = 7r/2): 

-AV> = \wil>       for (a;, 0i, 62) G £>, 

and 

|^(0, 0i, 02) = ^(7r/2,0i,02) = O. 

Here 

dx^ + del + ael 
denotes the Laplacian on V. For a fuller description of the properties of the 
eigenvalues A^w), see Section 5. 

The next result is a partial analogue for V of Theorem 2 for the string 
and Theorem 4 for the cylinder. We will prove it rigorously forn < 119 and 
numerically for n < 53055 
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Computational Result 5.  Take w e C00(V), with w > 0 a.e. and 

ns    r2iT    n2'K 

(2.7)    /    /      /     w(x,0u02)d01dJ02dx > (27T)
2
S       for all s G (0,7r/2). 

Jo Jo    Jo 

Let n be a positive integer with 1 < n < 53055.   Let $(a) be convex and 
increasing for a > 0, with ^(Ai^u?)-1) > $(0).  Then 

with strict inequality unless j^ fQ
n w(x, 61,62) d6id92 = (27r)2 for almost 

all x G (0,7r/2). //m addition $(a) 25 strictly convex, then (2.8) ZioMs mt/i 
strict inequality unless w = 1 a.e. 

We discuss the theoretical and numerical evidence for this computational 
result in Section 10. We will reduce the question to showing positivity 
of 1370 trigonometric functions for x G (0, TT). Numerical work strongly 
supports this positivity claim, but this falls short of a rigorous proof. For 
1 < n < 119, though, we do prove Computational Result 5 rigorously. 

The number 53055 is not necessarily the largest number for which the 
result holds, but it is close to being optimal because a function w G C^iV) 
exists with w > 0 a.e. such that w satisfies (2.7) but 

53199       1 53199      1 (2'9) g w< £ WY 
For this we need only show that a certain trigonometric function is negative 
at x = 0.4467r, which we do numerically. (See Section 10.) 

The numbers appearing in the above results are related by the fact that 

(2.10) 1370 = A53055(l) < A53056(l) = • ■ • = A53199(l) = 1371. 

To check (2.10) by computer, it helps to recall that by separation of variables, 
the generalized cylinder V with mass density 1 has eigenvalues 

{A^l) : j > 1} = {kl + k2
2 + (2£ - I)2 : A*, fc2 G Z, £ > 1} 

(listing with multiplicity). 
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Generalized cylinders with mixed boundary conditions. 

By strengthening the hypotheses in the preceding results, we obtain theo- 
rems valid for all n and for a much wider class of product manifolds. 

Definition. Call a Riemannian manifold Mg homogeneous if its isometry 
group is transitive, meaning that for each x, y G M an isometry r of Mg 
exists with T{X) = y. 

Let Mg be a compact, connected, homogeneous Riemannian manifold of 
dimension N > 1. For example, Mg could be the circle, sphere, torus or 
real projective space, or it could be a compact symmetric space, a compact 
connected Lie group, or a compact quotient G/H in which G is a connected 
Lie group with compact Lie subgroup H (see [6, pp. 247-251, 351-353]). 
Write dV for the volume element on Mg and V(M) for the total volume of 
M. The eigenvalue problem on the generalized cylinder (0, L) x M is 

-A^ = \wil>   for (x, 9) e (0, L) x M, 

and 

|^(0, 0) = V(£, 0) = 0    for all 0 e M. 

Here A = d2/dx2 + A^, where A^ is the Laplace-Beltrami operator on Mg. 
The operator —w~1A on (0, L) x M is positive and has a discrete spectrum 
{Aj(^)}, with 0 < Xi(w) < X2(w) < Xs(w) <•••—> oo. Section 5 details the 
properties of these eigenvalues, in particular the lower bound of Weyl type 
Xj(w) > aj2^1+N\ which implies that the zeta function of the eigenvalues 
makes sense for p > (1 + N)/2. 

In almost every one of our results so far, the extremal case has been 
when w = 1. More generally, one can try to establish results in which 
the extremal case occurs when w is some radial mass density function, not 
necessarily constant. The next result has this form. 

Theorem 6. Take w, v G ^^((O, L) x M), with w > 0 and v > 0 a.e. and 
with v independent of 0 6 M, so that v = v(x). Assume 

(2.11) [ w(x, 0) dV(0) > V{M)v{x)        for almost all x G (0, L). 
JM 
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Let n be either a positive integer or +00. Let $(a) be convex and increasing 
for a>0, with $(0) = 0,$(AiH-1) > 0 and /" $(l/a2/(1+Ar)) da finite. 
Then 

(2.12) y^f-iJUy^f-iT 

with strict inequality unless JMw(x, 8) dV(6) = V(M)v(x) for almost all 
x G (0, L). If in addition $(a) is strictly convex, then (2.12) holds with 
strict inequality unless w = v a.e. 

In particular, averaging w over M decreases the $ -functional: 

where w(x) := fMw(x,e)dV{e)/V(M). 

The theorem is proved in Section 11; note that it extends [16, Theorem 1], 
which is essentially just the "cylinder" case M = S1 of Theorem 6. 

The hypothesis (2.11) is fairly strong, but as the proof of the theorem 
makes clear, to weaken that hypothesis one would seem to need to know 
nontrivial properties of the eigenfunctions of v~1A. 

The generalized cylinder with decreasing mass density. 

The hypothesis (2.13) in the next theorem ensures rather strongly that the 
w-mass is concentrated towards the free end (where x — 0); note that we 
also assume the total mass is at least L- V(M), which is the total mass of the 
homogeneous manifold with mass density 1. These hypotheses are stronger 
than those in Theorems 2 and 4 and Computational Result 5. 

Theorem 7. Take w € C^^O.L) x M), with /0
L JMw(x, 6) dV{6)dx > 

L - V(M) and w > 0 a.e. and with 

(2.13) x *—>   /   w(x, 6) dV(6)        decreasing for x G (0, L). 
JM 

Let n be either a positive integer or +00. Let $(a) be convex and increasing 
for a > 0, with $(0) - O^AiH"1) > 0 and f? $(l/a2/(1+iV)) da finite. 
Then 

j=l   M*>))-£l   V^W 
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with strict inequality unless JM w(x, 6) dV{9) = V(M) for almost all x G 
(0, L). If in addition $(a) is strictly convex, then (2.14) holds with strict 
inequality unless w = 1 a.e. 

We prove this theorem in Section 12. 
To be careful, we know only that the integral JM w(x, 6) dV{9) appear- 

ing in (2.13) is defined for almost all x, and so our hypothesis should be 
interpreted as meaning that a decreasing function of x exists that equals the 
integral in (2.13) for almost every x 6 (0, L). 

The first eigenvalue of the fixed-free generalized cylinder. 

We conclude the section with a comparison theorem for the first eigenvalue 
of the generalized cylinder (0, L) x M, analogous to Theorem 1 for the 
string. See also [17, Theorem 4] for a similar theorem on the ball with fixed 
boundary conditions. 

Theorem 8. Take w,v e C^^O.L) x M) with w > 0 and v > 0 a.e. and 
with v independent of 6 G M, so that v = v(x). If 

(2.15)      /   f w(x, 9) dV(9)dx > V(M) f v(x) dx       for all s G (0, L) 
Jo   JM JO 

then 

AiH < Xi(v) 

with strict inequality unless w = v a.e. 

See Section 13 for the proof. Observe that our hypothesis (2.15) in this 
result is weaker than our hypotheses in Theorems 6 and 7. 

3. Results for Dirichlet boundary conditions. 

In this section we briefly consider analogous eigenvalue problems for strings 
and cylinders with both ends fixed. The eigenfunctions are now required to 
equal zero on the entire boundary. (For a fuller treatment of the technical 
aspects, see Section 5.) Again we fix L > 0, but now for convenience we 
consider the string (-L, L) and cylinder (—L, L) x 51 of length 2L, fixed at 
x = ±L. 

For the string with Dirichlet boundary conditions, the analogues of The- 
orem 2 and Corollary 3 are: 
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Theorem 9 ([17, Theorem 2]).   Take w G C^^-L.L).   Assume w > 0 
a.e. and 

(3.1) /   w(x) dx > 2s        for all s G (0, L). 

Take n to be either a positive integer or +oo.    Let $(a)  be convex and 
increasing for a > 0; with $(0) = 0 and ^(Ai^)-1) > 0.  Then 

n /      i       \ n 

(»■») E*(r^)£E* 
j=1   M*>)J-j=l   VA,(i) 

with strict inequality unless w(x) + w(—x) = 2 a.e. If in addition $(a) is 
strictly convex, then (3.2) holds with strict inequality unless w = 1 a.e. 

Corollary 10 ([17, §2]). 

T T^-T > y TTTT = (—TCVP)        for al1 P>1> 

with strict inequality unless w = 1 a.e. (Here £ is the Riemann zeta func- 
tion.) 

Recall that for the homogeneous string, Xj(l) = (j'ir/2L)2, with the eigen- 
function being trigonometric. 

The hypothesis (3.1) says roughly that the w-mass is concentrated to- 
wards the middle of the string, away from the fixed endpoints. Intuitively 
we expect this to lower the frequencies of vibration, and that is what the 
theorem says, in an average sense. 

The next result shows, however, that the preceding theorem for the fixed 
string does not carry over completely to the fixed cylinder, unlike the sit- 
uation in Theorem 4 for the fixed-free cylinder, and instead holds only for 
n < 4. Essentially, Theorem 4 is better than Theorem 11 because sums 
of sines of odd multiples of x are better behaved than sums of sines of all 
multiples (see Lemmas 15 and 16 in Section 6). 

Theorem 11.   Take w G >C00((—L, L) x S1); with w > 0 a.e. and 

/s     /*27r 

/     w(x, 9) dddx > 2ir ■ 2s        for all s E (0, L). 
-s JO 
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Assume 1 < n < 4.   Let $(a) be convex and increasing for a > 0; with 
^(X^w)'1) >$(0).  Then 

n 

M ZHTD^Z* 

with strict inequality unless ^^[^(x, 6) + tL;(—x, ^)] d9 = An for almost all 
x G (0, L). If in addition $(a) is strictly convex, then (3.3) holds with strict 
inequality unless w = 1 a.e. 

Furthermore, for each n > 4, positive numbers Li(n) and I^^) exist 
with Li(n) < L2 (TO such that the theorem still holds for n provided 
L e (0, Li(n)] U [I/2(n),+oo). We see, then, that the problem lies with 
the middle range of cylinder lengths L, between Li(n) and L2(n); the the- 
orem can indeed fail for these intermediate L values, as can be seen (for 
n — 5) by arguing along the lines of [17, Theorem 3]. 

We prove this theorem in Section 14, as well as showing there that we 
can take, for example, Li(5) = y/27r/2 and 1/2(5) = y/57r/2. Somewhat 
longer arguments show that we can take Li(6) = 7r/2 and 1/2(6) = V57r/2. 

Generalized cylinders with fixed boundary conditions. 

Again let Mg be a compact, connected, homogeneous Riemannian manifold 
of dimension N >1. The eigenvalue problem on (—L, L) x M is 

- Aip = \wil>    for (re, 0) G (-L, L) x M, 

and 

V>(±M) = 0   for all ^GM. 

Here A = d2/dx2 + A^, with A^ being the Laplace-Beltrami operator on 
Mg. Again Section 5 discusses the properties of these eigenvalues. 

The next theorem is the analogue for Dirichlet boundary conditions of 
Theorem 6. Its statement differs from that of Theorem 6 only in writing 
(—1/, L) instead of (0, L), but we state the theorem anyway so that we can 
refer clearly to it later on. 

Theorem 12. Take w,v G C^^-L.L) x M); with w > 0 and v > 0 a.e. 
and with v independent of 9 £ M, so that v = v(x). Assume 

(3.4) /   w(x, 9) dV{9) > V(M)v(x)        for almost all x G (-L, L). 
JM 
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Let n be either a positive integer or +00. Let $(a) be convex and increasing 
for a > 0, with $(0) = 0,$(AiH-1) > 0 and ft $(l/a2A1+iV)) da finite. 
Then 

71       /    1     \        n 

(") E*(rfcx)>E* 

with strict inequality unless fMw(x, 9) dV(9) = V(M)v(x) for almost all 
x E (—L, L). // in addition $(a) is strictly convex, then (3.5) holds with 
strict inequality unless w = v a.e. 

In particular, averaging w over M decreases the $ -functional: 

xXry^xXry. 
j==1   xAjHy   £-f   VAiH 

where w(x) := JMw{x,e) dV(0)/V(M). 

The theorem is proved in Section 15; note that it extends [18, Theorem 1(b)], 
which is essentially just the "cylinder" case M = S1 of Theorem 12. 

The hypothesis (3.6) in the next theorem amounts to a strong assumption 
that the w-mass is concentrated towards the middle (where x = 0). Note 
also that in the theorem we assume the total mass is at least 2L • V(M), 
which is the total mass of the homogeneous manifold with mass density 1. 

Theorem 13. Take w G /^((-L, L) x M), with J^L JM w(x, 6) dV(9)dx > 
2L • V(M) and w > 0 a.e. and with 

(3.6)      x i-»   /   [^(x, 9) + K;(—rr, 0)] dV(9) decreasing for x G (0,1/). 

Let n be either a positive integer or +00. Let $(a) 6e convex and increasing 
for a>0, with $(0) = O^AiH"1) > 0 and f" $(l/a2/(1+iv)) da /mite. 
T/ien 

j=1    M«)J-fr;   \^m 
with strict inequality unless fM[w(x,9) + w(—x, 9)] dV(9) = 2V(M) for al- 
most all x G (0, L). // in addition $(a) is strictly convex, then (3.7) holds 
with strict inequality unless w = 1 a.e. 
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We prove this theorem in Section 16. 
Being careful, we know only that the integral 

/ [w(x,0) + w(-x, 0)] dV(9) 
JM 

appearing in (3.6) is defined for almost all x, and so our hypothesis should 
be interpreted as meaning that a decreasing function of x exists that equals 
the integral in (3.6) for almost every x E (0, L). 

Notice that the "decreasing mass" hypothesis (3.6) is automatically sat- 
isfied if w is smooth and superharmonic (so that Aw < 0), since in that case 
the function in (3.6) is concave and even in x. 

The first eigenvalue of the fixed generalized cylinder. 

We finish with a comparison theorem for the first eigenvalue of the general- 
ized cylinder (—L, L) x M under Dirichlet boundary conditions, analogous 
to Theorem 8. 

Theorem 14. Take w,v € C^^-L.L) x M) with w > 0 and v > 0 a.e. 
and with v independent of 9 £ M, so that v = v(x). Assume v is an even 
function of x G (—L, L). If 

(3.8)      r   / w(x, 9) dV{9)dx > V(M) f   v(x) dx        for all s G (0, L) 
J—sJ M J —s 

then 

AiH < Ai(^) 

with strict inequality unless w = v a.e. 

See Section 17 for the proof. The hypothesis (3.8) says that the membrane 
with density w has more mass near the middle [x = 0) than does the mem- 
brane with mass density v. 

4. Conjectures and questions. 

The trace of the heat kernel. 

Many open questions revolve around the trace of the heat kernel, which is 
the functional £\" e~Xjt (also known as the partition function). For example, 
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do the extremal results for the ^-functional in Theorems 2, 4, 6, 7, 9, 12 and 
13 hold also for the trace of the heat kernel? For Theorem 13, for example, 
the question is whether or not 

oo oo 

J2 e-^W > J2e~Xj{1)t       for all t > 0 
j=l 3=1 

under the hypotheses of Theorem 13. 
Certainly these inequalities for the trace of the heat kernel are all true 

for t > 2/Ai(l) (for t > 2/Ai(i>), in Theorems 6 and 12), simply by ap- 
plying the corresponding theorems with $(a) = e~*/a, which is convex and 
increasing for a G (0,t/2]. For small time t, though, we proceed to show 
that the conjectured results for the trace of the heat kernel fail under mixed 
Neumann-Dirichlet boundary conditions, although they do hold for small 
time under purely Dirichlet boundary conditions. 

Theorems 2 and 9 can fail for the trace of the heat kernel, for small time, 
by the same reasoning used in the "iV = 1" case of [17, §3]: the point is 
that the small time behavior of the trace of the heat kernel is dominated by 
a term f \/w(x) dx/y/i. 

Theorems 4, 6 and 7 can also fail for the trace of the heat kernel for 
small time, but here the reasoning is more subtle. Take M = S1 and define 

L-x 
w(x, 9) := 1 H——— sin #,    v(x, 6) := 1, 

for x G [0, L], 8 G R, so that w and v satisfy the hypotheses of Theorems 4, 
6 and 7. The operator w~1A equals the Laplace-Beltrami operator of the 
metric wg on the cylinder C = (0, L) x S1, where g denotes the euclidean 
metric on the cylinder, and so putting / = 1 in [7, Th.7.2] gives the asymp- 
totic expansion 

00 

(4.1) 

Ee-A; M* _ area^fl(g) 
.    , 471"* 

■7=1 

lengthy (dfreeC) - lengthy (flaxedC)     n( , 

ast->0+. 
From our definitions of w and v we know that 

r-L    />27r 

<AlL "djfJJQ (C)= /     /     w(x,0)d0dx = 2TrL = axeQVg(C) 
Jo  Jo 
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and 

/»27r 

length^(<9freee) =  /     y/w(O,O)d0 < 2n = length^d^C) 

and 

/•27r 

length^(afixedC) = j     ^w{L,e)de = 2TT = lengthy {d^edC). 

From (4.1) it follows that 

oo oo 
^^XiMt <y2e-xj{v)t 

i=i 3=1 

for all small £, as we wished to show. 
Of course, all this leaves open the possibility that Theorem 6 (respec- 

tively, Theorem 7) might be true for the trace of the heat kernel in higher 
dimensions, where N >2. Note that for "nice" w, the first order asymptotic 
formula for the trace is 

/. ox V2-     x.Mt     fa IM
W

(^0)il+N)/2d6dx N/ry 

and when A^ > 2 the integral on the righthand side is strictly minimal for 
w = v (respectively, w = 1) by Holder's inequality, in view of the hypotheses 
in the theorem. 

For mixed boundary conditions, then, our conjectures about the trace 
are false. For purely Dirichlet boundary conditions, the situation seems 
more promising. Indeed, the analogues of Theorems 12 and 13 for the trace 
of the heat kernel are true for small time when N > 2 and are "almost 
known" to be true when N = 1, as we now explain, and so it is reasonable 
to hope that they do hold for all time. 

We assume w and v satisfy the hypotheses of Theorem 12 or Theorem 13; 
for Theorem 13, we set v = 1. In particular, then, 

(4.3) f    [ w{x,e)dV{6)dx> [    f v(x)dV(e)dx. 
J-L JM J-L JM 

For technical convenience, assume also that w and v are smooth and bounded 
away from zero.  We assume N = 1, since for N > 2 we can successfully 
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argue like around (4.2). We want to show that 

(4.4) Y^ e~Xj{w)t > Y,e~Xj{v)t       for all small t > 0. 
j=i j=i 

Since N = 1, the manifold Q = (—L, L) x M is two dimensional and the 
asymptotic formula for the trace of the heat kernel (under purely Dirichlet 
boundary conditions) is then 

f e-wt = area^g) _ length^) 

3=1 
47rt 8\/7rt 

which translates to: 

A,wt = /fLJMu>(x,g)dy(g)cfa 
47rt 

(4.5) 3=1 

JM v/^FM) + \/<M) d^W 
SVTrt 

+ 0(1) 

as t —> 0+. We might as well assume equality holds in (4.3), since otherwise 
(4.5) shows that (4.4) is true. We will show that 

(4.6)    / \y/w(-L, e) + v/<M)l dV{e) 
JM L J 

< /   ly/virL) + V^Z)! dV{6). 
JM L J 

If the inequality is strict then (4.4) will follow from (4.5), using the equality 
in (4.3). This is the sense in which the heat kernel results are "almost 
known" to be true for small time, when N — 1. Of course, it is conceivable 
that when equality holds in (4.6), the heat kernel result (4.4) might fail for 
small time, but deciding this question would require a more detailed study 
of the asymptotics of the trace. 

To prove (4.6) for w as in Theorem 12, observe first that because of the 
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equality in (4.3), equality must also hold in (3.4) for all x, and hence 

/  y/w{±L,0)dV{0) 
JM 

< vV(M) ( / w(±L, 6) dV(eyj by Cauchy-Schwarz 

= V(M)^v(±L)       by equality in (3.4) 

JM 

which gives (4.6). To prove (4.6) for w as in Theorem 13 and for v = 1, note 
that 

/   \y/w(-L, 9) + y/w(L, 9)} dv{e) 
JM L J 

JM V 

w(-L,6) + w(L,9)  „.,-. . ,   r —K- '—!- i-^ dV{e) by concavity of yf- 

< ^2V(M) ( f  [w(-L,9) + w(L,9)} dV(9)) by Cauchy-Schwarz 

< 2V(M) by (3.6) and the equality in (4.3) 

= /   [v^Lj+^/^Z)] dV(9)J 
JM l J 

which is (4.6) again. 

Other directions. 

Few sharp upper bounds on the ^-functional, trace of the heat kernel or 
zeta function are currently known; this paper presents only lower bounds. 
See the remarks at the end of Section 1. Note that an upper bound for the 
^-functional of the vibrating string (iV = 0) was proved by D. Banks [3, 
Theorem 2.2], with the extremal mass density being a step function. 

To read about known extremal results for the zeta function of the 
Laplacian and the trace of the heat kernel (on various manifolds), see 
[16, 17, 18, 19, 21, 22]; also, H. L. Montgomery's paper [20] can be in- 
terpreted as extremizing the trace of the heat kernel for flat tori with a 
given area, and [9, 24] examine the determinant of the Laplacian. 
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5. Technical details. 

This section explains the properties of the eigenvalues and eigenfunctions 
that are needed in this paper. We work with the generalized cylinder, stating 
occasionally the simplifications that can be enjoyed for the cases of the string 
and cylinder. 

Mixed Dirichlet—Neumann boundary conditions. 

Fix L > 0. Let Mg be a compact, connected, homogeneous Riemannian 
manifold of dimension N > 1. Define the generalized cylinder to be the 
product of M with the euclidean interval (0, L): 

0:=(O,L) xM, 

with the Riemannian product metric on Q. When M equals the unit circle 
iS1, we obtain the standard cylinder of length L and radius 1. By convention, 
in this section only we also allow M to be empty (with N = 0), in which 
case we identify Q with the interval (0,L). Readers interested in these two 
special cases can simplify the following remarks considerably. 

Write dV for the volume element on M induced by the metric 5, with 
V(M) denoting the total volume of Mg. Thus we have a product measure 
element dxdV(6) on Q. 

Let w E C00^) with w > 0 a.e. Consider the following eigenvalue 
problem on Q with mixed boundary conditions: 

-A^ = Xwtp    for (x, 6) € (0, L) x M, 

|^(0,8) = V(£,0) = 0   for all 9 e M. 

Here A = d2/dx2 + A^, where A^ is the Laplace-Beltrami operator on Mg. 
(When M = S1, we have Ap = d2/d62.) We also write V = d/dx + %. 

We claim that the operator —to-1 A on Q is positive and has a discrete 
spectrum {A^w)}, with 0 < \i(w) < X2(w) < X^w) <•••—► 00. Further- 
more, the eigenvalues are given by Poincare's minimax principle in terms of 
the Rayleigh quotient: 
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where Lj ranges over all j-dimensional subspaces of the trial space 11^(0), 
with 

HLx(G) -= ^e closure in H1^) of 

{ip E Hl{g) H C00(^) : ^(rc, 0) = 0 for all 9, when x is near L}. 

Here Hl{Q) denotes the usual Sobolev space on the generalized cylinder (?, 
known also as Wl'>2{Q). Note that our trial space H^^Q) does notf depend 
on w. In (5.1) and elsewhere in the paper we use the notations 

| VVf     for [d^ldxf + 5(V^, VpV), 
V^-V^   for   {d(j)/dx){d^/dx)+g{Vg(j)^g^). 

We claim in addition that the eigenfunctions tyj G H^^Q) are contin- 
uous and satisfy — A^- = \j{w)w^j weakly in H^iQ), and that the first 
eigenfunction ^i is unique up to constant factors and is never zero. 

For the preceding facts, argue as in [5, pp. 53-61,71] and [12, pp. 212- 
214]. Note that the boundedness and positivity a.e. of w ensures 

/\p2wdV(0)dx 
Jg 

is finite and positive when tp e £2(g),ip ^ 0. The connectedness of M 
ensures that Ai < A2. We will neither need nor use this next remark, but it 
is interesting that ipj is continuous on (0, L] x M with Vy (L, 0) = 0 for all 6, 
which is the classical Dirichlet boundary condition, and if ^ is C2-smooth 
up to the boundary at x = 0 then (dil>j/dx)(0,0) = 0 for all 0, which is the 
classical Neumann boundary condition. 

Many times in this paper we use the following variational characteriza- 
tion of the sum of reciprocal eigenvalues. For its proof by induction from the 
minimax principle (5.1) and for a discussion of its history, see [2, pp. 99-100]. 
The characterization says that for each m > 1: 

(5-2) ET7-T
=

   
SU

P   £/      ^dv{e)dx, 

where {tpx,... ,ipm} is required to be a collection of m linearly inde- 
pendent functions in H^^G) with orthonormal gradients, /0 jMVA ■ 
V^ dV{6)dx = <% . 

Finally, we will need a lower bound of Weyl type: for some a € (0,1) 
that depends on w, 

(5.3) Xjiw) > aj2^1+N)       for all j > 1, 
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and this can be seen as follows. By the minimax principle above, Xj(w) > 
IHI-U^l), and A^l) - (const.)j2/(1+iV) by Weyl's law [10, p. 9] for the 
eigenvalues of A on the Riemannian manifold Q of dimension 1 + N. Since 
also Xi(w) > 0, the lower bound (5.3) follows. The argument is even easier 
for the interval (0,L), since there we know Aj(l) = (2j — l)2(7r/2L)2. 

Note that since A^w) > aj2/(1+iV), the zeta function 
oo 

JS A,(»)P 

of the operator w~1 A on Q converges for p > (1 + N)/2. 

Purely Dirichlet boundary conditions. 

Redefine Q := (—L, L) x M. Except for some obvious changes, everything 
described in the previous subsection remains true for the eigenvalue problem 
on Q with purely Dirichlet boundary conditions ip(±L, 9) — 0 for all 6 G M, 
provided the space H^^Q) is replaced everywhere with the Sobolev space 

6. Two trigonometric lemmas. 

The following lemma about sine functions of odd multiples of x helps in 
proving Theorems 2, 4 and 7. 

Lemma 15. Let m > 2 and suppose {CJ}?^ is a decreasing sequence of 
positive numbers, with ci > C2.  Then 

m 

2^ Cj sin(2j — l)a: > 0        for all x E (0, TT) . 
3=1 

To prove this lemma, first notice that for each fixed k > 1, 

smx^sin(2j — \)x — - \^ [cos(2j — 2)x — cos(2ja;)] 
3=1 3=1 

= - [1 — cos(2fcx)] = sin2(fca;) 

and so 

(6.1) ±sH2j^)x = ^l 
i=i 
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Next, write cm+i := 0 and observe that 

771 771 k 

^2 Cj sm(2j - l)x = ^(cfc - Cfc+i) ^sin(2j - l)x. 
3=1 k=l j=l 

This last quantity is nonnegative for all x G (0, TT) by the identity (6.1), 
since Ck > c^+i, and is actually positive because the k = 1 term is positive: 
(ci — C2)sinx > 0. 

The next lemma, about sine functions of multiples of x, helps to prove 
Theorem 13. 

Lemma 16. Let m > 1 and suppose {CJ}
1

JL_1 is a decreasing sequence of 
positive numbers.  Then 

m 

2_" -rsin jx > 0        for all x G (0, TT). 

J=I 
3 

To prove the lemma, write cm+i := 0 and notice that 

771 771 k 
ECj   .    .       v—>, N ^--\ smjx 

-j smjx = }^(ck - cfc+i) 2^ ——• 
j=i J k=i i=i     J 

This last quantity is nonnegative for all x G (0, TT) because Ck > c^+i by 
assumption and X^j=i(sinia:)/i > 0 by [29, p. 62], and the quantity is 
actually positive because c^ > c^+i for some k (using that ci > 0 = cm+i). 

7. Proof of Theorem 1. 

Let ipi be a first eigenfunction for v~1d2/dx2 on (0, L), so that —^ = 
\i(v)vi/;i weakly in iy^x(0,L). We may assume ^i is positive because, as 
we remarked in Section 5, ipi is continuous and never zero. To prove the 
theorem, simply adapt the proof of Theorem 8 in Section 13; start at (13.1), 
remove all occurrences of fM and dV(9), and write: 

d/dx instead of V, 
d2/dx2 instead of A, 
w(.) instead of W(;0), 
(2.1) instead of (2.15). 
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8. Proof of Theorem 2 and Corollary 3. 

We first prove the theorem, then at the end we deduce the corollary. 
Assume for a moment that we know the result when $ = id., namely 

m ^ m        ^ 

for each m = 1,2,3,... , +oo, with strict inequality for each m unless w = 1 
a.e. Then extend $ to be convex and increasing from R to R by putting 
$(a) = 0 for a < 0.   The conclusion (2.4) then follows immediately from 
(8.1) and the majorization technique of Hardy, Littlewood and Polya [18, 
Prop. 10]. For the equality statements of Theorem 2, suppose that equality 
holds in (2.4). Note that both sides of (2.4) are finite-valued, since Xj > aj2 

by (2.2) and since $(o) < a$(l) for all a e (0,1) by convexity of $. Also, 
$ is non-constant on (—oo, Ai^)-1] because $(Ai(i(;)_1) > 0 = $(0) by 
hypothesis. Further, we can assume $ is not linear on [0, A^u?)-1], because 
if it were linear we could simply refer to the equality statement of (8.1). 
Thus case (ii) of [18, Prop. 10] applies (with /3 = 0) and gives that equality 
holds in (8.1) for some m, and so w = 1 a.e. 

Thus we have only to prove (8.1) and its equality statements.   Fix a 
positive integer m. Recall from (5.2) that 

(8.2) V—— =      sup     Y" /   rfwdx, 

where {^i,... ^m} is required to be a collection of m linearly indepen- 
dent functions in #^,(0,1/), with /0 i/tfyj dx = Jy. Take ^i, • • • ,ipm € 
Hmix^iL) to be linearly independent smooth eigenfunctions of d2/dx2 on 
[0, L] that satisfy — ijj" = \j(l)^j and 

[LW'\2dx rL 

(8.3) Ml)=   °L 7' and     /    Mdx = 5^ 
Jo ^jdx Jo 

so that 

L 
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We explicitly construct these (trigonometric) eigenfunctions ^ below. By- 
using i/>i,... iiprn as trial functions in the characterization (8.2) we get a 
lower bound on YllLi ^'(^O-1? with- 

lit, .« IIO ^ III, njj 

=  /    /^^'(s)2"!- \ /   w(x) dx — s > ds 

by parts, since ipjiL) = 0. Next, recall the hypothesis (2.3), which says that 
JQ W(X) dx > S for all 5. Thus it suffices to show that 

7        771 

(8-5) j- Y,^^2 < 0   for a11 s e (0'L)' 

because then 
771 -j 771 ^ 

with strict inequality unless JJ5 w;(x) dx = s for all 5 (i.e., unless U>(:E) = 1 for 
almost all x), and this gives (8.1) (except for the strict inequality statement 
for m — +oo, which we handle later). 

Our immediate goal, then, is to establish (8.5).   For this we use the 
following explicit formulas for the eigenfunctions ^ and eigenvalues Xj(l): 

V8L f(2j-i)irx\ J     x  ,_       /(2j-l)7r\2 

Clearly the i/tj are indeed eigenfunctions of d2/dx2 on the interval (0, L), 
with eigenvalues Aj(l), and they satisfy the boundary conditions ^-(0) = 
ipj(L) = 0 and also the normalizing conditions (8.3). By substituting the ijjj 
into (8.5) and differentiating, we see that it is enough to show 

Em  sin(2j — l)x _      .. ,n    \ 
(2j_ ^     > 0       for all x e (0,7r). 

Since this follows from Lemma 15 with Cj := (2j — I)"1, we have proved 
(8.5). 
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To complete the proof of Theorem 2 it remains only to prove the strict 
inequality statement of (8.1) when m = +oo. Along the way we will give a 
direct proof of (8.1) itself for m = +oo. Start by letting m —> oo in (8.4), 
which yields 

oo        1 oo       1 rL  oo 

Using the definition of ipj and the double angle formula for cos2 gives that 

^ 8L^       i 2/(2j-l)7rx\ 

_ 4L Y^   1      41/ Y^ cosik-Kx/L) 
~ TT

2
 f-i k2      TV2 ^l k2 

k odd •-        k odd 

_ L     41/ ^ cos^knx/L) 

~   2  +  TT5"  ^ P ' 
fcodd 

This last expression is the Fourier cosine series of the even function L — \x\ 
for x G [—L, L], and so 

oo 

^^•(z)2 = L-x       for all z E (0,1/). 

i=i 

Hence by (8.6), 

OO OO .£, 

(8.7) i=i   n   y     i=i   3K )       0 

=  /    <  /   iy(rc) dx — 5 > c?5 

by parts. Now (8.1) with m = +oo follows from the hypothesis that 
JQ i(;(x) dx > S for all s, and if equality holds in (8.1) for m = +oo then (8.7) 
implies J0

S w(x) dx — s for all s, or iy(x) = 1 for almost all x, completing 
the proof. 

The inequality (8.7) is actually an equality for all w, for the reasons 
given at the end of §5 of [17]. This gives us a physical interpretation of the 
sum Y^jLi A?'^)-1 0f tl16 inverse square frequencies of our inhomogeneous 
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string: 

>   -r—7—r = /   (L — x)w(x) dx 

= (the gravitational moment about the fixed endpoint at a: = L). 

See [28, Ch. V,VII], [27], [11], [17, §5], and the references therein, for 
more on Green functions and sums of infinitely many reciprocal eigenvalues, 
in one dimension. 

Finally, we prove Corollary 3. Fix p > 1 and let $(a) := ap for a > 0, 
so that $ is convex and strictly increasing. The inequality in the Corollary 
follows immediately from Theorem 2, and because A^l) = [(2j — l)7r/2L]2, 
the equality in the Corollary is easily established: 

9. Proof of Theorem 4. 

Our initial goal is to prove the Theorem without the $'s, that is, 

m ^ m 

UXi{w) ~ u ^^ 
for each ra = 1,2,3,..., with strict inequality for m > 2 unless 

r27r 

I     w{x,6)de = 2TT 
Jo 

for almost all x G (0, L), and strict inequality for m = 1 unless w = 1 
a.e. Assume (9.1) for now, and extend $ to be convex and increasing from 
R to R by putting $(a) =0 for a < 0. The conclusion (2.6) then follows 
immediately from (9.1) and the majorization technique of Hardy, Littlewood 
and Polya [18, Prop. 10]. For the equality statements of Theorem 4, suppose 
that equality holds in (2.6). Note that both sides of (2.6) are finite-valued, 
since Xj > aj by (5.3) and J™ $(l/a)da is finite by hypothesis. Also, 
$ is non-constant on (-00, Ai(^)~1] because ^(Ai^)"1) > 0 = $(0) by 
hypothesis. Further, if n = +00 then $ is not linear on [0, Xi(w)~1]1 because 
j™ §{l/a)da is finite.  Thus either n < +00 and case (iv) of the equality 
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statement of [18, Prop. 10] applies, or else n = +oo and case (ii) of [18, 
Prop. 10] applies (with /? = 0). In any event, we get from [18, Prop. 10] that 
equality holds in (9.1) for some m, and so f^ w(x, 8) d6 = 27r for almost all 
x G (0, L). If in addition $(a) is strictly convex for a > 0, then by case (v) of 
the equality statement of [18, Prop. 10] we obtain that 1/Xi(w) = 1/Ai(l). 
Hence equality holds in (9.1) for m = 1, and so w = 1 a.e., as desired. 

In proving (9.1), we can assume Am+i(l) > Am(l), as we now explain. 
For suppose that (9.1) and its equality statements are known to hold for all 
m satisfying Am+i(l) > Am(l). Note that Am+i(l) > Am(l) for infinitely 
many m values, in particular for m = 1. Suppose mi and m2 are consecutive 
such values and that 7712 = mi + k for some k > 2, so that 

^mi(l) < \ni+l(l) = ' * • = Ami+fc(l). 

We wish to show that (9.1) and its equality statements hold for all m between 
mi and mi + k. But if mi < m < mi + k then either Am(w) > Am(l), in 
which case Xj(w) > Xj(l) for all j between m and mi + k inclusive and so 

m 1 mi+k       1 rai+A:        1 

^XJW) 
= 4-r \j(w) ~ .^i XJW) 

- Af A^I)    .^1 A.m 
m in        ^ 

or else Am(ii;) < Am(l), in which case Xj(w) < Xj(l) for all j between mi + 1 
and m inclusive and so 

771 ^ 7711 1 771 1 

^A.H =^A^H + . ^ 1LH 
J=1    JV   y       j=1    j\   )      J-=77ll+1    JV   ) 

7711 -1 771 1 

j=l    •'^  ^      j=mi+l    ^^  ^ 

771 ^ 

Thus (9.1) and its equality statements hold for all m between mi and mi + fc, 
as promised. Hence we can assume from now on that Am+i(l) > Am(l). 
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We begin to prove (9.1) by collecting facts about the eigenvalues and 
eigenfunctions of the homogeneous cylinder C, with w = 1. To start with, 
the eigenvalues {Xj(l) : j = 1,2,3,...} can be computed by separation of 
variables to be 

{AH = k2 + (21 - l)2(7r/2L)2 :keZJ> 1}, 

with corresponding normalized eigenfunctions 

{sin fc0, if k > 0 
l/y/2, if k = 0 
cosfctf,   ifA:<0 

satisfying —Aipke = ^M^M- NOW, {IJJM} is a linearly independent set in 
Hrnix(C) and it satisfies the orthonormality condition 

/ V^H • V^Jb^' dddx = Skk'Sar. 

Let 
/:={(fe^):AH<Am(l)}. 

Then / contains exactly m elements since Am(l) < Am+i(l), and the 
numbers XM for (k,£) G / are a permutation of the eigenvalues Xj(l) for 
j = 1,... ,m. 

Prom (5.2) we have 

m ^ ra      „ 

Y^ x  /   N =      sup     Y^ / I/JIJW dQdx, 

where {^i,... ^m} is required to be a collection of m linearly independent 
functions in iJ^-^C), with Jc V^z • V^- ^cfa; = (%. By using the functions 
ipkt as trial functions in this variational characterization, we obtain that 

j=i   ^  ^     (k,e)eiJC 

= E dwrcos2|(2'-iw2ii 
(k/)el 

r27r 

X / 
JO 

f sin2&0,    ifA;>0 
1/2, ifjb = 0   }«;(x, 0) dOdx. 
cos2 A;^,    if k < 0 
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Since (fc,^) G / if and only if (—k,£) G /, we deduce that 

-pp— /   sin[(2^ - l)7rs/L] /    /    w(x,0)dOdxds 
{k/)el2LXkeJo Jo Jo 

by parts in x. We show below that 

2£ — 1 
(9.2) V   — sin[(2£ - tyns/L] > 0       for all s e (0, L), 

(M)eJ 

and so from the hypothesis f^ JQ* w(x,0) dOdx > 2^s in the theorem it 
follows that 

771      1 2£ — 1   f^ 

1       m     1 
^   Aiw =^A7-(1)' 

giving (9.1). If equality holds in (9.1), then by the above argument, 
JQ JQ

77
 W(X, 6) dOdx = 2'KS for all s and so f0

n w(x,9)d9 = 27r for almost 
all x. Lastly, if equality holds in (9.1) for m = 1, then the equality state- 
ment of Theorem 8 (with v = 1, M = 51) gives that w = 1 a.e. 

To complete the proof of the theorem, we must establish (9.2), or equiv- 
alently, 

(9.3) J2 cz sin(2£ - 1)^ > 0        for all x G (0, TT), 

where 

e=i 

I(*):={k :(*,*)€/}, 

£* := the largest £> 1 such that J(^) is non-empty, 

ci 
(2e-l)(n/2L) 

kemk>+(2t-m«/2Lr -E 
Now, Lemma 15 in Section 6 will imply (9.3) once we show that {Q} is 
strictly decreasing.  (We can assume £* > 2 since (9.3) is trivial when £* = 
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1.) To show a > Q+i, first write I{t + 1) = {-K, ■ ■ ■ ,K} and J(€) = 
{-K*, ■■■ , K*}, where K < K* since /(£+1) C 1(e). Then invoke the next 
lemma at yi = (2£- l)(7r/2L) and ya = (2(£+ 1) - l)(ff/2X) to deduce that 

K K 

This completes the proof of Theorem 4. 

Lemma 17. For each fixed nonnegative integer K, 

K 

k=-K 

y 
k2 + y2 

is strictly decreasing for y > 0. 

The lemma is true for y > K by direct differentiation. For 0 < y < K we 
observe that 

K oo 
Ey v~^      y        sr^     y 

k=-K k=-oo \k\>K 

= 7rcoth(7ry)-  ^ ^FT^' 
\k\yK1*   +2/ 

using a series for coth [13, p. 44], and this proves the lemma because coth 
is strictly decreasing and y i—> J2\k\>Ky/(^2 "*" 2/2) ^s strictly increasing (for 
0<y<K). 

10. Evidence for Computational Result 5. 

As usual, we begin by reducing to the case $ = id. Assume for a moment 
that we know 

m ^ m        .. 

for each m with 1 < m < 53055, with strict inequality when m > 2 unless 

/»27r    /*27r 

/      /     w(x, 0i, 02) dM02 = (27r)2       for almost all x € (0, ir/2), 
Jo    Jo 
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and strict inequality when m = 1 unless w = 1 a.e. Now extend $ to be 
convex and increasing from R to R by putting $(a) = $(0) for a < 0. The 
conclusion (2.8) then follows immediately from (10.1) and the majorization 
technique of Hardy, Littlewood and Polya [18, Prop. 10], by setting aj := 
Xj(w)~1 and bj := A^l)-1 for 1 < j < 53055, and setting aj := 0 and bj := 0 
for j > 53055. For the equality statement of (2.8), suppose that equality 
holds in (2.8) and note that both sides of (2.8) are finite-valued since n is 
finite. Also, $ is non-constant on (—oo, Ai^)-1] since $(AI(IL;)

_1
) > $(0) 

by hypothesis in the Computational Result. Thus case (iv) of the equality 
statement of [18, Prop. 10] applies and we get that equality holds in (10.1) 
for some m, and so J^ f^ w(x, 61,62) d8id62 = (27r)2 for almost all x G 
(0,7r/2). If in addition $(a) is strictly convex for a > 0, then by case (v) of 
the equality statement of [18, Prop. 10] we obtain that Xi(w)~l = Ai(l)""1. 
Hence equality holds in (10.1) for m = 1, and so w = 1 a.e., as desired. 

We have still to try to prove (10.1) and its equality statements. The case 
m = 1 of (10.1) is a simple case of Theorem 8 (with v = 1, M = S1 x S1), 
which we prove in Section 13, and so we can fix m with 2 < m < 53055 from 
now on. 

In establishing (10.1), we can also assume Am_j-i(l) > Am(l), by the 
same reasoning as we used in the proof of Theorem 4. Note here that indeed 
Am+i(l) > Am(l) for m = 53055, by the computer calculations summarized 
in (2.10). 

We begin to establish (10.1). To start with, the eigenvalues {Aj(l) : j = 
1,2,3,... } can be computed by separation of variables to be 

{Aw = kl + kl + (U - I)2 : fci, k2eZ,i> 1}, 

with corresponding normalized eigenfunctions 

2 
VfciMfoei>02) :=    , ox cos[(2£ - l)x] < 

V71" ^fciM 

x < 

sin&i#i,    if k\ > 0 
1/V2,       if fci = 0 

^ cosfci^i,   if fci < 0 

sinfc202,    if fc2 > 0 
l/x/2,       if fc2 = 0 

k   COsfc202)     if fc2 < 0 

satisfying -Ail;klk2i = Xk^e^k^i- Now
5 {^k^e} is a linearly independent 

set in H^ixCD) and it satisfies the orthonormality condition 

L V^^ * V^j./fc^/ d61d62dx = Skxk'^k'^w- 
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Let 

I •-= {(ki,k2,£) : \klk2i < \m(l)}. 

Then / contains exactly m elements, since Am+i(l) > Am(l). The numbers 
Xk^e for (fci, h^) E I are a permutation of the eigenvalues A^l) for j = 
l,...,ra. 

From (5.2) we know that 

where {^i,... , ^m} is required to be a collection of m linearly independent 
functions in H^ix(V), with /? V^ • Vi/jj dO^dx = Sy. By using the 
functions VfciM as trial functions in this variational characterization, we 
obtain that 

m      1 f 
^^-7-T>      J2      /  \^k1k2£\2wd01de2dx 
i=i   jy   )     (kuk2AeiJv 

TT-^ 4 />7r/2      o Z*271"   /,27r 

rt, *„ /w ^ ^katJo Jo    Jo 

sm2ki6i, if fei > 0 
x <{   1/2, if fci = 0 

cos2/^!, if ki < 0 

sin2 A;202, if A;2 > 0 ) 
x {   1/2, if k2 = 0 

cos2 ^2^2, if k2 < 0 
> w(x,9i,02)d9id02dx. 

Since (fci, fca, ^) € / if and only if (-k1,k2, t) G /, and (fci, fea, ^) G J if and 
only if (k1,-k2,£) € I, 

■A   i i     r/2 

}2irr\^     Y,     Tx  /      cos2[(2^-l)x] 

r27r    p27r 

x  /      /     w{x,61,62) d6id62dx 
Jo    Jo 

v-^       2^—1     /,7r/2 

=     Yl     Ti  /      sin[2(2£-l)s] 

rs    r2ir    p2'K 

x /    /      /     w(x,01,02)d0id02dxds 
Jo Jo    Jo 
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by parts in x. We show below (numerically) that 

of — 1 
(10.2) Yl     1 sin[2(2^ - l)s] > 0       for all s € (0, IT/2), 

{kxteflei   klk2e 

and so from the hypothesis J0
S /0 

n J0* w(x, 0i, 62) dQidO^dx > (27r)2s it fol- 
lows that 

1        ^    j 

^     Afcw =^ XAlY 

giving (10.1). If equality holds in (10.1), then by the above argument, 

ns    pin    pin 

/    /      /     w(x, 61,62) d61d62dx = (27r)2s 
Jo Jo    Jo 

for all 5 and so /0 ^ /0 ^ w(x, 61,62) ddi62 — (27r)2 for almost all x, as desired. 
The "proof" of the Computational Result would be complete if we could 

rigorously prove (10.2), or equivalently, 

(10.3) ]r dt sin[(2£ - l)x\ > 0       for all x G (0, TT), 

£=1 

where (with A = Am(l)) 

!{£) := {(fci, fca) : fc? + k2
2 + (2£ - I)2 < A}, 

(* := the largest l>\ such that I{£) is non-empty, 

Since we want this to hold for all m < 53055 and since, by (2.10), Am(l) 
is an integer less than or equal to 1370, it suffices to establish (10.3) for all 
positive integers A < 1370. Now, for A < 8 (or m < 21), (10.3) is obviously 
true because £* = 1. And for 8 < A < 24 (or 21 < m < 114) one can check 
by hand that f = 2 and that di > c^ for each A, so that (10.3) holds by 
Lemma 15. For A — 25 (or m — 119) we get t = 3 and di > c^ > cfe, and 
so again (10.3) holds by Lemma 15. However, this method breaks down for 
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A = 26 (or m = 143) because one then has £* = 3 and c?2 > di > ds, so 
that Lemma 15 cannot be used. In fact, it is not clear to me how to prove 
(10.3) rigorously for 26 < A < 1370 (particularly for large A), but I used 
a double precision Fortran program to check numerically that the lefthand 
side of (10.3) is indeed positive for each A < 1370 at each of the million 
x-values: x = TTZ/IO

6
, 0 < i < 106. The program tests at each re-value to see 

whether the lefthand side of (10.3) is less than 10~4; this tolerance of 10-4 

should allow plenty of room for round-off errors to be detected. 
The above method of proof for Computational Result 5 breaks down for 

m = 53199, because the inequality (10.3) fails for A = 1371. I cannot show 
this by hand, but a simple computer program can be used to show that when 
A = 1371, the lefthand side of (10.3) is negative at x = 0.4467r, equalling 
approximately —0.02. Equivalently, the lefthand side of (10.2) is negative 
at s = 0.2237r. 

It does not follow that Computational Result 5 itself fails for m = 53199, 
but it fails nonetheless. We omit the proof of this failure (i.e., of (2.9)) 
because it follows the lines of [17, Theorem 3]. 

11. Proof of Theorem 6. 

Again we commence by reducing to the case $ = id. Assume to begin with 
that we know 

m ^ m 

for each m = 1,2,3,..., with strict inequality when m > 2 unless 
fM w(x, 9) dV(9) = V(M)v(x) for almost all x 6 (0, L) and strict inequality 
when m = 1 unless w = v a.e. Then (2.12) and its equality statements can 
be proved by adapting the majorization argument in the first paragraph of 
Section 9 (but of course, using that f™ $(l/a2/(1+7V)) da is finite rather than 
that /^ $(l/a) da is finite). 

Thus we have only to prove (11.1) and its equality statements. Fix 
m > 1. Take ^i,... ,^m € ^^((0,1) x M) to be linearly independent 
eigenfunctions of v-1 A on (0, L) x M that satisfy 

^itoM   and     /Vv*.^*™*-*. 
Io  lM^]vdV(e)dx Jo   JM 
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so that 

Y TTT = Y /     /   V^ d^Wcfa. 

By using ipi,... , ^m as trial functions in the characterization (5.2) we get 
a lower bound on Y^jLi ^j('w;)~15 so that 

m    rL 110 ^ IIV ^ III, pjj p 

Y-^-Y-L->Y tf[w-v}dv(e)dx 
U X

J(
W

)     ~i A»     U Jo   JM   
J[ 

pL   p     ™> 

= J2il>jfae)2[w(x,e) -v{x)}dv(0)dx. 
Jo  JM~[ 

Next, because v{x) is independent of 6 e M, for each isometry r of Mg 
we have that the functions ^(x, T(0)), ... ,7/;m(x)r(0)) are eigenfunctions 
of i?-1 A on M that satisfy (11.2). Hence by the same argument as above, 

rL    r     rn 

Ew^-Ew^^/ / E^^^))2K^^)-^)]d^)^. 
jrtAj(^;    ~tA^W    vo  JM~{ 

The isometry group G of Mg is a compact Lie group with respect to 
the compact-open topology (see [15, Theorem VI.3.4]), and G is not 0- 
dimensional in view of its transitivity on Mg. Hence G possesses a normal- 
ized bi-invariant Haar measure H (see [6, pp. 247,251]). Integrating over all 
isometrics r (with respect to H) gives that 

m 1 m        1 

>f[ [ y^j(x,T(d))2dH(T)[w{x,e)-v(x)]dV(e)dx. 
Jo  JM JG ~^ 

Furthermore, the right-invariance of Haar measure and the transitivity of 
the isometry group (that is, the homogeneity of M) imply that for some 
fixed 6>o € M, 

P    m p    m 

/ ^^{x, T{9))
2
 dH{T) =      y i>j{x, T(0O))

2
 dH{T)       for all 9 € M. 

^G 7=1 JG 7=1 
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Hence we can pull this term out of the ^-integral, giving 

7n 1 m ^ 

(11'3)   S^H"S^) 3 

rL    p    m 

^ l    ff]^(^r(eo))2dH(T) f [w(x,0)-v(x)]dV(e)dx, 
Jo  JG~I JM 

from which (11.1) follows in view of the hypothesis (2.11) that the means 
of w over M are at least as large as those of v. The equality statement for 
(11.1) also follows, when m > 2, since iffi is everywhere positive. 

For the equality statement when ra = 1, note that (as in Section 13) the 
first eigenfunction ^(x^O) = ipi(x) is independent of 8 e M, and so it is 
easy to use the hypothesis (2.11) to establish the inequalities in (13.8). The 
argument following (13.8) then yields the equality statement of (11.1) when 
m = 1. 

12. Proof of Theorem 7. 

Notice that if we define v = 1, then all the hypotheses of Theorem 6 are 
satisfied except for (2.11). Hence we can mimic the proof of Theorem 6 in 
Section 11 up until the final step, where (2.11) is applied. By specializing 
(11.3) of that proof to v = 1, we see that 

m -j m 1 

> f    [ f2ipj(x,T(6o))2dH{T) f [w(x,0)-l]dV(0)dx 
Jo  JG ~[ JM 

and that our remaining tasks are: to show this last quantity is positive unless 

(12.2) /   w{x, 9) dV(6) = V(M)        for almost every x, 
JM 

and to show that if Ai(u>) = Ai(l) then w = 1 a.e. In proving all this, we 
can assume Am+i(l) > Am(l), by the same reasoning as used in the proof of 
Theorem 4. 

To start with, the eigenvalues {Aj(l) : j = 1,2,3,...} can be computed 
by separation of variables to be 

{he = Hk + (2* - l)2(7r/2L)2 : k > 0,e > 1}, 
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with corresponding eigenfunctions 

satisfying —Aipki = ^u^M-, where the Vk are the eigenfunctions of A^ on 
M (chosen to be orthonormal in C2(Mg)) , with —AgU^ = HkVk- Note that 
0 = /io < Mi < M2 < * • • • Now, {^fc^} is a linearly independent set in 
H^ia,((0, L) x M) and it satisfies the orthonormality condition 

(12.3) /    / V'<l>ki'V'<l>krt'dV(0)dx = 6w6ii>,- 
JO    JM 

so that the ipw satisfy the conditions (11.2), with v = 1. 
Let I := {(fc,£) : A^ < Am(l)}. Then / contains exactly m elements 

since Am(l) < Am+i(l), and the numbers A^ for (fc, £) G / are a permutation 
of the eigenvalues Aj(l) for j = 1,... , m. Using the ^fc^ in place of the ipj 
in (12.1) and defining 

(12.4) F(x) := [ [w(x, 9) - 1] dV(9)        for x € (0, L) 

shows that we want to prove 

(12.5) /    /   E  ^M{x,T{e{)))
2dH{T)F{x)dx>Q 

unless F(x) = 0 a.e.; we show separately later that if \i(w) = Ai(l) then 
w = 1 a.e. 

Recall that by hypothesis in the theorem, F is decreasing. By changing 
F on a set of measure 0, we can assume that F is right-continuous. 

We can rewrite (12.5) as 

(i2.6)     Jr1f:|e,cos2(S£^)F(x)(fc>o, 

where £* is the largest £ such that I(£) := {k > 0 : (fc,£) 6 1} is non-empty 
and 
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Using the double angle formula for cos2 turns (12.6) into 

rL t* 
(12.7)    ^   ££e,coS(<^^)F(*)(fc 

+ i]T^    /    / v>{x>0)dV{p)dx-L-V(M) >0. 

The second term is nonnegative by hypothesis, in this theorem, and is strictly 
positive unless 

/   F(x)dx= [    [ w{x,e)dV{e)dx - L 'V(M) = 0. 
Jo Jo  JM 

We aim now to show that the first term in (12.7) is nonnegative and is 
in fact positive unless F is constant. This will prove that (12.7) holds unless 
JP = 0 a.e. After integrating the first term in (12.7) by parts in x it becomes 

and since dF < 0 by our hypothesis (2.13), it is enough now to show that 

(12-8) E aTTlsin ((2£ L^) > 0     for a11 x e (0'L)- 

Obviously (12.8) follows from Lemma 15 if {e^} is decreasing. But 7(^+1) C 
I(£) because of our definition of /, and so from the definition of e^ we easily 
deduce that {eg} is indeed decreasing. 

Lastly, suppose Xi(w) = Ai(l). Then (12.7) must fail to hold for m = 1 
and so (by above) F = 0 a.e, or JM w(x, 6) dV(0) = V(M) for almost all x. 
In particular, Theorem 8 applies (with v = 1) and hence w = 1 a.e., which 
is our desired equality statement in the case m = 1. 

13. Proof of Theorem 8. 

The following proof is based on the proof of [17, Theorem 4], which deals 
with the ball under fixed boundary conditions. 

Let ipi be a first eigenfunction for v-1 A on (0, L) x M, so that —Aipi = 
\i(v)vipi weakly.  We may assume ipi is positive because, as we remarked 
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in Section 5, ^i is continuous and never zero. Also ^(x^O) = ipi(x) is 

independent of 6, since the first eigenfunction for v^A is unique up to 
constant factors (see Section 5) and II)I(X,T(6)) is such a first eigenfunction 
for every isometry r of M; use here that v = v(x) is independent of 6 G M 
and that the isometry group on M is transitive. Therefore ^i {x) is positive 
and satisfies —ij)" = Ai(t;)t;^i weakly in #"^.(0, L). Hence 

(13.1) Vi(s) = -\i{v)(dlds)-2(y^i) = Ai(v) /"    /" ^i(»)v(a:) dxdp 

is C1-smooth, with ^i (L) = 0 and 

(13.2) V4(s) < 0       for all s € (0, L). 

By the Rayleigh principle, using I/JI as a trial function for Xi(w) yields 
that 

(13.3) AiH<      , 
J0

LfM\V4>i\2dV(e)dx 

f0
LfMtfwdV(e)dx ' 

And since ipi(L) = 0, integration by parts in s gives that 

(13.4) 

/    / il>%wdV(d)dx= f  Ms)2 f w(s,e)dV(0)ds 
Jo  JM JO JM 

(13.5) =-2 f  ViWV'Ks) f   f w(x,6)dV(0)dxds 
Jo Jo JM 

(13.6) >-2 /  ViWi^) /   ( v(x)dV{e)dxds 
Jo Jo JM 

by (2.15) and (13.2) 

(13.7) = /    / il>\vdV(e)dx. 
Jo  JM 

Therefore 

tiSMmi?dV{9)dx < tisM\v^dV{e)dx 
j0

LjMtfwdV(e)dx -  f0
LfMtfvdV(e)dx 

(13.8)  AxH < JOJU**™ -v^- < Jo^|V,7l
7;_

V;^ = A^t;), 

which is the inequality we want. 
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If \i(w) = Xi(v) then equality reigns in (13.8) and so ^i is a \i(w)- 
eigenfunction for w^A, as well as being a Ai(?;)-eigenfunction for v~1A. 
Hence 

weakly in #^.(0, L), and thus ^w — ^>\v a.e. Because ^i is positive, 
it; = v a.e. as claimed. 

14. Proof of Theorem 11. 

Once more, we start by reducing to the case $ = id. Fix n > 1. (For the 
theorem itself we take n — 4, but for the remarks following the theorem we 
want to consider arbitrary n.) Assume for a moment that we know 

(14l) gv^g^j 
for each m with 1 < m < n, with the inequality being strict when m > 2 
unless Jo^fwOz, 0) + w(—x, 9)] d6 = 47r for almost all aj G (0, L), and being 
strict when m — 1 unless w = 1 a.e. Then (3.3) and its equality statements 
follow, by exactly the same argument as in the first paragraph of Section 10. 

Thus we have only to prove (14.1) and its equality statements. The case 
m = 1 is a special case of Theorem 14 (with v = 1,M = 51), which we 
prove in Section 17, and so we can fix m with 2 < m < n from now on. 

We begin to prove (14.1) by describing the eigenvalues and eigenfunctions 
of (-L, L) x S1, with w = 1. The eigenvalues {A^l) : j — 1,2, 3,... } can 
be computed by separation of variables to be 

{\u = fc2 + (£7r/2£)2 : fc € Z, * > 1}, 

with corresponding normalized eigenfunctions 

Mx 9) -       1       x / C0S W '   if ns odd   1 fe(:C' ^ '" vOTw    I sm (^),    if t is even / 

f smk9, if fc>0 
l/>/2, if k = 0 
cos fc#,   if A; < 0 

satisfying —Aipke = ^ke^M-   Then {^H} is a linearly independent set in 
HQ((—L,L) x S'1) and it satisfies the orthonormality condition 

J-LJO 

27r 
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Let I be a collection of m distinct ordered pairs (fc, £) such that the numbers 
Xke for (fc,£) E / are a permutation of the eigenvalues Aj(l) for 1 < j < m. 
(This set / need not be unique.) 

By using the ipki as ^^ functions in the variational characterization for 
Y^JLi ^j(u,)~1 (for which adapt (5.2)), we obtain that 

E^js E/J i«2»^ 
j=i   n   '     (fc/)e/ 

^     i    fL r2* f cos2 (^), if e is odd l 

~(w7rLAw^-L^0   ^ sin2^'  if£iseven ^ 
C sin2^,    iffc>0 ' 

x •{   1/2, if k = 0   i ie;(x> 0) d9dx. 
[ cos2ke,   iik<0 j 

The same argument holds if we replace J by {(&,^) : (—k,£) € /}, and 
averaging the two resulting inequalities gives 

ra 1 

> 
(k,e)el 

ST*        1        fL / cos2 (ir)'   if ns odd   1  /"^    /-    ON MJ /     n   r*      /     \    ■ i(&x\      T/, • r /     w(x,0)d9dx ^ 2TTLXke J_L\ sm2 (^),    if £ is even J J0       
K      ' 

Y^       1       fL f cos2 (^),   if * is odd   1 
~ ^^ 27rLAfc, 7o   I sin2 (§),    if £ is even J 

r2iT 

x /    [w{x,0)+w(-x,0)]dOdx 
Jo 

——yr— /    sin(^7rs/L) /     /     w{x, 9) dxds    by parts in 
(k,e)ei 4L XH

  
JO J

-
SJO 

=   22  imr       sm(t<L-s)/L)        /     w(x,e)dxds. 
(k,e)el 

We show below that 

(14.2) g(y):=   V   T-sin(^)>0        for all y € (0,7r), 



436 Richard Laugesen 

provided m < 4, and so from the hypothesis J_f fQ * w(x, 0) dOdx > 2TV • 25 
in the theorem it follows that 

1        m     1 

(M)€/   ^     i=i   n ; 

giving (14.1) for n = 4. If equality holds in (14.1), then the above argument 
gives that J^s J^ w(x16)d6dx = 27r • 2s for all 5, and so ^^[^(a:, 9) + 
TI;(—a:, 9)] d9 = 47r for almost all x, as desired. 

We must still prove (14.2). We begin by proving it when / lies on the 
union of the ^-axis and the line £ = 1, that is, we assume / has the property 

(fc, £) el     =>     either k = 0 or £ = 1. 

Note also that by the definition of /, if (0, £) G / and 1 < £' < £ then 
(0, £') G /. Hence we can write 

, x      /2L\2^sin(^) .  , x 9(y)=[y)Y^-^fi + csm(y) 

for some £* > 1 and some nonnegative constant c. Since X^=i ^_1 sin(%) is 

positive for y G (0, TT) by [29, p. 62], we have proved (14.2) in this case. 
Next, from the definition of / it is clear that 

(fc, £) G /,     \k'i> < \k£     =>     (k\ £') G /. 

Consequently when m < 4, the set / cannot contain (±1, 2), and so it lies on 
the union of the ^-axis and the line £ = 1. Thus (14.2) holds when m < 4, 
which proves (14.1) for n < 4; this proves the theorem. 

It remains to justify the remarks made after the theorem. Prom now on, 
then, assume n > m > 5. The existence of the numbers Li(n) and L2(n) 
is easy to explain: if L is sufficiently close to 0 then I must lie on the line 
£ = 1, and if L is sufficiently close to +oo then / must lie entirely on the 
^-axis, with k = 0. In both cases (14.2) holds and we are done. Of course, it 
might be possible to improve upon the values of Li and L2 found this way, 
and this we do for Z/i(5) below. 

We must still establish the claimed values of £i(5) and 1/2(5), for n = 5. 
We have considered m < 4 above, and so we need only consider m = 5 and 
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show that (14.2) holds so long as L < \/27r/2 or L > \/57r/2. Write 

*=(£/■ 
so that AA^ = k2 + £2z. If L e [y/Snft, +00) (so that z < 1/5) then 
AQ^ = 9z < 1 + 4z = Ai^ and so / can be chosen to lie on the union of the 
i-axis and the line £ = 1 (since I has only 5 elements), so that (14.2) holds. 
This shows that we can take 1/2(5) = V57r/2. Now assume L G (0, \/27r/2] 
(so that z > 1/2). Notice that we can suppose either (1,2) 6 / or (—1,2) G /, 
since otherwise / would lie on the union of the f-axis and the line £ = 1 and 
we would be done. By symmetry we can assume (1,2) G /. Then 

/= {(0,1), (1,1), (-1,1), (0,2), (1,2)} 

and for y G (0, TT) we have 

9iy) = {-z 
+ ih]siIiy+{h + rh]sin{2y) 

(1 2 /l 4    \ I   . 
= < — + h    —h —   cos y > sm y 

\z     1 + z     \z     l + AzJ       yj      y 

fl 2 /I 4    M   . 
> s - + ^  + ^—7-  ^ siny [2     l + z     \z     l + 4zj) 

>0 

(since z > 1/2), and from this it follows that we can take Li(5) = \^2'n-/2. 

15. Proof of Theorem 12. 

Simply modify the proof of Theorem 6 in Section 11. Note that now x G 
(—L, L) and so we integrate J_L rather than /0 , for example. Furthermore, 
the ij)j should now belong to HQ ((—L, L) x M) rather than to iJ^i:r.((0, L) x 
M). 

For later reference, the analogue of (11.3) that we obtain is: 

m 1 m 1 

(1M)    gAM-g^) 
/L      n     rn p 

I y;^(x,T(eo))2 dfl'(r) /   Ha:,0)-i;(a:)]dy(0)da:. 
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16. Proof of Theorem 13. 

We prove the theorem by making the following changes to the proof of 
Theorem 7 in Section 12. Write: 

Theorem 12 instead of Theorem 6, 
(3.4) instead of (2.11), 
specializing (15.1) instead of specializing (11.3), 
I-L instead of tf in (12.1), (12.3) and (11.2), 
[w(x, 9) + w(-x, 0)]/2 instead of w(x, 9) in (12.2), 
Hl{(-L, L) x M) instead of #^((0, L) x M), 

and in (12.4) define 

F{x) :=  / [w{x, 9) + w(-x, 9) - 2] dV{9) 
JM 

instead of F{x) := JM[w(x, 9) - 1] dV(9), using also for (12.5) the evenness 
of ^ in x (see below). 

Furthermore, the eigenvalues should now be {A^ = ^k + (#7r/2L)2 : k > 
0,£ > 1}, with corresponding eigenfunctions 

IM*. 9) := -±=M0) x { COi&) '   ^ ^ 0dd   } • 
VLXM { sm (^) ,    if ^ is even J 

Also, we replace the material from (12.6) onwards with the following: 
We can rewrite (12.5) as 

nau rL^r27r   Jcos2(fr)>   if ^ is odd  \ ^ . J      n I16-1) /    Z^~ren    • 2hlx\      ., a. >F(x)dx>0, 
Jo   JT^ L      I sin  (fr)>    if ^ is even J     v J 

where ^* is the largest £ such that /(^) := {k > 0 : (fc, ^) G /} is non-empty 
and 

":~gi&»+(wX'*(TW)'''g(T)- 
Using the double angle formulas for cos2 and sin2 turns (16.1) into 

J^yee   [    f w(x,6)dV(e)dx-2L-V(M) 
e=1 

L      U-L JM 
+ >0. 
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The second term is nonegative by hypothesis, in this theorem, and is strictly 
positive unless 

/   F(x)dx= [    [ w(x,e)dV(6)dx-2L'V(M) = 0. 
JO J-L JM 

We aim now to show that the first term in (16.2) is nonnegative and is 
in fact positive unless F is constant. This will prove that (16.2) holds unless 
F = 0 a.e.; we show later that if Xi(w) = Ai(l) then w = 1 a.e. After 
integrating the first term in (16.2) by parts in x it becomes 

rL ** Ts?-m^ 
Since dF < 0 by our hypothesis (3.6), to establish that this quantity is 
nonnegative (and is positive unless F is constant) it is enough to show 

P* 

(16.3) Y, J sin (e*(L~xA > 0       for all x e (0, L). 

Obviously (16.3) follows from Lemma 16 so long as {e^} is decreasing. But 
I(£ + 1) C I(t) because of our definition of /, and so from the definition of 
e£ we easily deduce that {e^} is indeed decreasing. 

Lastly, suppose Xi(w) = Ai(l). Then (16.2) must fail to hold for m = 1 
and so (by above) F = 0 a.e., or fM[w(x,d) + w(-x,0)]dV(9) = 2V(M) 
for almost all x. In particular, Theorem 14 applies (with v = 1) and hence 
w = 1 a.e., which is our desired equality statement in the case m = 1. 

17. Proof of Theorem 14. 

To prove the theorem, adapt the proof of Theorem 8 in Section 13; simply 
write: 

(-L, L) x M instead of (0, L) x M, 
Hti-L^L) instead of ff^(0,L), 
/fL instead of /0

L in (13.3), (13.4), (13.7) and (13.8), 
J^s instead of /0

S in (13.5) and (13.6), 
(3.8) instead of (2.15) in (13.6). 

Lastly, observe that ip(x) is even in x, because v{x) is assumed to be even 
and the first eigenfunction for v~liS. is unique up to constant factors. 
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Appendix A. Summary of results and boundary conditions. 

Here we summarize the hypotheses and conclusions of the theorems both 
in this paper and in the related work [17]. We hope this gives the serious 
reader a clearer understanding of the structure of these papers. 

This paper examines inhomogeneous strings and cylinders, under either 
mixed Dirichlet-Neumann boundary conditions (the "fixed-free") case or 
purely Dirichlet boundary conditions (the "fixed" case). For most of the 
results, the extremal is the homogeneous string or cylinder with mass density 
identically 1. Our hypotheses on w ensure, in the fixed-free case, that w has 
more mass than 1 does near the free end of the string/cylinder, and in the 
fixed case, that w has more mass than 1 near the middle. Specifically, we use 
three different kinds of hypotheses, for the fixed-free cylinder (0, L) x S1: 

(HI)  "more mass on subcylinders": 

/    /     w(x, 6) dOdx > 27rs        for all 5 G (0, L), 
Jo Jo 

(H2)  "more mass on circles": 

r2'K 

\     w{x, 0) dO > 27r        for all x G (0, L), 
Jo 

(H3)  "decreasing mass on circles": 

r2n 
x i->  /     w(x,0) d6        is decreasing for x € (0, L) 

Jo 

and tf /0
27r w(x, 9) dOdx > 27rL. 

In each hypothesis, w has more mass near the free end x = 0 than does 
the mass density identically 1. It is easy to check that (H2) => (HI) and 
(H3) => (HI) but not conversely, and that (H2) and (H3) are not compara- 
ble. Observe also that the hypotheses can be adapted to the cylinder with 
fixed boundary conditions (see Theorems 11, 12 and 13), and to strings (see 
Theorems 2 and 9, which use a "mass on subintervals" variant of (HI)). 

Table 1 classifies the theorems in this paper according to their domain, 
boundary conditions, type of hypotheses and conclusions. In the second 
column of Table 1, "gen. cylinder" refers to a generalized cylinder (0, L) x M, 
where M is a compact homogeneous Riemannian manifold (so that M has 
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Domain BCs Hypothesis Conclusion 
Theorem 1 interval fixed-free HI first eigenvalue 
Theorem 2 interval fixed-free HI ^-functional, all n 
Corollary 3 interval fixed-free HI zeta function 
Theorem 4 cylinder fixed-free HI ^-functional, all n 

^-functional, 
Comp. Result 5 gen. cylinder fixed-free HI 

n < 53055 
Theorem 6 gen. cylinder fixed-free H2 ^-functional, all n 
Theorem 7 gen. cylinder fixed-free H3 ^-functional, all n 
Theorem 8 gen. cylinder fixed-free HI first eigenvalue 
Theorem 9 interval fixed HI ^-functional, all n 

Corollary 10 interval fixed HI zeta function 
Theorem 11 cylinder fixed HI ^-functional, n < 4 
Theorem 12 gen. cylinder fixed H2 ^-functional, all n 
Theorem 13 gen. cylinder fixed H3 ^-functional, all n 
Theorem 14 gen. cylinder fixed HI first eigenvalue 

Table 1: Summary of results in this paper. 

Domain BCs Hypothesis Conclusion 
[17, Theorem 1] ball fixed HI zeta function 
[17, Theorem 2] interval, dim. 1 fixed HI ^-functional, all n 

^-functional. 
[17, Theorem 3] ball, dim. > 2 fixed HI 

n < ra(iV) 
[17, Theorem 4] ball fixed HI first eigenvalue 
[17, Corollary 5] disk, dim. 2 fixed curvature > 0 zeta function 

Table 2: Summary of results in [17]. 

transitive isometry group).   When M is a circle this is just the standard 
cylinder. 

Table 2 similarly classifies the theorems in the related paper [17]. Note 
that Theorem 9 and Corollary 10 of this paper are directly quoted from [17]. 
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